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Abstract

In this paper, we consider the robust adaptive non parametric
estimation problem for the periodic function observed with the
semimartingale noises in continuous time. An adaptive model
selection procedure, based on the improved weighted least square
estimates, is proposed. Sharp oracle inequalities for the robust
risks have been obtained.
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Introduction. Consider a regression model in continuous time
d𝑦𝑡 = 𝑆(𝑡)d𝑡 + d𝜉𝑡 , 0 ≤ 𝑡 ≤ 𝑛 , (1)

where 𝑆 is an unknown 1-periodic R → R function, 𝑆 ∈ L2[0, 1]; (𝜉𝑡)𝑡≥0

is an unobservable conditionally gaussian semimartingale with the val-
ues in the Skorokhod space D[0, 𝑛] such that, for any cadlag [0, 𝑛] → R
function 𝑓 from L2[0, 𝑛], the stochastic integral

𝐼𝑛(𝑓) =

∫︁ 𝑛

0

𝑓(𝑠)d𝜉𝑠 (2)

is well defined and has the following properties

E𝑄𝐼𝑛(𝑓) = 0 and E𝑄𝐼
2
𝑛
(𝑓) ≤ κ𝑄

∫︁ 𝑛

0

𝑓2(𝑠)d𝑠 . (3)

Here E𝑄 denotes the expectation with respect to the distribution 𝑄 in
𝒟[0, 𝑛] of the process (𝜉𝑡)0≤𝑡≤𝑛, which is assumed to belong to some
probability family 𝒬*

𝑛
specified below; κ𝑄 > 0 is some positive constant

depending on the distribution 𝑄.
The problem is to estimate the unknown function 𝑆 in the model

(1) on the basis of observations (𝑦𝑡)0≤𝑡≤𝑛.
The class of the disturbances 𝜉 satisfying conditions (3) is rather

wide and comprises, in particular, the Lévy processes which are used
in different applied problems. The models (1) with the Lévy’s type

*This study was supported by RSF grant, project no 17-11-01049
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noise naturally arise in the nonparametric functional statistics prob-
lems. Moreover, non-Gaussian Ornstein–Uhlenbeck-based models, en-
ter this class.

We consider the estimation problem in the adaptive setting, i.e.
when the regularity of 𝑆 is unknown. Since the distribution 𝑄 of the
noise process (𝜉𝑡)0≤𝑡≤𝑛 is unknown we use the robust estimation ap-
proach developed for nonparametric problems in [5]. To this end we
define the robust risk as

ℛ*(̂︀𝑆𝑛, 𝑆) = sup
𝑄∈𝒬*

𝑛

ℛ𝑄(̂︀𝑆𝑛, 𝑆) (4)

where ̂︀𝑆𝑛 is an estimation, i.e. any function of (𝑦𝑡)0≤𝑡≤𝑛, ℛ𝑄(·, ·) is
the usual quadratic risk defined as

ℛ𝑄(̂︀𝑆𝑛, 𝑆) := E𝑄,𝑆 ‖̂︀𝑆𝑛 − 𝑆‖2 and ‖𝑆‖2 =

∫︁ 1

0

𝑆2(𝑡)d𝑡 .

In this paper, we consider a minimax optimisation criteria which aims
to minimize the robust risk (4). To do this we use the model selec-
tion methods. The interest to such statistical procedures is explained
by the fact that they provide adaptive solutions for a nonparamet-
ric estimation through oracle inequalities which give a non-asymptotic
upper bound for a quadratic risk including a minimal risk over cho-
sen family of estimators. It should be noted that the model selec-
tion methods for parametric models were proposed, for the first time,
by Akaike [1]. Then, these methods had been developed by Barron,
Birgé and Massart [2] and Fourdrinier and Pergamenshchikov [3] for
the nonparametric estimation and oracle inequalities for the quadratic
risks. Unfortunately, the oracle inequalities obtained in these papers
can not provide the efficient estimation in the adaptive setting, since
the upper bounds in these inequalities have some fixed coefficients in
the main terms which are more than one. In order to obtain the effi-
ciency property for estimation procedures, one has to obtain the sharp
oracle inequalities, i.e. in which the factor at the principal term on
the right-hand side of the inequality is close to unity. For this reason,
one needs to use the general semi - martingale approach for the robust
adaptive efficient estimation of the nonparametric signals in continu-
ous time proposed by Konev and Pergamenshchikov in [5]. The goal of
this paper is to develop a new sharp model selection method for esti-
mating the unknown signal 𝑆 using the improved estimation approach.
Usually, the model selection procedures are based on the least square
estimators. However, in this paper, we propose to use the improved
least square estimators which enable us to considerably improve the

25



non asymptotic estimation accuracy. Such idea was proposed, for the
first time, in [3]. Our goal is to develop these methods for non gaussian
regression models in continuous time and to obtain the sharp oracle
inequalities. It should be noted that to apply the improved estimation
methods to the non gaussian regression models in continuous time one
needs to modify the well known James - Stein procedure introduced
in [4] in the way proposed in [6, 7]. So, by using these estimators we
construct the improved model selection procedure and we show that the
constructed estimation procedure is optimal in the sense of the sharp
non asymptotic oracle inequalities for the robust risks (4).

Example of noise processes. Let the useful signal 𝑆 is distorted
by the impulse flow described by the Lévy process, i.e. we assume that
the noise process (𝜉𝑡)0≤𝑡≤𝑛 is defined as

𝜉𝑡 = 𝜚1𝑤𝑡 + 𝜚2𝑧𝑡 and 𝑧𝑡 = 𝑥 * (𝜇− ̃︀𝜇)𝑡 , (5)
where, 𝜚1 and 𝜚2 are some unknown constants, (𝑤𝑡)𝑡≥ 0 is a standard
brownian motion, 𝜇(d𝑠d𝑥) is a jump measure with deterministic com-
pensator ̃︀𝜇(d𝑠d𝑥) = d𝑠Π(d𝑥), Π(·) is a Lévy measure, i.e. some posi-
tive measure on R* = R ∖ {0}, such that

Π(𝑥2) = 1 and Π(𝑥6) < ∞ .
Here we use the notation Π(|𝑥|𝑚) =

∫︀
R*

|𝑧|𝑚 Π(d𝑧). Note that the
Lévy measure Π(R*) could be equal to +∞. Then the class 𝒬*

𝑛
of

distributions of the process (𝜉𝑡)0≤𝑡≤𝑛 includes all distributions for which
the parameters κ𝑄 = 𝜚1 ≥ 𝜍* and 𝜚2

1
+ 𝜚2

2
≤ 𝜍*, where 𝜍* and 𝜍* are

some fixed positive bounds.

Improved estimation. Let (𝜑𝑗)𝑗≥ 1 be an orthonormal basis in L2[0, 1].
We extend these functions by the periodic way on R, i.e. 𝜑𝑗(𝑡)=𝜑𝑗(𝑡+1)
for any 𝑡 ∈ R. For estimating the unknown function 𝑆 in (1) we consider
it’s Fourier expansion

𝑆(𝑡) =

∞∑︁
𝑗=1

𝜃𝑗𝜑𝑗(𝑡) and 𝜃𝑗 = (𝑆, 𝜑𝑗) =

∫︁ 1

0

𝑆(𝑡)𝜑𝑗(𝑡) d𝑡 .

The corresponding Fourier coefficients can be estimated aŝ︀𝜃𝑗,𝑛 =
1

𝑛

∫︁ 𝑛

0

𝜑𝑗(𝑡) d𝑦𝑡 .

In view of (1), one obtainŝ︀𝜃𝑗,𝑛 = 𝜃𝑗 +
1√
𝑛
𝜉𝑗,𝑛 , 𝜉𝑗,𝑛 =

1√
𝑛
𝐼𝑛(𝜑𝑗) , (6)

where 𝐼𝑛(𝜑𝑗) is given in (2).
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We define a class of weighted least squares estimates for 𝑆(𝑡) aŝ︀𝑆𝜆 =
𝑛∑︁

𝑗=1

𝜆(𝑗)̂︀𝜃𝑗,𝑛𝜑𝑗 , (7)

where the weights 𝜆 ∈ R𝑛 belong to some finite set Λ from [0, 1]𝑛.
Now, for the first 𝑑 Fourier coefficients in (7) we use the improved

estimation method proposed for parametric models in [7]. To this end
we set ̃︀𝜃𝑛 = (̂︀𝜃𝑗,𝑛)1≤𝑗≤𝑑. In the sequel we will use the norm |𝑥|2

𝑑
=∑︀𝑑

𝑗=1
𝑥2
𝑗
for any vector 𝑥 = (𝑥𝑗)1≤𝑗≤𝑑 from R𝑑. Now we define the

shrinkage estimators as
𝜃*
𝑗,𝑛

= (1 − 𝑔(𝑗)) ̂︀𝜃𝑗,𝑛 , (8)

where 𝑔(𝑗) = (c𝑛/|̃︀𝜃𝑛|𝑑)1{1≤𝑗≤𝑑}, and c𝑛 is some known parameter
such that c𝑛 ≈ 𝑑/𝑛 as 𝑛 → ∞. Now we introduce a class of shrinkage
weighted least squares estimates for 𝑆 as

𝑆*
𝜆

=

𝑛∑︁
𝑗=1

𝜆(𝑗)𝜃*
𝑗,𝑛

𝜑𝑗 . (9)

We denote the difference of quadratic risks of the estimates (7) and (9)
as ∆𝑄(𝑆) := ℛ𝑄(𝑆*

𝜆
, 𝑆)−ℛ𝑄(̂︀𝑆𝜆, 𝑆). Now for this deviation we obtain

the following result.

Theorem 1. Assume that for any vector 𝜆 ∈ Λ there exists some fixed
integer 𝑑 = 𝑑(𝜆) such that their first 𝑑 components equal to one, i.e.
𝜆(𝑗) = 1 for 1 ≤ 𝑗 ≤ 𝑑 for any 𝜆 ∈ Λ. Then for any 𝑛 ≥ 1

sup
𝑄∈𝒬*

𝑛

sup
‖𝑆‖≤r

∆𝑄(𝑆) < −c2
𝑛
. (10)

Remark. The inequality (10) means that non asymptotically, i.e.
for any 𝑛 ≥ 1 the estimate (9) outperforms in mean square accuracy
the estimate (7). Moreover, as we will see below, 𝑛c𝑛 → ∞ as 𝑑 → ∞.
This means that improvement is considerable may better than for the
parametric regression (see, [7]).

Model selection procedure. This Section gives the construction of
a model selection procedure for estimating a function 𝑆 in (1) on the
basis of improved weighted least square estimates and states the sharp
oracle inequality for the robust risk of proposed procedure.

The model selection procedure for the unknown function 𝑆 in (1)
will be constructed on the basis of a family of estimates (𝑆*

𝜆
)𝜆∈Λ.

The performance of any estimate 𝑆*
𝜆
will be measured by the em-
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pirical squared error
Err𝑛(𝜆) = ‖𝑆*

𝜆
− 𝑆‖2.

In order to obtain a good estimate, we have to write a rule to choose
a weight vector 𝜆 ∈ Λ in (9). It is obvious, that the best way is to
minimise the empirical squared error with respect to 𝜆. Making use
the estimate definition (9) and the Fourier transformation of 𝑆 implies

Err𝑛(𝜆) =

𝑛∑︁
𝑗=1

𝜆2(𝑗)(𝜃*
𝑗,𝑛

)2 − 2

𝑛∑︁
𝑗=1

𝜆(𝑗)𝜃*
𝑗,𝑛

𝜃𝑗 +

𝑛∑︁
𝑗=1

𝜃2
𝑗
.

Since the Fourier coefficients (𝜃𝑗)𝑗≥1 are unknown, the weight coeffi-
cients (𝜆𝑗)𝑗≥1 can not be found by minimizing this quantity. To cir-
cumvent this difficulty one needs to replace the terms 𝜃*

𝑗,𝑛
𝜃𝑗 by their

estimators ̃︀𝜃𝑗,𝑛. We set ̃︀𝜃𝑗,𝑛 = 𝜃*
𝑗,𝑛
̂︀𝜃𝑗,𝑛 − ̂︀𝜎𝑛

𝑛
,

where ̂︀𝜎𝑛 is the estimate for the noise variance of 𝜎𝑄 = E𝑄 𝜉2
𝑗,𝑛

which
we choose in the following form

̂︀𝜎𝑛 =

𝑛∑︁
𝑗=[

√
𝑛]+1

̂︀𝑡2
𝑗,𝑛

and ̂︀𝑡𝑗,𝑛 =
1

𝑛

∫︁ 𝑛

0

Tr𝑗(𝑡)d𝑦𝑡 .

Here we denoted by (Tr𝑗)𝑗≥1 the trigonometric basis in L2[0, 1]. For
this change in the empirical squared error, one has to pay some penalty.
Thus, one comes to the cost function of the form

𝐽𝑛(𝜆) =
𝑛∑︁

𝑗=1

𝜆2(𝑗)(𝜃*
𝑗,𝑛

)2 − 2

𝑛∑︁
𝑗=1

𝜆(𝑗) ̃︀𝜃𝑗,𝑛 + 𝛿 ̂︀𝑃𝑛(𝜆) ,

where 𝛿 is some positive constant, ̂︀𝑃𝑛(𝜆) is the penalty term defined aŝ︀𝑃𝑛(𝜆) =
̂︀𝜎𝑛 |𝜆|2𝑛

𝑛
.

Substituting the weight coefficients, minimizing the cost function
𝜆* = argmin

𝜆∈Λ
𝐽𝑛(𝜆) , (11)

in (7) leads to the improved model selection procedure
𝑆* = 𝑆*

𝜆* . (12)
It will be noted that 𝜆* exists because Λ is a finite set. If the minimizing
sequence in (11) 𝜆* is not unique, one can take any minimizer. In
the case, when the value of 𝜎𝑄 is known, one can take ̂︀𝜎𝑛 = 𝜎𝑄 and
𝑃𝑛(𝜆) = 𝜎𝑄 |𝜆|2

𝑛
/𝑛.

Theorem 2. For any 𝑛 ≥ 2 and 0 < 𝛿 < 1/3, the robust risks (4)
of estimate (12) for continuously differentiable function 𝑆 satisfies the
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oracle inequality

ℛ*(𝑆*
𝜆* , 𝑆) ≤ 1 + 3𝛿

1 − 3𝛿
min
𝜆∈Λ

ℛ*(𝑆*
𝜆
, 𝑆) +

𝐵*
𝑛

𝑛𝛿
, (13)

where the rest term is such that 𝐵*
𝑛
/𝑛𝜖 → 0 as 𝑛 → ∞ for any 𝜖 > 0.

Remark. The inequality (13) means that the procedure (12) is op-
timal in the oracle inequalities sense. This property enables to provide
asymptotic efficiency in the adaptive setting, i.e. when information
about the function regularity is unknown.
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