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Abstract

The paper proposes new sequential estimates for the param-
eters in an autoregressive process 𝐴𝑅(1) with unknown mean.
The property of uniform asymptotic normality is proved in the
case of non-stable process with unspecified noise distributions.
In case of Gaussian noises non-asymptotic distribution of esti-
mates has been derived.

Keywords: sequential estimate, autoregression, fixed-accuracy
estimation, uniform asymptotic normality.

Introduction. It is well-known that autoregressive models are widely
used in the problems of automatic control, time series analysis, filter-
ing theory, image processing, spectral analysis and others because they
provide adequate description of different processes in applications. For
estimating parameters in these models a wide variety of methods have
been developed. Much efforts have been made to investigate the asymp-
totic properties of the least squares estimates (LSE) of an autoregressive
parameter in the AR(1) model obeying the equation

𝑥𝑘 = 𝜃𝑥𝑘−1 + 𝜀𝑘, 𝑘 > 1, (1)
where {𝜀𝑘} is a sequence of i.i.d. random variables with E𝜀𝑘 = 0,
0 < E𝜀2𝑘 = 𝜎2 < ∞. It is well-known (see [5] for details and other
references) that the LSE based on (𝑥0, . . . , 𝑥𝑛)

̂︀𝜃𝑛 =

𝑛∑︀
𝑘=1

𝑥𝑘−1𝑥𝑘

𝑛∑︀
𝑘=1

𝑥2
𝑘−1

(2)

has three different limiting distributions, depending on the value of
unknown parameter 𝜃 each demanding its own normalizing factor.

*This study was supported by the ministry of education and science of the Rus-
sian Federation, goszadanie no 2.3208.2017/4.6

17



Lai and Siegmund [4] proposed for estimating parameter 𝜃 in the
model (1) to use a sequential sampling scheme based on the stopping
time

𝜏 = 𝜏(ℎ) = {𝑛 > 1 : 𝐼𝑛 > ℎ} , ℎ > 0,

where 𝐼𝑛 =
𝑛∑︀

𝑘=1

𝑥2
𝑘−1 is the observed Fisher information. They have

proved that the sequential estimate ̂︀𝜃𝜏(ℎ) obtained from (2) by replac-
ing 𝑛 with 𝜏(ℎ), has the important property of uniform asymptotic
normality

lim
ℎ→∞

sup
|𝜃|61

[︁
𝑃𝜃

(︁
𝐼
1/2
𝜏(ℎ)(𝜃𝜏(ℎ) − 𝜃) 6 𝑧

)︁
− Φ

(︁ 𝑧
𝜎

)︁]︁
= 0.

In this paper we consider the problem of estimating two unknown
parameters 𝜃1 and 𝜃2 in the model of type

𝑥𝑘 = 𝜃1𝑥𝑘−1 + 𝜃2 + 𝜀𝑘, 𝑘 > 1, (3)
where (𝜀𝑘)𝑘>1 is a sequence of i.i.d. random variables with E𝜀𝑘 = 0,
0 < E𝜀2𝑘 = 𝜎2 < ∞.

As is pointed out in [5], the multiparametric case is more compli-
cated and should be treated differently to obtain the estimator with the
property of uniform asymptotic normality. Galtchouk and Konev [2]
treated problem of estimating parameters 𝜃1 and 𝜃2 in the model (3)
from the standpoint of sequential analysis. To construct the sequential
estimate of the vector 𝜃 = (𝜃1, 𝜃2)′ they use the LS-estimate based on
the sample (𝑥0, . . . , 𝑥𝑛)̂︀𝜃(𝑛) = 𝑀−1

𝑛

𝑛∑︁
𝑘=1

𝑌𝑘−1𝑥𝑘,

where 𝑌𝑘 = (𝑥𝑘, 1)′, the prime denotes the transposition; 𝑀𝑛 is the
sample Fisher information matrix, that is

𝑀𝑛 =

𝑛∑︁
𝑘=1

𝑌𝑘−1𝑌
′

𝑘−1. (4)

The sequential estimate is defined as

̂︀𝜃𝜏(ℎ) = 𝑀−1
𝜏(ℎ)

𝜏(ℎ)∑︁
𝑘=1

𝑌𝑘−1𝑥𝑘 (5)

where ℎ > 0, 𝜏(ℎ) is the stopping time of the form

𝜏(ℎ) = inf

{︃
𝑛 > 1 :

𝑛∑︁
𝑘=1

‖𝑌𝑘−1‖ > ℎ

}︃
, inf{∅} = ∞,

‖𝑌𝑘−1‖2 = 1 + 𝑥2
𝑘−1.

The paper [2] has established the uniform asymptotic normality
property of estimate (5) which is given in the following theorem.
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Theorem 1. Let the process (3) be stable, |𝜃1| < 1, and (𝜀𝑛) be i.i.d.
with mean 0 and unit variance and be independent of 𝑥0. Then for any
0 6 𝑙 < ∞, 0 < 𝑠 < 1,

lim
ℎ→∞

sup
𝜃∈Θ𝑙,𝑠

sup
𝑡∈𝑅2

[︁
𝑃𝜃

(︁
𝑀

1/2
𝜏(ℎ)(

̂︀𝜃𝜏(ℎ) − 𝜃) 6 𝑡
)︁
− Φ2 (𝑡)

]︁
= 0,

where Φ2(𝑡) = Φ(𝑡1)Φ(𝑡2), Φ is the standard normal distribution func-
tion,

Θ𝑙,𝑠 = {(𝜃1, 𝜃2)′ : −1 + 𝑠 6 𝜃1 6 1 − 𝑠, |𝜃2| 6 𝑙} .

Remark 1. In order to estimate parameters 𝜃1 and 𝜃2 in (3) with
prescribed mean square precision one can apply the theory of guaranteed
estimation developed in the paper of Konev and Pergamenshchikov [3].

We aim here at constructing sequential estimates which possess the
following properties.

First, they are asymptotically uniformly normal for an unstable
process (3).

Second, in the case of Gaussian disturbances {𝜀𝑛}𝑛>1 and appro-
priate choice of normalizing factor, the estimates have standard two-
dimensional normal distribution.

Construction of sequential estimates We will need the following
sample Fisher information matrices

𝑀1,𝑛 =

𝑛∑︁
𝑘=1

𝑌𝑘−1𝑌
′

𝑘−1, 𝑀2,𝑚 =
𝑚∑︁

𝑘=𝑛+1

𝑌𝑘−1𝑌
′

𝑘−1, 𝑚 > 𝑛, (6)

calculated by the sets of observations (𝑥0, . . . , 𝑥𝑛−1) and (𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑚−1)
respectively.

Further we introduce two stopping rules 𝜏1 = 𝜏1(ℎ) and 𝜏2 = 𝜏2(ℎ),
for each ℎ > 0 as

𝜏1(ℎ) = inf

{︃
𝑛 > 1 :

𝑛∑︁
𝑘=1

𝑥2
𝑘−1 > ℎ

}︃
,

𝜏2(ℎ) = inf

⎧⎨⎩𝑛 > 𝜏1(ℎ) :

𝑛∑︁
𝑗=𝜏1(ℎ)+1

1 > ℎ

⎫⎬⎭ , inf{∅} = ∞,

and modify the matrices (6) as follows

̂︁𝑀1,𝜏1(ℎ) =

𝜏1(ℎ)∑︁
𝑘=1

√︁
𝛽1,𝑘(ℎ)𝑌𝑘−1𝑌

′

𝑘−1,
̂︁𝑀2,𝜏2(ℎ) =

𝜏2(ℎ)∑︁
𝑗=𝜏1(ℎ)+1

√︁
𝛽2,𝑗(ℎ)𝑌𝑗−1𝑌

′

𝑗−1,

(7)
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where

𝛽1,𝑘(ℎ) =

{︃
1 𝑖𝑓 𝑘 < 𝜏1(ℎ),

𝛼1(ℎ) 𝑖𝑓 𝑘 = 𝜏1(ℎ);
𝛽2,𝑗(ℎ) =

{︃
1 𝑖𝑓 𝑗 < 𝜏2(ℎ),

𝛼2(ℎ) 𝑖𝑓 𝑗 = 𝜏2(ℎ).

Here 𝛼1(ℎ) and 𝛼2(ℎ), 0 < 𝛼𝑖(ℎ) 6 1, 𝑖 = 1, 2, are the correction
factors defined by the equations

𝜏1(ℎ)−1∑︁
𝑘=1

𝑥2
𝑘−1 + 𝛼1(ℎ)𝑥2

𝜏1(ℎ)−1 = ℎ,

𝜏2(ℎ)−1∑︁
𝑗=𝜏1(ℎ)+1

1 + 𝛼2(ℎ) = ℎ. (8)

Let 𝜐(ℎ) = (𝜐1(ℎ), 𝜐2(ℎ))
′
be the vector with the components

𝜐1(ℎ) =

𝜏1(ℎ)∑︁
𝑘=1

√︁
𝛽1,𝑘(ℎ)𝑥𝑘−1𝑥𝑘; 𝜐2(ℎ) =

𝜏2(ℎ)∑︁
𝑗=𝜏1(ℎ)+1

√︁
𝛽2,𝑗(ℎ)𝑥𝑗 . (9)

By making use of matrices (7) we define a sequential version of the
sample Fisher information matrix (4) as

𝑚(ℎ) = ||𝑚𝑖,𝑗(ℎ)|| =

[︃
⟨̂︁𝑀1,𝜏1(ℎ)⟩11 ⟨̂︁𝑀1,𝜏1(ℎ)⟩12
⟨̂︁𝑀2,𝜏2(ℎ)⟩21 ⟨̂︁𝑀2,𝜏2(ℎ)⟩22

]︃
, (10)

where ⟨𝐴⟩𝑖𝑗 denotes (i,j)-th element of a matrix A.
Finally, we construct the sequential estimate for vector 𝜃 = (𝜃1, 𝜃2)

′

in (3) as

𝜃*(ℎ) =

(︂
𝜃*1(ℎ)
𝜃*2(ℎ)

)︂
= 𝑚−1(ℎ)𝜐(ℎ). (11)

Uniform asymptotic normality of 𝜃*(ℎ). First we will study the
asymptotic distribution of the estimate (11). We assume that the pro-
cess (3) is unstable, that is |𝜃1| 6 1 and that the distribution of dis-
turbances 𝜀𝑘 is not specified. In this case we arrive at the following
result.

Theorem 2. Let sequential estimates 𝜃*(ℎ) = (𝜃*1(ℎ), 𝜃*2(ℎ))′ for 𝜃 =
(𝜃1, 𝜃2)′ in (3) be defined, for each ℎ > 0, by (11). If the process (3)
is unstable, that is |𝜃| 6 1, and {𝜀𝑛} are i.i.d. random variables with
E𝜀𝑛 = 0, 0 < E𝜀2𝑛 = 𝜎2 < ∞ and are independent of 𝑥0, then for any
0 < 𝐿 < ∞

lim
ℎ→∞

sup
𝜃∈Θ𝐿

sup
𝑡∈𝑅2

⃒⃒⃒⃒
𝑃𝜃

(︂
𝑚(ℎ)√

ℎ
(𝜃*(ℎ) − 𝜃) 6 𝑡

)︂
− Φ2

(︂
𝑡

𝜎

)︂⃒⃒⃒⃒
= 0

where 𝑡 = (𝑡1, 𝑡2)′, Φ2(𝑡) = Φ(𝑡1)Φ(𝑡2), Φ is the standard normal dis-
tribution function,

Θ𝐿 = {𝜃 = (𝜃1, 𝜃2)′ : |𝜃1| 6 1, |𝜃2| 6 𝐿}.
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Proof. Substituting 𝑥𝑘 from (3) in (11) yields
𝑚(ℎ)𝜃*(ℎ) = 𝑣(ℎ) = 𝑚(ℎ)𝜃 + 𝜂(ℎ), 𝜂(ℎ) = (𝜂1(ℎ), 𝜂2(ℎ))′

where

𝜂1(ℎ) =

𝜏1(ℎ)∑︁
𝑘=1

√︁
𝛽1,𝑘(ℎ)𝑥𝑘−1𝜀𝑘, 𝜂2(ℎ) =

𝜏2(ℎ)∑︁
𝑗=𝜏1(ℎ)+1

√︁
𝛽2,𝑗(ℎ)𝜀𝑗 .

This implies that
𝑚(ℎ)√

ℎ
(𝜃*(ℎ) − 𝜃) =

1√
ℎ
𝜂(ℎ). (12)

Therefore we have to establish that 𝜂(ℎ)/
√
ℎ converges uniformly

in 𝜃 ∈ Θ𝐿 to two-dimensional normal distribution, that is
1√
ℎ
𝜂(ℎ) ⇒ 𝒩 (0, 𝜎2𝐼), 𝐼 =

(︂
1 0
0 1

)︂
as ℎ → ∞. To this end it suffices to show that for each constant vector
𝜆 = (𝜆1, 𝜆2)′ ∈ 𝑅2 with ||𝜆|| = 1, 𝜆1 ̸= 0, 𝜆2 ̸= 0,

lim
ℎ→∞

sup
𝜃∈Θ𝐿

sup
−∞<𝑧<∞

⃒⃒⃒⃒
𝑃𝜃

(︂
𝜆′ 𝜂(ℎ)√

ℎ
6 𝑧

)︂
− Φ

(︁ 𝑧
𝜎

)︁⃒⃒⃒⃒
= 0. (13)

The linear combination
𝜁(ℎ) = 𝜆1𝜂1(ℎ) + 𝜆2𝜂2(ℎ)

can be rewritten as

𝜁(ℎ) =

𝜏2(ℎ)∑︁
𝑗=1

𝑦𝑗−1𝜀𝑗 + 𝜁1(ℎ)

where
𝑦𝑗 = 𝜆1𝑥𝑗𝜒(𝜏1(ℎ)>𝑗+1)+𝜆1

√︀
𝛼1(ℎ)𝑥𝜏1(ℎ)−1𝜒(𝜏1(ℎ)=𝑗+1)+𝜆2𝜒(𝜏1(ℎ)<𝑗+1),

𝜁1(ℎ) = (
√︀
𝛼2(ℎ) − 1)𝜀𝜏2(ℎ).

Further we prove that

lim
ℎ→∞

sup
𝜃∈Θ𝐿

sup
−∞<𝑧<∞

⃒⃒⃒⃒
⃒⃒𝑃𝜃

⎛⎝𝜆′ 1√
ℎ

𝜏2(ℎ)∑︁
𝑗=1

𝑦𝑗−1𝜀𝑗 6 𝑧

⎞⎠− Φ
(︁ 𝑧
𝜎

)︁⃒⃒⃒⃒⃒⃒ = 0. (14)

and that for any ∆ > 0

lim
ℎ→∞

sup
𝜃∈Θ𝐿

𝑃𝜃

(︂
1√
ℎ
|𝜁1(ℎ) > ∆|

)︂
= 0. (15)

The argument in the proof of (14) is similar to that of Proposition
2.1 of the paper [4]. Combining (14) and (15) one comes to (13). Hence
Theorem 2.

Non-asymptotic normality of 𝜃*(ℎ). Now we assume that the
noises {𝜀𝑘} in (3) is a sequence of i.i.d. random variables with Gaussian
distributions. In this case we can derive non-asymptotic distribution of
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the sequential estimate (11) under appropriate choice of the normaliz-
ing factor.

Theorem 3. Let sequential estimates 𝜃*(ℎ) = (𝜃*1(ℎ), 𝜃*2(ℎ))′ for 𝜃 =
(𝜃1, 𝜃2)′ in (3) be defined by (11). If {𝜀𝑛} are i.i.d. standard normal
random variables, that is 𝜀𝑛 ∼ 𝒩 (0, 1), then for any 𝜃 ∈ 𝑅2 and any
ℎ > 0

𝑃𝜃

(︂
𝑚(ℎ)√

ℎ
(𝜃*(ℎ) − 𝜃) 6 𝑡

)︂
= Φ2(𝑡)

where 𝑚(ℎ) is defined by (10).

Proof. Taking into account (12) we establish that the characteristic
function of the vector 𝜂(ℎ)/

√
ℎ has the form

𝜙 𝜂(ℎ)√
ℎ

(𝑢) = E𝑒𝑥𝑝(𝑖(𝜂, 𝑢)) = 𝑒𝑥𝑝

(︂
−𝑢2

1

2
− 𝑢2

2

2

)︂
.

This completes the proof of Theorem 3.

Monte-Carlo simulation results. In this section we report some
numerical results to verify the asymptotic uniform normality property
of sequential estimate proved in Theorem 2. The basic experiment
consisted of 20000 replications of the sequential procedure (11) with
ℎ = 20 for each value of the parameter vector 𝜃 = (𝜃1, 𝜃2)′ indicated in
Table 1.

After each simulation of the procedure the normalized deviation
vector

𝑧(ℎ) = (𝑧1(ℎ), 𝑧2(ℎ))′ =
𝑚(ℎ)√

ℎ
(𝜃*(ℎ) − 𝜃)

was calculated. Table 1 gives frequency estimates for the probability
𝑃 (𝑧1(ℎ) 6 𝑎, 𝑧2(ℎ) 6 𝑏)

for two points (𝑎, 𝑏) and different values of unknown parameters 𝜃1, 𝜃2.
The results of simulations show good performance of the procedure

(11) and confirm the results of Theorem 2.

Concluding remarks. In this paper we propose new sequential esti-
mates for estimating parameters in autoregressive process 𝐴𝑅(1) with
unknown mean.

We prove the property of uniform asymptotic normality when the
process is unstable and the noise distributions are not specified.
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Table 1 — Test on the uniform normality

𝑎 = −0.3, 𝑏 = 1.7, ℎ = 20, 𝑝 = 0.365
𝜃1|𝜃2 -2.1 -1.4 -0.7 0 0.7 1.4 2.1
-1 0.367 0.364 0.365 0.365 0.367 0.369 0.365
-0.5 0.370 0.355 0.365 0.363 0.369 0.365 0.357
0 0.366 0.364 0.368 0.361 0.360 0.363 0.365
0.5 0.365 0.368 0.368 0.367 0.362 0.361 0.366
1 0.369 0.367 0.364 0.369 0.363 0.364 0.368

𝑎 = 0.2, 𝑏 = −0.5, ℎ = 20, 𝑝 = 0.179
𝜃1|𝜃2 -2.1 -1.4 -0.7 0 0.7 1.4 2.1
-1 0.175 0.179 0.182 0.180 0.181 0.180 0.182
-0.5 0.181 0.182 0.181 0.181 0.180 0.183 0.183
0 0.181 0.177 0.178 0.174 0.176 0.177 0.182
0.5 0.179 0.183 0.182 0.182 0.178 0.175 0.178
1 0.175 0.176 0.179 0.182 0.181 0.177 0.180
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