View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Tomsk State University Repository

MUHNCTEPCTBO OBPABOBAHNA 1 HAYKU
POCCHUIICKOI ®EJIEPAIIN
HAIIMOHAJIBHBIN NCCJIETOBATEJIBCKIIN
TOMCKUN TOCYJIAPCTBEHHBIN YHUBEPCUTET
Mex nyrapoaast j1abopaTopust CTATUCTUKHU CJLY IaifHbIX
IPOIEeCCOB N KOJIMIECCTBEHHOT'O (bI/IHaHCOBOI‘O aHaJIn3a

MexayHapoaHada HayJIHad
KOH(epeHIsI
«PobacTtHas crarncTuka m
dunamncoBas maremaruka — 2017»

(03-05 wmrostsa 2017 1.)

Co6opHUK cTaTeit

[Tox pemakiueit
JI-pa pus.-MatT. HayK, npodeccopa C.M. Ilepramenmukona,
KaH. pus.-MaT. HayK, jgorenta E.A. [Tuenunnesa

Tomck
Nznarensckuit JJom ToMcKOro rocyaapcTBEHHOTO YHUBEPCUTETA
2017


https://core.ac.uk/display/287443691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Non-asymptotic distribution of the
sequential estimates of parameters in a
first-order unstable autoregression with

*
unknown mean

Konev V.V., Nazarenko B. N.
Tomsk State University, Tomsk
e-mail: vvkonev@mail.tsu.ru

Abstract

The paper proposes new sequential estimates for the param-
eters in an autoregressive process AR(1) with unknown mean.
The property of uniform asymptotic normality is proved in the
case of non-stable process with unspecified noise distributions.
In case of Gaussian noises non-asymptotic distribution of esti-
mates has been derived.
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estimation, uniform asymptotic normality.

Introduction. It is well-known that autoregressive models are widely
used in the problems of automatic control, time series analysis, filter-
ing theory, image processing, spectral analysis and others because they
provide adequate description of different processes in applications. For
estimating parameters in these models a wide variety of methods have
been developed. Much efforts have been made to investigate the asymp-
totic properties of the least squares estimates (LSE) of an autoregressive
parameter in the AR(1) model obeying the equation

Ty =O0xp_1 + e, k21, (1)
where {e1} is a sequence of i.i.d. random variables with Ee, = 0,
0 < Eef = 0% < co. It is well-known (see [5| for details and other
references) that the LSE based on (zo, ..., 2,)

n

R > Tp—1Tk

0 = "= (2)
> xi_l
k=1

has three different limiting distribitions, depending on the value of
unknown parameter 6 each demanding its own normalizing factor.
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Lai and Siegmund [4] proposed for estimating parameter 6 in the
model (1) to use a sequential sampling scheme based on the stopping
time

T=17h)={n>1: 1, >h}, h>0,
n
where I,, = ) xi& is the observed Fisher information. They have
k=1
proved that the sequential estimate @(h) obtained from (2) by replac-
ing n with 7(h), has the important property of uniform asymptotic
normality
lim sup [Py (17 (0- —0) <2) - @ (Z)] =0.
h—)oo‘mgl 7(h) (k) o

In this paper we consider the problem of estimating two unknown

parameters 61 and 0, in the model of type

xp =01xp_1 +02+¢ek, k=1, (3)
where (x)k>1 is a sequence of i.i.d. random variables with Eey, = 0,
0 < Ee? = 0% < o0.

As is pointed out in [5], the multiparametric case is more compli-
cated and should be treated differently to obtain the estimator with the
property of uniform asymptotic normality. Galtchouk and Konev [2]
treated problem of estimating parameters 6; and 65 in the model (3)
from the standpoint of sequential analysis. To construct the sequential
estimate of the vector 6 = (01, 05)" they use the LS-estimate based on
the sample (zg,...,z,)

é\(n) = M;l Z Yk_lxk,
k=1

where Y, = (xj,1)’, the prime denotes the transposition; M,, is the
sample Fisher information matrix, that is

n
M, =Y Yi 1Y, ;. (4)
k=1
The sequential estimate is defined as
7(h)
er(h) = M_:(}L) Z kalwk (5)
k=1

where h > 0, 7(h) is the stopping time of the form

7(h) = inf {n >1: ) Vil 2 h} , inf{0} = oo,
k=1
[Ye1]* = 1 +a%_;.
The paper [2] has established the uniform asymptotic normality
property of estimate (5) which is given in the following theorem.
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Theorem 1. Let the process (3) be stable, |01] < 1, and (g,,) be i.i.d.
with mean 0 and unit variance and be independent of xg. Then for any
0<l<oo,0<s<,

lim sup sup {Pg (M:(/i)(@(h) —-0) < t) — ®y (t)] =0,

h—oopco, . teR?
where ®o(t) = O(t1)P(t2), P is the standard normal distribution func-
tion,

6173 = {(01792)/ -1 + s g 01 g 1-— S, ‘02| g l} .

Remark 1. In order to estimate parameters 61 and 0y in (3) with
prescribed mean square precision one can apply the theory of guaranteed
estimation developed in the paper of Konev and Pergamenshchikov [3].

We aim here at constructing sequential estimates which possess the
following properties.

First, they are asymptotically uniformly normal for an unstable
process (3).

Second, in the case of Gaussian disturbances {e,},>1 and appro-
priate choice of normalizing factor, the estimates have standard two-
dimensional normal distribution.

Construction of sequential estimates We will need the following
sample Fisher information matrices
n

m
Mip =Y YeaY, 4, Mym= Y Yii¥,,, m>n, (6)
k=1 k=n-+1
calculated by the sets of observations (xg, . .., Tn—1) and (Zn, Tpi1, .-y Tm—1)
respectively.
Further we introduce two stopping rules 71 = 71(h) and 75 = 72(h),
for each h > 0 as

T1(h)= inf<n>1: in1>h},
k=1

T2(h) = inf< n>7(h): Z 1>h , inf{@} =0
j=mi(h)+
and modify the matrices (6) as follows
Tl(h) TQ(h)

M - (n) Z BLe(M)Yeo1 Yy, My, 1y = Z \//82,]( Y1y,
J=71(

(7)
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where

1 if k<m(h), if j<m(h)
Brk(h) = . Ba,;(h o
ar(h) if k=mi(h); if j=m(h).
Here aq(h) and as(h), 0 < a;(h) < 1 , are the correction
factors deﬁned by the equations
Tl(h TQ(h)*l
Z w1 +an(h)ad gy = h, Z L+ az(h)=h. (8)
j=mi(h)+1
Let v(h) = (v1(h),v2(h)) be the vector with the components
Tl(h) Tz(h
=Y fBuk(zrazk; va(h) = Y \/Baj(h)x;
k=1 j=71(h)+1

By making use of matrices (7) we define a sequential version of the
sample Fisher information matrix (4) as

m(h) = [lmi; (]| = | S2nehn Bamhs | )
’ <M2 Tg(h)>21 <M2 7'2(h)>22

where (A);; denotes (i,j)-th element of a matrix A.

Finally, we construct the sequential estimate for vector § = (61, 92)/
in (3) as

0" (h) = ( Z;EZ; > = m=1(h)o(h). (11)

Uniform asymptotic normality of 6*(h). First we will study the
asymptotic distribution of the estimate (11). We assume that the pro-
cess (3) is unstable, that is || < 1 and that the distribution of dis-
turbances € is not specified. In this case we arrive at the following
result.

Theorem 2. Let sequential estimates 60*(h) = (05(h),05(h)) for 8 =
(01,02)" in (3) be defined, for each h > 0, by (11). If the process (3)
is unstable, that is |0| < 1, and {e,} are i.i.d. random variables with
Ee, =0, 0 < Ee2 = 0% < oo and are independent of xo, then for any
0<L <o

lim sup sup — =0

m(h) ) ( t >
P, 0*(h)—0) <t | —Dy | —
h—oogcoy teRr? 9( Vh (@7(h) =6) “\o
where t = (t1,t2)", ®o(t) = ®(t1)P(t2), P is the standard normal dis-
tribution function,

6L = {9 = (91,02)/ : |01| < 1, |92| < L}
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Proof. Substituting xj from (3) in (11) yields
m(h)6"(h) = v(h) = m(h)6 + n(h), n(h) = (m(h),n2(h))’

where
T2 (h)

71(h)
= Z \/ Brr(h)xk—18k, n2(h) = Z Ba,5(h)e;
k=1 Jj=71(

This implies that

m(h) ., 1
O () = 0) = —n(h) (12)

Therefore we have to establish that 5(h)/v/h converges uniformly
in 6 € O, to two-dimensional normal distribution, that is
1 9 10
as h — oo. To this end it suffices to show that for each constant vector
A= ()\1,)\2)/ € R? with ||/\H =1, )\ 7& 0, Ao 7é 0,
h—=00gc@; —co<z<oo

,n(h) z
AP Y — — = 0.
Pg()\ \/E\Z) @( )‘ 0 (13)
The linear combination

¢(h) = Aimi(h) + Aanz(h)

T2 h)

Zy] 165 + Gi(h)

lim sup  sup

can be rewritten as

where
Yi = MTjX(r (h)>5+1) T A1 041(71)9571(}1)71)((71(h):j+1)‘*‘)‘QX(ﬁ(h)<j+1)7
Gi(h) = (Vaz(h) = 1)er,n)-

Further we prove that

T2 h)
z
lim su su P, g; < —<I>(f> =0. (14
h"°°0665—oo<f<oo ¢ Zy] 1 o (14)
and that for any A >0
1
lim sup Py | —=|Ci(h) > Al ) =0. 15
lim sup 7y (<l(h) > Al (15)

The argument in the proof of (14) is similar to that of Proposition
2.1 of the paper [4]. Combining (14) and (15) one comes to (13). Hence
Theorem 2. O

Non-asymptotic normality of 6*(h). Now we assume that the
noises {ex } in (3) is a sequence of i.i.d. random variables with Gaussian
distributions. In this case we can derive non-asymptotic distribution of
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the sequential estimate (11) under appropriate choice of the normaliz-
ing factor.

Theorem 3. Let sequential estimates 0*(h) = (65 (h),05(h))" for 6 =
(01,02)" in (3) be defined by (11). If {e,} are i.i.d. standard normal
random variables, that is e, ~ N'(0,1), then for any 0 € R% and any

h>0 ,
P, (”jgw*m) 0 < t) — ay(1)

where m(h) is defined by (10).

Proof. Taking into account (12) we establish that the characteristic
function of the vector 7(h)/v/h has the form

2 2
Pl (u) = Eexp(i(n,u)) = exp ( _ > '
h
This completes the proof of Theorem 3.

Monte-Carlo simulation results. In this section we report some
numerical results to verify the asymptotic uniform normality property
of sequential estimate proved in Theorem 2. The basic experiment
consisted of 20000 replications of the sequential procedure (11) with
h = 20 for each value of the parameter vector 8 = (61, 6-)" indicated in
Table 1.

After each simulation of the procedure the normalized deviation
vector

z2(h) = (21(h), z2(h))" = ni(f;}z) (07 (h) — 0)

was calculated. Table 1 gives frequency estimates for the probability
P(z1(h) < a, z2(h) < b)
for two points (a, b) and different values of unknown parameters 61, 5.
The results of simulations show good performance of the procedure
(11) and confirm the results of Theorem 2.

Concluding remarks. In this paper we propose new sequential esti-
mates for estimating parameters in autoregressive process AR(1) with
unknown mean.

We prove the property of uniform asymptotic normality when the
process is unstable and the noise distributions are not specified.
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Table 1 — Test on the uniform normality

a=—-03, b=1.7, h=20, p=0.365
0100, | 21 | 14 | 07 | 0 07 | 14 | 21
1 | 0.367 | 0.364 | 0.365 | 0.365 | 0.367 | 0.369 | 0.365
0.5 | 0.370 | 0.355 | 0.365 | 0.363 | 0.369 | 0.365 | 0.357
0 | 0.366 | 0.364 | 0.368 | 0.361 | 0.360 | 0.363 | 0.365
0.5 | 0.365 | 0.368 | 0.368 | 0.367 | 0.362 | 0.361 | 0.366
1 | 0.369 | 0.367 | 0.364 | 0.369 | 0.363 | 0.364 | 0.368
a=02,b=—-05, h=20, p=0.179
01]0; | 21 | 14 | 07 | 0 07 | 14 | 21
T | 0.175 | 0.179 | 0.182 | 0.180 | 0.181 | 0.180 | 0.182
0.5 | 0.181 | 0.182 | 0.181 | 0.181 | 0.180 | 0.183 | 0.183
0 | 0.181 | 0.177 | 0.178 | 0.174 | 0.176 | 0.177 | 0.182
0.5 | 0.179 | 0.183 | 0.182 | 0.182 | 0.178 | 0.175 | 0.178
1 | 0175 | 0.176 | 0.179 | 0.182 | 0.181 | 0.177 | 0.180
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