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Abstract

In this paper we study the c-function of the sine-Gordon model taking explicitly into account the period-
icity of the interaction potential. The integration of the c-function along trajectories of the non-perturbative 
renormalization group flow gives access to the central charges of the model in the fixed points. The results 
at vanishing frequency β2, where the periodicity does not play a role, are retrieved and the independence 
on the cutoff regulator for small frequencies is discussed. Our findings show that the central charge ob-
tained integrating the trajectories starting from the repulsive low-frequencies fixed points (β2 < 8π ) to 
the infra-red limit is in good quantitative agreement with the expected �c = 1 result. The behavior of the 
c-function in the other parts of the flow diagram is also discussed. Finally, we point out that including also
higher harmonics in the renormalization group treatment at the level of local potential approximation is not 
sufficient to give reasonable results, even if the periodicity is taken into account. Rather, incorporating the 
wave-function renormalization (i.e. going beyond local potential approximation) is crucial to get sensible 
results even when a single frequency is used.
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1. Introduction

Statistical field theory has known an outpouring development in the last decades, with the sys-
tematic improvement of powerful theoretical tools for the study of critical phenomena and phase 
transitions [1]. A key role among these methods is played by the renormalization group (RG) 
approach: RG allowed to treat statistical physics models studying the behavior of the transfor-
mations bringing the microscopic variables into macroscopic ones [2,3]. Using RG one can have 
not only a qualitative picture of the phase diagram and fixed points, but also accurate quantitative 
estimates of critical properties as critical exponents and universal quantities — even though very 
few cases are known where RG procedure can be carried out exactly and the method itself offers 
few possibility to obtain exact results.

On the other hand, the scale invariance exhibited by systems at criticality may give rise to 
invariance under the larger group of conformal transformations [4] locally acting as scale trans-
formations [5]. The conformal group in d spatial dimensions (for d �= 2) has a finite number of 
generators, while for d = 2 the conformal group is infinitely dimensional [5]. The occurrence 
and consequences of conformal invariance for 2-dimensional field theories have been deeply in-
vestigated and exploited to obtain a variety of exact results [1,5] and a systematic understanding 
of phase transitions in two dimensions.

A bridge between conformal field theory (CFT) techniques and the RG description of field 
theories is provided in two dimensions by the c-theorem. Far from fixed points, Zamolodchikov’s 
c-theorem [6] can be used to get information on the scale-dependence of the model. In particular 
the theorem states that it is always possible to construct a function of the couplings, the so-called 
c-function, which monotonically decreases when evaluated along the trajectory of the RG flow. 
Furthermore, at the fixed points this function assumes the same value as the central charge of the 
corresponding CFT [1].

Although the c-theorem is by now a classical result, the determination of the c-function is not 
straightforward and its computation far from fixed points is non-trivial even for very well-known
models, so that such methods as form factor perturbation theory, truncated conformal space ap-
proach and conformal perturbation theory have been developed [1]. In d = 2 an expression of 
the c-function has been obtained in the framework of form factor perturbation theory [7] for 
theories away from criticality and it has been applied to the sinh-Gordon model [8]. The sinh-
Gordon model is a massive integrable scalar theory, with no phase transitions. In [8] one finds 
�c = 1 for the sinh-Gordon theory. In a recent result [9], the analytical continuation of the sinh-
Gordon S-matrix produces a roaming phenomenon exhibiting �c = 1 and multiple plateaus of 
the c-function. The analytic continuation β → iβ of the sinh-Gordon model leads to the well-
known sine-Gordon (SG) model with a periodic self interaction of the form cos(βφ).

The SG model presents the unique feature to have a whole line of interacting fixed points 
with coupling (temperature) dependent critical exponents. It is in the same universality of the 
2-dimensional Coulomb gas [10] and of the 2-dimensional XY [11], thus being one of the 
most relevant and studied 2-dimensional models, with applications ranging from the study of 
the Kosterlitz–Thouless transition [11] to quantum integrability [12] and bosonization [13]. In 
particular, for the SG model a ubiquitous issue is how to deal with the issue of the periodic-
ity of the field [14], which unveils and plays a crucial role for β �= 0. Given the importance of 
the SG as a paradigmatic 2-dimensional model, the determination of the c-function from the 
non-perturbative RG flow is a challenging goal, in particular to clarify the role played by the 
periodicity of the field for β �= 0.
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From the RG point of view, the determination of the behavior of the c-function is a chal-
lenging task requiring a general non-perturbative knowledge of the RG flow. Recently [15], an 
expression for the Zamolodchikov’s c-function has been derived for 2-dimensional models in the 
Functional RG (FRG) framework [16–18]: resorting to an approximation well established and 
studied in the FRG, the Local Potential Approximation (LPA), an approximated and concretely 
computable RG flow equation for the c-function was also written down [15]. By using this ex-
pression known results were recovered for scalar models on some special trajectories of the Ising 
and SG models. For the SG model, having a Lagrangian proportional to cos (βφ), the determina-
tion and the integration of the c-function were carried out for β = 0 as a massive deformation of 
the Gaussian fixed point [15]. Motivated by these results, both for the Ising and SG models and 
for general 2-dimensional models, it would be highly desirable to have a complete description of 
the c-function on general RG trajectories.

In the present paper we present the first numerical calculation of the c-function on the whole 
RG flow phase diagram of the SG model. The goal is to determine the behavior of the c-function, 
and the presence of known results (namely, �c = 1) helps to assess the validity of our approach 
along the different flows. We also complete the description initiated in [15] moving to more 
complex trajectories and showing that these cases are not a straightforward generalization of the 
known results. We finally discuss the dependence of these results on the approximation scheme 
used to compute FRG equations.

2. Functional renormalization group method

In this section, we briefly summarize the FRG approach [16–18]. Starting from the usual 
concepts of Wilson’s renormalization group (RG) it is possible to derive an exact flow equation 
for the effective action of any quantum field theory. This flow equation is commonly written in 
the form

k∂k�k[ϕ] = 1

2
Tr

[
k∂kRk

�
(2)
k [ϕ] + Rk

]
, (1)

where �k[ϕ] is the effective action and �(2)
k [ϕ] denotes the second functional derivative of the 

effective action. The trace Tr stands for an integration over all the degrees of freedom of the 
field φ, while Rk is a regulator function depending on the mode of the field and on the running 
scale k. When the running scale goes to zero k → 0 the scale-dependent effective action �k=0[φ]
is the exact effective action of the considered quantum field theory.

Usually equation (1) is treated in momentum space, thus the trace stands for a momentum in-
tegration and the regulator Rk is a smooth function which freezes all the modes with momentum 
smaller than the scale k.

The exact FRG equation (1) stands for functionals, thus it is handled by truncations. Trun-
cated RG flows depend on the choice of the regulator function Rk, i.e. on the renormalization 
scheme. Regulator functions have already been discussed in the literature by introducing their 
dimensionless form

Rk(p) = p2r(y), y = p2/k2, (2)

where r(y) is dimensionless. Various types of regulator functions can be chosen (an archetype of 
regulator functions [19] has been shown to take the forms of the regulators used so far by setting 
its parameters). In this work we are going to consider the following regulators:
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rpow(y) = 1

yb
, (3a)

ropt(y) =
(

1

y
− 1

)
θ(1 − y), (3b)

where the first is known as the power-law type [20] and the second one is the Litim (or optimized) 
[21] type regulator. Let us note that the so-called mass cutoff regulator, which is used in [15], is 
identical to rpow(y) with b = 1.

One of the commonly used systematic approximations is the truncated derivative expansion, 
where the action is expanded in powers of the derivative of the field [16]:

�k[ϕ] =
∫
x

[
Vk(ϕ) + Zk(ϕ)

1

2
(∂μϕ)2 + · · ·

]
.

In LPA higher derivative terms are neglected and the wave-function renormalization is set equal 
to constant, i.e. Zk ≡ 1. In this case (1) reduces to the partial differential equation for the dimen-
sionless blocked potential (Ṽk = k−2Vk) which has the following form in 2 dimensions:

(2 + k∂k)Ṽk(ϕ) = − 1

4π

∞∫
0

dy
y2 dr

dy

(1 + r)y + Ṽ ′′
k (ϕ)

. (4)

3. The c-function in the framework of functional renormalization group

An expression for the c-function in FRG was recently developed in [15]. In this section we 
are going to give the guidelines of this derivation, reviewing the main results used in the next 
sections.

Let us start considering an effective action �[φ, g] for a single field φ in curved space, with 
metric gμν . We can study the behavior of this effective action under transformation of the field 
and the metric:

φ → edφτ φ (5)

gμν → e2τ gμν (6)

where dφ is the conformal weight of the field (dφ = − d−2+η
2 for a scalar field) while the back-

ground metric gμν has always conformal weight 2. From the requirement that the effective action 
must be invariant under the Weyl transformation (5)–(6), we obtain the following expression for 
a conformal field theory (CFT) in curved space [15]:

�[φ,g] = SCFT [φ,g] + cSP [g]. (7)

SCFT [φ, g] is the curved space generalization of the standard CFT action, which is recovered in 
the flat space case gμν = δμν , c is the central charge of our theory and SP [g] is the Polyakov 
action term which is necessary to maintain the Weyl invariance of the effective average action in 
curved space.

To obtain FRG equations one has to add an infra-red (IR) cutoff term �Sk[φ, g] to the ultra-
violet (UV) action of the theory. This is a mass term which depends both on the momentum of 
the excitations and on a cutoff scale k.

�Sk[φ,g] = 1
∫

d2x
√

gφ(x)Rk(�)φ(x), (8)

2
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where � is the spatial Laplacian operator. The effect is to freeze the excitation of momentum 
q 	 k, but leaving the excitation at q > k almost untouched. The result of this modification of 
the UV action is to generate, after integrating over the field variable, a scale-dependent effective 
action �k[φ, g] which describes our theory at scale k. When the scale k is sent to zero the cutoff 
term in the UV action vanishes and the �k[φ, g] is the exact effective average action of the theory.

The generalization of (7) in presence of the cutoff terms is

�k[φ,g] = Sk[φ,g] + ckSP [g] + · · · , (9)

where ck is now the scale-dependent c-function and the dots stand for some geometrical terms 
which do not depend on the field. We should now consider the case of a flat metric with a dilaton 
background gμν = e2τ δμν . Using the standard path integral formalism for the effective action,
we can write

e−�k[φ,e2τ δ] = e−Sk[φ,e2τ δ]−ckSP [e2τ δ] =∫
Dχd.b.e

−SUV [φ+χ,e2τ δ]−cUVSP [e2τ δ]−�Sk[χ,e2τ δ] (10)

where SUV [φ, g] is some UV action, cUV is the value of the c-function in the UV (which can be 
equal to the central charge of some CFT if we are starting the flow from a conformal invariant 
theory) and χ is the fluctuation field. The notation Dχd.b. stands for an integration over the 
fluctuation field χ in the curved space of the dilaton background [15]. We can further manipulate 
latter expression moving cUV on the l.h.s.

e−Sk[φ,e2τ δ]+(cUV−ck)SP [e2τ δ] =∫
Dχd.b.e

−SUV [φ+χ,e2τ δ]−�Sk[χ,e2τ δ].
(11)

The Polyakov action in the dilaton background case assumes the form

SP [g] = − 1

24

∫
τ�τ, (12)

where τ is the dilaton field, � is the Laplacian operator and the integral is over an implicit spatial 
variable. Substituting latter expression into (11) we obtain

e−Sk[φ,e2τ δ]− (cUV −ck )

24

∫
τ�τ =∫

Dχd.b.e
−SUV [φ+χ,e2τ δ]−�Sk[χ,e2τ δ].

(13)

In order to recover the usual flat metric integration we have to pursue a Weyl transformation (5)
for the fields φ and χ

e−Sk[edφτ
φ,e2τ δ]− (cUV −ck)

24

∫
τ�τ =∫

Dχe−SUV [edφτ
(φ+χ),e2τ δ]−�Sk[edφτ

χ,e2τ δ],
(14)

and now the integration measure is in flat space.
Finally deriving previous expression with respect to the logarithm of the FRG scale we obtain 

that the flow of the c-function ∂tck can be extracted from the flow of the cutoff action (8) by 
taking the coefficient of the 

∫
τ�τ term,
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k∂kck = 24π〈k∂̃k�Sk[edφτχ, e2τ δ]〉
∣∣∣∫

τ�τ
, (15)

which after some manipulation becomes [15]

k∂kck = −12πk∂̃kGk[τ ]
∣∣∣∫

τ�τ
. (16)

Eq. (16) shows that the c-function flow is proportional to the coefficient of the 
∫

τ�τ term in 
the expansion of the propagator flow k∂̃kGk[τ ], also this flow has to be computed taking into 
account only the k dependence of the regulator function, i.e.

k∂̃k = k∂kRk

∂

∂Rk

. (17)

This equation describes the exact flow of the c-function into the FRG framework.
It is not in general possible to solve exactly equation (1) and also equation (16) needs to be 

projected into a simplified theory space to be computed numerically. In Ref. [15] an explicit
expression for the flow equation of the c-function in the LPA scheme has been derived with the 
mass cutoff

k∂kck = [k∂kṼ
′′
k (ϕ0,k)]2

[1 + Ṽ ′′
k (ϕ0,k)]3

, (18)

with the dimensionless blocked potential Ṽk(ϕ) which is evaluated at its running minimum ϕ =
ϕ0,k (i.e. the solution of Ṽ ′

k(ϕ) = 0). We observe that an explicit expression for the c-function 
beyond LPA is not available in literature.

It should be noticed that, while (4) is valid for any regulator (cutoff) function, the expression 
for the c-function (18) has been obtained by using the mass cutoff, i.e. (3a) with b = 1. Other 
cutoff choices proved to be apparently very difficult to investigate. In the following, we will argue 
that while the expression (18) is sufficient to obtain a qualitative (and almost quantitative) picture 
of the c-function phase diagram the usage of other regulator functions is necessary to achieve full 
consistency. Where it is possible we will check the cutoff dependence of our numerical results.

4. RG study of the sine-Gordon model

The SG scalar field theory is defined by the Euclidean action for d = 2

�k[φ] =
∫

d2x

[
1

2
(∂μϕx)

2 − u cos(βϕx)

]
, (19)

where β and u are the dimensional couplings. Since we are interested in the FRG study of the SG 
model which is periodic in the field variable, the symmetry of the action under the transformation 
[22]

ϕ(x) → ϕ(x) +A (20)

is to be preserved by the blocking and the potential Ṽk(ϕ) must be periodic with period length A. 
It is actually obvious that the blocking, i.e. the transformation given by replacing the derivative 
with respect to the scale k by a finite difference in (4) preserves the periodicity of the potential 
[22,23].
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4.1. The FRG equation for the SG model for scale-independent frequency

In LPA one should look for the solution of (4) among the periodic functions which requires 
the use of a Fourier expansion. When considering a single Fourier mode, the scale-dependent 
blocked potential reads

Ṽk(ϕ) = −ũk cos(βϕ), (21)

where β is scale-independent.
In the mass cutoff case, i.e. the power-law regulator (3a) with b = 1, one can derive [24] the 

flow equation for the Fourier amplitude of (21) from Eq. (4):

(2 + k∂k)ũk = 1

2πβ2ũk

[
1 −

√
1 − β4ũ2

k

]
(22)

(see Eq. (21) of [24] for vanishing mass). Similarly, using the optimized regulator (3b) gives

(2 + k∂k)ũk = 1

2πβ2ũk

⎡
⎢⎣ 1√

1 − β4ũ2
k

− 1

⎤
⎥⎦ . (23)

4.2. The FRG equation for the SG model for scale-dependent frequency

A very simple, but still sensible, modification to ansatz (19) is the inclusion of a scale-
dependent frequency, which, in order to explicitly preserve periodicity, should be rather con-
sidered as a running wave-function renormalization. The ansatz then becomes

�k =
∫

d2x

[
1

2
zk(∂μϕx)

2 + Vk(ϕx)

]
, (24)

where the local potential contains a single Fourier mode

Vk(ϕ) = −uk cos(ϕ), (25)

and the following notation has been introduced:

zk ≡ 1/β2
k (26)

via the rescaling of the field ϕ → ϕ/βk in (19), where zk plays the role of a field-independent 
wave-function renormalization. Then Eq. (1) leads to the evolution equations

k∂kVk = 1

2

∫
p

Dkk∂kRk, (27)

k∂kzk =P0V
′′′ 2
k

∫
p

D2
kk∂kRk

(
∂2Dk

∂p2∂p2
p2 + ∂Dk

∂p2

)
(28)

with Dk = 1/(zkp
2 + Rk + V ′′

k ) and P0 = (2π)−1
∫ 2π

0 dϕ is the projection onto the field-
independent subspace. The scale k covers the momentum interval from the UV cutoff � to zero. 
It is important to stress that Eqs. (27)–(28) are directly obtained using power-law cutoff func-
tions. One may expect that these equations continue to be valid for a general cutoff provided that 
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Rk → zkRk [16]. This substitution has been tested for O(N) models, but its validity has not yet 
been discussed in the literature for the SG model.

Inserting the ansatz (25) into Eqs. (27) and (28), the RG flow equations for the coupling 
constants can be written as [25]

k∂kuk = 1

2π

∫
p

k∂kRk

uk

⎛
⎜⎝ Pk√

P 2
k − u2

k

− 1

⎞
⎟⎠ , (29)

k∂kzk = 1

2π

∫
p

k∂kRk

(
u2

kp
2(∂p2Pk)

2(4P 2
k + u2

k)

4(P 2
k − u2

k)
7/2

−
u2

kPk(∂p2Pk + p2∂2
p2Pk)

2(P 2
k − u2

k)
5/2

)
(30)

with Pk = zkp
2 + Rk . In general, the momentum integrals have to be performed numerically, 

however in some cases analytical results are available. Indeed, by using the power-law regulator 
(3a) with b = 1, the momentum integrals can be performed [24] and the RG flow equations read 
as

(2 + k∂k)ũk = 1

2πzkũk

[
1 −

√
1 − ũ2

k

]

k∂kzk = − 1

24π

ũ2
k

[1 − ũ2
k]

3
2

(31)

with the dimensionless coupling ũ = k−2u. By using the replacements

zk → 1/β2
k , (32a)

ũk → β2
k ũk, (32b)

and keeping the frequency scale-independent (∂kzk = 0, i.e. ∂kβ
2
k = 0) one recovers the corre-

sponding LPA Eq. (22).

5. c-function of the sine-Gordon model for β = 0

In this section we discuss the case β = 0. We start by summarizing the results obtained for 
the c-function of the SG model in [15]. The ansatz considered in [15] is

Ṽk(ϕ) = − m̃2
k

β2
k

(cos(βkϕ) − 1) , (33)

where the frequency βk is assumed to be scale-dependent. If one directly substitutes (33) into the 
RG Eq. (4), then the l.h.s. of (4) generates non-periodic terms due to the scale-dependence of βk . 
Thus, the periodicity of the model is not preserved and one can use the Taylor expansion of the 
original periodic model

Ṽk(ϕ) ≈ 1

2
m̃2

kϕ
2 − 1

4! (m̃
2
kβ

2
k )ϕ4. (34)

In this case, (33) is treated as a truncated Ising model and the RG equations for the coupling 
constants read as
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k∂km̃
2
k = m̃2

k[β2
k − 8π(1 + m̃2

k)]
4π(1 + m̃2

k)
(35)

k∂kβ
2
k = − 1

4π

(1 + 4m̃2
k)β

4
k

(1 + m̃2
k)

2
. (36)

The disadvantage of the scale-dependent frequency is that the periodicity of the model is vio-
lated changing the known phase structure of the SG model. However, the authors of [15] were 
interested in the massive deformation of the Gaussian fixed point which is at β = 0 and ũ = 0, 
so one has to take the limit β → 0 where the Taylor expansion represents a good approximation 
for the original SG model. Indeed, in the limit β → 0, the RG Eqs. (35), (36) reduce to

k∂km̃
2
k ≈ m̃2

k[β2
k − 8π(1 + m̃2

k)]
4π(1 + m̃2

k)
≈ −2m̃2

k (37)

k∂kβ
2
k ≈ 0. (38)

Similar flow equations for the couplings m̃2
k and βk were given in [15]. The solution for the 

c-function based on (33) is in agreement with the known exact result, i.e. at the Gaussian UV 
fixed point cUV = 1 and in the IR limit cIR = 0, thus the exact result in case of the massive 
deformation of the Gaussian fixed point is �c = 1 (�c = cUV − cIR). The numerical solution 
[15] gives �c = 0.998 in almost perfect agreement with the exact result.

Although the numerical result obtained for the c-function in [15] is more than satisfactory, 
due to the Taylor expansion, the SG theory is considered as an Ising-type model. Thus, the RG 
study of the c-function starting from the Gaussian fixed point in the Taylor-expanded SG model 
is essentially the same as that of the deformation of the Ising Gaussian fixed point. So, it does not 
represent an independent check of (18). Indeed, inserting (37) into (18), using the ansatz (33),
one finds

k∂kck = 4m̃4
k

[1 + m̃2
k]3

(39)

which is identical to Eq. (5.3) of [15] (with a = 1) obtained for the massive deformation of the 
Gaussian fixed point in the Ising model and it can be also derived from Eq. (5.19) of [15] in the 
limit of β2 → 0.

Therefore, it is a relevant question whether one can reproduce the numerical results obtained 
for the c-function (with the same accuracy) if the SG model is treated with scale-independent 
frequency (21), or beyond LPA, by the rescaling of the field (25). Also Ref. [15] treats only 
massive deformations of non-interacting UV fixed points, then on such trajectories only the mass 
coupling is running. Nevertheless the c-theorem should hold on all trajectories, even when more 
couplings are present. Our aim is to demonstrate that the derivation of [15] is valid even in these 
more general cases, but, due to truncation approach, the approximated FRG phase diagram does 
not fulfill the requirements of the c-theorem exactly and, therefore, only approximated results 
are possible.

6. c-function of the sine-Gordon model on the whole flow diagram

In this section we study the c-function of the SG model on the whole phase diagram, studying 
both the scale-independent wave-function renormalization and the treatment with the running 
frequency.
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Fig. 1. The figure shows the phase structure of the SG model obtained by the FRG equation using Litim’s regulator in 
the scale-independent frequency case. The two phases are separated by β2

c = 8π . The dashed line shows the line of IR 
fixed points of the broken phase.

6.1. Scale-independent frequency case

The definition for the SG model used in this work, i.e. (19), differs from (33) because the 
frequency parameter is assumed to be scale-independent in LPA. The running of β can only be 
achieved beyond LPA by incorporating a wave-function renormalization and using a rescaling of 
the field variable which gives zk = 1/β2

k .
Let us first discuss the results of LPA. Equations (22) and (23) have the same qualitative 

solution. In Fig. 1 we show the phase structure obtained by solving (23).
The RG trajectories are straight lines because in LPA the frequency parameter of (19) is 

scale-independent. Above (below) the critical frequency β2
c = 8π , the line of IR fixed points is at 

ũIR = 0 (ũIR �= 0). For β2 < 8π the IR value for the Fourier amplitude depends on the particular 
value of β2 thus, one finds different IR effective theories, i.e. the corresponding CFT depends on 
the frequency too.

The scaling for the c-function is the one expected from the c-theorem. It is a decreasing func-
tion of the scale k which is constant in the UV and IR limits, see Fig. 1. Due to the approximation 
of scale-independent frequency β , here, the IR value of the c-function depends on the particu-
lar initial condition for β2. Then when we start at the Gaussian fixed points line (c = 1), in the 
symmetric phase, the flow evolves towards an IR fixed point, but at this approximation level, we 
have different IR fixed points which are all at different ũ values and consequently the �c values 
differ from the exact one. The exact result �c  1 is obtained only in the β → 0 limit.

We notice that Eq. (22), where the mass cutoff was used, has very poor convergence properties 
and the flow, obtained from them, stops at some finite scale, thus the deep IR values of the 
c-function cannot be reached (dashed lines in Fig. 2).

The use of the Litim cutoff RG Eq. (23) improves the convergence of the RG flow but the IR 
results for the c-function are very far from the expected �c = 1, which can be recovered only 
in the vanishing frequency limit. Also the inclusion of higher harmonics in (25) (inset in Fig. 2) 
does not improve this result.

It should be noted that Eq. (18) is strictly valid only in the mass cutoff case, however in Fig. 2
we used Eq. (18) even in the optimized cutoff case. This inconsistence cannot be regarded as the 
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Fig. 2. Running of the c-function obtained in the scale-independent frequency case by solving (22) (dotted lines — mass 
cutoff) and (23) (dot-dashed lines — Litim cutoff) combined with (18) for the SG model is plotted for various values of 
the frequency β2. From top to bottom it is β2/π = 4, 2, 0.005. Due to the poor convergence properties of (22), where 
the mass cutoff was used, the RG flow stops at some finite momentum scale and the deep IR value of the c-function 
cannot be reached (dotted lines). The use of the Litim cutoff (23) (dot-dashed lines) can produce us the IR constant for 
the c-function. However, for very small value of β2 the low-frequency approximation is the best choice, i.e. one has to 
solve (41) (green line): results from different cutoff functions are indistinguishable. The solid lines represent the results 
obtained with power-law cutoff (b = 2), while the dashed lines are the results with the exponential cutoff. The inset 
shows the results for an enlarged theory space where higher harmonics are included in (25) (dot-dashed lines — Litim 
cutoff). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

cause for the unsatisfactory results obtained in the large β cases, indeed we expect very small 
dependence of the flow trajectories upon the cutoff choice.

This small dependence on the regulator is evident from the comparison of the mass and Litim 
regulator results of trajectories for the c-function in Fig. 2, which are very similar, at least in the 
region where no convergence problems are found. This similarity justifies the use of the mass 
cutoff result (18) with RG flow Eq. (23) obtained by the optimized (Litim) regulator.

We also computed the c-function flow for other cutoff functions, namely the power-law b = 2
(solid lines in Fig. 2) and the exponential one (dashed lines). Apart from the mass cutoff, all the 
others converge to the IR fixed point. The conclusion is that there is no pronounced dependence 
of the findings on the cutoff schemes and that the constant frequency case in not sufficient to 
recover the correct behavior for the c-function.

We observe that the lack of convergence observed in mass cutoff case is not present in the 
small frequency limit analyzed in [15]. Indeed, expanding flow equations (22) and (23) we get

k∂kũk ≈ −2ũk + ũkβ
2

4π
≈ −2ũk, (40)

which is valid for vanishing frequency and it is independent of the particular choice of the reg-
ulator function, i.e. it is the same for the mass and Litim cutoffs. Substituting (40) into (18),
using (21), the following equation is obtained for the c-function of the SG model:

k∂kck =
(
k∂kũkβ

2
)2

(
1 + ũ β2

)3
≈

(−2ũkβ
2
)2

(
1 + ũ β2

)3
≡ 4m̃4

k

[1 + m̃2]3
(41)
k k k
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Fig. 3. The flow diagram of the SG model in the scale-dependent frequency approximation. The phase space is divided 
into three regions. In region I we have a line of UV repulsive Gaussian fixed points (ū = 0, β2 < 8π ). Every trajectory 
starting in the vicinity of this line ends in an IR attractive fixed point (purple full circle, ū = 1, β2 = 0). The �c observed 
along the trajectories of this region should be equal to 1. Region II contains a line of IR attractive Gaussian fixed points 
(ū = 0, β2 > 8π ) which are the end points of trajectories starting at β2 ≈ ∞ below the thick green line, i.e. the separatrix. 
Region III contains those trajectories starting at β2 ≈ ∞ which end in the IR attractive fixed point (purple full circle). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where the identification m̃2
k = ũkβ

2 is used. The scale-dependence of the c-function in that case 
is identical to the massive deformation of the Gaussian fixed point and the corresponding RG 
trajectory is indicated by the green line in Fig. 3.

It is important to note that for finite frequencies β2 �= 0 the Taylor-expanded potential (34)
cannot be used to determine the c-function since it violates the periodicity of the model. In this 
case only Eq. (22) or (23) can produce reliable results.

In order to improve the LPA result for the c-function of the SG model without violating the 
periodicity of the model one has to incorporate a scale-dependent frequency, i.e. a wave-function 
renormalization (we refer to this approximation as z+LPA), as it is discussed in the next subsec-
tion.

6.2. The scale-dependent wave-function renormalization

The inclusion of the running wave-function renormalization changes the whole picture of 
the SG phase diagram, with all the ũ �= 0 fixed points collapsing into a single (βk = 0, ũ = 1) 
fixed point, as it is expected from the exact CFT solution. The phase diagram obtained at this 
approximation level is sketched in Fig. 3, where we see three different regions. The �c is strictly 
well defined only in region I , where we start from a Gaussian fixed point cUV = 1 and we end 
up on a massive IR fixed point cIR = 0. The massive IR fixed point related to the degeneracy of 
the blocked action is an important feature of the exact RG flow [26–29] and it was considered in 
SG type models [25,30,31].

In region II the trajectories end in the Gaussian fixed points c = 1 but they are coming from 
infinity where actually no fixed point is present. This is due to the fact that we are not considering 
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in our ansatz (24) any operator which can generate a fixed point at c > 1 and then the trajectories 
ending at c = 1 are forced to start at infinity. Thus, �c is not defined in this region.

Region III contains those trajectories which start at β = ∞ but end in the IR massive fixed 
point at c = 0. Even in this case the �c is not well defined.

In the following we are going to discuss in details the results of region I where all the trajecto-
ries should give �c = 1. We shall ignore region II where the �c is not defined, briefly discussing 
region III.

The presence of wave-function renormalization is necessary to obtain the qualitative correct 
flow diagram for the SG. Note that Eq. (18) has been derived only in the case of scale-independent 
kinetic term and the derivation of an equivalent expression in the case of running wave-function
renormalization appears far more demanding than the calculation sketched in this paper. How-
ever, it is still possible to get a sensible result using the mapping between the running wave-
function renormalization and the running frequency βk cases (as shown in Eqs. (32a) and (32b)), 
finally obtaining Eq. (44). In other words the equation (18) is valid only at LPA level, but it is still 
possible to apply it to the z+LPA scheme, since, thanks to the mapping described in Eqs. (32a)
and (32b) the z+LPA ansatz can be mapped into an LPA one.

We will then use directly the ansatz,

Ṽk = ũk cos(βkφ) (42)

with no wave-function renormalization present in the kinetic term. This ansatz is equivalent 
to ansatz (24) if we rescale the field and use the relations (32a) and (32b), with the running 
frequency playing the role of a wave-function renormalization.

Ansatz (42) is not suited to study the SG model when full periodicity has to be preserved, 
indeed when we substitute it into equation (27), symmetry breaking terms appear. The same 
happens when we substitute it into Eq. (18). However in the latter case symmetry breaking terms 
are not dangerous, since we have to evaluate the expression at the potential minimum where all 
the symmetry breaking terms vanish.

Proceeding in this way we obtain

k∂kck = (β2
k k∂kũk + 2ũkβkk∂kβk)

2

(1 + ũkβ
2
k )3

(43)

where no inconsistency is present.
We still cannot use expression (43), since we cannot write a flow for βk due to the non-periodic 

terms. To avoid these difficulties we rewrite expression (43) using the inverse transformation of 
(32a) and (32b),

k∂kck = (k∂kũk)
2

(1 + ũk)3
. (44)

The last expression is fully coherent and represents the flow of the c-function in presence of a 
running wave-function renormalization into the SG model; it is worth noting that the use of trans-
formations (32a) and (32b) gave us the possibility to derive the expression (43) from Eq. (18), 
which was derived in [15] in the case of no-wave-function renormalization.

In the limit β2
k=� → 0, the IR result of the c-function (see the inset of Fig. 4) tends to zero. 

This implies that in the limit β2
k=� → 0 the difference �c → 1. The numerical result found in 

this case reaches the accuracy 1 ≥ �c ≥ 0.99 of the scale-independent frequency solution (33)
but now the periodicity of the SG model is fully preserved (which was not the case in [15]). It 
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Fig. 4. Running of the c-function obtained in the case of scale-dependent wave-function renormalization for the single-
frequency SG model, as expected the case of small frequency (βk=� < 0.1) was already very well described by the 
scale-independent frequency case (Fig. 1). The inset shows the results obtained for cIR as a function of βk=� , these 
results show lower accuracy in the large frequency limit, while they become practically exact in the limit βk=� → 0, 
accordingly with [15]. (For interpretation of the references to color in this figure, the reader is referred to the web version 
of this article.)

should be also noted that the accurate results of Fig. 4 could not be obtained in the mass cutoff 
framework (3a) with b = 1, which does not allow the flow to converge, but our findings were 
obtained with the smoother b = 2 cutoff.

Fig. 4 reports the running of the c-function for various values of the initial condition β�. The 
final �c value depends on the trajectory even if it should not be at exact level. This discrepancy 
shows that the flow obtained by approximated FRG procedure cannot satisfy the exact CFT 
requirements for the c-function.

The discrepancy between the exact �c = 1 value and the actual results obtained by the FRG 
approach can be used to quantify the error committed by the truncation ansatz in the description 
of the exact RG trajectories.

We observe that the results of Fig. 4 (main and inset) are obtained by using power-law regu-
lator with b = 2. The same computation appears to be considerably more difficult using general 
cutoff functions, including the exponential one.

Let us note that for vanishing frequency the RG flow equations become regulator-independent 
and that the c-function value tends to the exact result �c = 1. This justifies the accuracy obtained 
in [15] even though the mass cutoff was used and the periodicity violated.

Finally we go on showing the results in region III. As discussed in the description of Fig. 3, 
trajectories in region III of the SG flow diagram should not have a well defined value for the 
c-function, due to the fact that those trajectories start at βk=� = ∞ where no real fixed point is 
present.

However the numerical results obtained for those trajectories in Fig. 5 are not so far from 
�c = 1, due to the fact that they get most of the contribution in the region where they approach 
the “master trajectory” separatrix of region I , i.e. the blue thick line in Fig. 3, which we know 
to have a value �c ≈ 1, while the portion of the trajectories close to region II get almost zero 
contribute. The results of region III are also in agreement with the findings of region II (not 
shown) where �c ≈ 0 for all the initial conditions.
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Fig. 5. The flow of the c-function in region III of the SG flow diagram Fig. 3, the result is approximately �c = 1 due to 
the fact that in region III most of the contribution to the c-function comes from the part of the trajectories very close to 
“master trajectory” separatrix of region I (the blue thick line in Fig. 3). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

7. Conclusions

In this paper we provided an estimation of the c-function over the RG trajectories of the 
sine-Gordon (SG) model in the whole parameter space. Using this result we showed that the 
numerical functional RG study of the SG model with scale-dependent frequency recovers for 
β2 < 8π (region I of Fig. 3) the exact result �c = 1 with a good quantitative agreement while 
preserving the periodicity, which is the peculiar symmetry of the model. We also pointed out the 
dependence of this c-function calculation on the approximation level considered. For β = 0 one 
retrieves directly �c = 1, also in the scale-independent frequency case, while for β �= 0, again 
using scale-independent frequency, we recover this result in the β2 → 0 limit, while increasing 
β2 up to 8π in region I as a result of the used approximation the agreement becomes worst, 
remaining anyway reasonably good, as shown in Fig. 1.

Retrieving �c = 1 is the SG counterpart of the computation of �c for the sinh-Gordon model 
[8,9]. This result can be understood by noticing that the analytical continuation β → iβ [32] may 
be expected not to alter the �c defined in the Zamolodchikov theorem, and that functional RG 
even in its crudest approximation does not spoil such correspondence for �c, provided that the 
periodicity of the SG field is correctly taken into account.

We developed a fully coherent expression for the c-function in the case of running frequency, 
which gives better results in the whole region I (defined in Fig. 3). These results are compatible 
with the exact scenario up to an accuracy of 80% in the whole region I . Such accuracy grows to 
99% in the small beta region in agreement with [15], as we discussed in Fig. 4.

We also noticed that for β2 > 0 the use of the mass cutoff, as necessary to be consistent with 
expression (18), is not possible due to bad convergence properties, and the use of different b
values or of different cutoff types is needed.

It should be noted that while the numerical results are quite accurate the exact property that 
all trajectories of region I should have the same value for �c is neither preserved by truncations 
schemes (24) (results in Fig. 1) nor by (19) (results in Fig. 4). Actually the β2 → 0 limit always 
gives the correct result even when treated with the most rough truncation, this result being in-
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dependent of the cutoff function. At variance one needs to go to the running frequency case to 
obtain reliable results for β2 >> 0.

Even when full periodicity in the field is maintained, the z+LPA truncation scheme is not suf-
ficient to recover exact results for the c-function. Indeed the quantity computed using expression 
(18) satisfies two requirements of Zamolodchikov’s c-theorem,

1. ∂t ct ≥ 0 along the flow lines,
2. ∂t ct = 0 at the fixed points,

but it fails to reproduce the exact central charge of SG theory.
The final result of our calculation also depends on the chosen cutoff function and, as already 

mentioned, it was not possible to use the same cutoff scheme for both the couplings flow equa-
tions and the c-function flow (18). We do not expect these issues to be responsible for the error 
in the fixed point value of the c-function. Modifications of the cutoff scheme in LPA calcula-
tions have small influence on the results (around 5%) and we may expect this property to be 
maintained at z+LPA level, where calculations with different cutoff functions were not possi-
ble.

The main source of deviation from the exact result �c = 1 is then probably due to z+LPA
truncation in itself. We are not able to identify whether this deviation is only due to the approx-
imation in the c-function flow or rather to the description of the fixed point given in z+LPA, 
which does not reproduce the exact central charge.

Certainly the c-function flow at z+LPA level not merely violates the exact fixed point value 
of the c-function, but it is also not able to produce trajectory-independent results, as shown in 
Fig. 4. This scenario is not consistent with a unique central charge value at the SG fixed point 
and it is then impossible to dig out any information about this quantity from this approach. In 
this perspective it would be interesting to have an independent method to calculate the fixed point 
central charge at a given truncation level.

Obviously the reproduction of the Zamolodchikov’s c-theorem should be better satisfied in-
creasing the truncation level considered. However it has been shown that, at LPA level, the 
addition of further harmonics in the potential does not improve the results presented, while the 
introduction of running frequency is crucial to achieve consistency of the phase diagram.

This situation is peculiar of the LPA truncation level. Beyond z+LPA we expect the most 
relevant corrections from higher harmonics in the potential and only small variations are expected 
from the introduction of higher fields derivatives in (24).

Finally we remark that the trajectories of the other two regions do not have a definite �c

value, however while region II gives results �c ≈ 0, region III has the �c values close to the 
ones obtained in region I in Fig. 5, due to the fact that all the trajectories in this region merge 
with the “master trajectory” separatrix of region I in the k → 0 limit.

We conclude by observing that in our opinion a relevant future extension of this work could 
be the study of the c-function for the Ising model and for minimal conformal models in gen-
eral. Our work also points out to the possible investigation with RG techniques of the analytical 
continuation relating the sine- and the sinh-Gordon models. From this respect we think it could 
be worthwhile to systematically study models interpolating between these two celebrated cases, 
both to highlight the roaming phenomenon for integrable interpolations and to put forward criti-
cal properties of non-integrable interpolations.
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