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It has been demonstrated experimentally that pre-stretch affects the swelling of an elastomeric

membrane when it is exposed to a solvent. We study theoretically the one-dimensional swelling of

a pre-stretched thin elastomeric sheet, bonded to an impermeable rigid substrate, to quantify the

influence of pre-stretch. We show that the solvent uptake increases when pre-stretch increases, both

at equilibrium and during the swelling transient, where it exhibits two different scaling regimes.

The coupling between the solvent uptake and pre-stretch may be practically exploited to design

soft actuators where the swelling-induced deformations can be controlled by varying the

pre-stretch. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866576]

I. INTRODUCTION

Soft active materials have been employed to realize

diverse actuators,1–3 where deformations and displacements

are triggered through a wide range of external stimuli

(electric field, pH, temperature, solvent absorption). The

functionality of such actuators critically depends on the

capability of achieving prescribed changes in shape and size

of the system. In particular, in gel-based actuators, the shape

and the size of the structures are related to the spatial distri-

bution of solvent inside the gel and to the magnitude of the

solvent uptake.

Currently, several approaches to the shape control of

swelling materials are being pursued, which often involve

materials in the form of thin non-homogeneous sheets.4–6

Recently, we have proposed an alternative approach7 for

shape manipulation based on a chemically homogeneous

elastomeric membrane and on the combination of solvent

stimulation with applied pre-stretch. For this approach, it is

crucial to quantify how the pre-stretch affects the swelling

dynamics and the equilibrium swelling. However, whereas

the influence of strain on swelling was investigated from an

experimental viewpoint already around 1950,8,9 limited pro-

gress has been made on the theoretical side, especially as

regards the effect of the pre-stretch on the dynamics of

swelling.

To address these issues, we study a model problem

involving the one-dimensional swelling of a thin elastomeric

layer that is pre-stretched and bonded to an impermeable

rigid substrate. The structure of the problem allows the

reduction of the governing equations of the problem to one

nonlinear time-dependent partial differential equation

(PDE). Almost the same equation governs the uniaxial creep

of a confined gel layer,10 where it was shown that such an

equation admits a self-similar solution for the swelling

stretch at early times. Here, we identify a new scaling regime

for the dynamics of solvent uptake corresponding to

intermediate times during the swelling transient. Moreover,

we elucidate the dependence of the equilibrium solvent

uptake on the pre-stretch by providing an explicit formula

that may be practically employed in the design of soft

actuators.

II. STRETCHING AND SWELLING PROCESSES

For the model problem, let us consider a stress-free and

dry thin elastomeric sheet Bd, with length ‘d, width wd, and

thickness hd � ‘d ;wd, which is stretched along its longitudi-

nal axis e1, while allowed to contract laterally. Subsequently,

the sheet is bonded to a rigid and impermeable substrate,

adhering to the sheet’s bottom surface (Figs. 1(a) and 1(b)).

The stretched and dry sheet Br has a deformed length

‘r ¼ �k ‘d , with 1 � �k � 4 the applied pre-stretch. Due to

the incompressibility of the elastomer, the transverse stretch
�k? is such that �k? ¼ 1=

ffiffiffi
�k
p

; thus, Br has smaller thickness

hr ¼ �k? hd < hd and width wr ¼ �k? wd < wd than Bd .

The homogeneous deformation gradient �F and (reference)

stress �S that characterize the stretched configuration are

�F ¼ �ke1 � e1 þ �k? ðI� e1 � e1Þ; �S ¼ G�F � �p�F
�T
; (1)

where G is the shear modulus of the dry elastomer and �p the

constitutively indeterminate pressure field. Here, we have

assumed a Neo-Hookean constitutive model for the elasto-

mer. As the balance of forces is trivially satisfied by the

homogeneous stress �S, the solution of the elastic problem is

completely determined by the conditions �Sec ¼ 0 on the

sheet’s boundaries with unit normal ec (c¼ 2, 3), which pre-

scribe the pressure field �p and then allow the determination

of the relation between the stretch �k and the traction

r1 ¼ �Se1 � e1

�p ¼ G
�k
; and r1 ¼ G �k � 1

�k
2

� �
: (2)

The stretched sheet Br is then exposed all over its free

boundary to a solvent with homogeneous chemical potential

lext (Fig. 1(c)). The sheet undergoes a transient swelling
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process and assumes a sequence of configurations Bt

parameterized by the time t 2 R. We describe the swelling

dynamics starting from the dry and stretched sheet Br within

a model devoted to the transient analysis of swelling-induced

large deformations in polymer gels.11 The basic equations of

the present theory rest upon the Flory-Rehner representation

of the free energy for a swelling polymer,12 appropriately

modified to account for the stress state in the reference con-

figuration Br.

Because the sheet is thin and confined on its lower sur-

face to a rigid, impermeable substrate, the swelling-induced

deformation process is assumed to occur along the thickness

direction spanned by the unit vector e3 and the coordinate

z 2 ½0; hr�. Hence, as usual when similar problems are con-

sidered,10,13 we assume that only the thickness of the sheet

undergoes significant variation, so that the swelling-induced

deformation gradient F from the pre-stretched sheet may be

represented as

F ¼ ðk� 1Þ e3 � e3 þ I; (3)

with k(z, t) the stretch along the thickness due to swelling.

Consistent with the reduced representation of F, the incom-

pressibility constraint11

J :¼ det F ¼ 1þ Xc (4)

takes the form

k ¼ 1þ Xc; (5)

where c is the solvent molar concentration per unit volume

in Br and X the solvent molar volume. For the present prob-

lem, the balance equations of forces and solvent reduce to

@S33

@z
¼ 0 and

@c

@t
¼ � @q

@z
; (6)

with S33ðz; tÞ ¼ Se3 � e3 and qðz; tÞ ¼ q � e3 the only signifi-

cant components of the stress and the solvent flux, respec-

tively. The constitutive equations for the stress S and the

chemical potential l can be obtained as the derivatives with

respect to F and c of the following free energy:

WðF; cÞ ¼ 1

2
GðF�F � F�F � 3Þ þ RT

X
mðcÞ � p ðJ � 1 � XcÞ;

(7)

with

mðcÞ ¼ Xc log
Xc

1þ Xc
þ v

Xc

1þ Xc
: (8)

Here, we have introduced the universal gas constant R, the

environment temperature T, and the dimensionless measure

v of the enthalpy of polymer-solvent mixing. The first two

terms of W are the elastic and mixing energies and together

define the Flory-Rehner free energy, while the last term

enforces the volume constraint (4) through the Lagrange

multiplier p, which is the osmotic pressure within the swel-

ling sheet. Specifically, the constitutive equations read11

S ¼ ŜðFÞ � p JF�T ¼ G F �F �F
T � p JF�T ; (9)

l ¼ l̂ðcÞ þ X p ¼ RT

X
m0ðcÞ þ X p; (10)

q ¼ q̂ðF; p; cÞ ¼ � D c

RT
ðFTFÞ�1rðl̂ðcÞ þ X pÞ; (11)

with

m0ðcÞ ¼ X log
Xc

1þ Xc
þ 1

1þ Xc
þ v

ð1þ XcÞ2

 !
; (12)

and D the diffusion coefficient of the solvent.

Since the top surface (z¼ 0) of the sheet is traction-free,

S33(0, t)¼ 0; hence, S33(z, t)� 0, and, from Eq. (9), the pres-

sure field takes the form

pðz; tÞ ¼ G
�k

kðz; tÞ: (13)

The reduced chemical potential l(z, t) and solvent flux q(z, t)
are prescribed by Eqs. (10) and (11) as

l ¼ RT log 1� 1

k

� �
þ 1

k
þ v

k2

� �
þ X p; (14)

q ¼ � D

XRT

ðk� 1Þ
k2

@l
@z
; (15)

where the incompressibility constraint has been used.

Equations (6)2 and (13)–(15) give the evolution for the

swelling-induced stretch k, which is to be solved using the

boundary and initial conditions.

Introducing the characteristic time and length sr ¼ h2
r=D

and hr, respectively, and the corresponding non-dimensional

time s ¼ t=sr and thickness coordinate f ¼ z=hr, the evolu-

tion equation is

@k
@s
¼ @

@f
NX
�k

1

k
1� 1

k

� �
þ 1� 2v

k4
þ 2v

k5

� �
@k
@f

� �
; (16)

FIG. 1. Sketch of the stretching and

swelling processes: (a) The initial dry

and stress-free sheet Bd , with its origi-

nal dimensions. (b) The stretched sheet

Br on a substrate. (c) A schematic of

the swollen sheet in contact with a sol-

vent bath.
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where NX ¼ GX=RT. As the substrate (f¼ 1) is imperme-

able and the top face of the sheet is assumed to be in equilib-

rium with the solvent bath, the boundary conditions for

Eq. (16) are

lð0; sÞ ¼ lext;
@k
@f
ð1; sÞ ¼ 0: (17)

Finally, at time s¼ 0 the sheet is dry; we assume the follow-

ing initial condition to overcome the singularity of the Flory-

Rehner free energy12 at the dry state (k¼ 1):

kðf; 0Þ 	 1 for 0 < f < 1: (18)

The initial-boundary value problem (16)–(18) can be solved

numerically for different values of �k, once lext, NX, and v
are specified.

We study the equilibrium solution and the dynamics of

Eqs. (16)–(18) as a function of the pre-stretch �k. In particu-

lar, with the goal of discussing the dependence of swelling

on the pre-stretch, we introduce the relative volume change

/ with respect to the volume Vd ¼ ‘dwdhd ¼ ‘rwrhr of the

dry elastomer

/ðtÞ ¼ 1

Vd

ð
Br

Xcðz; tÞdV ¼
ð1

0

Xcðf; tÞdf¼
ð1

0

ðkðf; tÞ� 1Þdf ;

(19)

as a dimensionless measure of solvent uptake.

III. ASYMPTOTIC SOLUTION OF THE SWELLING
EQUILIBRIUM

At equilibrium, the chemical potential l of the solvent

within the elastomer is homogeneous and equal to the chemi-

cal potential lext of the external solvent: l(z,t)¼lext.

Without loss of generality, we assume that the external

solvent is in equilibrium with its own vapor: lext¼ 0; thus,

Eqs. (13) and (14), and the equilibrium condition on the

chemical potential give

log 1� 1

k1

� �
þ 1

k1
þ v

k2
1
þ NX

�k
k1 ¼ 0; (20)

where k1 is the swelling-induced stretch attained at equilib-

rium. In practice, NX ¼ 10�5 � 10�2 and v¼ 0.1–0.5 for

good solvents; with NX and v varying in such ranges, the

equilibrium stretch k1
 1 (that is, 1/k1� 1), and Eq. (20)

can be approximated as

NX
�k

k4
1 þ v� 1

2

� �
k1 �

1

3
þ Oðk�1

1 Þ ¼ 0: (21)

Equation (21) defines a singular perturbation problem in

the small parameter e ¼ NX. Seeking a perturbation expan-

sion solution of Eq. (21) in the form k1 ¼ e�1=3K0

þK1 þ Oðe1=3Þ, we obtain

k1 �
1� 2v
2NX

� �1=3

�k
1=3 þ 2

9

1

ð1� 2vÞ : (22)

Equation (22) shows that, at leading order, the swelling equi-

librium solution depends on the pre-stretch �k, through the

parameter a ¼ ð1� 2vÞ=2NX. The parameter a has already

been introduced12,14 and represents the leading order of the

swelling equilibrium solution, in the absence of pre-stretch.

Formula (22) agrees very well with the numerical solution of

the exact equilibrium equation (20), as shown in Fig. 2. We

note that the equilibrium stretch k1 increases when the

pre-stretch �k increases: this trend can be explained by noting

that the osmotic pressure p, which contrasts the solvent

uptake, decreases with the pre-stretch (Eq. (13)), thus favor-

ing the swelling of the elastomer. Indeed, the decrease in the

osmotic pressure lowers the chemical potential l inside

the elastomer (Eq. (14)) and thus increases the magnitude

of the driving force for the solvent uptake, that is the differ-

ence between l and the external chemical potential lext.

Moreover, the equilibrium stretch increases, as can be

expected, when the elastomer becomes softer (NX
decreases), or when the affinity between the solvent and the

polymer increases (v decreases).

IV. SCALING ANALYSIS OF THE SWELLING
DYNAMICS AND THE SOLVENT UPTAKE

We now consider Eq. (16) for the stretch k(f, s). For

early times, s� 1, swelling involves only the regions of the

thickness near the top surface (which is in contact with the

solvent) and the finite thickness of the layer does not affect

solvent diffusion. Hence, because the problem has no intrin-

sic length scale, the stretch k evolves according to a self-

similar profile: k(f, s)¼w(n), with n ¼ f=
ffiffiffi
s
p
; 0 � n � 1.

Previously, it was shown10 that Eq. (16) for �k ¼ 1, i.e., in the

absence of pre-stretch, admits a self-similar solution. A non-

linear ordinary differential equation (ODE) is obtained by

substituting the self-similar representation into Eq. (16) and

is solved numerically. Then, the solvent uptake for early

times may be evaluated using Eq. (19) as

/ðsÞ ¼
ffiffiffi
s
p ð1

0

ðwðnÞ � 1Þ dn: (23)

FIG. 2. Equilibrium stretch k1 and equilibrium solvent uptake /1 ¼ k1 � 1

versus pre-stretch �k as computed from the numerical solution of Eq. (20)

(solid lines) or from the asymptotic solution Eq. (22) (symbols), for

NX¼ 10�4 (blue) and NX¼ 10�3 (orange), and for different values of v: 0.2

(squares), 0.3 (circles), and 0.4 (triangles).
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We verified numerically that the integral in Eq. (23) varies

between 0.613 and 0.62 for 1 � �k � 4 and thus is almost in-

dependent of the pre-stretch; hence, the solvent uptake as a

function of s is independent of the pre-stretch and follows

the scaling law / / s1=2 for early times.

To analyze the swelling dynamics for intermediate

times, s¼O(1), beyond the early transient, we use for the

stretch the same scaling introduced for the equilibrium solu-

tion: k ¼ e�1=3y; then, the governing PDE equation (16) is

@y

@s
¼ @

@f
e4=3

y

1� 2v
y3

þ 1
�k

� �
þ e5=3

y2

2v
y3
� 1

�k

� �" #
@y

@f

( )
;

(24)

which, up to terms Oðe4=3Þ and in terms of k, becomes

@k
@s
¼ @

@f
1

k
e
�k
þ 1� 2v

k3

� �
@k
@f

� �
: (25)

Equation (25) represents the evolution equation for the

stretch in the intermediate time regime, where swelling is

not limited to the top regions of the thickness, as it was in

the early transient, and the thickness hr of the stretched elas-

tomer sets the length scale for the dynamics.

We can eliminate the parameters in Eq. (25) by scaling

the stretch k with the leading term K ¼ a1=3�k
1=3

of the swel-

ling equilibrium solution (22) and by introducing a new char-

acteristic time s0 ¼ K �k=e

@k̂
@ŝ
¼ @

@f
1

k̂
1þ 2

k̂
3

 !
@k̂
@f

2
4

3
5; (26)

with k̂ ¼ k=K and ŝ ¼ s=s0. The corresponding boundary

conditions are k̂ 	 1 at f¼ 0 and @k̂=@f ¼ 0 at f¼ 1.

The initial condition for k̂ should match the self-similar

profile for the early transient; however, since we are

interested in discussing the scaling features of the solu-

tion of Eq. (26) for intermediate times, without solving

the equation, only boundary conditions of Eq. (26) are

relevant.

Equation (26) and the corresponding boundary condi-

tions are independent of �k; hence, we also expect the

rescaled solution k̂ðf; ŝÞ computed from the solution k of

problems (16)–(18) to be independent of the pre-stretch �k,

in the intermediate time regime. Indeed, we evaluated

k̂ðf; ŝÞ, for fixed NX¼ 10�3 and v¼ 0.2, at f¼ 1/2,

f¼ 1/10, and f¼ 1/100 for different values of �k varying

from 1 to 4, and showed that the solution curves collapse on

three master curves (Fig. 3(a)). We verified that an analo-

gous collapse15 occurs for different values of NX and v.

Moreover, these master curves, as well as the curves corre-

sponding to other spatial positions not shown in Fig. 3(a),

have the same slope in the log k̂ � log ŝ plane, except for a

small region close to the boundary f¼ 0. Hence, the scaled

stretch evolves in time following the scaling law k̂ / ŝb,

almost independently of the space coordinate f, as con-

firmed by the plot of k̂=ŝb for several intermediate times ŝ 2
I ¼ ½10�3; 10�2� depicted in Fig. 3(b). We found numeri-

cally that b 	 0.24.

According to the observed scaling behavior of k̂, we

assume that the following representation holds, for ŝ 2 I :

k̂ðf; ŝÞ ¼ ŝbgðf; ŝÞ ; 0 � f � d;

ŝbf ðfÞ ; d � f � 1;

(
(27)

where d is the characteristic length of the region where k̂=ŝb

shows a significant dependence on ŝ (in Fig. 3(b),

0.1� d� 0.2). To estimate analytically the value of the

scaling exponent b, we substitute expression (27) valid

for d� f� 1 in the governing equation for intermediate

times (26)

2

f 4
þ ŝ3b

f

 !
f 00 � 8

f 5
þ ŝ3b

f 2

 !
ðf 0Þ2 � b ŝ4b�1 f ¼ 0: (28)

The last term becomes independent of ŝ with the choice

b¼ 1/4, while the remaining time-dependent terms are

FIG. 3. Scaling behavior of the stretch k̂ ¼ k=K for intermediate times, with

v¼ 0.2, NX¼ 10�3. The results are obtained from the numerical solution of

the problem (16)–(18). (a) The solid, dashed, and dotted lines, representing,

respectively, the stretch k̂ evaluated at f¼ 1/2 (green), f¼ 1/10 (orange),

and f¼ 1/100 (blue), for different values of the pre-stretch �k ¼ 1; 2; 3; 4,

collapse on three master curves, in the intermediate time regime. (b) Quasi

self-similar profile of k̂ for intermediate times. The solid lines correspond to

k̂=ŝb, b¼ 0.24 at different times in the interval 10�3 � ŝ � 10�2 (shaded

area in (a)). The dashed line is the analytical solution (29) of the ODE (28)

where the time-dependent terms are neglected, for b¼ 1/4 and 0.2� f� 1.
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proportional to ŝ3=4 � 1, for ŝ 2 I . We expect the solution

to depart from the scaling regime when ŝ ¼ Oð1Þ. Note that

the value of b estimated analytically is very close to the

value of the scaling exponent found numerically.

Equation (28) can be solved analytically for b¼ 1/4 and

neglecting the time-dependent termsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 1
p

� F2arctan 1ffiffiffiffiffiffiffiffi
F2�1
p
	 


2F2
¼ ðf

?Þ2ffiffiffi
8
p ð1� fÞ � p

4
; (29)

where F ¼ f=f ?; f ? ¼ f ð1Þ and the boundary condition

f 0ð1Þ ¼ 0 has been imposed. Equation (29) is plotted in

Fig. 3(b), where f? has been chosen equal to the value of

k̂=ŝb at f¼ 1 computed from the numerical solution of prob-

lems (16)–(18). The agreement between f(f) given by

Eq. (29) and k̂=ŝb obtained from the numerical solution of

the full problem further supports the existence of a scaling

regime for intermediate times.

The scaling behavior of the stretch for intermediate

times induces an analogous behavior for the solvent uptake.

Indeed, using the representation (27), the solvent uptake at

intermediate times may be computed as

/ðŝÞ ¼ K ŝb
ðd

0

gðf; ŝÞ dfþ
ð1

d
f ðfÞ df

 !
� 1: (30)

We assume that the dependence of g on ŝ is weak, so that the

function may be approximated with the zeroth-order term of

its Taylor expansion in ŝ about a time ŝ0 2 I

/ � K ŝb
ðd

0

gðf; ŝ0Þ dfþ
ð1

d
f ðfÞ df

 !
� 1

¼ K
s
s0

� �b

Fðŝ0Þ � 1 ; (31)

where Fðŝ0Þ is estimated from the numerical solution of

problems (16)–(18) as

Fðŝ0Þ ¼
1

ŝb
0

ð1

0

k̂ðf; ŝ0Þ df: (32)

The value of the integral is numerically evaluated to be

between 1.8 and 1.9 for ŝ0 2 I and is thus almost independ-

ent of ŝ0. Furthermore, the quantity K=sb
0 varies in the range

of 0.809–0.823, when v¼ 0.2 and NX¼ 10�3 and

1 � �k � 4, and thus it is weakly affected by the pre-stretch,

as may be verified numerically.15 Hence, the dimensionless

solvent uptake given by Eq. (31) is independent of the

pre-stretch, when / is represented as a function of s
(Fig. 4(a)). We have already noted that the same holds for /
as a function of s for early times (Eq. (23)). The solvent

uptake curves for different values of �k computed from the

numerical solution of the full problem (16)–(18) collapse on

the curves corresponding to the scaling laws (23) and (31),

thus confirming the independence of / on �k, for early and

intermediate times, when / is plotted against the time

variable s.

To explicitly quantify the effect of the pre-stretch on the

dynamics of swelling, it is necessary to express / in terms of

the dimensional time t, because the time scale sr ¼ h2
d=ð�kDÞ

used to nondimensionalize the time depends on the pre-

stretch

/ðtÞ � K

sb
0

t

sr

� �b

Fðŝ0Þ � 1: (33)

The solvent uptake in Eq. (33) depends on the pre-stretch

only through the time scale sr (as we have seen that K=sb
0

and Fðŝ0Þ are almost independent of �k) and this dependence

is evident when we represent / computed from the full prob-

lem as a function of t (Fig. 4(b)). We conclude that the

solvent uptake increases when the pre-stretch increases, at

early and intermediate times during the swelling transient,

because of a geometrical effect, i.e., the reduction in the thick-

ness hr ¼ hd=
ffiffiffi
�k
p

, which makes the time scale sr ¼ h2
r=D

decrease with �k.

FIG. 4. Scaling behavior of the solvent uptake / as a function of (a) s and of

(b) the physical time t, with v¼ 0.2, NX¼ 10�3. The scaling law corre-

sponds to Eq. (23) for the early transient (squares) and to Eq. (31) for inter-

mediate times (circles). The lines without symbols in (a) and (b) represent

the solvent uptake computed from the numerical solutions of the problems

(16)–(18) for �k ¼ 1; 2; 3; 4. The dashed lines represent the solvent uptake

for late times given in Eq. (37), where the constant C is adjusted to fit the

numerical solution. For the definition of the time scale sr ¼ h2
d=ð�kDÞ, the

following values for the parameters are chosen: D ¼ 8 � 10�10 m2=s and

hd¼ 1 mm.
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For late times, s ¼ Oðs0Þ; s0 
 1, the solvent uptake

deviates from the scaling law (31) as the system approaches

to equilibrium. Indeed, when ŝ ¼ Oð1Þ the time-dependent

terms in Eq. (28) become comparable with the other terms,

so the scaling hypothesis (27) is no longer appropriate.

Because s0 increases with �k, the late time regime sets in later

as the pre-stretch increases (Fig. 4(a)). Note that the interme-

diate regime is distinguished from the approach to equilib-

rium, because the time scales that correspond to such

regimes are separate.

In the late time regime, the effective diffusivity, i.e., the

term that multiplies @k=@f in Eq. (16), tends to the (approxi-

mate) equilibrium value

~D ¼ NX
�k

1

K
1� 1

K

� �
þ 1� 2v

K4
þ 2v

K5
: (34)

By linearizing Eq. (16) about the leading-order equilibrium

stretch K, we obtain a diffusion equation that governs the

approach to equilibrium for the incremental stretch
~k ¼ k� K

@~k
@s
¼ ~D

@2~k

@f2
; ~k � 1; (35)

subject to the boundary conditions ~k 	 0 at f¼ 0 and

@~k=@f ¼ 0 at f¼ 1. The solution of this problem by separa-

tion of variables is

~kðf; sÞ ¼
X1
n¼0

An exp �p2

4
ð2nþ 1Þ2 ~D s

� �
ZnðfÞ;

ZnðfÞ ¼ sin
p
2
ð2nþ 1Þf

� �
:

(36)

Hence, considering only the slowest decaying mode n¼ 0 of

this expansion, the solvent uptake for late times is

/ðtÞ 	 K� 1þ C exp �p2

4
~D

t

sr

� �
: (37)

The amplitude C of the first mode should be computed from

an initial condition, but here we adjust its value to fit the nu-

merical solution of the problem (16)–(18). Equation (37) is

plotted in Fig. 4(a), for different values of �k, and agrees well

with the numerical solution. A straightforward analysis

shows that ~D=sr decreases with �k, thus the approach to equi-

librium is slower when pre-stretch increases.

V. CONCLUSIONS

In summary, we have derived an asymptotic solution for

the equilibrium swelling of a stretched elastomeric sheet,

which has allowed us to discuss the dependence of the equi-

librium solvent uptake on the pre-stretch and on the thermo-

dynamic and elastic parameters of the system. Furthermore,

we have studied the complete dynamics of swelling, from

early times to the approach to equilibrium, and identified

two scaling regimes for the dynamics of solvent uptake, cor-

responding to early and intermediate times.

The semi-analytical study performed here confirms

qualitatively previous results7–9 reporting that the solvent

uptake increases when pre-stretch increases, both during the

swelling transient and at equilibrium. Potential applications

of the problem presented here include one-dimensional soft

actuators, for which the stroke can be tuned by varying the

pre-stretch of the elastomer.
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