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Abstract—We consider the problem of non-asymptotical confidence estimation of linear param-
eters in multidimensional dynamical systems defined by general regression models with discrete
time and conditionally Gaussian noises under the assumption that the number of unknown pa-
rameters does not exceed the dimension of the observed process. We develop a non-asymptotical
sequential procedure for constructing a confidence region for the vector of unknown parameters
with a given diameter and given confidence coefficient that uses a special rule for stopping the
observations. A key role in the procedure is played by a novel property established for sequen-
tial least squares point estimates earlier proposed by the authors. With a numerical modeling
example of a two-dimensional first order autoregression process with random parameters, we
illustrate the possibilities for applying confidence estimates to construct adaptive predictions.
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1. INTRODUCTION

Many applied problems of control and identification of dynamical systems, signal processing, and
data analysis in information and measurement complexes successfully employ discrete time models
defined by stochastic difference equations with conditionally Gaussian noises. These models are
interesting because they lead to a sufficiently adequate description for a wide class of real world
phenomena in technics, physics, finances, economics, and so on. In filtering theory, for instance, they
lead to Kalman–Bucy equations in a closed form with no stationarity assumptions, and coefficients
in the equations of the dynamical system may depend on all past values [1]. Various efficient
approaches have been developed for identification of unknown parameters in dynamical systems
subject to random noises: least squares (LS), maximal likelihood (ML), stochastic approximation,
and others (see, e.g., [2]). All identification methods aim to construct point estimates or confidence
regions for unknown parameters with a given quality. Here the quality of point estimates is usually
measured as the mean squared deviation of estimates of parameters from their true values, while
confidence estimates are evaluated by the size of confidence regions and probability of the fact that
the true value of the parameter will lie inside the confidence region.

It is known that even in case when unknown parameters occur in the stochastic equation in
a linear way, and the distribution of noises that define process dynamics is known, the study of
properties of estimates becomes radically more complicated when we pass from a deterministic
regression model to a stochastic one. Linear analysis of deterministic regression has been com-
prehensively presented in [3] and has direct applications to real world problems; in particular, it
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lets one find the necessary sample size that would ensure a given quality of point or confidence
estimates for unknown parameters.

Complications in the studies of stochastic regression stem from the fact that classical estimates
of parameters computed with a fixed size sample are nonlinear functions of observations, which is
easy to see by considering, e.g., an LS estimate of the parameter of a first order autoregression. This
is due to the fact that a central place in identification theory is occupied by asymptotic methods
of analysis that study convergence conditions for the estimates and their distributions under an
unbounded growth of the number of observations (see, e.g., [4]). Asymptotic identification theory
has led to strict justifications of many models used in time series analysis.

In practical use of identification algorithms, one often assumes that properties of estimates for
small and moderate sample sizes are close to asymptotical. However, limit and sublimit properties
of estimates may differ significantly, which may be reflected in the quality of decisions made based
on these estimates. For example, in the construction of confidence estimates one should be cau-
tious when using the asymptotic normality of classical least squares estimates because the rate of
convergence to a normal law may depend on unknown parameters, and the normal approximation
itself may be unsatisfactory for every fixed number of observations (see, e.g., [5]). Therefore, while
asymptotical results obtained by classical methods are no doubt important, and they establish a po-
tential possibility to construct models of dynamical systems, in the non-asymptotical identification
theory many problems related to a practical use of these estimates remain open.

These problems include, first, constructing procedures for point and confidence estimation with
guaranteed quality that would use finite sample sizes. Second, search for additional ways to improve
the asymptotical properties of estimates. A large number of works (see [6, 7] and references therein)
have been devoted to developing methods of guaranteed point estimation based on the sequential
analysis approach. An important characteristic feature of these methods is that they use in their
decision procedures samples of variable (random) size. The need to apply sequential analysis for
a scheme with independent observations was first justified by Wald [8]. For processes with depen-
dent values, in the optimal stopping problems sequential analysis was used by A.N. Shiryaev [9].
Novikov [10] and Liptser and Shiryaev [1] proved that the maximal likelihood estimate for the
shift coefficient in the diffusion process computed at a special (random) time moment has better
properties than the classical estimate: it is unbiased and has predefined mean squared accuracy.
Note that for stochastic dynamical systems with discrete time and for more complex models with
continuous time sequential estimates of unknown parameters obtained by substituting a certain
stopping moment in a classical least squares or maximal likelihood estimate cannot be studied for
a finite number of observations. Nevertheless, it has been established in [7, 11–13] and other works
that constructing sequential point estimates for parameters of stochastic systems with guaranteed
accuracy based on classical LS and ML estimates becomes possible under sufficiently general con-
ditions on the model if together with introducing special rules for stopping the observations one
also makes certain additional structural changes in classical basic estimates. The works [11, 13]
have developed a method for constructing unbiased sequential point estimates for the parameters
of stochastic dynamical systems with discrete time that guarantee a given mean squared accuracy
under the assumption that the number of unknown parameters does not exceed the dimension of
the observed process.

Together with point estimates for parameters of stochastic systems with discrete time, both
theoretical and applied studies pay special attention to developing efficient procedures for confidence
estimation of the parameters. The problem of constructing confidence estimates in regression
models has been considered in different settings in a number of works. The work [14, 15] proposed
methods for constructing confidence intervals for survival quantiles in the Cox regression model,
including one based on sequential analysis. An approach to constructing confidence regions for
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the parameters of a threshold autoregression with non-Gaussian noises has been developed in
[16, 17]. The confidence estimation problem for the parameters of multidimensional regression with
constraints on predicted variables has been studies in [18]. The work [19] proposed a confidence
estimate for the slope of a linear regression with Gaussian noises. The problem of simultaneous
confidence estimation of the parameters of a linear regression with high dimension and hypothesis
testing has been studied in [20].

The main objective of this work is to develop, based on sequential analysis, algorithms for
constructing confidence intervals and sets of a fixed size with a given confidence level for the
estimation of unknown parameters in stochastic dynamical systems with conditionally Gaussian
noises. To refine the probabilities of deviations of the estimates and reduce the size of the confidence
region we propose to improve the sequential point estimation procedure from [13] and obtain exact
probabilities for the deviations of estimates that take into account the specifics of noises acting on
the system. Accuracy of the proposed confidence estimation algorithm is supported by modeling
results in Section 4.

2. PROBLEM SETTING. CONSTRUCTING CONFIDENCE
ESTIMATION ALGORITHMS

Suppose that an observable n-dimensional process xt = (x1(t), . . . , xn(t))
′, t = 0, 1, . . . , satisfies

equations

xt+1 = A0(t, x) +A1(t, x)θ +B(t, x)εt+1, t = 0, 1, . . . , (1)

where θ = (θ1, . . . , θp)
′ is the vector of unknown parameters, p � n; the prime denotes transposition;

εt = (ε1(t), . . . , εn(t))
′, t = 0, 1, . . . , is the unobserved sequence of independent Gaussian vectors

with parameters Eεt = 0, cov(εt, εt) = In, In is the unit matrix of order n. We assume that the
vector of initial values x0 does not depend on the noise (εt), and vector functions A0(t, x) and
matrix functions A1(t, x) and B(t, x) of sizes n× 1, n× p, and n× n respectively depend on the
process {xt, t = 0, 1, . . .} in a nonanticipatory way, i.e., for a given t their elements depend only
on x0, . . . , xt. The problem is to construct a confidence region for the unknown vector of parameters
of a given diameter that contains the true value of the parameter with at least a given probability.

Remark 1. It is known (see, e.g. [6, 21, 22]), that in a number of applied problems models where
unknown parameters are subject to disturbances and remain constant only on average are more
adequate. In this version, the dynamics of process (xt)t�0 is defined by equations

xt+1 = A0(t, x) +A1(t, x) (θ + ηt) +B(t, x)εt+1, (2)

where ηt is an unobserved multiplicative noise. If process (ηt)t�1 is a sequence of independent identi-
cally distributed Gaussian random vectors with parameters 0 and Σ independent of the noise (εt)t�1,
then it is easy to see that Eq. (2) reduces to an equation of type (1),

xt+1 = A0(t, x) +A1(t, x)θ + B̃(t, x)ε̃t+1, (3)

where

B̃(t, x) = D1/2(t, x), D(t, x) = A1(t, x)ΣA
′
1(t, x)(t, x) +B(t, x)B′(t, x).

Thus, the confidence estimation problem for parameter θ in Eq. (2) reduces to estimating parame-
ter θ in Eq. (1), with the difference that noises (ε̃t)t�1 are only conditionally Gaussian. However,
as we will see below, this difference does not complicate the analysis.
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In the choice of estimation method for unknown parameters θ1, . . . , θp one should take into
account that structural matrices Ai(t, x) and B(t, x) are, generally speaking, random. Besides, it
is natural to require that the estimates would let us control the size of the confidence region for
unknown parameters with a finite sample. For a practical application, the confidence region is better
when it is smaller. Unfortunately, immediate use of least squares, maximal likelihood estimates,
and other estimates based on a fixed number of observations of the process {xt}, although they are
relatively easy to compute, does not allow for confidence estimates with desired properties.

A more suitable version for our purposes are sequential variants of least squares (maximal
likelihood) estimates that include a special choice of weight matrices in the LS method and rules
for stopping the observations. To estimate the vector parameter θ in process (1), the authors
proposed a sequential LS estimate [13] that guarantees estimation of unknown parameters with
given mean squared accuracy.

Since we propose to use these point estimates in the considered confidence estimation problem,
we show the necessary formulas, omitting derivations and justifications.

Case A. Each parameter θi in the vector θ = (θ1, . . . , θp)
′ is estimated by the observations of

process (1) separately.

In this case, for every positive number h we introduce a system of sequential plans (τi(h), θ̂i(h)),
1 � i � p, where τi(h) is the number of observations of process (1) used to estimate the scalar
parameter θi, and θ̂i(h) is the sequential point estimate of parameter θi, where

τi(h) = inf

{
n � 0 :

n∑
t=0

ci(t) � h

}
, inf {∅} = ∞; (4)

θ̂i(h) =
1

h

τi(h)∑
t=0

βi(t)ci(t)yi(t). (5)

Here

ci(t) = 1/ <
[
A′

1

(
B(t)B′(t)

)+
A1(t)

]−1
>ii; yi(t) =< W (t) (xt+1 −A0(t)) >i;

W (t) =
(
A′

1(t)
(
B(t)B′(t)

)−1
A1(t)

)+
A′

1(t)
(
B(t)B′(t)

)+
;

βi(t) =

{
1, 0 � t < τi(h)
αi(h), t = τi(h),

where αi(h) is a correction factor, 0 < αi(h) � 1, that satisfies equation

τi(h)−1∑
t=0

ci(t) + αi(h)ci(τi(h)) = h;

<A>ij denotes the (i, j)th element of matrix A, <a>i is the ith coordinate of vector (a1, . . . , ap)
′;

A+ is the pseudoinverse matrix for matrix A (see, e.g., [23]).

Case B. All coordinates of vector θ = (θ1, . . . , θp)
′ are estimated simultaneously.

Here for every h > 0 we introduce a sequential plan

(
τ(h), θ̂(h) = (θ̂1(h), . . . , θ̂p(h))

′)
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for the estimation of vector θ = (θ1, . . . , θp)
′ by formulas

τ(h) = inf

{
n � 0 :

n∑
t=0

c(t) � h

}
, (6)

θ̂(h) =
1

h

τ(h)∑
t=0

β(t)A′
1(t, x)V (t) (xt+1 −A0(t, x)) , (7)

where

β(t) =

{
1, 0 � t < τ(h)
α(h), t = τ(h),

α(h) is a correction factor, 0 < α(h) � 1, that satisfies equation

τ(h)−1∑
t=0

c(t) + α(h)c(τ(h)) = h,

V (t) = c(t)
[
A+

1 (t, x)
]′
A+

1 (t, x); (8)

c(t) =

{
1/ν∗(t), if A+

1 (t, x)A1(t, x) = Ip
0, otherwise,

ν∗(t) is the maximal eigenvalue of matrix

U(t) = A+
1 (t, x)B(t, x)B′(t, x)

(
A+

1 (t, x)
)′
.

Durations τi(h) and τ(h) of the said identification procedures are random and depend on the value
of the parameter h. For these durations to be finite for an arbitrary h > 0, the set Θ of admissible
values of parameter θ in Eq. (1) must satisfy

Pθ

⎛
⎝∑

t�0

ci(t) = +∞
⎞
⎠ = 1, i = 1, p; Pθ

⎛
⎝∑

t�0

c(t) = +∞
⎞
⎠ = 1 (9)

for all θ ∈ Θ.

The works [11, 13] have established that sequential identification procedures (4), (5) and (6),
(7), if they can be implemented, have a number of advantages over classical LS estimates based
on a fixed number of observations in point estimation problems for the parameters of stochastic
dynamical systems defined by Eq. (1).

First, the sequential point estimates (4), (5) and (6), (7) are unbiased, i.e.,

Eθθ̂i(h) = θi, i = 1, p, Eθθ̂(h) = θ, θ ∈ Θ.

Second, for every h > 0 they satisfy the following inequalities:

sup
θ∈Θ

Eθ(θ̂i(h) − θi)
2 � 1

h
, i = 1, p, (10)

sup
θ∈Θ

Eθ(θ̂(h)− θ)(θ̂(h)− θ)′ � 1

h
Ip, (11)

where Ip is the unit matrix of order p; matrix inequality A � B means that for all x ∈ Rp the
inequality holds for the corresponding quadratic forms x′Ax � x′Bx. Since the value of parameter h
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can be chosen in the procedure, these inequalities can be regarded as the guarantee property in the
mean squared sense for sequential point estimates (4), (5) and (6), (7).

Note that the said properties of sequential point estimates have been proven in [11, 13] under the
assumption that the distribution of noises (εt) in Eq. (1) is unknown, and {εt} is either a sequence
of independent vectors with Eεt = 0 and cov(εt, εt) = In or the process (εt) is a quadratically
integrable martingale difference with respect to a certain filtration (Ft)t�0 (compatible with the
structural functions Ai(t, x) and B(t, x)) of the process, i.e.,

E (εt|Ft−1) = 0, E
(
εtε

′
t|Ft−1

)
� In.

The goal of this work is to show that sequential point estimates (4), (5) and (6), (7) can be used as a
foundation for constructing confidence intervals and sets for unknown parameters of the process (1).

According to confidence estimation theory [3], the confidence estimation problem for the vector
of unknown parameters θ by observations Yn = (X0, . . . ,Xn) of the process (1) is to construct a
subset S (Yn) in the parametric region Θ ⊂ Rp that covers the true value of the parameter θ with
a given confidence coefficient 1−Δ > 0, i.e.,

Pθ (θ ∈ S (Yn)) � 1−Δ, θ ∈ Θ. (12)

Sequential confidence estimation theory (see, e.g., [8]) admits the possibility to construct confi-
dence sets with samples of random size τ , i.e., Yτ = (X0, . . . ,Xτ ). Here the confidence set can be
constructed with some sequential point estimate of the unknown parameter. For the considered
dynamical system (1) with structural functions Ai(t, x) and B(t, x), we will use sequential point
estimates (4), (5) and (6), (7) to construct confidence estimates.

If we need to estimate only one of the parameters θ1, . . . , θp, it is natural to take as the confidence
set for θi the confidence interval

Si (Yτi , z, h) =
(
θ̂i(h)− z, θ̂i(h) + z

)
, z > 0, h > 0, (13)

where θ̂i(h) is computed with (4) and (5).

If we are estimating the entire vector θ, we define the confidence set by equality

S (Yτ , z, h) =
{
θ ∈ Θ : ||θ̂(h) − θ|| < z

}
, z > 0, (14)

where θ̂(h) is computed with (6) and (7); ||θ|| = (∑p
i=1 θ

2
i

)1/2
. The value z defines the radius of

the confidence ball set.

3. PROPERTIES OF SEQUENTIAL CONFIDENCE ESTIMATES

Sequential confidence estimates (4), (5) and (6), (7) depend on two parameters z and h, where
z defines the size of the confidence set and h controls the duration for the identification procedure.
For a fixed z > 0 the value of h should be chosen in such a way that confidence sets (13), (14) cover
the corresponding true values of unknown parameters θi and θ with probability no less than the
predefined confidence coefficient 1−Δ > 0; for all θ ∈ Θ the following inequalities must hold:

Pθ (θi ∈ Si (Yτi , z, h)) � 1−Δ, i = 1, p,

Pθ (θ ∈ S (Yτ , z, h)) � 1−Δ. (15)

It is problematic to find the optimal value of h that minimizes sample sizes in sequential confi-
dence estimates (13), (14), because to compute exact upper bounds with respect to θ ∈ Θ for the
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probabilities in the left-hand sides of inequalities (13), (14) we need to know non-asymptotical (for
finite h) distributions for estimates θ̂i(h) and θ̂(h). Since we do not know these distributions, to
choose h it is natural to use upper bounds of the said probabilities. Note that rough estimates of
probabilities in the left-hand side of inequalities (13), (14) obtained with the guarantee properties
(10), (11) and Chebyshev inequalities should be excluded from consideration since this choice for
the value of h would lead to very long confidence estimation procedures (4), (5) and (6), (7). To
finish constructing the non-asymptotical confidence estimation procedure for the unknown parame-
ters of process (1) we will need new properties of point estimates proposed in [13] that we formulate
as Theorem 1.

Theorem 1. Suppose that an observable process (xt)t�0 satisfies Eqs. (1), where {εt}t�1 is a se-
quence of independent n-dimensional standard Gaussian vectors, and structural functions A0(t, x),
A1(t, x), and B(t, x) are such that for some parametric set Θ ⊂ Rp conditions (9) hold.

Then point estimate of the coordinates θ̂i(h), i = 1, p, and vector θ̂(h) defined by equalities (5)
and (7) satisfy for all h > 0 and z > 0 the following inequalities:

1) Pθ

(
|θ̂i(h)− θi| > z

)
� 2e−

z2h
2 , i = 1, p ∀ θ ∈ Θ;

2) Pθ

(
||θ̂(h)− θ|| > z

)
� 2p exp

(
−z2h

2p

)
.

Proof of Theorem 1, which is postponed to the Appendix, is based on a generalization of the
well-known Azuma–Hoeffding inequality for martingales (see, e.g., [24]), which is also proven in the
Appendix.

Using exponential upper bounds for the probabilities of estimates deviating from unknown pa-
rameters obtained in Theorem 1, we can find the parameters of the confidence estimation procedure
that would guarantee a given estimation quality.

Theorem 2. Suppose that conditions of Theorem 1 hold, and we are given z > 0 and 0< Δ < 1.

Then confidence intervals for θi, i = 1, p, defined in (13), for h = (2/z2)ln(2/Δ) have confidence
level at least Δ, i.e.,

Pθ (θi ∈ Si (Yτi , z, h)) � 1−Δ, ∀ θ ∈ Θ, i = 1, p. (16)

Theorem 3. Under the assumptions of Theorem 2, confidence set for vector θ defined by equal-
ity (14), with h = (2p/z2)ln(2p/Δ) covers the true value of θ with probability at least 1−Δ, i.e.,

Pθ (θ ∈ S (Yτ , z, h)) � 1−Δ, ∀ θ ∈ Θ.

Statements of Theorems 2 and 3 that finish the construction of non-asymptotical confidence
estimates for unknown parameters of the process (1) immediately follow from Theorem 1. Let us
check inequality (16). Finding h by given z and Δ from equations

exp

(
−z2h

2

)
= Δ,

we get that h = 2
z2 ln

2
Δ . This together with Theorem 1 implies that

Pθ (θi ∈ Si (Yτi , z, h)) = 1− Pθ

(
|θ̂i − θi| > z

)
� 1− 2 exp

(
−z2h

2

)
= 1−Δ.

This completes the proof of Theorem 2.
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4. NUMERICAL MODELING RESULTS

To test the quality of constructed procedures for guaranteed confidence estimation, we have
conducted numerical modeling (10 000 realizations for every process). We have modeled a two-
dimensional process xt with conditionally Gaussian noises defined by equation

xt+1 = A1(t, x)θ +B(t, x)εt+1, t = 0, 1, . . . , (17)

where

A1(t, x) =

(
x1(t) x2(t)
−x1(t) x2(t)

)
, (18)

θ = (θ1, θ2)
′ is the vector of unknown parameters, {εt}t�1 is the sequence of independent standard

two-dimensional Gaussian vectors. Here the structural matrix B(t, x) of size 2 × 2, which defines
the level of noises, has been used in two variations. In the first case, B(t, x) was assumed to be the
unit matrix I2; in the second, its elements are ARCH processes

B(t, x) =

⎛
⎜⎝
√
0.3 + 0.1x21(t) + 0.2x22(t)

√
0.2 + 0.3x21(t)√

0.4 + 0.2x22(t)
√
0.4 + 0.2x21(t) + 0.1x22(t)

⎞
⎟⎠ . (19)

In case B(t, x) = I2, we get from (5) that

c1(t) = 2x21(t), c2(t) = 2x22(t).

It can be checked immediately that sequences {c1(t)} and {c2(t)} satisfy conditions (9). One can
test condition (9) for system (17) with matrix B(t, x) defined by (19) in a similar way.

Modeling results are shown in Tables 1 and 2, which show sample averages of the duration of
estimating Eθτ1 and Eθτ2 for parameters θ1 and θ2. Values of α̂1 and α̂2 show the sample probability
of the confidence interval (of semi-width z) not covering the true value of the parameters, and the
procedure’s parameter h was chosen so as to get the value of the upper bound Δ for the probability
of not covering the true value.

In the modeling of the confidence estimation procedure, we used a modification of the sequential
procedure (4) with the previous stopping moment (4) and estimate

θ∗i (h) =

τi(h)∑
t=0

√
βi(t)ci(t)yi(t)

τi(h)∑
t=0

√
βi(t)ci(t)

,

which differs from estimate (5) by a weight coefficient in the last terms of the sums. This estimate
satisfies the following proposition.

Proposition 1. Under the assumptions of Theorem 1, estimate θ∗i (h), i = 1, p, satisfies the fol-
lowing inequalities

Pθ (|θ∗i (h) − θi| � c) � 2
(
1−Φ(c

√
h)
)
= Δ.

Proof of these inequalities is similar to the proof of the first statement in Theorem 1 and is not
shown here.
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Table 1. Modeling the process with B(t, x) = I2

h = 270.55 z = 0.1 Δ = 0.1

θ1 θ2 Eθτ1 Eθτ2 α̂1 α̂2

0.4 –0.2 108.2 112.3 0.1011 0.0930
0.5 0.5 71.3 70.9 0.0979 0.1004
0.2 –0.9 25.3 21.9 0.0877 0.0927
0.2 –0.7 68.2 55.6 0.0994 0.0938

h = 385.15 z = 0.1 Δ = 0.05

θ1 θ2 Eθτ1 Eθτ2 α̂1 α̂2

0.4 –0.2 152.6 158.2 0.0509 0.0505
0.5 0.5 99.9 99.5 0.0452 0.0494
0.2 –0.9 29.0 24.9 0.0456 0.0445
0.2 –0.7 94.5 75.6 0.0454 0.0515

Table 2. Modeling the process with ARCH noises

h = 270.55 z = 0.1 Δ = 0.1

θ1 θ2 Eθτ1 Eθτ2 α̂1 α̂2

0.4 –0.2 2.6 299.0 0.0487 0.1008
0.5 0.5 2.7 261.9 0.0453 0.0996
0.2 –0.9 2.3 172.3 0.0445 0.0924
0.2 –0.7 2.4 235.7 0.0466 0.1029

h = 385.15 z = 0.1 Δ = 0.05

θ1 θ2 Eθτ1 Eθτ2 α̂1 α̂2

0.4 –0.2 3.4 423.5 0.0207 0.0563
0.5 0.5 3.5 370.8 0.0150 0.0520
0.2 –0.9 2.9 242.0 0.0149 0.0513
0.2 –0.7 3.1 333.5 0.0184 0.0513

Table 3. Modeling the process with drifting parameters

h = 270.55 z = 0.1 Δ = 0.1

θ1 θ2 Eθτ1 Eθτ2 α̂1 α̂2

0.4 –0.2 109.8 132.9 0.0953 0.1015
0.5 0.5 72.2 92.0 0.0969 0.0975
0.2 –0.9 28.7 32.7 0.0964 0.0964
0.2 –0.7 69.4 74.6 0.0976 0.0926

h = 384.15 z = 0.1 Δ = 0.05

θ1 θ2 Eθτ1 Eθτ2 α̂1 α̂2

0.4 –0.2 155.1 187.9 0.0485 0.0488
0.5 0.5 101.1 129.4 0.0474 0.0481
0.2 –0.9 34.6 40.7 0.0448 0.0478
0.2 –0.7 95.7 102.9 0.0514 0.0494

We have also modeled a process with drifting parameters

xt+1 = A1(t, x) (θ + ηt) +B(t, x)εt+1, (20)

where B(t, x) = I2, (ηt)t�0 is a sequence of independent identically distributed two-dimensional
Gaussian random vectors with zero mean and diagonal covariance matrix Σ = diag(0.01, 0.04).
Sample characteristics of confidence estimates (13) are shown in Table 3.

Besides, using the resulting confidence estimates we have constructed one-step predictions for
the two-dimensional process (17) with drifting parameters (20) θ1 = 0.2, θ2 = −0.7. On the first

AUTOMATION AND REMOTE CONTROL Vol. 78 No. 10 2017



1812 VOROBEICHIKOV, KONEV

Figure.

step, we computed an estimate for the unknown parameters θ1 and θ2 by formulas (4), (5). Next,
for t = max(τ1(h), τ2(h)) + 1, . . . we have constructed predictions for the values of process xt+1 and
confidence intervals for these predictions. The prediction of value xt+1 is defined as

x̂t+1 = A1(t, x)θ̂.

To construct a confidence interval for the prediction we compute the value

zi(t) = c× (|(A1(t, x))i,1|+ (A1(t, x))i,2|) + F−1(0.995)
[
< B̃(t, x) >i,i

]0.5
,

B̃ = A1ΣA
′
1 + I,

where F−1(0.995) is the quantile of level 0.995 for the standard normal distribution; the value c
defines the semi-width of the confidence interval for parameter estimates, which was chosen to
equal 0.1 in our modeling. The procedure’s parameter h was chosen to be such that the probability
of not covering the true value of the parameter θi would not exceed 0.02. Confidence intervals for
the coordinates of vector xt+1 = (x1(t+ 1), x2(t+ 1)) are

(x̂i(t+ 1)− zi(t), x̂i(t+ 1) + zi(t)) , i = 1, 2.

The probability of one of the coordinates of the next value of the process xt+1 to not fall into the
corresponding interval does not exceed 0.05. Therefore, true values of the process xt+1 for t � 61
will fall into the confidence region shown on the figure with probability 0.95. Prediction results
for the second component are similar. To estimate parameter θi with given accuracy, we needed
60 observations.

5. CONCLUSION

In Sections 2 and 3 of this work, we have proposed and studied identification algorithms for
the parameters of stochastic dynamical systems defined by Eq. (1) with confidence intervals and
sets. A characteristic feature of the algorithms for estimating both individual coordinates and
the entire vector of unknown parameters is that they are constructed by samples of random size,
using special rules for stopping the observations, as it is often done in sequential analysis. We
have established that such sequential confidence estimates yield a solution for the identification
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problem in the non-asymptotical setting with guaranteed accuracy and define the required number
of observations for a given confidence set and given probability that this set does not cover the true
value of the parameter. Note that this conclusion holds for a wide class of structural functions in
the observable process (1) with no additional assumptions such as stationarity.
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APPENDIX

1. To prove Theorem 1 we will need a generalization of the well-known Azuma–Hoeffding
inequalities (see, e.g., [24], Theorem 6.3.3), which we formulate as a theorem since it can also be
of separate interest.

Theorem A.1. Let (Mk,Fk)k�0 be a quadratically integrable martingale such that

(a) its quadratic characteristic [9] satisfies condition

P (<M >∞ = +∞) = 1;

(b) Law(ΔMk|Fk−1) = N
(
0, σ2

k−1

)
, i.e., Fk−1, the conditional distribution of ΔMk = Mk −

Mk−1, is Gaussian with parameters 0 and σ2
k−1 = E((ΔMk)

2|Fk−1).

For every h > 0 we introduce the stopping moment

τ = τ(h) = inf

{
n � 1 :

n∑
k=1

σ2
k−1 � h

}
(A.1)

and random value

M∗(h) =
1

h

τ(h)∑
k=1

αk(h)ΔMk, (A.2)

where

αk(h) =

{
1, 1 � k < τ(h)
β, k = τ(h),

β is a correction factor 0 < β � 1 defined by equations

τ(h)−1∑
k=1

σ2
k−1 + βσ2

τ(h)−1 = h.

Then for all h > 0 and z > 0

1) EeγM
∗(h) � e

γ2

2h ;

2) P (|M∗(h))| > z) � 2e
−z2h

2 .

Remark 2. Random value M∗(h) differs from the value of martingale Mτ(h) stopped at time
moment τ(h) by the presence of the correction factor β at the last increment ΔMτ(h).

Remark 3. A transformation of type (A.2) was first used in [11].
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Proof of Theorem A.1. We represent γM∗(h) as

γM∗(h) =
τ(h)∑
k=1

(
γ

h
αk(h)ΔMk − γ2α2

k

2h2
E
(
(ΔM2

k )|Fk−1

))

+
γ2

2h2

τ(h)∑
k=1

α2
k(h)σ

2
k−1 = ζτ(h) +

γ2

2h2

τ(h)∑
k=1

α2
k(h)σ

2
k−1,

(A.3)

where

ζn =
n∑

k=1

(
γ

h
αk(h)ΔMk − γ2α2

k

2h2
σ2
k−1

)
.

The definition of τ(h) in (A.1) implies that

γ2

2h2

τ(h)∑
k=1

α2
k(h)σ

2
k−1 �

γ2

2h2

τ(h)∑
k=1

αk(h)σ
2
k−1 =

γ2

2h2
.

This together with (A.3) implies that

exp(γM∗(h)) � e
γ2

2h exp
(
ζτ(h)

)
. (A.4)

Let us show that

E exp(ζτ(h)) � 1. (A.5)

We introduce the sequence of truncated moments τ(h,N) = τ(h) ∧N , N =1, 2, . . . , and denote
ζN = ζτ(h,N). Noting that

ζN =
N∑
k=1

(
γ

h
αk(h)ΔMkχ(k�τ(h)) −

γ2α2
k

2h2
σ2
k−1χ(k�τ(h))

)
,

and computing again the conditional expectations, we get

E exp(ζN ) = EE exp(ζN |FN−1)

= EeζN−1E

(
exp

[
γαN (h)

h
χ(N�τ(h))(ΔMk)− γ2α2

N (h)

2h2
χ(N�τ(h))

] ∣∣∣∣FN−1

)

= EeζN−1 = . . . = 1.

By Fatou’s lemma, we have inequalities

E exp(ζτ(h)) � lim
N→∞

E exp(ζN ) = 1,

which together with (6) imply the first statement of Theorem A.1.

Further, for every γ > 0 and z > 0 Chebyshev inequalities imply that

P (M∗(h) > z) = P (γM∗(h) > γz) � e−γzEeγM
∗(h) � e−γze

γ2

2h .

Minimizing the right-hand side with respect to γ, we get the estimate

P (M∗(h) > z) � e−
z2h
2 .
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We can also similarly find that

P (M∗(h) < −z) � e−
z2h
2 .

This completes the proof of Theorem A.1.

2. Proof of Theorem 1. Substituting (1) into (5), we have

θ̂i(h) =
1

h

τi(h)∑
t=0

βi(t)ci(t) < W (t) (A1(t, x)θ +B(t, x)εt+1) >i

=
1

h

τi(h)∑
t=0

βi(t)ci(t) <
(
A′

1(t)(B(t)B′(t))+A1(t)
)+

A′
1(t)(B(t)B′(t))+A1(t, x)θ >i + ηi(h)

=
1

h

τi(h)∑
t=0

βi(t)ci(t)θi + ηi(h) = θi + ηi(h),

where

ηi(h) =
1

h

τi(h)∑
t=0

βi(t)ci(t) < W (t)B(t, x)εt+1 >i .

Next we introduce the process (Mk)k�0 defined by equalities

M0 = 0, Mk =
k−1∑
t=0

ci(t) < W (t)B(t, x)εt+1 >i, k � 1,

and filtration {F}k�0 with F = σ(X0), Fk = σ(x0, ε1, . . . , εk), k � 1. Due to the conditions
on {εk}k�1 in (1) the sequence (Mk,Fk)k�0 is a martingale with conditionally Gaussian incre-
ments. Using the definition of matrix W (t) and functions ci(t) in (5), we compute the conditional
variance of the increments

σ2
k−1 = E

[
(ΔMk)

2|Fk−1

]
= c2i (k − 1)E < W (k − 1)B(k − 1, x)εk >2

ii

= c2i (k − 1) < W (k − 1)B(k − 1, x)B′(k − 1, x)W ′(k − 1, x) >ii

= c2i (k− 1)<A′
1(k− 1, x)(B(k− 1, x)B′(k− 1, x))+A+

1 (k− 1, x) >ii= ci(k − 1).

Hence, comparing the definitions of stopping moments (4) and (A.1) and taking into account (A.2),
we get

M∗(h) = ηi(h).

Using Theorem 2, we get the first statement of Theorem 1.

Let us now check the second statement. Using (1), we write estimate (7) as

θ̂(h) =
1

h

τ(h)∑
t=0

β(t)A′
1(t, x)V (t, x)A1(t, x)θ + η(h), (A.6)

where

η(h) =
1

h

τ(h)∑
t=0

β(t)A′
1(t, x)V (t, x)B(t, x)εt+1. (A.7)
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Taking into account (8), we find the deviation of estimate

θ̂(h) =
1

h

τ(h)∑
t=0

β(t)c(t)A′
1(t, x)

(
A+

1 (t, x)A
+
1 (t, x)A1(t, x)θ

)
+ η(h)

=
1

h

τ(h)∑
t=0

β(t)c(t)Ipθ + η(h) = θ + η(h).

(A.8)

Let us show that every nonzero vector λ = (λ1, . . . , λp)
′ ∈ Rp and number z > 0 satisfy the following

inequality:

Pθ

(|λ′η(h)| > z
)
� 2 exp

(
− z2h

2λ′λ

)
, θ ∈ Θ. (A.9)

For every γ > 0 we have that

Pθ

(
λ′η(h) > z

)
� e−γzEθe

γλ′η(h). (A.10)

We represent the value γλ′η(h) as

γλ′η(h) =
τ(h)∑
t=0

b(t)εt+1 = ζτ(h) +
1

2

τ(h)∑
t=0

||b||2(t), (A.11)

where

b(t) =
γ

h
β(t)λ′A′

1(t, x)V (t, x)B(t, x), ζn =
n∑

t=0

(
b(t)εt+1 − ||b(t)||2

2

)
.

Since matrix V (t) in (8) satisfies inequality V (t) � V (t)B(t, x)B′(t, x)V ′(t), the definition of τ(h)
in (6) implies that

1

2

τ(h)∑
t=0

||b(t)||2 =
γ2

2h2

τ(h)∑
t=0

β2(t)||λ′A′
1(t, x)V (t, x)B(t, x)||2

=
γ2

2h2

τ(h)∑
t=0

β2(t)λ′A′
1(t, x)V (t, x)B(t, x)B′(t, x)V (t, x)A1(t, x)λ

� γ2

2h2
λ′

τ(h)∑
t=0

β2(t)A′
1(t, x)V (t, x)A1(t, x)λ =

γ2

2h
λ′λ.

This together with (A.11) implies the inequality

Eθ exp
(
γλ′η(h)

)
� e

γ2

2h
λ′λEθe

ζτ(h) . (A.12)

Let us show that

Eθ exp(ζτ(h)) � 1. (A.13)

We introduce the sequence of truncated stopping moments τ(h,N) = τ(h) ∧N , N = 1, 2, . . . and
denote ζN = ζτ(h,N). Since for every θ ∈ Θ

ζN → ζτ(h) Pθ—almost surely for N → ∞,
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by Fatou’s lemma it suffices to check that

Eθ exp(ζN ) � 1, θ ∈ Θ.

Writing ζN as

ζN =
N∑
t=0

(
b(t)χ(t�τ(h))εt+1 − ||b(t)||2

2
χ(t�τ(h))

)
,

taking into account that sequence (ε(t))t�1 is Gaussian, and computing conditional expectations
repeatedly, we get the necessary estimate

Eθ exp(ζN ) = EθEθ

(
exp(ζN )|FN

)

= Eθ exp(ζN−1)E

(
exp

[
b(N)χN�τ(h)εN+1 − ||b(N)||2

2
χN�τ(h)

] ∣∣∣∣FN

)

= Eθ exp(ζN−1) = . . . = 1.

Combining inequalities (A.10), (A.12), and (A.13), we get the inequality

Pθ

(
λ′η(h) > z

)
� e−γze

γ2

2h
λ′λ, γ > 0, z > 0.

Minimizing the right-hand side of this inequality with respect to γ, we get

Pθ

(
λ′η(h) > z

)
� exp

(
− z2

2hλ′λ

)
.

We can similarly show that

Pθ

(
λ′η(h) < −z

)
� exp

(
− z2

2hλ′λ

)
.

Consequently, inequality (A.9) holds. Using formula (8) for the deviation of point estimate (A.8)
and inequality (A.9) with λ = (δ1i, . . . , δpi)

′, where δki is Kroneker’s symbol, we get

Pθ(|θ̂i(h)− θi| > z) � 2 exp

(
−z2h

2

)
, z > 0. (A.14)

It remains to estimate the probability of estimate θ̂(h) falling outside the confidence region. Next
we use the inclusions

{
|θ̂(h)− θ| > z

}
=

{ p∑
i=1

(θ̂i(h) − θi)
2 > z2

}

⊂
p⋃

i=1

{
(θ̂i(h) − θi)

2 >
z2

p

}
=

p⋃
i=1

{
|θ̂i(h)− θi| > z√

p

}
.

This together with (A.14) yields the second statement of Theorem 1:

Pθ

{
|θ̂(h)− θ| > z

}
�

p∑
i=1

Pθ

{
|θ̂i(h)− θi| > z√

p

}
� 2p exp

(
−z2h

2p

)
.

This completes the proof of Theorem 1.
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