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We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically 
equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid hav-
ing an equation of state with a constant parameter w . For the range of w near −1 this dark fluid can 
play the role of dark energy, while for w = 0 this dark dust admits spatial inhomogeneities and can be 
interpreted as dark matter. We discuss possible implications of this model in the cosmological initial con-
ditions problem. In particular, this is the extension of known microcanonical density matrix predictions 
for the initial quantum state of the closed cosmology to the case of spatially open Universe, based on 
the imitation of the spatial curvature by the dark fluid density. We also briefly discuss quantization of 
this model necessarily involving the method of gauge systems with reducible constraints and the effect 
of this method on the treatment of recently! suggested mechanism of vacuum energy sequestering.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Dark matter and dark energy phenomena form a dark side 
of modern precision cosmology and, therefore, represent an un-
precedentedly rich playground for various modifications of general 
relativity (GR). Perhaps, conceptually the most interesting versions 
of these modifications are the ones which do not involve special 
types of gravitating matter and originate from the purely metric 
sector of the theory, like local f (R)-gravity or nonlocal cosmology 
models [1,2]. Usually such modifications are equivalent to adding 
or removing some local degrees of freedom. Even more interesting 
is the case when a nontrivial modification occurs without chang-
ing the balance of local physical variables – darkness arises with-
out dark energy or dark matter constituents. Known examples of 
such a concept include, in particular, the unimodular (UM) gravity 
[3–5], the theory of vacuum energy sequestering [6,7], QCD holon-
omy mechanism of dark energy [8] and others. Unimodular gravity 
differs from the Einstein GR by the requirement that at the kine-
matical level the full set of metric coefficients is subject to the 
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restriction of the unit determinant of the metric tensor. Rather 
anti-intuitive conclusion that this theory has the same number 
of local degrees of freedom as GR [9] can be explained by the 
fact that reduction in the number of independent field variables is 
compensated by the reduction of the local gauge invariance group, 
and the main effect of the unimodular modification is the origin of 
one global degree of freedom playing the role of the cosmological 
constant.

Extension of the physical sector of the theory by a partial vi-
olation of gauge invariance is a well-known and rather popular 
phenomenon. In particular, reduction from Lorentz symmetry to 
anisotropic scaling invariance in Lifshitz models is very productive 
in condensed matter theory context [10], while a similar modifica-
tion in Horava gravity models [11] opens prospects for renormal-
izable unitarity preserving gravity theories. Other examples can be 
found in [12,13]. Here we will consider the synthesis of Lorentz 
violation with the concept of unimodular gravity [3–5]. This gen-
eralized UM gravity incorporates Lorentz violation in the definition 
of the reduced configuration space of metric coefficients – instead 
of the requirement of a unit metric determinant this theory is 
based on the metric field satisfying the following constraint

N = N(γ ), γ ≡ detγi j, (1)
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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where N = (−g00)−1/2 is the lapse function and N(γ ) is some 
function of γ – the determinant of the spatial metric γi j in the 
ADM (3 + 1)-decomposition of metric coefficients gμν ,

gμνdxμdxν = (Ni Ni − N2)dt2 + 2Ni dt dxi + γi jdxi dx j. (2)

Here xμ = (t, xi), μ = 0, 1, 2, 3, i = 1, 2, 3 and Ni = g0i is the cor-
responding shift function.

The motivation for such a generalization of the unimodular 
gravity is as follows. To begin with, the class of metrics subject 
to (1) includes the original unimodular theory corresponding to 
N(γ ) = 1/

√
γ . The right hand side of (1) is invariant under spatial 

rotations, so that this is a minimal breakdown of Lorentz sym-
metry from O (1, 3) to O (3). Another reason to consider it is an 
interesting fact that at the classical level such a theory effectively 
incorporates a special type of matter source – dark fluid with a 
nonlinear (general barotropic) equation of state. Thus it goes be-
yond a conventional unimodular gravity by generating the perfect 
fluid characterized not by just vacuum energy with p = −ε, but by 
a nontrivial pressure as well. Finally, for a simple class of power-
like functions N(γ ) in (1) it generates an equation of state p = wε
with a constant w and, moreover, in the comoving reference frame 
of this fluid renders the density and pressure constant both in 
space and time.1 Thus, similarly to the original unimodular gravity 
it can incorporate as a spacetime constant of motion the analogue 
of dark energy which is free from clustering but has a constant 
polytropic parameter w different from −1. In the particular case 
of a pressureless dust with w = 0, corresponding to N(γ ) = const, 
the density of this dust is characterized by a single function of spa-
tial coordinates entirely fixed by the initial conditions, which can 
be interpreted as a model of inhomogeneous distribution of dark 
matter similar to the mechanism of mimetic model [14].

Here we analyze this model at the classical level and show that 
on shell (without extra matter sources) it is equivalent to general 
relativity with this special type of perfect fluid. Its “darkness” can 
be intuitively interpreted as the absence of local degrees of free-
dom of this fluid, and its effective manifestation can in principle 
be either the dark energy or dark matter. Rigorous counting its de-
grees of freedom, which is important for the quantization of this 
model, requires the analysis of its local gauge invariance. Usual dif-
feomorphism invariance is obviously broken by the restriction (1)
on metric coefficients, which leads to a preferred spacetime fo-
liation by spacelike hypersurfaces. However, there exist reduced 
diffeomorphisms which leave the theory locally gauge invariant 
and turn out to be a generalization of volume preserving diffeo-
morphisms of the unimodular gravity. We briefly discuss them and 
show that their origin naturally leads to the theory with reducible 
(linearly dependent) generators. At the quantum level it is subject 
to Batalin–Vilkovisky technique [16] which allows one to quantize 
the theory without explicitly disentangling its physical sector.

We conclude the paper by the discussion of how this model can 
be used within the initial conditions problem in cosmology. Dark 
fluid of generalized UM gravity can be used to imitate the effect of 
spatial curvature. This might extend the predictions of the cosmo-
logical density matrix construction [17], which are valid only in the 
spatially closed model, to the phenomenologically more preferable 
open model with flat space foliation. Another potential application 
could be the mechanism of sequestering the back reaction effect of 
quantum vacuum energy recently suggested as a possible solution 
of Planckian hierarchy and cosmological constant problems [6,7]. 
Remarkably, the method of careful treatment of the global phys-
ical mode responsible for the locally inert dark fluid is the same 

1 Since this model violates general coordinate invariance this property of density 
and pressure becomes frame dependent.
as that of the sequestering mechanism – the canonical version of 
the BV method [16], which might clarify acausality puzzles of this 
mechanism and extend it to noncompact spacetimes.

2. Dark fluid and its generalized unimodular invariance

The simplest way to handle the constraint (1) on metric coef-
ficients is not to explicitly substitute it in the Einstein action, but 
rather incorporate it into the action with the Lagrange multiplier λ,

S =
∫

d4x

{
M2

P

2
g1/2 R(g) − λ

(
1√−g00

− N(γ )

)}
. (3)

Varying this action with respect to λ and gμν one obtains the 
restriction (1) on the metric and the Einstein equation with the 
perfect fluid matter stress tensor

Rμν − 1

2
gμν R = 1

M2
P

T μν, (4)

T μν ≡ − 2

g1/2

δ

δgμν

∫
d4xλ

(
1√−g00

− N(γ )

)

= ε uμuν + p
(

gμν + uμuν
)
, (5)

where the four-velocity uμ = −gμ0N is a future pointing vector 
normal to spacelike hypersurfaces of the ADM foliation (2), and its 
energy density and pressure read

ε = λ

2
√

γ
, p = λ√

γ

(
γ

N

dN

dγ

)
. (6)

Thus, this dark fluid satisfies the equation of state p = wε with a 
generally nonconstant parameter w = w(γ ) given by

w = 2
γ

N

dN

dγ
= 2

d ln N

d lnγ
. (7)

Similarly to the UM gravity [3] the generalized unimodularity 
condition (1) is not invariant under generic diffeomorphisms of the 
metric – Lie derivatives with respect to the 4-dimensional vector 
field ξμ which in the (3 + 1)-decomposition can be written down 
as a column,

δξ gμν = −∇μξν − ∇νξμ, ξμ =
[

ξ0

ξ i

]
. (8)

However, this condition remains invariant under reduced diffeo-
morphisms with respect to the subset of vector fields ξμ satisfying 
the equation

δξ
(
N − N(γ )

) ∣∣∣
N=N(γ )

= N
[
∂tξ

0 − (1 + w) Ni∂iξ
0 − w ∂iξ

i ]
= 0, (9)

which in the UM gravity case, w = −1, obviously reduces to the 
equation on parameters of volume preserving diffeomorphisms 
∂μξμ = 0 [3].

With the decomposition of ξ i into the longitudinal and trans-
verse parts,2

ξ i = √
γ

(
γ i j∂ jϕ + ξ i⊥

)
, ∂i(

√
γ ξ i⊥) = 0, (10)

2 Since general diffeomorphism invariance is broken, the transformation proper-

ties of ϕ and ξ i⊥ are no longer of a scalar and vector type, and the √γ -factor is 
added merely for reasons of convenience.
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the equation (9) can be solved with respect to ϕ in terms of the 
spatially nonlocal Green’s function of the Laplacian operator Δ

weighted by the function w ,

ϕ = 1

wΔ
Dtξ

0, Δ = ∂iγ
i j√γ ∂ j, Dt = ∂t − (1 + w) Ni∂i .

(11)

The gauge parameter ξα can be represented in terms of a projector 
Πα

β acting on a generic diffeomorphism parameter ξβ

ξα = Πα
β ξβ, Πα

β =
[

1 0√
γ ∂ i 1

wΔ
Dt

√
γ

(
δi

j − ∂ i 1
Δ

∂ j

) ]
,

(12)

so that the generators

Rμν
β = −2∇(μΠ

ν)
β (13)

of the gauge invariance transformations of the action (3) are not 
linearly independent. They are annihilated by the zero vector Zβ

0
of the projector Πα

β ,

Rμν
β Zβ

0 = 0, Zβ

0 =
[

0√
γ ∂ i

]
(14)

Thus, this is the gauge theory with reducible generators, which 
should be subject to the BV technique of [16]. It is important that 
the generators (13) are nonlocal, and this would present certain 
difficulties in the framework of the Lagrangian quantization which 
is strongly based on the locality of gauge generators and structure 
constants. However, this nonlocality is in space rather than in time, 
so that time locality of the formalism is preserved and, therefore, 
guarantees applicability of the canonical quantization to be imple-
mented in the future [18].3

3. Dynamics of dark fluid in the comoving frame

The dynamics of the Lagrange multiplier λ and the correspond-
ing density and pressure is determined from the conservation law 
for the stress tensor (5)

∇μTμν = ∇μ[ (ε + p)uμuν ] + ∇ν p = 0, (15)

where in the definition of covariant derivatives we interpret ε and 
p as scalars, that is ∇ν p = ∂ν p and ∇νε = ∂νε, to match with 
the definition of covariant derivatives acting on Einstein tensor 
in the l.h.s. of Einstein equation. Since the theory is not invari-
ant with respect to general coordinate transformations the density 
and pressure are not scalars, and their properties are frame de-
pendent. Three independent diffeomorphisms preserving the con-
dition (1) derived above are sufficient to make a transform to 
the distinguished comoving frame of the dark fluid. In this frame 
ui ∼ g0i = 0, and the temporal component of (15), ∇μTμνuν ≡
−uμ∇με − (ε + p)∇μuμ = 0, gives

0 = ε̇

ε
+ (1 + w)

γ̇

2γ
= ∂t

(
lnε + 1

2
lnγ + ln N

)
, (16)

where we took into account that ∇μuμ = γ̇ /2Nγ and wγ̇ /2γ =
∂t ln N . Therefore

3 Of course, transition from the canonical path integral to the Lagrangian one will 
again raise the issue of locality accompanied by the associated issues of renormal-
izability, etc., but this problem definitely goes beyond the present discussion of the 
quantization of the model.
ε N
√

γ = S(x), (17)

where S(x) is a time integration constant – some function of spa-
tial coordinates.

Space components of the conservation law (15) give in the 
same gauge

0 = ∇μTμi = ∂i(wε) + ∂i N

N
(1 + w)ε, (18)

where we took into account that uμ∇μui = ∂i N/N . For the 
case of w �= 0, dividing this equation by wε we immediately 
have ∂i(ln w + lnε + lnγ /2 + ln N) = 0 in virtue of the relation 
∂i ln N/w = ∂i lnγ /2, so that

w ε N
√

γ = T (t). (19)

Combining (17) and (19) together, one finds

w = T (t)

S(x)
, (20)

which means that for a class of models with a constant nonvan-
ishing w both functions also degenerate to constants in space and 
time,

N = constγ w/2, ε = const

γ (w+1)/2
, w = const �= 0. (21)

For the case of the dust with zero w and a constant lapse (orig-
inally considered in [19]) only the first term of Eq. (18) remains, 
so that one nontrivial function of spatial coordinates S(x) still sur-
vives

N = const, ε = S(x)

N
√

γ
≡ S̃(x)√

γ
, w = 0. (22)

In fact, these two cases of dark energy with a constant w close 
to −1 and dark dust seem to saturate physically reasonable cos-
mological setups in the generalized UM theory. This follows from 
a simple observation that a nontrivial function S(x) is obviously a 
part of initial conditions, but the parameter w is determined by a 
kinematical restriction (1) of the configuration space of the theory 
and should not depend on its particular initial conditions like (20)
unless it is some universal constant.4

This can easily be illustrated by a simple example which shows 
that the attempt to model a fairly generic equation of state p =
p(ε) by an appropriate choice of function N(γ ) in (1) actually 
fails. Consider a popular Chaplygin gas model with p = −A/ε. In-
dependently of the unimodular setup, the conservation of its stress 
tensor, ε̇ + (p + ε)γ̇ /2γ = 0, gives a well known relation between 
the energy density and γ [20,21], ε = √

A + B(x)/γ , where B(x) is 
a time integration constant – some function of spatial coordinates. 
Together with the equations (17) and (19) this relation yields the 
expression for N in terms of γ , N = √−S(x) T (t)/

√
γ . According 

to the assumptions of our generalized unimodular gravity both N
and w are the functions of one variable γ , which means that both 
the ratio (20) and the product of S(x) and T (t) should be the func-
tions of γ . This is possible only when S(x) and B(x) are constant 
and γ is a function of time, which means that this case, in contrast 
to the w = const case above, is valid only for a spatially homoge-
neous model. Similar situation holds for other equations of state 
with w �= const .

4 Boundary conditions can in principle be incorporated into the Lagrangian as 
local total derivative terms forming boundary integrals in the action, which is how-
ever not the case of (1).
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4. Conclusions

Thus, we see that there exists a class of models with a broken 
Lorentz invariance generalizing unimodular gravity theory, which 
generate dark fluid with a barotropic equation of state with a con-
stant w . Similarly to UMG the gravitational dynamics of this fluid 
is characterized by an independent of space and time constant 
which is fixed by initial conditions. The spacetime rigidity of this 
constant implies that this fluid does not carry local degrees of free-
dom, but rather describes a global variable incapable of clustering. 
Therefore it can play the role of dark energy, especially in view of 
the fact that the parameter w can occupy a continuous range of 
values near w = −1. For a special case of w = 0 the rigidity condi-
tion relaxes to one constant in time function of space coordinates 
S(x), so that this dark dust can be interpreted, similarly to mimetic 
gravity [14], as a candidate for dark matter.

Our work, in fact, suggests a new concept in cosmology and 
gravity theory which can be called “darkness” designating the gen-
eral mechanism based not on local degrees of freedom, but rather 
on global, topological ones, that could underlie the whole bunch 
of phenomena and their models, including dark energy, Horava 
gravity theory [11], quantum initial value problem [17,22], cosmo-
logical constant sequestering formalism [6,7], etc.

Breakdown of Lorentz invariance is perhaps too high a price 
for the generation of darkness phenomena in cosmology. However, 
Lorentz symmetry violation has become very popular in recent 
years due to the fact that the extension of Lifshitz anisotropic 
scaling invariance to gravity – Horava gravity models – is a way 
to recover unitarity in renormalizable higher derivative quantum 
gravity [10,11]. Moreover, breakdown of Lorentz invariance can be 
an inalienable feature of cosmological initial conditions. The sug-
gestion of the initial quantum state of the Universe in the form 
of the microcanonical density matrix [17] implies existence of the 
distinguished foliation of spacetime by spatial hypersurfaces. This 
foliation underlies the construction of this initial state density ma-
trix and persists in the further cosmological evolution. Therefore, 
there is no reason to reject violation of Lorentz symmetry at a 
deeper kinematical level, like in the condition (1).

The density matrix state [17] is conceptually very attractive be-
cause of the minimum set of assumptions underlying it [22] and, 
moreover, because of a mechanism restricting the cosmological en-
semble to subplanckian domain in UV limit and avoiding the IR 
catastrophe, characteristic of the no-boundary wavefunction. How-
ever, it applies only to a closed Universe with a negative contribu-
tion ΩK = −K/H2a2 of the positive spatial curvature, K = +1, in 
the full set of cosmological density parameters, ΩK +ΩΛ +Ωm = 1, 
where a is a scale factor of the FRW metric, H = ȧ/Na is its Hub-
ble factor and K = ±1, 0 is the sign of the 3-metric curvature 
scalar respectively for closed, open or spatially flat FRW cosmology. 
Therefore, even though the density matrix prescription generates 
good hill-top initial conditions for inflation (at the maximum of the 
inflaton potential) [23], it does not include the case of a spatially 
flat FRW model, K = 0, most natural from the viewpoint of the 
observational status of inflationary scenario (ΩK = 0.000 ± 0.005
according to combined Planck, lensing and BAO data [24]).

Remarkably, the generalized UM model with w = −1/3 can im-
itate the effect of positive/negative spatial curvature in the Fried-
mann equation with K = ±1, γ ∼ a3, provided the integration 
constant in the expression (21) for a dark fluid density ε is nega-
tive/positive. Under a proper normalization of the flat space scale 
factor a the dark fluid density becomes εK = −3M2

P K/a2 and fully 
imitates the spatial curvature contribution ΩK = εK /3M2

P H2 to the 
flat space Friedmann equation

H2 = εm + εΛ + εK

3M2
. (23)
P

This would allow one to extend the conclusions of [17] to FRW 
models in the flat and even hyperbolic space foliations, and this is 
one of the motivations for our generalized UM gravity model.

What underlies this phenomenon, which as we see can effec-
tively change even the space topology [25], is a global degree 
of freedom encoded at the level of the Lagrangian formalism in 
the integration constant. Like in a conventional unimodular gravity 
the mechanism of this is based on a subtle interplay of physical 
and gauge degrees of freedom – in the generalized version it is 
technically more involved, but conceptually similar to the origi-
nal unimodular case. A similar mechanism due to the interplay of 
conformal invariance and field reparametrization can be observed 
in the mimetic gravity theory [14], though the latter incorporates 
a new local (dust matter) degree of freedom [15], whereas in our 
case this is the global topological variable parameterizing the dark 
fluid.

It should be emphasized that our generalized model is not a 
gauge fixed version of general relativity. In UM gravity the cos-
mological constant Λ is incorporated as an integration constant of 
equations of motion and this makes a great conceptual difference 
from GR with a given Λ. A similar situation happens here, but 
the integration “constant” is much richer – this is the perfect fluid 
stress tensor without local degrees of freedom.

Here we analyzed the generalized UM gravity at the classi-
cal level. At the quantum level its global mode should either be 
disentangled explicitly or treated within the quantization method 
for constrained systems. In either case rigorous quantization re-
quires the construction of the canonical formalism. As is known, 
UM gravity in this formalism [9] has instead of the GR Hamiltonian 
constraint the vanishing of the spatial gradient of this constraint, 
which eventually results in a freely chosen value of Λ as an in-
tegration constant. As will be shown in a forthcoming paper [18], 
a similar but more involved constraint appears here. At the La-
grangian level this is a conservation of perfect fluid stress tensor 
leading to the rigidity of its energy density and pressure, which 
can be interpreted as the absence of clustering of dark energy (or, 
in a particular case of a zero pressure, as dark matter).

At the quantum level, especially in the transition from the 
canonical to the Lagrangian quantization, the situation becomes 
nontrivial because linear dependence of the gauge invariance gen-
erators (14) implies reducibility of the first class constraints of the 
canonical formalism, which is subject to BV formalism for sys-
tems with linearly dependent generators [16]. Additional difficulty 
is that this reducibility is of a spatially nonlocal nature because of 
nonlocal generators (13).

Treatment of this problem was endeavored in [9,26] and has 
lead to a special procedure of averaging over 3-dimensional space 
– the counterpart to the analogous spacetime averaging in the 
vacuum energy sequestering mechanism of [6,7].5 Weak point in 
this averaging procedure is an ad hoc choice of the integration 
measure. In particular, it fails to be well defined in noncompact 
asymptotically flat spacetimes. Moreover, physical predictions of 
[6,7,9,26] depend on this measure, whereas the freedom in its 
choice should be physically irrelevant because it reflects invari-
ance of the BV quantization scheme under the change of the basis 
of gauge generators (13) or canonical constraints. Careful analy-
sis of this problem will be a subject of our future work [18]. 

5 It should be emphasized that this mechanism, which is an interesting part of 
solution of hierarchy and cosmological constant problems, can also be generalized 
in a Lorentz non-invariant way, what can be done by a covariantization analogous 
to the covariant formulation of UM gravity [4,9] – parametrization of the distin-
guished spacetime foliation by an auxiliary antisymmetric tensor or vector density. 
This, however, will have to be achieved by parameterizing all 4-dimensional coordi-
nates in terms of four embedding functions [18].
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This analysis should, perhaps, resolve the conundrum of nonlocal-
ity and acausality in sequestering mechanism of [6], change the 
conclusions on spacetime compactness in the epoch of transient 
cosmological expansion [7] and, thus, extend cosmological applica-
tions to spatially open models.
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