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Introduction

Entanglement entropy is an important quantity which has been studied in many models
of condensed matter systems, quantum information and quantum gravity. It measures the
quantum correlations in a bipartite decomposition of a quantum system.

Let us consider a system whose total Hilbert space can be written as a direct product
H = HA⊗HB. Denoting by ρ the density matrix characterizing the state of the system, the
reduced density matrix associated to A is obtained by tracing ρ over the degrees of freedom
of B, i.e. ρA = TrBρ. Then, the entanglement entropy is defined as the corresponding Von
Neumann entropy, namely SA = −TrA(ρA log ρA). When the system is in a pure state,
we have ρ = |Ψ〉〈Ψ| and SA = SB. A very interesting situation occurs when A and B

correspond to a spatial bipartition of the system. In this case the entanglement entropy is
called geometric entropy. Here we consider this quantity and we will always refer to it as
the entanglement entropy. Its interesting feature is that is satisfies the so called area law:
the leading term in the expansion for small UV cutoff a is proportional to the area of the
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boundary separating A and B. In d spatial dimensions we have SA ∝ Area(∂A)/ad−1 + . . . ,
where the dots represent higher order terms in a [1]. This area law is violated in two
dimensional conformal field theories, where a logarithmic behavior has been found for one
interval. In particular SA = (c/3) log(`/a) where ` is the length of the interval and c is
the central charge of the theory. The method employed to get the analytic result for SA is
the replica trick, which means first to compute TrρnA for integer n and then to perform an
analytic continuation to real values of n in order to take SA = − ∂nTrρnA

∣∣
n=1

[2–4] (see [5]
for a recent review).

For quantum field theories with a holographic dual, the problem of computing the
entanglement entropy through a bulk description has been addressed in [6, 7]. The holo-
graphic prescription to obtain SA associated to a region A in the d+1 dimensional boundary
theory is the following. On a fixed time slice (see [8] for a generalization to time dependent
backgrounds), among all the d dimensional surfaces extended in the bulk whose bound-
ary coincides with the boundary of A, we have to consider the one having minimal area.
Denoting this minimal surface by γA, the holographic entanglement entropy is given by
SA = Area(γA)/(4G(d+2)

N ), where G(d+2)
N is the Newton constant of the d + 2 dimensional

theory in the bulk (see [9] for a derivation from AdS/CFT rules). Besides recovering the
area law, this prescription passed many tests (e.g. the strong subadditivity inequalities)
and it has been deeply studied (see the recent review [10] and the references therein); thus
it is considered a key tool to understand the essential features of the entanglement entropy
for quantum field theories with a holographic dual.

The entanglement entropy is not an extensive quantity, as can be easily understood e.g.
by the fact that SA = SB for a pure state (this equality is violated at finite temperature).
In the holographic computation of the entanglement entropy extensivity is recovered if one
considers the finite term of the minimal area (sometimes called renormalized entanglement
entropy), i.e. the one obtained by subtracting the UV divergent term giving the area law,
in a black hole background [7, 11–13]. This behavior is due to the fact that, as the size
of the region A in the boundary tends to infinity, a large part of the minimal surface gets
very close to the horizon and this part goes like the volume of A in the large size limit.
Thus the near horizon geometry is responsible of the leading divergence of the finite term
of the minimal area as the turning point of the minimal surface approaches the horizon.

A second important aspect of the entanglement entropy we are interested in concerns
the case of a spatial region A in the boundary made by two disjoint regions, i.e. A =
A1 ∪ A2 with A1 ∩ A2 = ∅. In this case the natural quantity to consider is the mutual
information MA ≡ SA1 + SA2 − SA1∪A2 because it is UV finite. For some spin chains and
two dimensional conformal field theories interesting results have been obtained [14–22].
The models considered in these papers have small central charges (order of the unity).
The two intervals case is interesting because it encodes all the data of the conformal field
theory (central charge, conformal dimensions and correlation functions) [16, 17], while the
entanglement entropy of the single interval contains only the central charge [3, 4].

In the context of the holographic correspondence, the case of disjoint regions has been
addressed in [6, 7, 23–26]. An interesting feature of the holographic entanglement entropy
is the transition of the mutual information from zero value to a positive value (the mutual
information cannot be negative, as a consequence a strong subadditivity inequality) [23,
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26]. This transition should be a large c effect, which is the regime where the holographic
prescription works, since there no signal of it e.g. for the compactified boson [15, 16], which
has c = 1.

In this paper we consider the holographic entanglement entropy for one or two strips in
the boundary theory in presence of various types of black holes with non compact horizon in
the bulk. For one strip, we focus on the divergence of the finite term when the strip becomes
large and therefore the turning point of the minimal surface approaches the horizon. The
degree of this divergence depends on the near horizon geometry, but the finite term scales
like the width (and thus like the volume) of the strip for all the black holes we consider.
This scaling is broken for the Lifshitz type backgrounds whose dynamical exponent occurs
in the spatial part of the metric.

For two parallel strips of equal width we mainly consider the transition of the mutual
information in terms of the geometrical parameters, namely the width of the strips and the
distance between them. For the charged black hole in four dimensions with fixed charge, we
find that the transition of the mutual information leads to a characteristic finite distance
between the strips as they become large. This distance depends on the temperature and
it could be interpreted as a signal of the occurrence of a finite correlation length in the
boundary theory.

The paper is organized as follows. In the section 1 we review the holographic prescrip-
tion for the entanglement entropy, specializing the analysis to ansatz that contain the black
hole metrics we consider in the rest of the paper. In the section 2 we study the finite term
of the holographic entanglement entropy for the charged black hole, the warped black hole
of [27] and the perturbed Lifshitz background considered in [28] as a solution of the Abelian
Higgs model [29]. In the section 3 we study the Lifshitz black hole of [30] computing the
analytic expression of the holographic entanglement entropy to all orders in the UV cutoff.
This allows us to extract the finite term and to test the method employed for the other
black holes. In the section 4 we consider two equal and parallel strips in the boundary and
study the transition of the mutual information for AdSd+2 and for the charged black hole.

1 Holographic entanglement entropy for black holes

In this section we review the holographic prescription to compute the entanglement en-
tropy [6, 7], defining the integrals we need in order to study the black holes that we will
consider in the remaining sections. In the appendix A we review the results for AdSd+2,
that will be also employed in the section 4.

Given a quantum field theory living on the boundary Rt × Rd of an asymptotically
AdSd+2 space, we take a d dimensional region A strictly included in the constant time slice
of the boundary. Let us take a d-dimensional surface γ embedded in the constant time
slice of AdSd+2 defined by z = z(~x), being z is the holographic coordinate and ~x ∈ Rd a
vector of the constant time section of the boundary. The area of γ reads

Area(γ) =
∫
dx1 . . . dxd

√
det(hij) (1.1)
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where hij is the induced metric on the surface ds2ind = hijdx
idxj . Among all these surfaces,

we restrict our attention to the ones whose boundary coincides with the boundary of
the region A. Within this smaller subset of surfaces, we denote by γA the one having
minimal area.

The proposal of Ryu and Takayanagi [6, 7] is that we can holographically compute
the entanglement entropy in the boundary theory through a computation in the bulk.
In particular

SA =
Area(γA)

4G(d+2)
N

(1.2)

where G(d+2)
N is the Newton constant in d+ 2 spacetime dimensions.

Depending on the shape of ∂A, one decides if it is more convenient to work either in
cartesian (d~x2 =

∑d
i=1(dxi)2) or polar coordinates (d~x2 = dρ2 + ρ2dΩ2

d−1, being dΩ2
d−1 the

metric of the d− 1 dimensional unit sphere) of Rd. Since we will mostly consider A to be a
finite strip or a disjoint union of two of them, we will adopt the cartesian coordinates for Rd

(for an example where the polar coordinates system is employed, see the appendix C, which
contains a discussion on the circular case in the black hole background considered below).

For many known black holes which are asymptotically AdSd+2, the metric on the fixed
time slice is given by

ds20 ≡ ds2
∣∣
t=const

= R2

(
d~x2

z2
+

dz2

z2f(z)

)
(1.3)

where R is the radius of AdSd+2 realized closed to the boundary. In this system of coordi-
nates the boundary is the z = 0 slice and the horizon is characterized by the smallest zero
of the emblacking function f(z).

Let us consider the region A in the boundary given by a strip with length L along
one direction, that we call x, and L⊥ along the other orthogonal ones. Choosing the
origin in the center of this strip, the symmetry of the problem allows us to restrict to
surfaces described by the even function z = z(x). Then, the area functional that we have
to minimize to compute the holographic entanglement entropy reads

Area(γA) = 2RdLd−1
⊥

∫ L
2

0
dx

1
zd

√
1 +

(z′)2

f(z)
. (1.4)

Considering as a Lagrangian density Lstrip[z(x)] the integrand in (1.4), one notices that
it does not depend explicitly on x. This is the main simplification that makes the case
of a rectangular region A easier to solve than the case of a circular region. Indeed, the
independence of Lstrip on x leads to the conserved quantity Hstrip ≡ pzz

′ − Lstrip, where
pz ≡ ∂Lstrip/∂z

′. In particular, one gets Hstrip = z−d[1 + (z′)2/f(z)]−1/2. By introducing
z2d
max ≡ 1/H2

strip, the constancy of Hstrip reads

z′ = −
√
f(z)

√
z2d
max − z2d

zd
(1.5)

where we have used that z′ < 0. This equation tells us that zmax is the turning point,
namely z′ = 0 when z = zmax. Notice that, from (1.5), also at the horizon z0 we could
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have z′ = 0 because f(z0) = 0, but we never reach it because z0 > zmax > z(x) > 0.
The equation (1.5) provides the profile of the minimal surface we are looking for and, by
construction, it satisfies z(L/2) = 0 and z(0) = zmax. As a check of (1.5), one can write
the equation of motion coming from Lstrip

z′′z

f(z)
+ d

[
1 +

(z′)2

f(z)

]
− (z′)2z

2f(z)2
f ′(z) = 0 (1.6)

and verify that the same equation can be found by deriving the conservation law Hstrip =
const w.r.t. x. Then, separating the variables in (1.5), we find that the inverse function
x(z) is

x(z) =
∫ x

0
dx̃ = −

∫ z

zmax

wd√
f(w)

√
z2d
max − w2d

dw . (1.7)

Imposing in (1.7) the relation x(0) = L/2, one gets that

L

2
=
∫ zmax

0

wd√
f(w)

√
z2d
max − w2d

dw (1.8)

which provides L = L(zmax) and the correspondence between zmax and L.
As for the area of the minimal surface defined by (1.5), we can employ its definition

to change integration variable in (1.4), which therefore becomes

Area(γA) = 2RdLd−1
⊥

∫ zmax

0

zdmax

zd
√
f(z)

√
z2d
max − z2d

dz . (1.9)

It is important to remark that, since f(z) → 1 as z → 0, the integral in (1.9) diverges at
z = 0. This leads us to put a UV cutoff z > a in the integration domain of (1.9). Thus,
the integral we have to compute reads

Area(γA) = 2RdLd−1
⊥

∫ zmax

a

zdmax

wd
√
f(w)

√
z2d
max − w2d

dw ≡ RdLd−1
⊥ Ad(zmax, a) . (1.10)

In order to isolate the divergence of (1.10) as a→ 0, we write the integral as follows

Ad(zmax, a) =
∫ zmax

a

2
wd

dw +
∫ zmax

a

2
wd

(
zdmax√

f(w)
√
z2d
max − w2d

− 1

)
dw (1.11)

≡ 2
(d− 1) ad−1

+Ad(zmax, a) . (1.12)

The second integral in (1.11) is finite as a→ 0 because we have either f(w) = 1 +O(wd+1)
or f(w) = 1 + O(wd) for w → 0 (see (2.3) and (3.1) respectively). In (1.12) we have
introduced the finite term in the UV cutoff expansion

Ad(zmax, a) ≡
∫ zmax

a

2
wd

(
zdmax√

f(w)
√
z2d
max − w2d

− 1

)
dw − 2

(d− 1)zd−1
max

. (1.13)

In this paper we will be mainly interestedO(1) term in the a expansion, which isAd(zmax, 0).
Once the proper factors given in (1.2) and (1.10) have been taken into account, the leading
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Figure 1. Charged black hole, extremal case and z0 = 1. Plot of the finite term A2(zmax, 0) as
function of zmax (red curve). Close to the boundary (i.e. when zmax → 0) it coincides with the
curve corresponding to AdS4 (blue curve), which can be read from (A.8).

divergent term of the holographic entanglement entropy is proportional to the area of ∂A
(area law), as expected [1]. The leading divergence is determined by the asymptotic form
of the metric, which is AdSd+2, thus it is meaningful to study the subleading terms in
order to get informations about the IR regime of the boundary theory. Ambiguities in the
choice of the UV cutoff affect the coefficient of the divergent term but they do not change
the finite term we are interested in. We remark that in our case we have no divergent
subleading terms (e.g. O(1/ad−3)) because we choose for A a strip. As shown in [7], for a
circular region such terms occur.

In the figure 1 the finite term (1.13) is shown for the charged black hole in AdS4 at zero
temperature. As the turning point zmax approaches the horizon z0, it develops a divergence
we are going to study.

Equivalently, we can isolate the divergence for small a in the integral of (1.10) as follows

Ad(zmax, a) =
∫ zmax

a

2
wd
√
f(w)

dw +
∫ zmax

a

2
wd
√
f(w)

(
zdmax√

z2d
max − w2d

− 1

)
dw (1.14)

≡
∫ zmax

a

2
wd
√
f(w)

dw + Id(a, zmax) . (1.15)

The finite term in the expansion for small a is now given by Id(0, zmax) plus a contribution
from the first integral in (1.15). The distinction between (1.11) and (1.14) is obviously
meaningless for AdSd+2, where f(z) = 1 identically. The splitting (1.14) has been used in
the appendix D to get some insights about the expansion of the finite term of the minimal
area as a power series as z0 − zmax and the possibility to approximate it through the near
horizon geometry.
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1.1 A more general ansatz

In this section we consider a more complicated expression for the metric in order to include
other kind of black holes in our discussion. Let us take a D+ 1 dimensional spacetime and
the following ansatz for the metric on the constant time slice

ds20 =
(

dr2

A(r)2
+B(r)2d~x2

)
e−

D−1−d
d

χ(r) +R2eχ(r)γ
(c)
ij (r)dθiθj (1.16)

where d~x2 gives the metric of Rd and γ
(c)
ij (r) is the metric of a D − 1 − d dimensional

compact manifold Mc. The boundary is at large r and we assume the occurrence of a
horizon at r = rh.

Let us take a strip specified by the function r = r(xd). Then, the metric induced on
it reads

ds2ind =
(
B(r)2(dx2

1 + . . . dx2
d−1) +

[
(r′)2

A(r)2
+B(r)2

]
dx2

d

)
e−

D−1−d
d

χ(r)

+R2eχ(r)γ
(c)
ij (r)dθiθj . (1.17)

To compute the area, we have to integrate
√

det(Gind) over the strip A. In such determinant
the dependence on χ(r) simplifies and therefore it does not occur anymore. If det(γ(c))
does not depend on r, then the area of the surface is given by

Area(γA) =
[
RD−1−d Vol(Mc)

]
2Ld−1
⊥

∫ L/2

0
B(r)d

√
1 +

(r′)2

A(r)2B(r)2
dxd (1.18)

where L⊥ is the width of the strip along the directions x1, . . . , xd−1 and Vol(Mc).
As done above, we take as Lagrangian density Lstrip[r(xd)] the integrand of (1.18) and

compute the momentum pr ≡ ∂Lstrip/∂r
′. Then, being Lstrip independent of xd, we can

employ the conserved quantity Hstrip ≡ prr
′ − Lstrip. Since at the minimum value of r we

have r′(0) = 0, we set H2
strip ≡ B(rmin)2d. This allows us to write (1.18) as follows

Area(γA) =
[
RD−1−d Vol(Mc)

]
2Ld−1
⊥

∫ ∞
rmin

B(r)2d−1

A(r)
√
B(r)2d −B(rmin)2d

dr . (1.19)

It is also important to express L = L(rmin) and it reads

L = 2
∫ ∞
rmin

B(rmin)d

A(r)B(r)
√
B(r)2d −B(rmin)2d

dr . (1.20)

We require to have AdSd+2 at large r, which means to impose

A(r)2 =
r2

R2
+O(1) B(r)2 =

r2

R2
+O(1) χ(r) → 0 r → +∞ . (1.21)
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Because of this asymptotic behavior, the integral in (1.19) is divergent. Thus, one intro-
duces the cut off α at large r, obtaining for the regularized area

Area(γA)
RD−1−d Vol(Mc)

= 2Ld−1
⊥

∫ α

rmin

B(r)2d−1

A(r)
√
B(r)2d −B(rmin)2d

dr (1.22)

=
2Ld−1
⊥

(d− 1)Rd−2

(
αd−1 − rd−1

min

)
+2Ld−1

⊥

∫ α

rmin

(
B(r)2d−1

A(r)
√
B(r)2d −B(rmin)2d

−
( r
R

)d−2
)
dr (1.23)

where the integral in (1.23) is finite when α → ∞, once the asymptotic behavior (1.21)
has been assumed. At this point, the finite term of area integral we are interested in is
given by the sum of the integral and of the term proportional to rd−1

min in (1.23). We remark
that (1.8) and (1.10) are special cases of (1.20) and (1.22) respectively. Indeed they are
recovered by choosing

A(r) =
r

R

√
f(r) B(r) =

r

R
(1.24)

and adopting the variable z ≡ R2/r. The formula for the holographic entanglement entropy
then gives

SA =
Area(γA)

4G(D+1)
N

=
2Ld−1
⊥

4G(d+2)
N

∫ α

rmin

B(r)2d−1

A(r)
√
B(r)2d −B(rmin)2d

dr (1.25)

where we have used that G(D+1)
N = G

(d+2)
N [RD−1−d Vol(Mc)]. Notice that the compact part

enters through Kaluza-Klein reduction in the Newton’s constant also in this case where a
warping factor occurs between the compact and the non compact part [12, 13].

2 Expansion of the finite term near the horizon

In this section we study the finite term of the holographic entanglement entropy introduced
in the previous section. In particular, we consider the leading term of its expansion as the
turning point of the minimal surface approaches the horizon, which means that the width L
of the strip in the boundary becomes large. As examples, we analyze the charged black hole
in AdSd+2 (section 2.1), the warped black hole of [27] (section 2.2) and the perturbation of
the Lifshitz background found in [28] within the context of the Abelian Higgs model of [29]
(section 2.3).

The finite term in the expansion for small UV cutoff a is given by Ad(zmax, 0), defined
in (1.13). In order to consider its expansion as the turning point zmax of the minimal
surface gets close to the horizon, we take

zmax ≡ z0 − εζmax ε → 0 finite ζmax (2.1)

and change the integration variable in (1.13) according to this expansion, i.e. we set w =
z0 − εζ, where 0 < ζmax < ζ. Then, the finite term can be written as follows

Ad(zmax, 0) =
∑
k∈B

εk
∫ ζmax

z0
ε

Ik(ζ, ζmax)dζ − 2
(d− 1)zd−1

max

(2.2)
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where B ⊂ [kmin,∞) ⊂ Q is some discrete set of increasing rational numbers, which are
not necessarily positive (kmin < 0). For instance, in the case of the charged black hole with
d = 2 we have k ∈ {−1/2, 1/2, 1, 3/2, . . . }. In order to write Ad(zmax, 0) as an expansion in
terms of powers of z0− zmax, we have to compute the definite integrals occurring at each k
and then expand each of them for small ε. Then this expansion can be written in powers
of z0 − zmax by using the definition ε = (z0 − zmax)/ζmax from (2.1).

In all examples we have considered we find that this method provides only the divergent
term as zmax → z0. This is due to the fact that all the integrals occurring in (2.2) give a
contribution to the finite term of the expansion.

The same procedure just described to expand the integral Ad(zmax, 0) can be applied
to the integral (1.8) as well, obtaining L as an expansion in powers of z0− zmax. It is then
useful to compare the divergences of these two quantities as zmax → z0 in order to see how
the finite term of the entanglement entropy scales with the width of the strip, and therefore
with the volume.

2.1 Charged black hole

In this section we apply the method just described to the charged black hole in AdSd+2 in
its three different regimes of neutrality, extremality and non extremality. The metric and
its properties are reviewed in the appendix B.

The metric of the charged black hole in AdSd+2 reads

ds2

R2
=
−fdt2 + d~x2

z2
+
dz2

fz2
f = 1 +Q2

( z

R2

)2d
−M

( z

R2

)d+1
(2.3)

where M is the mass and Q is the charge of the black hole. The radial direction is
parameterized by z and the boundary is at z = 0. The position z0 of the horizon is given
by the smallest zero of the emblacking function f(z). Since the metric (2.3) falls into the
class of metrics described by (1.3), we can employ the formulas discussed in the section 1.

Schwarzschild black hole. As a first example, we consider the Schwarzschild black
hole, which is given by (2.3) with Q = 0. By performing the expansion described above,
we find

L = −
√

2 z0√
d(d+ 1)

log(z0 − zmax) +O(1) (2.4)

and

Ad(zmax, 0) = −
√

2√
d(d+ 1) zd−1

0

log(z0 − zmax) +O(1) =
L

zd0
+O(1) (2.5)

where we recall that the horizon z0 is related to the temperature as T = (d + 1)/(4πz0).
The case d = 3 was considered in [7].

Extremal charged black hole. When Q 6= 0 and T = 0 this analysis leads to

L =
√

2π z3/2
0

d
√
d+ 1

√
z0 − zmax

+O(1) (2.6)
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Figure 2. Extremal charged black hole in AdS4 with z0 = 1 (left) and z0 = 1.5 (right). Plot of
the finite term A2(zmax, 0) as a function of L (red line). For small L it recovers the corresponding
quantity for AdS4 (blue curve) obtained from (A.9). The black line provides the large L behavior
given by (2.7).

and

Ad(zmax, 0) =
√

2π z3/2−d
0

d
√
d+ 1

√
z0 − zmax

+O(1) =
L

zd0
+O(1) . (2.7)

In the figure 2 (see [12]) we show Ad(zmax, 0) in terms of L for the extremal case. When
L is small we are close to the boundary and the curve reproduces the one of AdS4, as
expected. By comparing the two plots in the figure, one can check the dependence on z0
in (2.7).

Non extremal charged black hole. The same method applied for T > 0 leads to

L = −
√
z0√

2πdT
log(z0 − zmax) +O(1) (2.8)

and

Ad(zmax, 0) = −
√
z0

zd0
√

2πdT
log(z0 − zmax) +O(1) =

L

zd0
+O(1) . (2.9)

Comparing these three regimes of the same black hole, one learns that the finite term of
the holographic entanglement entropy diverges like the width L (and therefore like the
volume) of the strip in the boundary. The distinguished feature is the kind of divergence
of Ad(zmax, 0) and L as zmax → z0. This is determined by the near horizon geometry
which is given by f(z) = O(z0 − z) for the Schwarzschild and the non extremal case and
by f(z) = O

(
(z0 − z)2

)
for the extremal case (see the appendix B). As a check, one can

perform the expansion of the finite term just described substituting to the emblacking
function f(z) its near horizon approximation fnh(z) and verify that the same divergence
shown above are obtained.

We remark that for all the black holes we are considering the horizon is non compact;
therefore the wrapping of the minimal surface around the horizon in the large L limit
described e.g. in [6, 7, 24, 31] does not occur. In the appendix D we employ the split-
ting (1.14) of the finite term to study the O(1) term in (2.7) and discuss the approximation
obtained by using the near horizon geometry.
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2.2 Warped black hole

In this section we employ the observation just made about the role of the region close to
the horizon and apply the expansion described in (2.1) and (2.2) to a black hole where only
the near horizon geometry is known.

In [27] a minimal consistent truncation of the type IIB supergravity has been considered
by the following metric

ds2 = e−
5
3
χds2M +R2eχ

[
e−4η

9

(
dψ +

2∑
i=1

cosφi

)2

+
eη

6

2∑
i=1

(
dθ2
i + sin2 θi dφ

2
i

)]
(2.10)

where the non compact space M is given by

ds2M = − ge−wdt2 +
dr2

g
+
r2

R2

3∑
i=1

dx2
i . (2.11)

The functions χ, η, g and w depend on the coordinate r only. The geometry (2.10) is
required to provide AdS5 × T 1,1 on the boundary, i.e. at large r.

In [27] the equations of motion coming from the effective Lagrangian have been solved
numerically; nevertheless analytic formulae have been found in some limits. We are in-
terested in the T = 0 regime, for which the first term of a series expansion near the
horizon is given. The novel feature is that the near horizon region is a warped product
AdS2 × R3 × T 1,1. As discussed in [27], one can employ the symmetries of the problem to
set to one both the AdS radius and the position of the horizon, but we prefer to keep r0
generic for clearness.

The metric (2.10) falls into the general class considered in the section 1.1 through the
ansatz (1.16) by choosing D = 9, d = 3 and

A(r)2 = g(r) B(r)2 =
r2

R2
. (2.12)

The analytic behavior near the horizon in the T = 0 case reads [27]

g(r) = b(r − r0)13/3 + . . . b ≡ 93312 3
√

12
25

. (2.13)

As checked in the section 2.1 for the charged black hole, the near horizon region determines
the leading divergence of the finite term of the holographic entanglement entropy as the
strip in the boundary becomes large. Thus, we perform the expansion discussed at the
beginning of the section 2 by using the near horizon geometry (2.13) instead of the full
metric (which is still analytically unknown). Introducing rmin = r0 + ερmin with finite ρmin

and changing the integration variable accordingly (r = r0 + ερ), we get for the leading
behavior of the integral in (1.20) the following result

L

2
=

1√
6b r0 ε5/3

∫ ∞
ρmin

dρ

ρ13/6(ρ− ρmin)
+ . . . =

1√
6b r0

√
π Γ
(

5
3

)
Γ
(

13
6

)
(rmin − r0)5/3

+ . . . (2.14)
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where . . . denote higher orders in ε. The same procedure can be applied to the inte-
gral in (1.23) which provides the leading divergence of the finite term in the holographic
entanglement entropy as rmin approaches the horizon. The result reads∫ ∞

rmin

(
r5√

g(r)
√
r6 − r6min

− r

)
dr =

r
5/2
0√
6b

√
π Γ
(

5
3

)
Γ
(

13
6

)
(rmin − r0)5/3

+ . . . = r30 L+ . . . (2.15)

where in the last step we have used (2.14). Thus, also in this case the expected behavior
for rmin → r0 is recovered (here we have d = 3).

2.3 Perturbed Lifshitz background

The Lifshitz background is defined by a metric which is scale invariant if the space coor-
dinates and the time coordinate scale with a different power. The relative scale dimension
of time and space is the dynamical exponent. This parameter usually occurs in the time
component of the metric; therefore it does not affect the computation of the holographic
entanglement entropy, which involves the metric on a constant time slice. An example of
this type is considered in the section 3. Instead, when the dynamical exponent occurs in
some spatial component of the metric, then it usually turns out to be involved non triv-
ially in the holographic computation of the entanglement entropy [32]. In this section we
consider an example of this type.

A perturbation of the Lifshitz background through a formal parameter expansion was
studied in [28] as a solution of the Abelian Higgs model in AdS4 [29], introduced to describe
superconducting black holes. The metric to consider reads

ds2 = − g(r)2dt2 +
r2

R2
d~x2 + e2b(r)

R2

r2
dr2 . (2.16)

In [28] it was found that the Lifshitz background is a solution and also its perturbation of
the following form is allowed

g(r) =
( r
R

)ω
+ λ g1(r) +O(λ2) b(r) = λ c rγ +O(λ2) (2.17)

where λ is a formal expansion parameter and γ depends on the dynamical exponent ω
besides other parameters of the model. The explicit expression of γ is not important
for our discussion. Notice that the dynamical exponent affects the spatial part of the
metric through the perturbation of the Lifshitz background, and therefore it occurs in the
computation of the holographic entanglement entropy. Since (2.16) on a constant time
slice is a special case of the ansatz considered in the section 1.1, we can employ the results
discussed there. From (1.23) with d = 2, B(r) = r/R and A(r) = e−b(r)r/R, we find that
the finite term in the holographic entanglement entropy is provided by the following integral∫ α

rmin

(
eb(r)√

1− (rmin/r)4
− 1

)
dr =

∫ α

rmin

(
1√

1− (rmin/r)4
− 1

)
dr (2.18)

+ λ c

∫ α

rmin

rγ√
1− (rmin/r)4

dr +O(λ2) .
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We are mainly interested in the O(λ) term in the r.h.s. of (2.18) because the O(1) one
provides the result of AdS4 and of the Lifshitz background in four dimensions (they have
the same entanglement entropy because their metric differs only in the time component).
In (2.18) we cannot go to O(λ2) because it involves the O(λ2) of b(r) in (2.17), which is
not known; but the O(λ) term is already interesting because it contains the dynamical
exponent through γ. To get a finite result from the integral at O(λ) in (2.18) when α→∞
we need γ < −1. Then we have∫ α

rmin

rγ√
1− (rmin/r)4

dr =
rγ+1
min

4
Bρ4
(
− 1 + γ

4
,
1
2

)∣∣∣1rmin
α

=
√
π Γ(−1−γ

4 )

4 Γ(1−γ
4 )

rγ+1
min +O(α1+γ)

(2.19)
where we found it useful to employ the integration variable ρ ≡ rmin/r and the final result
is expressed in terms of the incomplete beta function Bz(a, b), which reduces to the beta
function B(a, b) = Γ(a)Γ(b)/Γ(a + b) for z = 1 and it is related to the hypergeometric
function for a general z as Bz(p, q) = (zp/p) 2F1(p, 1− q; 1 + p; z).

As for the length L of the interval in the boundary, it is related to rmin through the
integral (1.20), which in this case can be expanded up to O(λ), similarly to what we have
done in (2.18) for the area of the minimal surface. The result is

L = 2R2r2min

∫ ∞
rmin

eb(r)

r4
√

1− (rmin/r)4
dr =

2R2√π Γ(3
4)

rmin Γ(1
4)

+ λ
cR2√π Γ(3−γ

4 )

2r1−γmin Γ(5−γ
4 )

+O(λ2) .

(2.20)
Again, the first term in (2.20) provides the result for AdS4 (see (A.3)). We can invert (2.20)
perturbatively and find rmin(L) up to O(λ2) terms by using that

L = c0 r
d0
min

[
1 + c1r

d1
minλ+O(λ2)

]
rmin =

(
L

c0

) 1
d0

[
1− c1

d0

(
L

c0

) d1
d0

λ+O(λ2)
]
.

(2.21)
In our case we find

rmin =
2R2√π Γ(3

4)
Γ(1

4)L

[
1 + λ

cΓ(3−γ
4 ) Γ(1

4)

4 Γ(5−γ
4 ) Γ(3

4)

(
2R2√π Γ(3

4)
Γ(1

4)L

)γ
+O(λ2)

]
. (2.22)

Plugging this result into (2.19) we find that the correction O(λ) to the holographic entan-
glement entropy is proportional to

λ c

∫ α

rmin

rγ√
1− (rmin/r)4

dr

=
λ c

L1+γ

√
π Γ(−1−γ

4 )

4 Γ(1−γ
4 )

(
2R2√π Γ(3

4)
Γ(1

4)

)γ+1 [
1 +O(α1+γ)

]
+O(λ2) . (2.23)

Since we are assuming 1 + γ < 0 this term diverges like L−(1+γ). The interesting feature
is that the dynamical exponent occurs in a non trivial way in the scaling of the finite
term of the holographic entanglement entropy in terms of the width L of the strip. This
computation is not conclusive because it involves only the first term of a perturbative
expansion, but we expect the occurrence of the dynamical exponent in such scaling also
for the result computed with the full (non perturbative) expression of the metric.
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3 A Lifshitz black hole in four dimensions

In this section we consider the Lifshitz black hole in four dimensions (d = 2) found in [30].
Because of the simple emblacking function characterizing this black hole, we can compute
the holographic entanglement entropy analytically to all order in the UV cutoff. This allows
us also to check the method employed in the section 2 to find the divergent term in the
finite integral of the area as zmax goes to the horizon z0.

The Lifshitz black hole of [30] is a solution e.g. of a model in four dimensions which
includes, besides gravity, a massive U(1) gauge field and a strongly coupled scalar, namely
a scalar without kinetic term. Its metric reads

ds2 = −f(z)
dt2

z2ω
+
d~x2

z2
+

dz2

z2f(z)
f(z) = 1− z2

z2
0

. (3.1)

The boundary is at z = 0 and the range of the holographic coordinate is (0, z0). The
dynamical exponent is ω = 2 and the bulk curvature radius R has been set to one. Near
the boundary the metric (3.1) asymptotes the Lifshitz spacetime in four dimensions with
dynamical exponent equal to two. Near the horizon the emblacking function f(z) vanishes
linearly and the metric on the constant time slice is (1.3) with the f(z) given in (3.1).

We remark that, since the anisotropy ω does not occur in the metric on the constant
t slice, we do not see the effects described in [32]. In that case they have an anisotropy
between two spatial directions; therefore the holographic entanglement entropy is sensible
to the difference between them.

As first step we study the leading order for zmax → z0 of the finite term (1.13) by
employing the expansion described in the section 2. The result is

A2(zmax, 0) = − 1√
2 z0

log(z0 − zmax) +O(1) . (3.2)

Like in all the cases considered in the section 2, we cannot say anything about the finite
term with this method.

For the Lifshitz black hole (3.1) we can compute the integral in (1.10) analytically (we
find it convenient to adopt z̃ ≡ w2/z2

max as integration variable). The result reads

A2(zmax, a) =
∫ zmax

a

2z2
max

w2
√
fL(w)

√
z4
max − w4

dw = − 1
zmax

I
(

a2

z2
max

)
(3.3)

where

I(x) ≡ 2
√

1 + β E

(
arcsin

(√
(1 + β)(1− x)

2(1− βx)

)∣∣∣∣ 2
1 + β

)
(3.4)

−
√

2β F
(

arcsin
(√

1− x
1− βx

) ∣∣∣∣1 + β

2

)
− 2

√
1− x2

x(1− βx)

being β ≡ (zmax/z0)2 and the function F (x|m) and E(x|m) the incomplete elliptic inte-
grals of the first and of the second kind respectively. Notice that the upper extremum of
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integration in (3.3) gives a vanishing contribution. Expanding (3.3) for small UV cutoff a

we find

A2(zmax, a) =
2
a
− f0(β)
zmax

− β a

z2
max

−
(

5
3
− 13

12
β2

)
a3

z4
max

−
(

13
10
β − 43

40
β3

)
a5

z6
max

(3.5)

−
(

11
28

+
47
56
β2 − 445

448
β4

)
a7

z8
max

+O(a9)

with the function f0(β) occurring in the finite term of this expansion given by

f0(β) ≡ 2
√

1 + β E

(
arcsin

(√
1 + β

2

)∣∣∣∣ 2
1 + β

)
−
√

2β K
(

1 + β

2

)
(3.6)

where K(z) is the complete elliptic integral of the first kind. As zmax → z0 we get

− f0(β)
zmax

= − 1√
2 z0

log(z0 − zmax) +O(1) (3.7)

which confirms the result (3.2) found through the method described in the section 2.
For this black hole we can compute also the integral (1.8) as done for the one in (3.3).

Again, the upper extremum of the definite integral gives a vanishing contribution. The
result reads

L =
2zmax

β
√

1 + β

[
F

(
arcsin

(√
1 + β√

2

) ∣∣∣∣ 2
1 + β

)
−(1− β) Π

(
2β

1 + β
; arcsin

(√
1 + β√

2

) ∣∣∣∣ 2
1 + β

)]
(3.8)

where Π(x, φ|m) is the incomplete elliptic integral of the third kind. When zmax → z0
we have

L = − z0√
2

log(z0 − zmax) +O(1) . (3.9)

Combining this result with (3.7) we obtain

A2(zmax), 0) =
L

z2
0

+O(1) (3.10)

as expected. Besides providing another check for the method discussed in the section 2,
this is a black hole whose holographic entanglement entropy can be computed analytically.

4 Two disconnected strips

In this section we consider the case of a region A in the boundary made by two parallel
strips. In particular, following [26], we study the transition of the mutual information in
AdSd+2 (section 4.1) and in the charge black hole background (section 4.2).

Let us consider a spatial slice of the boundary theory with two parallel strips A1 and
A2 whose widths are L1 and L2 respectively and separated by a distance L0. As recalled in
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the introduction, the natural quantity to study for two disconnected regions is the mutual
information MA ≡ SA1 + SA2 − SA1∪A2 because it is UV finite.

In order to find the minimal surface associated to the region A = A1 ∪ A2 in the
holographic computation, we have to consider two pairs of disjoint surfaces extended in
the bulk whose boundary coincides with the boundary of the two strips. Together with the
region A, the first pair of surfaces encloses a connected volume of the bulk, while the second
one encloses two disconnected volumes of the bulk. The strong subadditivity inequalities
guarantee that the pair of intersecting surfaces in the bulk whose boundary coincides with
∂A is not minimal [24–26]. The divergent term giving the area law is the same for both
these two pairs of surfaces because they share the same boundary. Thus, in order to find
the pair with minimal surface, we have to consider the finite term (in the UV cutoff) of
the integrals giving the area of the pair of surfaces.

We find it useful here to change slightly the notation for the finite part (1.13) of
the holographic entanglement entropy by introducing Ãd(L) ≡ Ad(zmax, 0) where zmax =
zmax(L) is the inverse function of (1.8). Thus, we consider

Sd(L1, L2;L0) ≡ min
[
Ãd(L1) + Ãd(L2)︸ ︷︷ ︸
disconnected volumes

; Ãd(L0) + Ãd(L1 + L0 + L2)︸ ︷︷ ︸
connected volume

]
(4.1)

which occurs in the mutual information for the finite parts

Md(L1, L2;L0) ≡ Ãd(L1) + Ãd(L2)− Sd(L1, L2;L0) . (4.2)

We remark that in (4.2) we talk about mutual information with a slight abuse of notation
because the mutual information is given by (4.2) multiplied by a factor RdLd−1

⊥ /(4G(d+2)
N )

coming from (1.2) and (1.10). We made this choice for clearness and we believe it will not
mislead the reader.

The mutual information (4.2) is zero when the minimal surface is given by the pair
of surfaces enclosing the disconnected volumes and it is positive when the minimal surface
corresponds to the pair of surfaces enclosing the is the connected volume. The transition
of the mutual information (4.2) from zero to a positive value occurs when the two terms
compared in (4.1) are equal, i.e.

Ãd(L1) + Ãd(L2) = Ãd(L0) + Ãd(L1 + L0 + L2) . (4.3)

In the remaining part of this section we study this equation in the special case of equal
strips, namely L1 = L2. First we consider AdSd+2, where some analytic result can be
found, and then the charged black hole in AdSd+2.

4.1 AdSd+2

For AdSd+2 the analysis is simple because we explicitly know that (see (A.9) and (A.10))

Ãd(L) = − αd
Ld−1

αd =
1

d− 1

(
2
√
π Γ
(
d+1
2d

)
Γ
(

1
2d

) )d
(4.4)
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Figure 3. Holographic mutual information in AdS4 with L2 = L1. On the left we show
M2(L1, L1;L0) for L0 = 0.87 (red), L0 = 1.91 (blue) and L0 = 3.93 (black). On the right, in
the parameter space (L1, L0), we plot the position of the transition point at which the mutual
information starts to be non zero.

which holds for d > 2. Keeping the distance L0 between the two equal strips fixed, for
small L1 the pair of surfaces enclosing the disconnected volumes is minimal and the mutual
information (4.2) is zero. Increasing L1, at a certain point the pair of surfaces enclosing the
connected volume becomes minimal and the mutual information (4.2) is therefore positive.
For large L1 the mutual information goes asymptotically to a constant, as shown for d = 2
in the figure 3 (plot on the left). In order to find the asymptotic value of the mutual
information, we observe from (4.4) that Ãd(L)→ 0 when L→∞. This implies that

lim
L1→∞

Md(L1, L1;L0) = −Ãd(L0) . (4.5)

which provides the asymptotic value of the mutual information as a function of the distance
between the strips.
As for the transition point at which the mutual information starts to be positive, its defining
relation (4.3) specified for AdSd+2 and L2 = L1 reads

(L0/L1 + 2)d−1 =
(L0/L1)d−1

2(L0/L1)d−1 − 1
d > 2 (4.6)

where (4.4) has been employed. For any fixed d > 2, we can easily observe through a
graphical analysis that the equation (4.6) has only one positive root for L0/L1. This root
provides the angular coefficient of the straight line in the plane (L1, L0). In the figure 3
(plot on the right) the case of AdS4 is considered.

In the figure 4 we show the angular coefficient of the straight line, namely the solution
of (4.6), as function of d. We remark that the equation (4.6) holds for d > 2. The case
of AdS3 (i.e. d = 1) has been studied in [26], finding that the transition occurs when the
conformal ratio x ≡ z12z34/(z13z24) = L2

1/(L1 + L0)2 = 1/2, which corresponds to the red
point in the figure 4.

4.2 Charged black holes

In this section we consider the holographic mutual information for a charged black hole.
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Figure 4. Two equal and parallel strips. Angular coefficient of the line characterizing the transition
of the holographic mutual information in AdSd+2 in terms of d. The red point corresponds to AdS3,
which is not described by the equation (4.6). In this case the transition occurs at the value x = 1/2
of the conformal ratio [26].

0 100 200 300 400
L1

0.2

0.4

0.6

0.8

1.0

1.2
L0

0 5 10 15 20
L10.0

0.2

0.4

0.6

0.8

1.0

1.2
L0

Figure 5. Extremal charged black hole in AdS4 with z0 = 1. On the left the position of the
transition point of the holographic mutual information in the parameter space (L1, L0). On the
right, a zoom of the same plot: the asymptotic line is provided by the equation (4.9) and the green
line corresponds to the transition point of AdS4 (figure 3, plot on the right).

By employing the results of the section 2, we have that

Ãd(L) =
L

zd0
+ cd + o(1) for large L (4.7)

where cd is the O(1) term in (2.5), (2.7) and (2.9). Since we are not able to determine cd
analytically, we fix it by fitting the numerical values of Ãd(L) at large L with a line.

For two equal strips of width L1 at fixed distance L0, the behavior of the mutual information
is qualitatively the same obtained for AdSd+2 and shown in the figure 3 (plot on the left).
The asymptotic value of Md(L1, L1;L0) at fixed L0 can be found by employing (4.7). For
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L1 →∞ we have

Md(L1, L1;L0) = 2Ãd(L1)− Ãd(L0)− Ãd(2L1 + L0) −→ cd − Ãd(L0)− L0

zd0
. (4.8)

As for the position of the transition point of Md(L1, L1;L0) in the plane (L1, L0), the
curve is instead qualitatively different from the corresponding one obtained for AdSd+2,
Indeed, while we get a straight line for AdSd+2 (plot on the right in the figure 3), for the
charged black hole we find a curve with an asymptotic constant value (plot on the left in the
figure 5). In particular, the straight line of AdSd+2 is tangent to the curve corresponding
to the charged black hole which is asymptotically AdSd+2, as shown by the plot on the
right in the figure 5. Indeed, for small values of L1 the pairs of surfaces to compare are
close to the boundary and consequently the transition between them is determined by the
asymptotic geometry.

Let us consider further the characteristic asymptotic value L̃0 of the curve of the
transition points of the mutual information for a charged black hole in the plane (L1, L0)
as L1 becomes large. The equation defining L̃0 can be found by taking the limit L1 →∞
and L0 → L̃0 of the equation (4.3) and employing (4.7). The result is

Ãd(L̃0) +
L̃0

zd0
− cd = 0 (4.9)

which can be solved numerically. This asymptotic value of the distance between the two
strips could be interpreted as a signal of the occurrence of a finite correlation length in the
boundary theory.

The qualitative features just described for the extremal charged black are found for
the non extremal case as well. The mutual information Md(L1, L1;L0) behaves like in
the plot on the left of the figure 3 and the curve of the transition points is qualitatively
like the one shown in the figure 5, with the asymptotic value given by the solution of the
equation (4.9) with the proper emblacking function depending on the temperature. In
the figure 6 we show the curves of transition points of M2(L1, L1;L0) for two different
temperatures besides the extremal case at fixed charge. The curve corresponding to a
certain temperature always stays below the curve corresponding to a lower temperature,
meaning that the asymptotic value determined by (4.9) decreases with the temperature
for a fixed charge of the black hole. We recall that imposing Q fixed implies that we
cannot change the temperature keeping fixed the position of the horizon z0 because these
quantities are related through (B.7).

5 Conclusions

In this paper we have considered two aspects of the holographic entanglement entropy in
black hole backgrounds: the behavior of the finite term as the width of the strip in the
boundary becomes large and the transition of the mutual information for two equal strips
in the parameter space given by the width of the strips and their distance.

For one strip in the limit of large volume, which means that the turning point of the
minimal surface approaches the horizon, we confirm and extend to new cases the known
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Figure 6. Charged black hole in AdS4 at fixed charge. Position of the transition point for
M2(L1, L1;L0) in the plane (L1, L0): the red curve corresponds to the extremal case (see the
figure 5, plot on the right) while the blue and the orange ones correspond to two non extremal cases
(T = 0.1 and T = 0.18 respectively). The black horizontal line gives the asymptotic value of the
extremal case while the green line corresponds to the transition point of AdS4.

result that the finite term scales like the width, and therefore like the volume, of the strip.
The distinguished feature of the different black holes is the degree of the divergence of
the finite part in terms of the distance between the turning point and the horizon, which
is determined by the near horizon geometry. In the case of a Lifshitz background with
a dynamical exponent entering in the spatial part of the metric, such scaling could be
influenced by this exponent. For a Lifshitz black hole in four dimensions we computed the
analytic expression of the holographic entanglement entropy to all orders in the UV cutoff.

For two equal and parallel strips in the boundary, we have found that the transition
of the mutual information for a charged black hole naturally provides a finite limiting
distance between the strips as their width becomes large. This asymptotic value could be
interpreted as a signal of a finite correlation length in the boundary theory. The transition
in the mutual information is characteristic of the holographic prescription; therefore it is
a large c effect. We believe that it is important to further study this transition in order to
understand how it smooths out for finite c. This is part of the general aim of reproducing
through holography the results obtained for the mutual information in the finite c models.
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A AdSd+2

For the sake of completeness, in this appendix we briefly review the results for the holo-
graphic entanglement entropy in AdSd+2 for the strip [6, 7]. The expressions in the section 1
can be applied with f(z) = 1 identically.

The inverse function of the profile z(x) representing the minimal surface is given by

x(z) =
∫ zmax

z

wd√
z2d
max − w2d

dw =
wd+1

(d+ 1)zdmax
2F1

(
d+ 1

2d
,
1
2

;
3d+ 1

2d
;
w2d

z2d
max

) ∣∣∣∣∣
zmax

z

(A.1)

=
√
π Γ
(
d+1
2d

)
Γ
(

1
2d

) zmax −
zd+1

(d+ 1)zdmax
2F1

(
d+ 1

2d
,
1
2

;
3d+ 1

2d
;
z2d

z2d
max

)
. (A.2)

Since x(0) = L/2, from (A.2) we see that

L =
2
√
π Γ
(
d+1
2d

)
Γ
(

1
2d

) zmax . (A.3)

As for the regularized area of this minimal surface, it is given by (1.10) where now the
integral to perform is

Ad(zmax, a) = 2
∫ zmax

a

zdmax

wd
√
z2d
max − w2d

dw (A.4)

=
2

(d− 1) ad−1
− 2

(d− 1) zd−1
max

+
∫ zmax

a

2
wd

(
zdmax√

z2d
max − w2d

− 1

)
dw (A.5)

where the divergence for small a has been isolated as in (1.11) or (1.14) (in absence of the
black hole they provide the same result). The integral in (A.5) reads∫ zmax

a

2
wd

(
zdmax√

z2d
max − w2d

− 1

)
dw = (A.6)

=
[

2
(d− 1)wd−1

(
1−

√
1− w2d

z2d
max

)

− 2wd+1

(d2 − 1)z2d
max

2F1

(
d+ 1

2d
,
1
2

;
3d+ 1

2d
;
w2d

z2d
max

)]∣∣∣∣∣
zmax

a

=
2

(d− 1)zd−1
max

−
√
π Γ
(
d+1
2d

)
(d− 1) Γ

(
1
2d

)
zd−1
max

+O(ad+1) d > 2 . (A.7)
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Thus the UV divergence of Area(γA) has been isolated and the final result is [7]

Ad(zmax, a) =
2

(d− 1) ad−1
−

2
√
π Γ
(
d+1
2d

)
(d− 1) Γ

(
1
2d

)
zd−1
max

+O(ad+1) (A.8)

=
2

(d− 1) ad−1
− αd
Ld−1

+O(ad+1) (A.9)

where

αd ≡
1

d− 1

(
2
√
π Γ
(
d+1
2d

)
Γ
(

1
2d

) )d
. (A.10)

This expression has been employed in the section 4.1 to study the asymptotic value of the
mutual information.

Now we find it useful to derive (A.8) also in the following way, which could be employed
in a generalized version for the black holes. First one writes the integral in (A.5) as a series∫ zmax

a

2
wd

(
zdmax√

z2d
max − w2d

− 1

)
dw =

∞∑
n=1

2bn
z2dn
max

∫ zmax

a
wd(2n−1)dw (A.11)

=
2

zd−1
max

∞∑
n=1

bn
(2n− 1)d+ 1

+O(ad+1) (A.12)

where in (A.11) the coefficients bn can be found by employing the following identity
with α = 1/2

1
(1− x)α

= 2F1(α, β;β;x) =
∞∑
n=0

(α)n
n!

xn =⇒ bn =
(1/2)n
n!

(A.13)

being (c)n ≡ c(c+ 1) . . . (c+ n− 1) the Pochhammer symbol (we recall that (c)0 ≡ 1).
Then, from (A.5) and (A.12) we get that for the finite term in the expansion for small a

2
zd−1
max

(
− 1
d− 1

+
∞∑
n=1

bn
(2n− 1)d+ 1

)
= −

2
√
π Γ
(
d+1
2d

)
(d− 1) Γ

(
1
2d

)
zd−1
max

(A.14)

which agrees with the finite term in (A.8).

B Charged black holes in AdSd+2

In this appendix we review some features of the charged black holes which are asymptoti-
cally AdSd+2. The metric reads

ds2 =
r2

R2

(
− fdt2 + d~x2

)
+
R2

r2
dr2

f
f = 1 +

Q2

r2d
− M

rd+1
(B.1)

for d > 2, where d~x2 is the metric of Rd, M is the mass and Q is the charge of the black
hole. The boundary corresponds to large r, where the metric becomes the one of AdSd+2

with radius R. The Schwarzschild black hole in AdSd+2 is obtained by setting Q = 0.
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By introducing the variable z ≡ R2/r, the metric (B.1) becomes (2.3) and the boundary
corresponds to z = 0. This parameterization is largely used in this paper. Another useful
parameterization of the radial coordinate is

er̃/R =
r

R
. (B.2)

Notice that a scaling of r corresponds to a shift of r̃. With the parameterization given by
r̃, the metric (B.1) reads

ds2 = er̃/R
[
−f(r̃)dt2+d~x2

]
+
dr̃2

f(r̃)
f(r̃) = 1+

Q2

R2d
e−2d r̃/R− M

Rd+1
e−(d+1)r̃/R . (B.3)

It is convenient to parameterize Q by introducing r∗ as follows

Q2 ≡ d+ 1
d− 1

r2d∗ =
d+ 1
d− 1

(
R2

z∗

)2d

. (B.4)

From this expression it is evident that Q has the dimension of [L]d. The limit z∗ → ∞
corresponds to the Schwarzschild black hole. The chemical potential reads

µ ≡

√
d

2(d− 1)
gFQ

R2rd−1
0

=

√
d(d+ 1)√
2(d− 1)

gF r0
R2

(
r∗
r0

)d
=

√
d(d+ 1)√
2(d− 1)

gF
z0

(
z0
z∗

)d
(B.5)

where gF is the effective dimensionless gauge coupling. When z∗ → ∞ for fixed z0 the
chemical potential µ vanishes. The temperature is

T =
(d+ 1)r0

4πR2

(
1− r2d∗

r2d0

)
=

d+ 1
4πz0

(
1− z2d

0

z2d
∗

)
=

d+ 1
4πz0

(
1− d− 1

d+ 1
Q2z2d

0

R4d

)
> 0 .

(B.6)
Since r0 > r∗ in order to impose T > 0, we have z0 6 z∗. Notice that if we want to keep
Q fixed, changing T implies a change of z0. Indeed, the values of Q and T fix the position
z0 of the horizon through (B.6), which can be written also as follows

(d− 1)Q2

(d+ 1)R4d
z2d
0 +

4πT
d+ 1

z0 − 1 = 0 . (B.7)

Setting R = 1, if we decide to choose z0 = 1 at T = 0 then Q2 = (d+ 1)/(d− 1). Keeping
this value for Q2 fixed, moving to T > 0 modifies z0 according to (B.6) which becomes

z2d
0 +

4πT
d+ 1

z0 − 1 = 0 . (B.8)

From the relation (B.6) it seems that there is a maximum temperature corresponding to
z∗ →∞. Instead the relevant parameter is the ratio

T

µ
=

√
2(d+ 1)(d− 1)zd∗

4πgF
√
d zd0

(
1− z2d

0

z2d
∗

)
≡ α̃d

[(
z∗
z0

)d
−
(
z∗
z0

)−d ]

α̃d ≡
√

2(d+ 1)(d− 1)
4πgF

√
d

(B.9)
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which spans all the positive real numbers when z∗ ∈ [z0,∞) in a strictly monotonical way,
going to infinity when z∗ →∞. From (B.9) we can see that (the other root is negative)(

z∗
z0

)d
=

T

2α̃dµ
+

√(
T

2α̃dµ

)2

+ 1 > 1 (B.10)

which becomes 1 when T = 0 for any d > 2. The parameter M , which can be expressed in
terms of Q2 and the position r0 of the horizon, reads

M = rd+1
0 +

Q2

rd−1
0

= rd+1
0 +

d+ 1
d− 1

r2d∗
rd−1
0

=
(
R2

z0

)d+1
[

1 +
d+ 1
d− 1

(
z0
z∗

)2d
]
. (B.11)

Thus, the emblacking function can be written as follows

f(z) = 1 +
d+ 1
d− 1

(
z

z∗

)2d

−

[
1 +

d+ 1
d− 1

(
z0
z∗

)2d
](

z

z0

)d+1

(B.12)

= 1 +
d+ 1
d− 1

(
1− 4πz0

d+ 1
T

)(
z

z0

)2d

− 2d
d− 1

(
1− 4πz0

2d
T

)(
z

z0

)d+1

. (B.13)

Notice that from (B.12) and (B.10) we can write f(z) in terms of the ratio T/µ. A very
important role in our discussions is recovered by the near horizon geometry, namely the one
obtained when z → z0. Close to the horizon, the emblacking function can be expanded as

f(z) =
(d+1)(z2d

∗ −z2d
0 )

z0
(z−z0) +

d(d+1)(3z2d
0 −z2d

∗ )
2z2

0

(z − z0)2 +O
(
(z − z0)3

)
(B.14)

= 4πT (z0 − z) +
d(d+ 1− 6πz0T )

z2
0

(z − z0)2 +O
(
(z − z0)3

)
. (B.15)

In the extremal case (T = 0⇔ z∗ = z0) the emblacking function f(z) = O
(
(z−z0)2

)
, while

in the non extremal case (T > 0 and z∗ > z0) we have f(z) = O(z − z0) when z → z0. We
remark that also in the case of the Schwarzschild black hole, which corresponds to z∗ →∞,
we have f(z) = O(z − z0) as z → z0.

C Disk geometry

In this appendix we briefly discuss the case in which the region A in the spatial section of
the boundary theory is given by a disk, while in the bulk a black hole occurs whose metric
on the constant time slice is given by (1.3).

Taking as A the circle given by ρ = R̃ (it is more convenient to adopt the polar
coordinates) and assuming that z = z(ρ), we get

Area(γA) = Vd−1

∫ eR
0
dρ ρd−1

(
R

z

)d√
1 +

(z′)2

f(z)
(C.1)

where z′ = dz/dρ and Vd−1 is the volume of the d − 1 unit sphere. Now the Lagrangian
density Ldisk[z(ρ)] is the integrand of (C.1) and it explicitly depends on the coordinate ρ.
This means that there is not a conserved first integral.
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In order to minimize the functional (C.1) we need to solve the second order equation
given by the equation of motion, which is

ρ
z′′z

f(z)
+ (d− 1)

z′ z

f(z)

[
1 +

(z′)2

f(z)

]
+ d ρ

[
1 +

(z′)2

f(z)

]
− ρ (z′)2z

2f(z)2
f ′(z) = 0 (C.2)

where f ′(z) = df(z)/dz. Thus, this case is more complicated than the strip, largely consid-
ered throughout the paper, because now we have to solve a second order equation to find
the profile to use in the integral giving the area.

For AdSd+2 the equation to solve is (C.2) with f(z) = 1 identically (see the footnote
20 of [7]) and its solution reads

z0(ρ) =
√
R̃2 − ρ2 (C.3)

which is the semispherical surface whose A is the maximal circle. For a black hole back-
ground, which has a non trivial emblacking function f(z), the equation (C.2) for the profile
of the minimal surface can be solved numerically.

D An alternative splitting of the finite term

In this appendix we provide some insights about the expansion for zmax → z0 of the
finite term of the holographic entanglement entropy and about the role of the near horizon
geometry by considering the splitting (1.14).

Let us assume to know the first integral in (1.15) analytically. Then, the O(1) term
of Ad(zmax, a) in the expansion for a → 0 is obtained by Id(0, zmax) plus a contribution
from the first integral. In general we are unable to compute Id(0, zmax). Anyway, we are
interested into its expansion as zmax → z0. The emblacking function f(w) depends on
the ratio w/z0. By introducing y ≡ w/zmax ∈ [0, 1] as integration variable, the function
f(zmax y) depends on the ratio zmax/z0 < 1, therefore we can consider the expansion of the
function 1/

√
f(zmax y) as zmax/z0 → 1−, obtaining

Id(0, zmax) =
2

zd−1
max

∫ 1

0

1
yd
√
f(zmax y)

(
1√

1− y2d
− 1

)
dy (D.1)

≡ 2
zd−1
max

∫ 1

0

∞∑
n=0

hn(y)
yd

(
1√

1− y2d
− 1

)(
1− zmax

z0

)n
dy . (D.2)

Unfortunately, the integral and the series cannot be inverted because the integrals occurring
for any fixed n are divergent at the upper extremum y = 1 as we will see below in a special
case. By introducing an intermediate scale a < zλ < zmax, we can write

Id(0, zmax) = Id(0, zλ) + Id(zλ, zmax) . (D.3)

Now, in I(0, zλ) we can invert the series and the integral because the upper limit is
zλ/zmax < 1 and the integrals converge. We get

Id(0, zλ) =
2

zd−1
max

∞∑
n=0

[∫ zλ
zmax

0

hn(y)
yd

(
1√

1− y2d
− 1

)
dy

](
1− zmax

z0

)n
(D.4)
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which is a well defined expansion whose coefficients depend on the ratio zλ/zmax.
The second integral I(zλ, zmax) is still divergent when zmax/z0 → 1− and we cannot

invert the series with the integration as done in (D.4); therefore it must be computed
analytically. Since this is usually too difficult, we can approximate it by employing the
near horizon behavior of the emblacking function. The closer is zλ to zmax, the better is
this approximation.

In order to apply these considerations to a concrete example, let us consider the ex-
tremal charged black hole in AdS4. The first integral in (1.15) in this case can be com-
puted, obtaining∫ zmax

a

2
w2
√
f(w)

dw = (D.5)

= 2

[
1√
6z0

log

(
4w+2z0+

√
6(3w2+2z0w+z2

0)
z0 − w

)
−
√

3w2+2z0w+z2
0

z0w

] ∣∣∣∣∣
zmax

a

=
2
a

+
[
− 2√

6z0
log(z0 − zmax) +O(1)

]
+O(a2) (D.6)

where the square brackets in (D.6) enclose the finite term in the power series in a, which
has been further expanded for zmax → z0.

Now, by expanding the integral in (1.15) as explained in the section 2 we find

I2(zmax, 0) =
π√

6z0
√
z0 − zmax

+
2√
6z0

log(z0 − zmax) +O(1) (D.7)

where, again, we do not control the finite term. Notice that the logarithmic divergence
in (D.7) cancels the one in (D.6) and the remaining divergence is the same one found
in (2.7) by using (1.11). This is a consistency check of the two splittings (1.11) and (1.14)
of the same integral.

As discussed above in this appendix, let us consider the integral I2(0, zmax) in terms
of the variable y (see (D.1)). The emblacking function then reads

f(zmax y) = 1− 4
(
zmax

z0
y

)3

+ 3
(
zmax

z0
y

)4

. (D.8)

By expanding 1/
√
f(zmax y) for zmax/z0 → 1−, we find the functions hn(y) occurring in

the series (D.4). For the first terms, they are e.g.

h0(y) =
1√

1− 4y3 + 3y4
h1(y) = − 6(1− y)y3

(1− 4y3 + 3y4)3/2
. . . (D.9)

and the corresponding integrals obtained by inverting the summation and the integration
in (D.2) are divergent in 1 because 1− 4y3 + 3y4 = O((1− y)2) when y → 1.

As discussed above, we introduce an intermediate scale zλ and split the integral as
in (D.3), obtaining for the first term a well defined power series (D.4) in terms of integrals
involving the functions hn. We are not able to compute them analytically, but we are
guaranteed that in I2(0, zλ) is finite as zmax → z0. The divergence comes from the near
horizon region.
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Figure 7. Extremal charged black hole in AdS4 and z0 = 1. Plot of 1/
√
f(z) (solid line) and

1/
√
fnh(z) (dashed line) as functions of z ∈ (0, z0).

As for the second integral in (D.3) giving the divergent part for zmax → z0, we cannot
compute it explicitly, but we can relate it to the corresponding integral involving the near
horizon geometry. In particular, as shown in the figure 7, the integral I2(zλ, zmax) is greater
than the corresponding one computed with the near horizon geometry for any choice of zλ;
namely

I2(zλ, zmax) > I2,nh(zλ, zmax) ≡
∫ zmax

zλ

2
w2
√
fnh(w)

(
z2
max√

z4
max − w4

− 1

)
dw (D.10)

where the emblacking function close to the horizon reads (see (B.15))

fnh(w) = 6
(w − z0)2

z2
0

. (D.11)

The integral in (D.10) is easier to deal with and the closer zλ is to zmax the better is the
approximation obtained by substituting I2(zλ, zmax) with I2,nh(zλ, zmax).
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