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Abstract. We investigate the structure and the topology of the set of geodesics (critical
points for the energy functional) between two points on a contact Carnot group G (or, more

generally, corank-one Carnot groups). Denoting by (x, z) ∈ R2n × R exponential coordinates
on G, we find constants C1, C2 > 0 and R1, R2 such that the number ν̂(p) of geodesics joining
the origin with a generic point p = (x, z) satisfies:

(1) C1

|z|

‖x‖2
+ R1 ≤ ν̂(p) ≤ C2

|z|

‖x‖2
+ R2.

We give conditions for p to be joined by a unique geodesic and we specialize our computations
to standard Heisenberg groups, where C1 = C2 = 8

π
.

The set of geodesics joining the origin with p 6= p0, parametrized with their initial covector,
is a topological space Γ(p), that naturally splits as the disjoint union

Γ(p) = Γ0(p) ∪ Γ∞(p),

where Γ0(p) is a finite set of isolated geodesics, while Γ∞(p) contains continuous families of
non-isolated geodesics (critical manifolds for the energy). We prove an estimate similar to (1)
for the “topology” (i.e. the total Betti number) of Γ(p), with no restriction on p.

When G is the Heisenberg group, families appear if and only if p is a vertical nonzero point
and each family is generated by the action of isometries on a given geodesic. Surprisingly, in
more general cases, families of non-isometrically equivalent geodesics do appear.

If the Carnot group G is the nilpotent approximation of a contact sub-Riemannian manifold

M at a point p0, we prove that the number ν(p) of geodesics in M joining p0 with p can be
estimated from below with ν̂(p). The number ν(p) estimates indeed geodesics whose image is
contained in a coordinate chart around p0 (we call these “local” geodesics).

As a corollary we prove the existence of a sequence {pn}n∈N in M such that:

lim
n→∞

pn = p0 and lim
n→∞

ν(pn) = ∞,

i.e. the number of “local” geodesics between two points can be arbitrarily large, in sharp
contrast with the Riemannian case.

1. Introduction

If the topology of a Riemannian manifold M is “complicated enough” (for example if M is
closed) a well known theorem of J-P. Serre [15] states that there are infinitely many geodesics1

between any two points in M . These geodesics have the property of being “global”, in the sense
that their existence is guaranteed by the global topology of the manifold.

At the opposite extreme, if the manifold M is a convex neighbourhood of a point in a Rie-
mannian manifold, the structure of geodesics resembles the Euclidean one, and between any two
points there is only one geodesic.

In the contact sub-Riemannian case the global picture is the same as of the Riemannian case.
The study of geodesics that “loop” in the topology of the manifold was recently done by the first

1In the spirit of Morse theory, we define Riemannian geodesics as locally length minimizing curves parametrized
by constant speed or, equivalently, critical points for the energy functional.
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z

p = (x1, x2, z)

p0

Figure 1. Geodesics in the Heisenberg group.

author and F. Boarotto in [6]: every two points on a compact sub-Riemannian contact manifold
are joined by infinitely many geodesics (the result uses a weak homotopy equivalence between
the space of all curves and the space of horizontal ones). On the opposite, our main interest will
be in the set of “local” geodesics, i.e. geodesics between two points whose image is contained in
a coordinate chart: here the sub-Riemannian picture is dramatically different. To mention one
example, the only geodesically convex neighborhood of the origin in the Heisenberg group (see
below) is the entire group, [13].

In this framework we consider a constant-rank distribution D ⊂ TM with the property that
iterated brackets of vector fields on D generate the tangent space (Hörmander condition). This
condition guarantees that any two points in M can be joined by a Lipschitz continuous curve
whose velocity is a.e. in D (Chow-Rashevskii theorem).

If a smooth scalar product is defined on D, it makes sense to consider, for any horizontal
curve γ, the norm of its velocity and the energy of this curve is defined by:

J(γ) =
1

2

∫

I

‖γ̇(t)‖2dt.

Sub-Riemannian geodesics between p0 and p are critical points of J constrained to have endpoints
p0 and p. From now on the word geodesic will always mean sub-Riemannian geodesic.

Example 1 (Heisenberg). The Heisenberg group H3 is the smooth manifold R3 with coordinates
(x1, x2, z) and the distribution:

D = span

{
∂

∂x1
−

x2

2

∂

∂z
,

∂

∂x2
+

x1

2

∂

∂z

}

.

The sub-Riemannian structure is given by declaring the above vector fields an orthonormal basis.
Let p0 = (0, 0, 0) be the origin. Geodesics are curves whose projection on the (x1, x2)-plane

is an arc of a circle (possibly with infinite radius, i.e. a segment on a straight line); the signed
area swept out on the circle equals the z-coordinate of the final point p.

If p belongs to the (x1, x2)-plane there is only one geodesic joining it with the origin (this
is precisely the segment trough p0 and p); if p has both nonzero components in the (x1, x2)
plane and the z axis, the number of geodesics is finite; finally, if p belongs to the z-axis there
are infinitely many geodesics. In the latter case, given one geodesic, we obtain infinitely many
others (a continuous family) by composing it with a rotation around the z-axis (see Fig. 1).
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In the general sub-Riemannian case a Sard’s like argument for the sub-Riemannian exponential
map guarantees that for the generic choice of the two points geodesics are isolated, but finiteness
is more delicate. The following fact is proved in [4, Prop. 7], but to the authors’ knowledge the
general question seems to be an open problem.

Proposition 1. Let M be a step-two Carnot group such that rk(D) > 1
2 dim(M). Then for the

generic choice of p0 and p the number of geodesics between them is finite.

The goal of this paper is to make the above picture quantitative, at least in the case of contact2

sub-Riemannian manifolds, addressing the following question:

“How many geodesics join two points on a contact sub-Riemannian manifold?”

A contact sub-Riemannian manifold is the simplest example of nonholonomic geometry. From
the point of view of differential geometry it consists of a (2n+1)-dimensional, connected manifold
M together with a distribution D ⊂ TM of hyperplanes locally defined as the kernel of a
one-form α (the contact form) such that the restriction dα|D is non-degenerate. The sub-
Riemannian structure is given by assigning a smooth metric on the hyperplane distribution.
The non-degeneracy condition implies Hörmander’s condition.

Example 2 (Heisenberg, continuation). The Heisenberg group is a contact manifold with contact
form α = −dz + 1

2 (x1dx2 − x2dx1). As we will show later:

(2) #{geodesics between the origin and p = (x1, x2, z)} =
8

π

|z|

‖x‖2
+O(1).

In particular when p is “vertical”, p = (0, 0, z) the number of geodesics is infinite; otherwise it
is finite and equals the r.h.s. (the O(1) notation means “up to a bounded error”).

For any point p0 ∈ M one can consider the so-called nilpotent approximation of the sub-
Riemannian structure at p0. The result of this construction (that depends only on the germ of
the structure at p0) is a sub-Riemannian manifold Gp0

, and is an example of a Carnot group.
Thm. 7 states that the geodesic count on the Carnot group Gp0

controls the geodesic count on
the original manifold M . For this reason, we start our analysis with the study of contact Carnot
groups, namely Carnot groups arising as the nilpotent approximation of contact manifolds.

1.1. Contact Carnot groups. A contact Carnot group is a connected, simply connected Lie
group G, with dimG = 2n+ 1, such that its Lie algebra g of left-invariant vector fields admits
a nilpotent stratification of step 2, namely:

g = g1 ⊕ g2, g1, g2 6= {0},

where dim g2 = 1 and

[g1, g1] = g2 and [g1, g2] = [g2, g2] = {0}.

A scalar product is defined on g1, by declaring a set f1, . . . , f2n ∈ g1 to be a global orthonormal
frame. The group exponential map:

expG : g → G,

associates with v ∈ g the element γ(1), where γ : [0, 1] → G is the unique integral line of the
vector field defined by v such that γ(0) = 0. Since G is simply connected and g is nilpotent,

2We stress here that all our results remain true with almost no modification for more general corank-one
sub-Riemannian structure. For simplicity we restrict our exposition to the contact case.
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expG is a smooth diffeomorphism. The choice of an orthonormal frame f1, . . . , f2n ∈ g1 and
f0 ∈ g2 defines exponential coordinates (x, z) ∈ R2n ×R on G such that p = (x, z) if and only if

p = expG

(
2n∑

i=1

xifi + zf0

)

.

For any such a choice there exists a skew-symmetric matrix A ∈ so(2n) such that

[fi, fj] = Aijf0.

For contact Carnot groups A is non-degenerate. We denote by:

α1 < · · · < αk ∈ R+

the distinct singular values of A and nj their multiplicities. Let xj ∈ R2nj be the projections of
x on the invariant subspaces associated with αj . Accordingly we write p = (x1, . . . , xk, z).

Example 3. A classical example is the (2n + 1)-dimensional Heisenberg group H2n+1. This is
the case with k = 1, i.e. a unique singular value α1 = 1 with multiplicity n. In this case, for
i = 1, . . . , n

fi :=
∂

∂xi
−

1

2
xi+n

∂

∂z
, fn+i :=

∂

∂xn+i
+

1

2
xi

∂

∂z
, f0 :=

∂

∂z
,

and A is the standard symplectic matrix J =
(

0 1n

−1n 0

)
.

The geodesic count for G can be made quite explicit in term of the exponential coordinates
of p and the singular values of the matrix A. Define for this purpose the “counting” function:

ν̂(p) = #{geodesics in a Carnot group between the origin and p},

where, by convention, the “hat” stresses the fact that we refer to a Carnot group. We have the
following estimates for ν̂(p) (see Thms. 23–24). None of these bounds is trivial: the upper bound
because the exponential map is not proper; the lower bound is in fact even more surprising, as
the typical finiteness techniques from semialgebraic (semianalytic) geometry only produce upper
bounds (we use indeed a kind of “ergodicity” property argument).

Theorem 2 (The “infinitesimal” bound). Given a contact Carnot group G, there exist constants
C1, C2 > 0 and R1, R2 such that if p = (x, z) ∈ G is a point with all components xj different
from zero, then:

(3) C1
|z|

‖x‖2
+R1 ≤ ν̂(p) ≤ C2

|z|

‖x‖2
+R2.

In fact C1, C2 (resp. R1, R2) are homogeneous of degree −1 (resp. 0) in the singular values
α1 < · · · < αk of A and are given by:

(4) C1 =
8

π

α1

α2
k

sin

(
δπ

2

)2

with δ =





k∑

j=1

α1

αj

⌊
αj

α1

⌋




−1

and C2 =
8k

π

αk

α2
1

.

Remark 1. For any other choice of f ′
1, . . . , f

′
2n ∈ g1 (orthonormal) and a complement f ′

0 ∈ g2
there exists a matrix M ∈ O(2n) and a constant c such that:

fi =

2n∑

j=1

Mijf
′
j, f0 = cf ′

0.
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Indeed this new choice defines a new skew-symmetric matrix A′ and also new exponential coor-
dinates (x′, z′). One can easily check that:

A′ = cM∗AM, x′ = M∗x, z′ = cz.

Since C1, C2 are homogeneous functions of degree −1 in the singular values of A, the upper and
lower bounds (3) are invariant w.r.t. different choices of exponential coordinates.

Example 4 (Heisenberg, continuation). In the Heisenberg group H2n+1 there is only one singular
value α = 1, with multiplicity n. By using (3) and (4) one obtains:

C1 = C2 =
8

π
,

recovering (2) (that holds true for any Heisenberg group, not just the three-dimensional one).

An interesting related question is to determine the set of points p such that ν̂(p) = 1 (as it
happens for example if p = (x, 0), i.e. p is horizontal). In the Heisenberg group:

ν̂(p) = 1 ⇐⇒
|z|

‖x‖2
≤

λ1

4
≈ 1.12335,

where λ1 is the first positive solution of tanλ = λ; in the general case we have the following.

Proposition 3. Let G be a contact Carnot group and p = (x, z) such that:

|z| <
π

8

(
2α2

1

αk
− αk

)

‖x‖2.

Then there is only one geodesic from p0 to p.

1.2. Critical manifolds. It is interesting to discuss the structure of all geodesics ending at p,
including the case when the point p belongs to a hyperplane coordinate space (i.e. xj = 0 for
some j), which was excluded from Thm. 2. We still exclude the case p = p0, as for the case of
Carnot groups there is only one geodesic: the trivial one γ(t) ≡ p0.

Sub-Riemannian geodesics starting from p0 are parametrized by their initial covector η ∈
T ∗
p0
M . The subset Γ(p) of geodesics ending at p has the subset topology from T ∗

p0
M . We have

the following characterization (see Thm. 22).

Theorem 4 (Topology of critical manifolds). Let G be a contact Carnot group. The set Γ(p) of
geodesics ending at p 6= p0 can be decomposed into the disjoint union of two closed submanifolds:

Γ(p) = Γ0(p) ∪ Γ∞(p).

The set Γ0(p) is finite and the set Γ∞(p) is homeomorphic to a union of spheres. Moreover the
energy function J is constant on each component of Γ(p).

Remark 2. The structure of the sets of geodesics whose final point is vertical, in the general
step-two Carnot group of type (k, n) is studied in [4]. Geodesics to p are critical points for the
energy functional J : Ωp → R (here Ωp is the space of all admissible curves to p and J is defined
as above); for the generic vertical p these geodesics appear in families, which are tori of finite
dimension depending on the “multiplicity” of the Lagrange multiplier (in particular they are
never isolated and J is a Morse-Bott function). A Morse theoretical study proves that:

#{critical manifolds of J with energy less then c} ≤ O(cn−k).

On the other hand the “order of growth” of the topology of Ωc
p = {γ ∈ Ωp | J(γ) ≤ c} (the

sublevel set of the energy) is given by (here b(X) denotes the total Betti number of X):

b(Ωc
p) ≤ O(cn−k−1),
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y = λ
8

λ

y

2π 4π4π 6π 8π

Figure 2. The graph of g.

an inequality which is stronger than the classical Morse-Bott prediction b(Ωc
p) ≤ O(cn−k).

Since geodesics in Γ0(p) are always finite, the preimage of a regular value of Ê is finite.
Geodesics in Γ∞(p) appear in families. Since geodesics are critical points for the energy func-
tional, we call each connected component of Γ∞(p) a critical family (or critical manifold). The
set Γ∞(p) has the following description. Given α1, . . . , αk (the singular values of A) define:

g(λ) =
1

8

λ− sinλ
(
sin λ

2

)2 ,

and the sets:

Λj =
2π

αj
Z \ {0}, Λ =

k⋃

j=1

Λj and L(λ) = {j |λ ∈ Λj}.

Thus Λj consists of the poles of λ 7→ g(λαj) and the set of indices L(λ) tells how many of these
poles occur at λ (see Fig. 2). With these conventions we have:

Γ∞(p) ≃
⋃

λ∈Λp

S2N(λ)−1, N(λ) =
∑

j∈L(λ)

nj ,

where nj is the multiplicity of the singular value αj and

Λp =






λ ∈ Λ

∣
∣
∣
∣



z −
∑

xj 6=0

αjg(λαj)‖xj‖
2



λ > 0






.

For the generic A all singular values are distinct (k = n) and non-commensurable, thus for
every λ ∈ Λp we have #L(λ) = 1, N(λ) = 1 and all critical manifolds are homeomorphic to
circles. If some of the singular values have multiplicities greater than one, but still are all pairwise
non-commensurable, #L(λ) = 1 but we can have critical manifolds of various dimensions.

As we will see, Γ∞(p) is not empty only if some of the coordinates xj vanish. If Γ∞(p) is
not empty, each critical manifold is homeomorphic to a sphere; here the estimate (3) can be
extended to all points p 6= p0 if one adopts a “topological” viewpoint. Denoting by:

β̂(p) = {sum of the Betti numbers of the set of geodesics from the origin to p},
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#Γ0 #Γ∞ ν̂

all xj 6= 0 |z|
‖x‖2 0 |z|

‖x‖2

some xj = 0 |z|
‖x‖2 ∞ ∞

x = 0 0 ∞ ∞

b(Γ0) b(Γ∞) β̂

all xj 6= 0 |z|
‖x‖2 0 |z|

‖x‖2

some xj = 0 |z|
‖x‖2

|z|
‖x‖2

|z|
‖x‖2

x = 0 0 ∞ ∞

Figure 3. The order of the contributions to ν̂ and β̂ coming respectively from
Γ0 and Γ∞ (it is assumed p = (x, z) 6= (0, 0)). The “topology” counting function

β̂ is more stable: it behaves as a rational function, whereas ν̂ has a “delta
function” when some xj is zero. Notice that isolated geodesics are always finite.

we have the following generalization of Thm. 2 which bounds the number of spheres in Γ∞(p)
(see Thms. 23–28).

Theorem 5 (The “infinitesimal” bound for the topology). Let G be a contact Carnot group.
There exist constants C′

1, C
′
2 > 0 and R′

1, R
′
2 such that for every p = (x, z) ∈ G, with p 6= (0, 0):

C′
1

|z|

‖x‖2
+R′

1 ≤ β̂(p) ≤ C′
2

|z|

‖x‖2
+R′

2.

As above, C′
1, C

′
2 (resp. R′

1, R
′
2) are homogeneous of degree −1 (resp. 0) in the singular values

α1 < · · · < αk of A and are given by:

C′
1 =

8

π

α1

α2
k

sin

(
δ′π

2

)2

with δ′ =




∑

xj 6=0

α1

αj

⌊
αj

α1

⌋




−1

and C′
2 =

8k

π

αk

α2
1

;

and in particular again these upper bounds are invariant w.r.t. change of exponential coordinates.

Fig. 3 compares the contribution to ν̂ and β̂ coming respectively from Γ0 and Γ∞. In some

sense, β̂(p) counts the geodesics “up to families”. Thus if x 6= 0 then geodesics might appear in
families, but still the topology of these families is controlled, in particular the number of disjoint
families is bounded.

Remark 3. On a contact Carnot group there is a well defined family of “non-homogeneous
dilations” δε(x, z) = (εx, ε2z), where ε > 0 (see [2, 5]). These dilations have the property that
if γ is a geodesic between the origin and p, then δεγ is a geodesic between the origin and δε(p)
(the energies are though different, see Prop. 43 below). In particular both the counting function
and the topology function are constants along the trajectories of δε:

ν̂(δε(p)) = ν̂(p) and β̂(δε(p)) = β̂(p) for all ε > 0.

1.3. Families of geodesics. A simple way to produce families of geodesics (critical manifolds)
is to act on a geodesic γ with sub-Riemannian isometries fixing the endpoints of γ.

Example 5 (Heisenberg, continuation). Let us consider the Heisenberg group H2n+1. Thus k = 1
and α = 1 (A is the canonical symplectic matrix). Let p = (0, z) be a vertical point and γ a
geodesic from the origin to p. The group of isometries fixing the origin is isomorphic to:

ISO(H2n+1) ≃ U(n)⋊ Z2.
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ℓ(λ) 1 2 2 3

S
ℓ(λ)−1
≥0

b

Λ3

Λ2

Λ1

Λ4

4

λ 1 2 3 4 12

Figure 4. Equivalence classes of isometrically non-equivalent families of
geodesics for k = 4 commensurable singular values αi = 2π/i for i = 1, 2, 3, 4.
Thus Λi = iZ \ {0}.

Each isometry g in the connected component U(n) of the identity fixes p = (0, z), thus gγ is
still a geodesic from the origin to p; such an isometry stabilizes the whole γ if it fixes the initial
covector. Then, the stabiliser subgroup of the geodesic γ is ISOγ(H2n+1) ≃ U(n − 1). In this
way we produce a family:

Xγ = U(n)/U(n− 1) ≃ S2n−1,

consisting of distinct geodesics isometrically equivalent to γ. In other words all geodesics in Xγ

are obtained from γ by composition with an isometry (and they all have the same energy). In
this case, it turns out that Xγ is a connected component of Γ∞(p), i.e. a critical manifold.

Surprisingly this is not the case for more general Carnot groups. In fact, given a critical
manifold X ⊂ Γ∞(p) (one of the above spheres), this need not be obtained by acting with the
stabilizer of p on a fixed geodesic. In other words, geodesics forming X , although all having the
same energy and endpoints, might be isometrically non-equivalent. They are “deformations” of
each other, but not via isometries.

We say that two geodesics with the same endpoints are isometrically equivalent if they are
obtained one from the other by composition of an isometry of G. We denote by Γ̄∞(p) the set
of equivalence classes of isometrically equivalent geodesics ending at p. For example, a family of
isometrically equivalent geodesics corresponds to just a point in the quotient Γ̄∞(p).

The topology of this set (a quotient of Γ∞(p)) is related with the commensurability of the
singular values of A (see Thm. 38).

Theorem 6 (Isometrically equivalent geodesics). Let G be a contact Carnot group. The set
Γ̄∞(p) of equivalence classes of isometrically equivalent geodesics ending at p 6= p0 is homeomor-
phic to:

Γ̄∞(p) ≃
⋃

λ∈Λp

S
ℓ(λ)−1
≥0 , ℓ(λ) := #L(λ),

where Sm
≥0 = Sm ∩Rm+1

≥0 is the intersection of the m-sphere with the positive quadrant in Rm+1.

See Fig. 4. When A is generic, for every λ ∈ Λp ⊆ Λ we have ℓ(λ) = 1 and Γ̄∞ is a discrete set
of points, one for each λ ∈ Λp (all the geodesics in a critical manifold X ≃ S1 are isometrically
equivalent to a given one). Nevertheless, non-trivial manifolds of isometrically non-equivalent
geodesics appear when there are resonances.

1.4. A limiting procedure. We discuss here the main ingredient of our study for contact sub-
Riemannian manifolds: the nilpotent approximation of the structure at a point p0. Because of
the local nature of the problem, we can assume that M = R2n+1 and the point p0 is the origin.
Moreover, the distribution D ⊂ TR2n+1 is given by:

D = span{f1, . . . , f2n},
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where f1, . . . , f2n are bounded vector fields on R2n+1. The sub-Riemannian structure on D is
obtained by declaring these vector fields to be orthonormal at each point.

We assume that the coordinates (x, z) ∈ R2n×R are adapted to the distribution at the origin
namely, Dp0

= span{∂x1
, . . . , ∂x2n

} (for example we take canonical Darboux’s coordinates). In
the language of sub-Riemannian geometry these coordinates, at least in the contact (or step 2)
case, are also called privileged. Using these coordinates we define “dilations” δε : M → M by:

δε(x, z) := (εx, ε2z), ε > 0,

and the nilpotent approximation at p0, another sub-Riemannian structure on the same base
manifold M , given by declaring the following fields:

f̂i := lim
ε→0

εδ 1
ε
∗fi, ∀i = 1, . . . , 2n,

a new orthonormal frame. Thus, the nilpotent approximation at a point p0 is the “principal part”
of the original sub-Riemannian structure in a neighbourhood of p0 w.r.t. the non-homogeneous
dilations δε. Moreover, it turns out that the nilpotent approximation at any point p0 of a contact
sub-Riemannian manifold is a contact Carnot group.

We introduce the following notation:

ν(p) = #{geodesics joining p0 and p}.

Thus ν(p) will denote the number of local geodesics between p0 and p, i.e. geodesics in M that
are contained in a coordinate chart of p0. Similarly ν̂ denoted the number of geodesics between
the origin and p for the nilpotent approximation. The next theorem relates the geodesic count
on the original structure and on the nilpotent Carnot group structure (see Thm. 44).

Theorem 7 (Counting in the limit). Let M be a contact sub-Riemannian manifold. For the
generic p ∈ M sufficiently close to p0:

ν̂(p) ≤ lim inf
ε→0

ν(δε(p)).

where δε is the non-homogeneous dilation defined in some set of adapted coordinates in a neigh-
bourhood of p0.

Combining Thm. 7 and Thm. 2 we obtain an estimate for the order of growth of the number
of “local” geodesics between two close points on a contact manifold (see Thm. 45).

Theorem 8 (The local bound). Let M be a contact manifold and q ∈ M . Denote by (x, z)
Darboux’s coordinates on a neighbourhood U of q. There exist constants C(q), R(q) such that,
for the generic p = (x, z) ∈ U :

lim inf
ε→0

ν(δε(p)) ≥ C(q)
|z|

‖x‖2
+R(q).

A completely new phenomenon in the sub-Riemannian case is the existence of a sequence of
points qn → q with arbitrary large number of local geodesics between the two (see Thm. 46).
Notice that, in general, we cannot predict the existence of a point p with infinitely many local
geodesics between q and p.

Theorem 9 (Abundance of “local” geodesics). Let M be a contact sub-Riemannian manifold
and q ∈ M . Then there exists a sequence {qn}n∈N in M such that:

lim
n→∞

qn = q and lim
n→∞

ν(qn) = ∞.
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2. Preliminaries

We recall some basic facts in sub-Riemannian geometry. We refer to [2, 14, 10, 12] for further
details. Let M be a smooth, connected manifold of dimension n ≥ 3. A sub-Riemannian struc-
ture on M is a pair (D, 〈·|·〉) where D is a smooth vector distribution of constant rank k ≤ n
satisfying the Hörmander condition (i.e. LiexD = TxM , ∀x ∈ M) and 〈·|·〉 is a smooth Rie-
mannian metric on D. A Lipschitz continuous curve γ : [0, 1] → M is admissible (or horizontal)
if γ̇(t) ∈ Dγ(t) for a.e. t ∈ [0, 1]. Given a horizontal curve γ : [0, 1] → M , the energy of γ is

J(γ) =

∫

I

‖γ̇(t)‖2dt,

where ‖ · ‖ denotes the norm induced by 〈·|·〉. The pair (D, 〈·|·〉) can be given, at least locally,
by assigning a set of k smooth vector fields that span D, orthonormal for 〈·|·〉. In this case, the
set {f1, . . . , fk} is called a local orthonormal frame for the sub-Riemannian structure.

Definition 10. A sub-Riemannian manifold is contact if locally there exists a one form α such
that D = kerα, and dα|D is non degenerate (the rank of D must be even). Admissible curves
are called Legendrian.

Definition 11. Let M be a contact manifold. A sub-Riemannian geodesic is a non-constant
Legendrian curve γ : [0, 1] → M that is locally energy minimizer. More precisely, for any
t ∈ [0, 1] there exists a sufficiently small interval I ⊆ [0, 1], containing t, such that the restriction
γ|I minimizes the energy between its endpoints.

Any geodesic starting at p0 can be lifted to a Lipschitz curve η : [0, 1] → T ∗M called sub-
Riemannian extremal, as we discuss now. In general, sub-Riemannian extremals can be normal
or abnormal, but abnormal extremals do not appear in contact or Riemannian structures. For
this reason we only discuss normal extremals.

Definition 12. The Hamiltonian function H ∈ C∞(T ∗M) is

H(η) =
1

2

k∑

i=1

〈η, fi〉
2, ∀η ∈ T ∗M,

where f1, . . . , fk is a local orthonormal frame and 〈η, ·〉 denotes the action of the covector η on
vectors.

Let σ be the canonical symplectic form on T ∗M . With the symbol ~a we denote the Hamil-
tonian vector field on T ∗M associated with a function a ∈ C∞(T ∗M). Indeed ~a is defined by

the formula da = σ(·,~a). Consider the Hamiltonian vector field ~H ∈ Vec(T ∗M).

Definition 13. Non-constant trajectories of the Hamiltonian system η̇ = ~H(η) are normal
sub-Riemannian extremals.

In any structure where abnormal extremals do not exist (such as contact or Riemannian
structures), the next theorem completely characterizes all geodesics.

Theorem 14. Normal sub-Riemannian geodesics are exactly projections on M of normal sub-
Riemannian extremals. In particular, all normal geodesics are smooth.
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Moreover, any normal sub-Riemannian geodesic can be specified by its initial covector.

Definition 15. The sub-Riemannian exponential map (with origin p0) E : T ∗
p0
M → M is

E(η0) := π(e
~H(η0)), ∀η0 ∈ T ∗

p0
M.

where et
~H(η0) denotes the integral curve of ~H starting from η0.

Thus all geodesics from p0 are the image through E of the ray t 7→ tη. We denote by
Γ(p) = E−1(p) ⊂ T ∗

p0
M the set of geodesics from p0 to p 6= p0, with the subset topology.

2.1. Fibers of the exponential map and geodesics. Notice that the correspondence:

η 7→ γη, γη(t) = π(et
~H(η))

defines a continuous map from T ∗
p0
M to the set of admissible curves. If we endow this set with

the W 1,∞-topology and we assume p 6= p0, this map restricts to a homeomorphism between Γ(p)
and the set of geodesics to p: the topologies on Γ(p) as a subset of T ∗

p0
M or as a subset of the

space of admissible curves coincide and the point of view we adopted is not restrictive.
On the other hand, recall that extremals (resp. geodesics) are non-constant and for these

reasons we will always make the assumption p 6= p0. Most of our results are true also for p = p0,
but then one should regard Γ(p) simply as the fiber of E and not as the set of geodesics to p.

2.2. Contact Carnot groups. A corank 1 Carnot group G is a simply connected Lie group
whose Lie algebra of left-invariant vector fields g admits a nilpotent stratification of step 2:

g = g1 ⊕ g2, g1, g2 6= {0},

with dim g2 = 1 and

[g1, g1] = g2, and [g1, g2] = [g2, g2] = {0}.

We define a scalar product on g1 by declaring a set f1, . . . , fk ∈ g1 to be a global orthonormal
frame. In particular, D|x = g1|x, for all x ∈ G. The group exponential map,

expG : g → G,

associates with v ∈ g the element γ(1), where γ : [0, 1] → G is the unique integral line of the
vector field v such that γ(0) = 0. Since G is simply connected and g is nilpotent, expG is a
smooth diffeomorphism. Thus we can identify G ≃ Rm with a polynomial product law.

Definition 16. A contact Carnot group is a corank 1 Carnot group that admits a contact
structure with D = g1.

The only non-trivial request is the non-degeneracy of the contact form. In fact, let G be a
contact Carnot group, f1, . . . , f2n ∈ g1 be a global orthonormal frame of left-invariant vector
fields, and f0 ∈ g2 a generator for the second layer. Indeed:

[fi, fj] = Aijf0, ∀i, j = 1, . . . , 2n,

for some constant matrix A ∈ so(2n). Observe that there exists a unique never-vanishing
left invariant one-form α (up to constant scaling) such that D = kerα. Using the identity
dα(X,Y ) = Xα(Y )− Y α(X)− α([X,Y ]) we obtain:

dα(fi, fj) = −α([fi, fj ]) = Ajiα(f0).

Since α(f0) 6= 0 the matrix A is non-degenerate.
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2.3. Normal form of contact Carnot groups. By acting on g1 with an orthogonal transfor-
mation, it is always possible to put A in its canonical form. Such a transformation can be trivially
extended to an automorphism of g, and thus lifts to a group automorphism of G that preserves
the scalar product. Therefore, up to isometries, contact Carnot groups are parametrised by the
possible singular values of non-degenerate matrices A ∈ so(2n). In the following we describe the
possible normal forms of contact Carnot groups. Consider the triple (k, ~n, ~α), where:

(i) k ∈ N, with 1 ≤ k ≤ n,

(ii) ~n = (n1, . . . , nk) is a partition of n, namely nj ∈ N and
∑k

j=1 nj = n,

(iii) ~α = (α1, . . . , αk) with 0 < α1 < . . . < αk.

For a fixed choice of (k, ~n, ~α), let:

(5) A := diag(α1Jn1
, . . . , αkJnk

) ∈ so(2n), with Jm =

(
0 1m

−1m 0

)

.

In other words, A has k distinct singular values 0 < α1 < · · · < αk, with multiplicities n1, . . . , nk

(half the dimension of the corresponding invariant subspaces). This gives the normal form of the
(2n, 2n+ 1) graded Lie algebra with parameters (k, ~n, ~α). As an abstract algebra is given by:

g = g1 ⊕ g2, g1 = span{f1, . . . , f2n}, g2 = span{f0},

with:

[fi, fj ] = Aijf0, i, j = 1, . . . , 2n.

Let G be the unique connected, simply connected Lie group such that g is its Lie algebra. Define
a scalar product on g1 such that f1, . . . , f2n is an orthonormal frame. Any contact Carnot group
is isomorphic to one of these structures, for a choice of (k, ~α, ~n). Notice that the normal form is
determined only up to global rescaling of the eigenvalues ~α (see [4, Remark 1]).

2.4. Exponential coordinates. The orthonormal basis f1, . . . , f2n and f0 realize the splitting

g = gα1

1 ⊕ · · · ⊕ gαk

1 ⊕ g2,

with respect to the generalized eigenspaces of A. Accordingly, we identify:

G ≃ R2n1 ⊕ · · · ⊕ R2nk ⊕ R,

through the group exponential map expG : g → G, in such a way that p ∈ G has exponential
coordinates (x1, . . . , xk, z) with xi ∈ R2ni for i = 1, . . . , k and z ∈ R.

2.5. An explicit representation. An explicit representation of the contact Carnot group with
parameters (k, ~α, ~n) is given by the sub-Riemannian structure induced by the following vector
fields on R2n+1, with coordinates (x, z) ∈ R2n × R:

fi :=
∂

∂xi
−

1

2

2n∑

j=1

Aijxj
∂

∂z
, f0 :=

∂

∂z
, i = 1, . . . , 2n,

where A is the matrix of Eq. (5) with k singular values ~α and multiplicities ~n. For the Heisenberg
groups H2n+1 (see Example 3) A is the standard symplectic matrix.

Lemma 17. The coordinates (x, z) are the exponential coordinates induced by f1, . . . , f2n, f0.

Proof. Assume that p = (x, z) has exponential coordinates (θ, ρ). This means that (x, z) = γ(1),
where γ(t) = (x(t), z(t)) is the solution of the Cauchy problem

ẋi(t) = θi, ż(t) = ρ+
1

2

2n∑

i,j=1

xiAijθj , γ(0) = (0, 0),



HOW MANY GEODESICS JOIN TWO POINTS ON A CONTACT SUB-RIEMANNIAN MANIFOLD? 13

By the skew-symmetry of A, the solution is x(t) = θt and z(t) = ρt. Then (x, z) = (θ, ρ). �

3. The fibers of the exponential map for contact Carnot groups

Let Ê : T ∗
0G → G be the exponential map for the contact Carnot group whose (nonzero)

structure constants for its Lie algebra are given by equation (5). In the following, we write
p ∈ G in exponential coordinates as p = (x1, . . . , xk, z), with xj ∈ R2nj and analogously, for
η ∈ T ∗

0G, we write η = (u1, . . . , uk, λ), with uj ∈ R2nj . Thus:

Ê(u1, . . . , uk, λ) = (x1, . . . , xk, z) with xj , uj ∈ R2nj , j = 1, . . . , k.

When convenient, we write p = (x, z) and η = (u, λ), with x, u ∈ R2n and n =
∑k

j=1 nj .

Proposition 18. With the above notation we have for every j = 1, . . . , k:

(6) xj =

(
sin(λαj)

λαj
1+

cos(λαj)− 1

λαj
J

)

uj and z =
k∑

j=1

(
λαj − sin(λαj)

2λ2αj

)

‖uj‖
2.

If λ = 0, then xj = uj for j = 1, . . . , k and z = 0, i.e. Ê(u, 0) = (u, 0).

Proof. We recall that the sub-Riemannian exponential map is given explicitly by [1]:

(u, λ) 7→

(∫ 1

0

e−λAtudt,−
1

2

∫ 1

0

〈

e−λAtu,A

∫ t

0

e−λAsuds

〉

dt

)

.

We start by considering the horizontal components (we omit the subscript for J = Jnj
):

xj =

∫ 1

0

e−λαjJtujdt.

If λ = 0, then e−λαjJt = 1 and xj = uj; otherwise the expression for xj follows immediately
from writing the integrand matrix as:

(7) e−λαjJt = cos(λαjt)1− sin(λαjt)J.

In fact using (7) we can also evaluate the matrix integral:

(8)

∫ t

0

e−λαjJtdt =
sin(λαjt)

λαj
1+

cos(λαjt)− 1

λαj
J = a(t)1+ b(t)J.

For the z component, we notice that it can be rewritten as z = u∗Su, where S is the matrix:

S = −
1

2

∫ 1

0

∫ t

0

eλAtAe−λAsdsdt,

and since A is assumed to be block-diagonal, we obtain:

z =
k∑

j=1

u∗
jSjuj with Sj = −

1

2

∫ 1

0

eλαjJtαjJ

∫ t

0

e−λαjJsdsdt,

Notice that if λ = 0 then S = − 1
4A and, being skew-symmetric, z = u∗Su = 0. If λ 6= 0 the

integrand matrix in Sj equals, using (7):

(9) eλαjJtαjJ

∫ t

0

e−λαjJsds = (αj cos(λαjt)J − αj sin(λαjt)1) (a(t)1+ b(t)J) =

= (c(t)1+ d(t)J) (a(t)1+ b(t)J) = (ac− bd)(t)1+ (ad+ bc)(t)J,
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where c(t) = αj cos(λαjt) and d(t) = −αj sin(λαjt). Since
∫
(ad+ bc)J is skew-symmetric:

u∗
jSjuj = u∗

j1

(

−
1

2

∫ 1

0

(ac− bd)(t)dt

)

u = −‖uj‖
2 1

2

∫ 1

0

(ac− bd)(t)dt.

Using the explicit expression of a, b, c, d (given by (8) and (9)), we obtain (ac − bd)(t) =
cos(λαj t)−1

λ , whose integral equals:

∫ 1

0

cos(λαjt)− 1

λ
dt =

sin(λαj)− λαj

λ2αj
.

Substituting this into the above formula for u∗
jSuj concludes the proof. �

For all j = 1, . . . , k, we define the 2nj × 2nj matrix:

I(λαj) =
sin(λαj)

λαj
1+

cos(λαj)− 1

λαj
J,

where I(0) = 1. I this way, equation (6) reads xj = I(αjλ)uj .

Proposition 19. Assume λαj /∈ 2πZ \ {0}. Then I(λαj) is invertible with inverse:

I(λαj)
−1 =

λαj

2
cot

(
λαj

2

)

1+
λαj

2
J,

(if λαj = 0 we have I(0)−1 = 1). In particular if xj = I(λαj)uj, then:

λαj − sin(λαj)

2λ2αj
‖uj‖

2 =
αj

8

λαj − sin(λαj)

sin
(

λαj

2

) ‖xj‖
2.

Moreover if λαj ∈ 2πZ \ {0}, then xj = 0.

Proof. The determinant if I(λαj) is:

det I(λαj) = 2

(

1− cos(λαj)

λ2α2
j

)

,

and is nonzero if and only if
λαj

2π /∈ Z \ 0; in this case the matrix I(λαj)
−1 is well defined.

For the second part of the statement we write I(λαj)
−1 = c11+c2J , where c1 =

λαj

2 cot
(

λαj

2

)

and c2 =
λαj

2 . Then, uj = c1xj + c2Jxj and since xj and Jxj are orthogonal we obtain:

‖uj‖
2 = c21‖xj‖

2 + c22‖Jxj‖
2 = (c21 + c22)‖xj‖

2.

Computing c21 + c22 = (
λαj

2
1

sin(λαj/2)
)2, and setting y = λαj we finally obtain:

y − sin y

2y2/αj
‖uj‖

2 =
y − sin y

2y2/αj

(
y

2

1

sin(y/2)

)2

‖xj‖
2 =

αj

8

y − sin y

(sin y
2 )

2
.

The last statement follows immediately by Eq. (6). �
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2kπ 2(k + 1)πµk λk

λ

y = λ
8

y

Figure 5. Detail of the function g(λ) in the interval Ik = (2kπ, 2kπ + 2π).

3.1. A relevant function. We introduce the function g : R → R ∪ {∞} defined by:

g(λ) =
1

8

λ− sinλ
(
sin λ

2

)2 .

Each pole of g is of order two and lies on 2πZ \ {0} (see Fig. 2 in Sec. 1 and Fig. 5). The proof
of the following proposition is left to the reader.

Proposition 20. Let k ∈ Z and Ik = (2kπ, 2kπ + 2π). Then:

1. g(λ) = −g(−λ) and g(λ) > 0 if λ > 0;
2. |g| is strictly convex on each interval Ik;

3. if µk is the point of minimum of |g| on Ik, we have g(µk) =
µk

8 < (2k+1)π
8 ;

4. g(|λ|) > |λ|
8 − π

8 for every λ.

3.2. Decomposition of the fiber. We introduce the notation:

Γ(p) = Ê−1(x, z), p = (x, z).

Since p 6= p0, then Γ(p) consists of all geodesics ending at p. Given α1, . . . , αk we define:

Λj = {poles of λ 7→ g(λαj)}, Λ =

k⋃

j=1

Λj and I0 = {j |xj = 0}.

Prop. 19 implies that, if (u, λ) ∈ Γ(p), then:

(10) L(λ) := {j | λ ∈ Λj} ⊆ I0.

Proposition 21 (Characterization of the fiber). Let p = (x, z) ∈ G, p 6= (0, 0). The set Γ(p)
consists of the points (u, λ) such that xj = I(λαj)uj for every j = 1, . . . , k and:

(11) z =
∑

j /∈I0

αjg(λαj)‖xj‖
2 +

1

2λ

∑

j∈I0

‖uj‖
2.

Proof. The condition on the xj ’s is given by Prop. 18 and it remains to understand the equation
for z in (6). Now we can decompose the summation in the terms defining z as:

(12) z =
∑

j /∈I0

(
λαj − sin(λαj)

2λ2αj

)

‖uj‖
2 +

∑

j∈I0

(
λαj − sin(λαj)

2λ2αj

)

‖uj‖
2.
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If j /∈ I0 then j /∈ L(λ) by (10) and Prop. 19 allows to write:
(
λαj − sin(λαj)

2λ2αj

)

‖uj‖
2 =

αj

8

λαj − sin(λαj)

sin
(

λαj

2

) ‖xj‖
2.

On the other hand the sum
∑

j∈I0

(
λαj−sin(λαj)

2λ2αj

)

‖uj‖2 can be split as:

∑

j∈I0∩L(λ)

(
λαj − sin(λαj)

2λ2αj

)

‖uj‖
2 +

∑

j∈I0∩L(λ)c

(
λαj − sin(λαj)

2λ2αj

)

‖uj‖
2.

The second summation is zero, because for a j /∈ L(λ) the matrix I(λαj) is invertible and
uj = I(λαj)xj = 0. By (10), the index set for the first summation equals L(λ) itself. Moreover,
for each term j ∈ L(λ) we have λαj ∈ 2πZ \ {0} and, for some kj ∈ Z \ {0}:

λαj − sin(λαj)

2λ2αj
=

2πkj − sin(2πkj)

2λ(2πkj)
=

1

2λ
.

Substituting what we got into (12) we finally obtain:

�z =
∑

j /∈I0

αjg(λαj)‖xj‖
2 +

1

2λ

∑

j∈I0

‖uj‖
2.

We decompose Γ(p) into two closed disjoint subsets, reflecting its “discrete” and “continuous”
part. We set indeed Γ(p) = Γ0(p) ∪ Γ∞(p) where:

Γ0(p) =






(u, λ) ∈ Γ(p)

∣
∣
∣
∣

∑

j∈I0

‖uj‖
2 = 0






and Γ∞(p) = Γ0(p)

c.

The next theorem clarifies the subscripts and the terminology “discrete” and “continuous” part.

Theorem 22. If p 6= p0, the set Γ0(p) is finite and Γ∞(p) is a closed set homeomorphic to:

Γ∞(p) ≃
⋃

λ∈Λp

S2N(λ)−1, N(λ) =
∑

j∈L(λ)

nj ,

where:

(13) Λp =






λ ∈ Λ

∣
∣
∣
∣



z −
∑

j /∈I0

αjg(λαj)‖xj‖
2



λ > 0






.

Moreover the energy function J is constant on each component of Γ(p).

Remark 4. By definition, Γ∞(p) 6= ∅ implies I0 6= ∅. Thus, a necessary condition for occurrence
of families of geodesics ending at p = (x, z) is that some of the components xj must vanish.

Proof. We start noticing that if (u, λ) ∈ Γ0(p) then all the uj ’s are determined. In fact if j /∈ I0
then, by (10), j /∈ L(λ), I(αjλ) is invertible and uj = I(αjλ)

−1xj ; if j ∈ I0, then the condition
∑

j∈I0
‖uj‖2 = 0 implies uj = 0.

Consider now the projection q onto the λ-axis:

q : T ∗
0G → R, (u, λ) 7→ λ.

By the above discussion q|Γ0(p) is one-to-one onto its image q(Γ0(p)) and it is enough to show
that this last set is discrete. To this end we notice that by Prop. 21 if (u, λ) ∈ Γ0(p) then:

(14) z =
∑

j /∈I0

αjg(αjλ)‖xj‖
2.
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The set of solutions in λ of this equation coincides with q(Γ0(p)) and is discrete: (x, z) is fixed,
the function g is strictly convex (by Prop. 20) and a linear combination of strictly convex
functions is still strictly convex (on the domains of definition). Since the set of solutions of (14)
has no accumulation points, q(Γ0(p)) is closed and Γ0(p) = q−1(q(Γ0(p))) is closed as well.

We prove that Γ0(p) is finite. If x 6= 0 the cardinality of Γ0(p) is bounded by Thm. 23
below; if x = 0 then equation (11) reduces to z = 1

2λ

∑

j∈I0
‖uj‖2 and since Γ0 is defined by

∑

j∈I0
‖uj‖2 = 0, it implies z = 0 as well, contradicting the assumption p 6= p0.

Now we turn to Γ∞(p). For each fixed λ ∈ q(Γ∞(p)) consider the fiber of the projection (the
set of pairs (u, λ) ∈ Γ∞(p)). We show that λ ∈ Λp and that the fiber is a sphere. By Prop. 21,
this is the set of u ∈ R2n such that xj = I(λαj)uj for every j = 1, . . . , k and:

(15)
1

2λ

∑

j∈I0

‖uj‖
2 = z −

∑

j /∈I0

αjg(λαj)‖xj‖
2.

Now, if j /∈ L(λ), then uj is fixed by the value of xj (since I(αjλ) is invertible). For the remaining
ones the only constraint comes from Eq. (15). Consider the summation in the l.h.s. Notice that
L(λ) ⊆ I0, but if j ∈ I0 ∩ L(λ)c then uj = 0. Therefore:

∑

j∈I0

‖uj‖
2 =

∑

j∈L(λ)

‖uj‖
2.

In particular, since (u, λ) ∈ Γ∞(p) this implies that L(λ) must be non-empty, namely λ ∈ Λ.
Moreover Eq. (15) reduces to:

(16)
1

2λ

∑

j∈L(λ)

‖uj‖
2 = z −

∑

j /∈I0

αjg(λαj)‖xj‖
2.

The r.h.s. of the above equation has the same sign of λ. Thus λ ∈ Λp and q−1(λ) is a sphere of
dimension 2N(λ)− 1.

Finally q is surjective over Λp. In fact, for any λ ∈ Λp, we choose for j ∈ L(λ), uj that satis-
fies (16), and for j /∈ L(λ) we set uj = I(αjλ)

−1xj . The point (u, λ) ∈ Γ∞(p) by construction.
The image q(Γ∞(p)) is discrete, as it is contained into Λ (and has no accumulation points,

since Λ itself has no accumulation points). Thus q(Γ∞(p)) is closed and Γ∞(p) is closed as well.
Since the energy of a geodesic (u, λ) is given by ‖u‖2/2, it is constant on each component. �

4. Upper bounds

Let us introduce the following “counting” functions ν̂, β̂ : G → R ∪ {∞}:

ν̂(p) = #Γ(p) and β̂(p) = b (Γ(p)) ,

where b(X) denotes the sum of the Betti numbers of X (which might as well be infinite a priori).

Remark 5. The Betti numbers bi(X) of a topological space X are the ranks of Hi(X,Z) (the
homology groups of X) and they measure the number of “holes” of X , see [9]. For example for a
point or a line all bi are zeroes except b0 = 1; for a sphere Sk they are all zero except b0, bk = 1
(here k > 1). The sum of the Betti numbers b(X) is sometimes called the homological complexity
and measure how complicated X is from the topological viewpoint; for example b(Sk) = 2.

If Ê−1(p) is finite, then ν̂(p) = β̂(p); on the other hand if a point p has infinitely many
geodesics arriving on it ν̂(p) = ∞ and it could either be that they are “genuinely” infinite, i.e.

also β̂(p) = ∞, or they arrange in finitely many families with controlled topology, i.e. β̂(p) < ∞.
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Theorem 23. Let G be a contact Carnot group. Then there exists a constant R2 such that, for
every point p = (x, z), with p 6= p0:

β̂(p) ≤

(
8k

π

αk

α2
1

)
|z|

‖x‖2
+R2.

R2 is homogeneous of degree 0 in the singular values α1 < · · · < αk of A. In particular, if
x = (x1, . . . , xk) has all components different from zero, then Γ(p) = Γ0(p) and:

ν̂(p) ≤

(
8k

π

αk

α2
1

)
|z|

‖x‖2
+R2.

Remark 6. Thus, whenever at least one xj is not zero, the topology of Γ(p) is finite; if z 6= 0

and x = 0, then the above formulas are meaningful in the sense that |z|
0 = ∞.

Proof. The decomposition of Thm. 22 implies:

b (Γ(p)) = b (Γ0(p)) + b (Γ∞(p)) .

Let us start with b(Γ0(p)). Since Γ0(p) consists of points, then b(Γ0(p)) = #Γ0(p) and:

(17) #Γ0(p) = #






λ

∣
∣
∣
∣
z =

∑

j /∈I0

αjg(λαj)‖xj‖
2






.

We recall that I0 = {j |xj = 0} and distinguish two cases.
1. If I0 = {1, . . . , k} (i.e. x = 0), then Γ0(p) is empty: in fact from (17) we obtain that also

z = 0, contradicting the assumption p 6= p0.
2. If I0 ( {1, . . . , k} (at least one xj 6= 0), then property 4 of Prop. 20 implies:

|z| =

∣
∣
∣
∣
∣
∣

∑

j /∈I0

αjg(λαj)‖xj‖
2

∣
∣
∣
∣
∣
∣

>
|λ|

8

∑

j /∈I0

α2
j‖xj‖

2 −
π

8

∑

j /∈I0

αj‖xj‖
2,

or, equivalently:

(18) |λ| <
8|z|

∑

j /∈I0
α2
j‖xj‖2

+
π
∑

j /∈I0
αj‖xj‖2

∑

j /∈I0
α2
j‖xj‖2

≤
8|z|

α2
1‖x‖

2
+

παk

α2
1

=: ρ,

where in the last inequality we have used the fact that ‖x‖2 =
∑

j /∈I0
‖xj‖2. The number of

solutions of (17) is the number of intersections of the horizontal line w = z with the graph of:

G0(λ) =
∑

j /∈I0

αjg(λαj)‖xj‖
2,

in the (λ,w)-plane, with the restriction |λ| < ρ we found in (18). The function G0 is itself
strictly convex, and the number of points of intersections of w = z with its graph is:

b (Γ0(p)) ≤ 2#{poles of G0 on the interval (0, ρ)}+ 1.

Since the function G0 has poles exactly on the sets Λj = {λ 6= 0 |λαj ∈ 2πZ, j /∈ I0}, we obtain:

(19)

b(Γ0(p)) ≤ 2
∑

j /∈I0

⌊ραj

2π

⌋

+ 1 ≤ 2
∑

j /∈I0

⌊
4αj|z|

πα2
1‖x‖

2
+

αkαj

2α2
1

⌋

+ 1 ≤

≤ (k −#I0)
8

π

αk

α2
1

|z|

‖x‖2
+ r0,
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where r0 is a bounded remainder (homogeneous of degree 0 in the singular values) given by:

r0 = (k −#I0)
α2
k

α2
1

+ 1.

Let us consider now b(Γ∞(p)). By Thm. 22, Γ∞(p) is a disjoint union of spheres, one sphere for
each point λ ∈ Λp, where:

Λp = {λ ∈ Λ | (z −G0(λ))λ > 0}.

Since the total Betti number of sphere is 2 (independently on the dimension), we have:

(20) b(Γ∞(p)) = b




⋃

λ∈Λp

S2N(λ)−1



 = 2#Λp.

We assume z ≥ 0 for simplicity. This implies λ > 0. Moreover, if λ ∈ Λp ⊆ Λ, then λ must
belong to the complement of the set of poles of the function G0, namely

λ ∈ Λ0 :=
⋃

j∈I0

Λj =
⋃

j∈I0

2π

αj
Z \ {0} ⊆ Λ.

Thus we finally rewrite:

Λp = {λ ∈ Λ0 | λ > 0, z > G0(λ)}.

It only remains to estimate the cardinality of Λp. We distinguish again two cases.
1. I0 = {1, . . . , k} (i.e. x = 0). By our assumption p 6= p0 it follows that z > 0. Moreover, in

this case G0(λ) ≡ 0 and Λ0 = Λ. Therefore Λp = Λ is infinite and Γ∞(p) consists of infinitely
many spheres, thus b(Γ∞(p)) = ∞.

2. I0 ( {1, . . . , k}. In this case we have to count the λ̄ > 0, such that:

(21) z >
∑

j /∈I0

αjg(λ̄αj)‖xj‖
2, with λ̄ ∈ Λ0.

Arguing exactly as in (18) we obtain that:

|λ̄| <
8|z|

α2
1‖x‖

2
+

παk

α2
1

:= ρ.

Thus the number of λ̄ satisfying (21) is bounded by the (finite) number of elements λ̄ ∈ Λ0 in
the interval (0, ρ) (arguing as in (19)):

∑

j∈I0

⌊ραj

2π

⌋

≤ #I0
4

π

αk

α2
1

|z|

‖x‖2
+

#I0
2

α2
k

α2
1

,

Combining this with (20) we get:

b (Γ∞(p)) ≤ #I0
8

π

αk

α2
1

|z|

‖x‖2
+ r∞,

where r∞ is a bounded remainder (homogeneous of degree 0 in the singular values) given by:

r∞ = #I0
α2
k

α2
1

.
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Figure 6. Qualitative picture of the exponential map for H3. The critical
points are the λ-axes A, the set R (in red) and the set B (in blue). The broken
curve is the section in the (x, z)-plane of the image of the cylinder {‖u‖2 = c}.
The number of geodesics to p is constant on each shaded region (the white one
is where ν̂(p) = 1). When c varies the blue dots on the right figure (the images
of B ∩ {‖u‖2 = c}) “span” all the paraboloids |z| = g(λk)‖x‖2.

Finally, since the union Γ0(p) ∪ Γ∞(p) is disjoint and closed, we obtain:

(22)

b (Γ(p)) = b (Γ0(p)) + b (Γ∞(p)) ≤

≤ (k −#I0)
8

π

αk

α2
1

|z|

‖x‖2
+#I0

8

π

αk

α2
1

|z|

‖x‖2
+ r0 + r∞ =

=

(

k
8

π

αk

α2
1

)
|z|

‖x‖2
+R2,

where R2 is a bounded remainder (homogeneous of degree 0 in the singular values) given by:

R2 = r0 + r∞ = k
α2
k

α2
1

.

Notice that if all xj 6= 0, then I0 = ∅ and Γ(p) = Γ0(p), which is finite. �

Remark 7. Eq. (22) splits clearly the contribution to the topology into two pieces:

b (Γ0(p)) ≤ (k −#I0)
8

π

αk

α2
1

|z|

‖x‖2
+ r0 and b (Γ∞(p)) ≤ #I0

8

π

αk

α2
1

|z|

‖x‖2
+ r∞,

where we interpret the r.h.s. with the convention of Remark 6.

Example 6 (Heisenberg, conclusion). The Jacobian of the exponential map in H3 can be com-
puted explicitly using (6) (for the general contact case, see [1, Lemma 38]):

det
(

d(u,λ)Ê
)

= −
‖u‖2(λ sinλ+ 2 cosλ− 2)

λ4
.

Setting to zero the previous equation we find critical points of Ê:

crit(Ê) =
{
‖u‖2 = 0

}

︸ ︷︷ ︸

A

∪{λ = 2kπ, k 6= 0}
︸ ︷︷ ︸

R

∪
{
λ | λ

2 = tan λ
2 , λ 6= 0

}

︸ ︷︷ ︸

B

.

The critical values are the images of these sets. For convenience of notations we label λk, with
k ∈ Z \ {0}, the non-zero solutions of λ

2 = tan λ
2 : these numbers, in the case of the Heisenberg
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group, coincide with the minima of the function g and are of the form λk = (2k+1)π+ εk. The

critical values of Ê decompose into the union of the three sets:

Ê(A) = origin, Ê(R) = z-axis, Ê(B) =
{
z = ‖x‖2g(λk) | k ∈ Z \ {0}

}
.

In particular, Ê(B) is a union of paraboloids, and has the following characterization: for x 6= 0,
we have:

ν̂(p) = #{λ | z = g(λ)‖x‖2}.

By the properties of g, and assuming z ≥ 0 (resp. z ≤ 0), two new contributions to ν̂(p) appear
(or disappear) every time the ratio |z|/‖x‖2 crosses the values g(λk), for k ≥ 0 (resp. k ≤ 0).

Thus the function ν̂(p) “jumps” by two every time p crosses Ê(B) transversely (see Fig. 6).

5. Lower bounds

According to the decomposition of Sec. 3, for p 6= p0 we have the following splitting:

Γ(p) = Γ0(p) ∪ Γ∞(p),

where Γ0(p) is a finite set and Γ∞(p) is homeomorphic to a disjoint union of spheres. According
to Remark 4, if p = (x, z) is a point with all components xj 6= 0, then Γ∞(p) = ∅ (in particular
this is the case for a generic point p). In this setting we prove the next theorem.

Theorem 24 (The “infinitesimal” lower bound). Given a contact Carnot group G, there exist
constants C1, R1 such that if p = (x, z) ∈ G has all components xj different from zero, then:

C1
|z|

‖x‖2
+ R1 ≤ ν̂(p).

In particular, denoting by α1 and αk the smallest and the largest singular values of A:

C1 =
8

π

α1

α2
k

sin

(
δπ

2

)2

with δ =





k∑

j=1

α1

αj

⌊
αj

α1

⌋




−1

.

Moreover, R1 (resp. C1) is homogeneous of degree 0 (resp. −1) in the singular values α1, . . . , αk.

Proof. When all the xj 6= 0, then Γ(p) = Γ0(p). According to Prop. 21, and recalling that
I0 = ∅, the number of geodesics ending at p = (x, z) is computed by:

ν̂(p) = #{λ | z = G(λ)}, G(λ) :=

k∑

j=1

αjg(αjλ)‖xj‖
2.

The idea of the proof is to build a sequence of values λ̂n, growing linearly with n, such that

G(λ̂n) ≤ cn + d for some constants c and d. By the strict convexity of G(λ), we have at least

one contribution to ν̂(p) for any point λ̂n of the sequence such that G(λ̂n) < z.
Without loss of generality, we assume z ≥ 0 and then λ ≥ 0. For fixed 0 < δ ≤ 1 and every

j = 1, . . . , k define the intervals:

In,j :=

[
2nπ

αj
,
2(n+ 1)π

αj

]

and În,j :=

[
2nπ

αj
+

δπ

αj
,
2(n+ 1)π

αj
−

δπ

αj

]

.

Each interval În,j is contained in In,j and the lengths of these two intervals are (see Fig. 7):

|In,j | =
2π

αj
=: aj and |În,j | = aj(1 − δ).
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b bb b

2nπ
αj

(2n+1)π
αj

yn+1

αj

δπ
αj

aj

aj(1 − δ)
δπ
αj

Figure 7. The intervals În,j ⊂ In,j .

The singular values 0 < α1 < · · · < αk are ordered, then the intervals In,1, for n ∈ N are the

largest. We also define yn := (2n− δ)π. Notice that yn+1

αj
is the maximum of the interval În,j ,

and will play an important role in the proof.
Each function λ 7→ g(αjλ) is unbounded in the intervals In,j (it has poles at the extrema),

but it is controlled on all the smaller intervals În,j , as stated by the next lemma.

Lemma 25. There exist constants c1(δ), d1(δ) such that, for j = 1, . . . , k:

g(αjλ) ≤ c1(δ)n+ d1(δ), ∀λ ∈ În,j .

Proof. By Prop. 20, for all j = 1, . . . , k the functions λ 7→ g(αjλ) are strictly convex on the

intervals În,j ⊂ In,j . Each function is clearly unbounded on In,j but, when restricted on În,j , it

achieves its maximum value at the point yn+1

αj
(i.e. the maximum of the interval În,j). Therefore,

by explicit evaluation, for all λ ∈ În,j we have:

�g(αjλ) ≤ g(yn+1) =
2π

8 sin(δπ/2)2
n+

2π − δπ + sin(δπ)

8 sin(δπ/2)2
= c1(δ)n+ d1(δ).

The next lemma implies that, for each n ≥ 0, the large interval In,1 contains at least one

point that belongs to all the smaller intervals Îm1,1, . . . , Îmk,k, for some m1, . . . ,mk.

Lemma 26. Let Îj =
⋃

m≥0 Îm,j for all j = 1, . . . , k. If 0 < δ ≤ 1 is small enough then:

∀n ≥ 0 In,1 ∩
k⋂

j=1

Îj 6= ∅.

Proof. We argue by contradiction. Assume there exists n ≥ 0 such that for all λ ∈ In,1 we can

find j ∈ {1, . . . , k} with λ /∈ Îj . This implies:

(23) sn :=

∫

In,1

#
{

j | λ ∈ Îj

}

dz ≤ (k − 1)a1.

On the other hand the above integral equals:

sn =

k∑

j=1

|Îj ∩ In,1| ≥ ka1 −
k∑

j=1

2δπ

αj

⌊
αj

α1

⌋

≥ (k − 1)a1 +



a1 − δ

k∑

j=1

2π

αj

⌊
αj

α1

⌋


 .

Recalling that a1 = 2π
α1

, if we choose

(24) 0 < δ <





k∑

j=1

α1

αj

⌊
αj

α1

⌋




−1

,



HOW MANY GEODESICS JOIN TWO POINTS ON A CONTACT SUB-RIEMANNIAN MANIFOLD? 23

we obtain sn > (k − 1)a1, contradicting (23). �

The next lemma builds a sequence λ̂n where the behaviour of G(λ) is controlled.

Lemma 27. There exists an unbounded, increasing sequence {λ̂n ∈ In}n∈N and constants ck(δ),
dk(δ) such that:

k∑

j=1

g(λ̂nαj) ≤ ck(δ)n+ dk(δ).

Proof. By Lemma (26), for all n ≥ 0 there is a point λ̂n ∈ In,1 ∩ Îm1,1 ∩ Îm2,2 ∩ · · · ∩ Îmk,k, for
some m1, . . . ,mk. This sequence is unbounded and increasing. By construction, m1 = n and

mj ≤

⌊
(n+ 1)αj

α1

⌋

≤
αk

α1
n+ 2

αk

α1
, j = 2, . . . , k.

By the estimates of Lemma 25, we have

�

k∑

j=1

g(λ̂nαj) ≤
k∑

j=1

(c1(δ)mj + d1(δ)) ≤

[

c1(δ)k
αk

α1

]

︸ ︷︷ ︸

ck(δ)

n+

[

2c1(δ)(k − 1)
αk

α1
+ kd1(δ)

]

︸ ︷︷ ︸

dk(δ)

.

We are now ready for the computation of the lower bound for ν̂(p). Indeed

(25) ν̂(p) = #{λ | z = G(λ)}, G(λ) :=
k∑

j=1

αjg(λαj)‖xj‖
2.

By Prop. 20, each function λ 7→ g(αjλ) is strictly convex in the intervals In,j , for n ∈ N, and
has poles at the extrema of In,j (excluding λ = 0), i.e. the discrete set Λj . Then also G(λ) is a
strictly convex function in each interval in which it is defined, with poles at Λ = ∪k

j=1Λj .

Consider the sequence λ̂n of Lemma 27. There are at least 2 solutions contributing to Eq. (25)

for any value λ̂n such thatG(λ̂n) < z. This follows by strict convexity ofG in the interval between

two successive poles containing λ̂n. The only exception to this rule is when λ̂n belongs to I0,k:
in this case there is only 1 solution (there is no pole at λ = 0). We have:

G(λ̂n) ≤ αk‖x‖
2

k∑

j=1

g(αj λ̂n) ≤ αk‖x‖
2 [ck(δ)n+ dk(δ)] .

Thus, λ̂0 gives a contribution of 1 to ν̂(p), while each point λ̂n, with n ≥ 1 of the sequence, such

that G(λ̂n) < z, give a contribution of 2 to ν̂(p). Taking in account all the contributions:

ν̂(p) ≥ 2

⌊
1

ck(δ)

|z|

αk‖x‖2
−

dk(δ)

ck(δ)

⌋

+ 1 ≥
2

αkck(δ)

|z|

‖x‖2
− 2

dk(δ)

ck(δ)
− 1.

Plugging in the constants obtained above, we obtain:

ν̂(p) ≥ C(δ)
|z|

‖x‖2
+R(δ),

with:

C(δ) :=
8

π

α1

α2
k

sin

(
δπ

2

)2

, R(δ) := 4
1− k

k
+

α1

αk

δπ − sin(δπ)− 2π

π
− 1.
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Both C(δ) and R(δ) are non-decreasing functions of δ, for 0 < δ ≤ 1, thus the best estimate is
given by the values at the largest δ. According to (24) this value is:

δM :=





k∑

j=1

α1

αj

⌊
αj

α1

⌋




−1

.

Notice that C1 := C(δM ) is homogeneous of degree −1 w.r.t. the singular values α1, . . . , αk,
while R1 := R(δM ) is homogeneous of degree 0. �

The previous theorem holds if all the xj are different from zero. When some of the xj = 0,
continuous families might appear, but the topology of these families is controlled.

Theorem 28 (The “infinitesimal” lower bound for the topology). Let G be a contact Carnot
group. There exist constants R′

1, C
′
1 such that for every p = (x, z) ∈ G with p 6= p0:

C′
1

|z|

‖x‖2
+R′

1 ≤ β̂(p).

In particular, denoting by α1 and αk the smallest and the largest singular values of A:

C′
1 =

8

π

α1

α2
k

sin

(
δ′π

2

)2

with δ′ =




∑

j /∈I0

α1

αj

⌊
αj

α1

⌋




−1

.

Moreover, R′
1 (resp. C′

1) is homogeneous of degree 0 (resp. −1) in the singular values α1, . . . , αk.

Proof. Recall that I0 = {j | xj = 0}. If I0 = ∅, then the statement reduces to Thm. 28 since

Γ(p) = Γ0(p) is finite and ν̂(p) = #Γ(p) = b(Γ(p)) = β̂(p). Then assume I0 6= ∅. By Thm. 21,
Γ(p) = Γ0(p) ∪ Γ∞(p) and:

β̂(p) = b(Γ(p)) ≥ b(Γ0(p)) = #Γ0(p).

In particular Γ0(p) is in one-to-one correspondence with its projection on the λ component, since
all the uj are uniquely determined by the point p = (x, z) once λ is known. Therefore

#Γ0(p) = #{λ | z = G0(λ)}, G0(λ) :=
∑

j /∈I0

αjg(αjλ)‖xj‖
2.

Now we only have to bound from below the number of solutions of z = G0(λ). The proof is
analogous to the one of Thm. 24, where only the indices j /∈ I0 appear. �

6. Isometries and families of geodesics

6.1. Isometries of the Heisenberg group. Isometries are distance-preserving transforma-
tions and, in Carnot groups, are smooth (see [7]). The set of all sub-Riemannian isometries
ISO(G) of a Carnot group is a Lie group, and any isometry is the composition of a group au-
tomorphism and a group translation (see [8, 11]). Here we consider the subgroup ISO0(G) of
isometries that fix the identity and we denote this subgroup simply ISO(G).

Lemma 29. The isometry group of H2n+1 is:

ISO(H2n+1) = {(M, θ) | θ = ±1, MM∗ = 12n, MJM∗ = θJ},

with the action of ISO(H2n+1) on H2n+1 given by:

(M, θ) · (x, z) = (Mx, θz).

Moreover:

ISO(H2n+1) ≃ O(2n) ∩ Sp(2n)⋊ Z2 ≃ U(n)⋊ Z2.
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Proof. A diffeomorphism is an isometry of Carnot groups fixing the identity if and only if is a Lie
group isomorphism. In particular, it is induced by Lie algebra isomorphisms φ : h2n+1 → h2n+1

that are orthogonal transformations on the first layer. Since φ is a Lie algebra isomorphism, it
preserves the stratification. Then we can write φ = (M, θ) ∈ O(2n)× R, such that

φ(fi) =

2n∑

j=1

Mjifj , φ(f0) = θf0.

The isomorphism condition [φ(fi), φ(fj)] = Jijφ(f0) implies:

MJM∗ = θJ.

It follows that θ2 = 1. Then:

ISO(H2n+1) = {(M, θ) | θ = ±1, MM∗ = 12n, MJM∗ = θJ}.

This Lie algebra isomorphism generates a Lie group isomorphism that, in exponential coordi-
nates, reads (M, θ) · (x, z) = (Mx, θz). Let ISO(H2n+1)+⊳ ISO(H2n+1) be the normal subgroup:

ISO(H2n+1)+ := {(M, 1) | MM∗ = 1, MJM∗ = J} ≃ O(2n) ∩ Sp(2n).

Moreover, let K be any matrix such that KJK∗ = −J . Then, let :

H := {(1, 1), (K,−1)} ≃ Z2

be another subgroup of ISO(H2n+1). Any element of ISO(H2n+1) can be written uniquely as
the product mh of an element of m ∈ ISO(H2n+1)+ and an element of h ∈ H . Thus the map
mh 7→ (m,h) is a group isomorphism:

ISO(H2n+1) = ISO(H2n+1)+ ⋊H,

where H acts on ISO(H2n+1)+ with the adjoint action. As we observed ISO(H2n+1)+ ≃ O(2n)∩
Sp(2n) and H ≃ Z2, thus

ISO(H2n+1) ≃ O(2n) ∩ Sp(2n)⋊ Z2.

Remark 8. With this identification, the action of ϕ : Z2 → Aut(O(2n) ∩ Sp(2n)) is:

ϕ(1)M = M, ϕ(−1)M = KMK∗,

the product on O(2n) ∩ Sp(2n)⋊ Z2 reads:

(M, θ)(M ′, θ′) = (Mϕ(θ)M ′, θθ′),

and the action of O(2n) ∩ Sp(2n)⋊ Z2 on H2n+1 is:

(M, θ) · (x, z) =

{

(Mx, z) θ = 1,

(MKx,−z) θ = −1.

Finally, to see that O(2n) ∩ Sp(2n) ≃ U(n), write M ∈ GL(2n,R) as M = (A B
C D ). Then

M ∈ O(2n) ∩ Sp(2n) if and only if:

M =

(
A B
−B A

)

, AA∗ +BB∗ = 1n, AB∗ −BA∗ = 0.

Thus the map M 7→ A+ iB is the group isomorphism O(2n) ∩ Sp(2n) ≃ U(n). �
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6.1.1. Stabilizers of points. Let p ∈ H2n+1. We restrict our attention to the connected component
ISO(H2n+1)+ that contains the identity. As in the proof of Lemma 29, we identify:

ISO(H2n+1)+ = U(n).

With this identification, the action ρ : U(n) ×H2n+1 → H2n+1 is

ρ(A+ iB, (x, z)) = (Mx, z), M =

(
A B
−B A

)

.

What is the stabilizer subgroup ISOp(H2n+1) ⊆ ISO(H2n+1)+ that fixes p ∈ H2n+1?

Lemma 30. Let p = (x, z) ∈ H2n+1. Then

ISOp(H2n+1) ≃

{

U(n) x = 0,

U(n− 1) x 6= 0.

Proof. Let A + iB ∈ U(n). Let p = (x, z) ∈ H2n+1, with x 6= 0 and write x = (v, w) with
v, w ∈ Rn. Then

ρ(A+ iB, p) = p ⇐⇒ Mx = x ⇐⇒ (A+ iB)(v − iw) = v − iw.

This means that A + iB must be a unitary matrix with a prescribed eigenvector v − iw with
eigenvalue 1. This identifies a copy of U(n− 1) ⊂ U(n) that fixes p. On the other hand, if x = 0,
the point p = (0, z) is fixed for any element of ISO(H2n+1)+. �

6.1.2. Stabilizers of geodesics. Let γ(t) be the geodesic with initial covector (u, λ) ∈ T ∗
0H2n+1.

What is the subgroup ISOγ(H2n+1) ⊂ ISO(H2n+1)+ that fixes the whole geodesic? Recall that

γ(t) =

(∫ t

0

e−λJτudτ,−
1

2

∫ t

0

〈e−λJτu, J

∫ τ

0

e−λJsuds〉dτ

)

.

Lemma 31. Let (u, λ) ∈ T ∗
0H2n+1 be the initial covector of the geodesic γ. Then

ISOγ(H2n+1) ≃

{

U(n) u = 0,

U(n− 1) u 6= 0.

Proof. To stabilize γ is equivalent to stabilize its “horizontal” component. Indeed, let A+ iB ∈
U(n) be an isometry and γ(t) = (x(t), z(t)). Then ρ(A + iB, (x(t), z(t))) = (x(t), z(t)) if and
only if Mx(t) = x(t) for all t. For u 6= 0, take one derivative w.r.t. t at t = 0; we obtain Mu = u,
as in the proof of Lemma 30. This identifies a subgroup U(n − 1) ⊂ U(n). This condition also
implies also Mx(t) = x(t). In fact:

Mx(t) = M

∫ t

0

e−τλJu =

∫ t

0

e−τλJMu = x(t),

where we used the fact that, being an isometry, MJ = JM . Thus, in this case, ISOγ(H2n+1) =
U(n− 1). When u = 0 the geodesic is the trivial one, and is stabilized by the whole U(n). �

Remark 9. Notice that in this case u = 0 if and only the geodesic is trivial γ(t) ≡ 0. When u 6= 0
two possibilities can occur: 1) x 6= 0, in which case ISOγ(H2n+1) = ISOp(H2n+1) ≃ U(n− 1); 2)
x = 0 and the subgroup ISOγ(H2n+1) ≃ U(n− 1) is properly contained in ISOp(H2n+1) ≃ U(n).
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6.1.3. Isometrically equivalent geodesics.

Definition 32. Let γ1, γ2 be geodesics with the same endpoints. We say that γ1 is isometrically
equivalent to γ2 if there exists g ∈ ISO(G) such that γ1 = gγ2.

Let p ∈ H2n+1, and γ be a normal geodesic such that γ(0) = 0 and γ(1) = p. By acting
with ISOp(H2n+1) we obtain families of isometrically equivalent by construction. Still, since
ISOγ(H2n+1) ⊆ ISOp(H2n+1), we may obtain in this way non-distinct geodesics. To avoid
duplicates, we have to take the quotient w.r.t. the subgroup ISOγ(H2n+1).

Let Xγ be the set of geodesics isometrically equivalent to a given one γ. This is a homogeneous
space w.r.t. the action of ISOp(H2n+1). From Lemma 30 and 31 we obtain the structure of Xγ .

Proposition 33. Let γ be a geodesic such that γ(0) = 0 and γ(1) = p, with initial covector
(u, λ) ∈ T ∗

0H2n+1. Then:

Xγ = ISOp(H2n+1)/ ISOγ(H2n+1) ≃

{

S2n−1 u 6= 0, λ ∈ 2πZ \ {0},

1 otherwise.

Proof. If u = 0, then γ(t) = 0 is the trivial geodesic. In this case X0 is just a point (the trivial
geodesic). Then we may assume u 6= 0. Let p = (0, z). An explicit computation leads to

0 =

∫ 1

0

e−τλJu ⇐⇒ λ = 2mπ, m ∈ Z \ {0}.

Then, when λ = 2mπ (and u 6= 0), according to Lemma 30 and 31 we have:

ISOp(H2n+1)/ ISOγ(H2n+1) = U(n)/U(n− 1) ≃ S2n−1.

If λ 6= 2mπ, then p = (x, z) with x 6= 0. According to Lemma 30 and 31 (see also Remark 9) we
have ISOp(H2n+1) = ISOγ(H2n+1) = U(n− 1). Thus their quotient is the trivial group. �

Remark 10. In fact, in terms of the endpoint, the only possibility for having a family of iso-
metrically equivalent geodesics ending at p is that x = 0 zero. In fact, λ = 2mπ and u 6= 0 if
and only if p = (0, z) with z 6= 0. This means that for non-vertical points p, all the geodesics
connecting p with the origin are not isometrically equivalent, while if p = (0, z) is vertical, for
any geodesic γ connecting p with the origin, we have a family of distinct geodesics (all with the
same energy) diffeomorphic to S2n−1.

6.2. Isometries of contact Carnot groups.

Lemma 34. The isometry group of the contact Carnot group G with parameters (k, ~n, ~α) is:

ISO(G) = {(M1, . . . ,Mk, θ) | θ = ±1, MiM
∗
i = 12ni

, MiJni
M∗

i = θJni
},

with the action of ISO(G) on G given by:

(M1, . . . ,Mk, θ) · (x1, . . . , xk, z) = (M1x1, . . . ,Mkxk, θz).

Moreover this group is isomorphic to:

ISO(G) ≃ O(2n1) ∩ Sp(2n1)× · · · ×O(2nk) ∩ Sp(2nk)⋊ Z2

≃ U(n1)× · · · ×U(nk)⋊ Z2.

Proof. The proof is analogous to the one of Lemma 29, after splitting the equations in the real
eigenspaces associated with the eigenvalues of A. �
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Remark 11. As above, we restrict to the connected component ISO(G)+. We identify:

ISO(G)+ = U(n1)× · · · ×U(nk).

With this identification, the action ρ : ISO(G)+ ×G → G is

ρ(A1 + iB1, . . . , Ak + iBk, (x1, . . . , xk, z)) = (M1x1, . . . ,Mkxk, z),

where Aj + iBj ∈ U(nj) for all j = 1, . . . , k and Mj :=
(

Aj Bj

−Bj Aj

)

.

6.2.1. Stabilizers of points. For p ∈ G, let ISOp(G) ⊆ ISO(G)+ its stabilizer.

Lemma 35. Let p = (x1, . . . , xk, z) ∈ G. Then:

ISOp(G) =

{

U(n1) x1 = 0

U(n1 − 1) x1 6= 0
× · · · ×

{

U(nk) xk = 0

U(nk − 1) xk 6= 0
.

Proof. By Remark 11, the isometry (A1+ iB1, . . . , Ak+ iBk) ∈ ISO(G)+ fixes p = (x1, . . . , xk, z)
if and only if (Aj + iBj)xj = xj for all j = 1, . . . , k. This means that Aj + iBj ∈ ISO(H2nj+1)+
fixes the point pj := (xj , z) ∈ H2nj+1, for all j = 1, . . . , k. Then :

ISOp(G) = ISOp1
(H2n1+1)× · · · × ISOpk

(H2nk+1),

and the result follows from Lemma 30. �

6.2.2. Stabilizers of geodesics. Let (u, λ) ∈ T ∗
0G. Let γ be the associated geodesic, such that

γ(0) = 0 and p = γ(1). What is the stabilizer subgroup of the geodesic ISOγ(G) ⊆ ISOp(G)?
As usual, we write u = (u1, . . . , uk), with ui ∈ R2ni . Accordingly γ(t) = (x1(t), . . . , xk(t), z(t)),
with xi(t) ∈ R2ni . In particular:

xi(t) =

∫ t

0

e−τλαiJuidτ,

z(t) = −
1

2

k∑

i=1

∫ t

0

〈e−τλαiJui, αiJ

∫ τ

0

e−sλαiJuids〉dτ,

where we suppressed the explicit mention of the dimension of the matrices Jni
. Notice that

u = 0 if and only if the geodesic is the trivial one γ(t) ≡ 0.

Lemma 36. Let (u1, . . . , uk, λ) ∈ T ∗
0G the initial covector of the geodesic γ. Then:

ISOγ(G) =

{

U(n) u1 = 0

U(n− 1) u1 6= 0
× · · · ×

{

U(n) uk = 0

U(n− 1) uk 6= 0
.

Proof. Let (A1 + iB1, . . . , Ak + iBk) ∈ ISO(G)+. According to Remark 11, this isometry fixes
the geodesic (x1(t), . . . , xk(t), z(t)) if and only if

Mjxj(t) = xj(t), Mj =

(
Aj Bj

−Bj Aj

)

, ∀j = 1, . . . , k.

This implies that Aj + iBj ∈ ISO(H2nj+1)+ fixes the geodesic γj of H2nj+1 associated with the
initial covector (uj, αjλ). Then:

ISOγ(G) = ISOγ1
(H2n1+1)× · · · × ISOγk

(H2nk+1),

and the result follows from Lemma 31. �
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6.2.3. Isometrically equivalent geodesics. Let γ be a geodesic connecting the origin with a point
p ∈ G. Let (u1, . . . , uk, λ) be the initial covector of the geodesic, and let p = (x1, . . . , xk, z) its
endpoint. Let Xγ be the set of geodesic isometrically equivalent to the given one. This is an
homogeneous space w.r.t. the action of ISOp(G).

Proposition 37. Let G a contact Carnot group with parameters (k, ~n, ~α). Let γ be a geodesic
in G with initial covector (u1, . . . , uk, λ), such that γ(0) = 0 and γ(1) = p. Then:

(26) Xγ = ISOp(G)/ ISOγ(G) ≃ Xγ1
× · · · ×Xγk

,

where:

Xγi
:=

{

S2ni−1 ui 6= 0, αiλ = 2miπ,

1 otherwise,
mi ∈ Z \ {0}.

Proof. By the proofs of Lemma 36 and 35 we have

ISOp(G) = ISOp1
(H2n1+1)× · · · × ISOpk

(H2nk+1),

ISOγ(G) = ISOγ1
(H2n1+1)× · · · × ISOγk

(H2nk+1),

where pi = (xi, z) ∈ H2ni+1 and γi is the normal geodesic in H2ni+1 with initial covector
(ui, αiλ) ∈ T ∗

0H2ni+1, for all i = 1, . . . , k. Since each factor ISOγi
(H2ni+1) is a subgroup of

the corresponding ISOpi
(H2ni+1), the quotient of the direct product of Lie groups factors in the

direct product of the quotients:

k
×
i=1

ISOpi
(H2ni+1)/

k
×
i=1

ISOγi
(H2ni+1) =

k
×
i=1

ISOpi
(H2ni+1)/ ISOγi

(H2ni+1).

Then:

Xγ =
k
×
i=1

Xγi
, Xγi

= ISOpi
(H2ni+1)/ ISOγi

(H2ni+1).

Recall that the geodesic γi of H2ni+1 is associated with initial covector (ui, αiλ) by construction.
Thus for each factor Xγi

we proceed as in the proof of Prop. 33 and we obtain the result. �

Example 7. Prop. 37 implies that the for generic geodesic (i.e. with generic initial covector), the
manifold Xγ of distinct isometrically equivalent geodesics is trivial.

Example 8. Consider the generic Carnot group G, associated with the generic choice of A ∈
so(2n). In this case n = k, n1 = · · · = nk = 1 and all the αi are not commensurable. The only
geodesics γ admitting a non-trivial manifold Xγ of distinct isometrically equivalent geodesics
are those with initial covector (u, λ), such that λ = 2mπ/αi for a unique i ∈ {1, . . . , n} and
m ∈ Z \ {0}. In this case: Xγ ≃ S1. In fact αjλ 6= 2mjπ for all j 6= i otherwise some αj

would be commensurable with αi. Then there is only one factor in Eq. (26). Notice that these
geodesics have endpoint (x, z), with z 6= 0, xi = 0.

6.3. Families of isometrically non-equivalent geodesics. We ended the previous section
discussing families Xγ of isometrically equivalent geodesics connecting two points. These families
arose as homogeneous space w.r.t. the stabilizer ISOp(G) of the final point p = γ(1) of a fixed
geodesic γ. In this section we adopt a different point of view, and we investigate how many
isometrically non-equivalent geodesics join two points in G.

It may well be that some of the families of Thm. 22 contain geodesics that are isometrically
equivalent, as in Def. 32. This is the case in the Heisenberg groups H2n+1, where all the families
are S1 of equivalent geodesics. Is this the correct picture for any contact Carnot group? In
other words, are the spheres appearing in Γ∞(p) families of isometrically equivalent geodesics?
In general the answer is no, and the picture is more complicated as shown in the next theorem.
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Theorem 38. Let G be a contact Carnot group. The set Γ̄∞(p) of equivalence classes of iso-
metrically equivalent geodesics ending at p 6= p0 is homeomorphic to the disjoint union:

Γ̄∞(p) ≃
⋃

λ∈Λp

S
ℓ(λ)−1
≥0 ℓ(λ) := #L(λ),

where Sn
≥0 = Sn ∩ Rn+1

≥0 is the intersection of the n-sphere with the positive quadrant in Rn+1

and Λp is defined in (13).

Remark 12. When all the α1, . . . , αk are pair-wise non-commensurable, then #L(λ) = 1 for all
λ ∈ Λp ⊆ Λ and N(λ) = 1. Thus all the “continuous” families in Γ∞(p) are topologically S1 of
isometrically equivalent geodesics. Nevertheless, for resonant structures (i.e. when some of the
αi are commensurable) there exist continuous families of non-isometrically equivalent geodesics.

Proof. Fix λ̄ ∈ Λp. Without loss of generality, we can assume that L(λ̄) = {1, . . . , ℓ} for
ℓ = #L(λ̄). This implies x1 = · · · = xℓ = 0 by Prop. 19. From Lemma 35:

ISOp(G) = U(n1)× · · · ×U(nℓ)×U(nℓ+1 − 1)× · · · ×U(nk − 1),

and the action ρ : ISOp(G)×G → G is:

ρ(A1 + iB1, . . . , Ak + iBk, (x1, . . . , xk, z)) = (M1x1, . . . ,Mkxk, z),

with Mi =
(

Aj Bj

−Bj Aj

)

.

In particular ISOp(G) is the subgroup that fixes all the components xℓ+1, . . . , xk (with no
other restriction on the other components). It is easy to check that the action on the initial
covector (u1, . . . , uk, λ) is exactly the same. In particular, ISOp(G) is the subgroup that fixes all
the components uℓ+1, . . . , uk with no other restriction on the other components.

Consider one connected component of Γ∞(p), given by Γ∞(p) ∩ {λ = λ̄}. As in the proof
of Thm. 22, specifically equation (16), and assuming without loss of generality that L(λ̄) =
{1, . . . , ℓ}, we have that

Γ∞(p) ∩ {λ = λ̄} =






(u1, . . . , uℓ) ∈ R2ℓ

∣
∣
∣
∣
∣

∑

j∈L(λ̄)

‖uj‖
2 = c(λ̄)






≃ S2N(λ̄)−1,

where c(λ̄) > 0, ℓ = ℓ(λ̄) = #L(λ̄), and N(λ̄) =
∑

j∈L(λ̄) nj .

The action of ISOp(G) on S2N(λ̄)−1 is the action of U(n1)× · · · ×U(nℓ), namely each copy of
U(nj) acts on each component uj with j ∈ L(λ̄). Thus consider the map:

ξ : S2N(λ̄)−1 → Sℓ−1
≥0 ξ(u1, . . . , uℓ) := (‖u1‖, . . . , ‖uℓ‖).

This map indeed descends to a continuous map on the quotient.

ξ̃ : S2N(λ̄)−1/U(n1)× · · · ×U(nℓ) → Sℓ−1
≥0 .

It is bijective (recall that uj ∈ R2nj and the action of U(nj) on R2nj is the classical action of
U(nj) on Cnj , which is transitive on spheres with the same radius). Being a continuous map from
a compact space to a Hausdorff space, ξ̄ is closed, then is open, thus it is an homemorphism. �

7. Contact sub-Riemannian manifolds

7.1. The nilpotent approximation. Let M be a contact sub-Riemannian manifold and let
p0 ∈ M . All our considerations being local, up to restriction to a coordinate neighbourhood U
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of p0, we assume that M = R2n+1 and that the sub-Riemannian structure (D, 〈·|·〉) on M is
defined by a set f1, . . . , f2n of global orthonormal vector fields. Namely

D = span{f1, . . . , f2n}, and 〈fi|fj〉 = δij .

The vector fields f are assumed to be bounded with all derivatives as well. This will certainly
be true if they are the coordinate representation of local orthonormal fields on a neighbourhood
U of p0 of a larger sub-Riemannian manifold.

Definition 39. Coordinates (x, z) ∈ R2n × R are adapted at p0 if they are centred at p0 and

Dp0
= span

{
∂

∂x1
, . . . ,

∂

∂x2n

}

.

Example 9. Darboux’s coordinates on a contact manifolds are local coordinates (x, z) ∈ R2n ×R

such that the contact form has the following form:

α = −dz +
1

2

2n∑

i,j=1

Jijxidxj , where J =

(
0 1n

−1n 0

)

.

In particular, in these coordinates dα =
∑

i<j Jijdxi ∧ dxj . The classical Darboux’s theorem
states that Darboux’s coordinates always exist in a neighbourhood of any point p0. Since Dp0

=
kerα|p0

= span{∂x1
, . . . , ∂x2n

}, Darboux’s coordinates are indeed adapted at p0.

In these coordinates we define “non-homogeneous dilations” δε : M → M by:

δε(x, z) = (εx, ε2z), ε > 0,

and the following family of vector fields:

f ε
i := εδ 1

ε
∗fi = f̂i + εW ε

i , ε > 0.

The fields f ε
i represent the “blowup” of the original structure in a neighbourhood of p0 through

the dilations δε. The nilpotent approximation is the “principal part” of the original structure
w.r.t. this non-homogeneous blowup.

Definition 40. For all ε > 0, the ε-blowup is the sub-Riemannian structure (M, f ε) on M
defined by declaring f ε

1 , . . . , f
ε
2n a set of global orthonormal fields. Likewise, the nilpotent ap-

proximation (at p0) is the sub-Riemannian structure (M, f̂) onM defined by declaring f̂1, . . . , f̂2n
a set of global orthonormal fields.

We call Dε (resp. D̂) the distribution of the ε-blowup (resp. of the nilpotent structure).

Proposition 41. The nilpotent approximation (M, f̂) at p0 of a contact manifold is a contact
Carnot group, with contact form given by

α̂ = lim
ε→0

1

ε2
δ∗εα.

Let f0 be a vector field transversal to D (in the original structure), and let

f̂0 := lim
ε→0

ε2δ 1
ε
∗f0.

Then the Lie algebra g = g1 ⊕ g2 of the contact Carnot group G = (M, f̂) is

g1 = span{f̂1, . . . , f̂2n}, g2 = span{f̂0},

with structural constants given by A ∈ so(2n) such that:

[f̂i, f̂j ] = Aij f̂0, Aij = −
dα(fi, fj)

α(f0)

∣
∣
∣
∣
p0

.
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Proof. We first prove that the nilpotent structure is contact. For ε > 0 let αε := 1
ε2 δ

∗
εα. Indeed

Dε = kerαε. Let (x, z) be the set of adapted coordinates that define the dilation δε. Then

α =

2n∑

i=1

ξidxi + wdz,

for some smooth functions ξi, w : R2n+1 → R, bounded with all their derivatives. Since Dp0
=

kerα|p0
= span{∂x1

, . . . , ∂x2n
} in adapted coordinates we have the following Taylor expansions

(27) ξi(x, z) =

2n∑

j=1

aijxj + bz +Ri(x, z), w(x, z) = w0 +R0(x, z).

where the remainder terms Ri(x, z) (resp. R0(x, z)) are actually bounded by polynomials of
degree ≥ 2 (resp. ≥ 1) in (x, z). Moreover aij is non-degenerate since dα|D is non-degenerate
and w0 6= 0. A straightforward calculation using the definition of δ∗ε gives

αε =

2n∑

i=1

1

ε
ξi(εx, ε

2z)dxi + w(εx, ε2z)dz.

In particular, using Eq. (27), we notice that αε converges uniformly to α̂:

α̂ = lim
ε→0

αε =

2n∑

i,j=1

aijxjdxi + w0dz.

Indeed α∧ (dα)n = w0 det(a) 6= 0, which implies non-degeneracy of the contact form. Moreover,

ker α̂ = span{f̂1, . . . , f̂2n}. In fact, for all i = 1, . . . , 2n, we have

α̂(f̂i) = lim
ε→0

1

ε2
δ∗εα(εδ 1

ε
∗fi) = lim

ε→0

1

ε
α(fi) = 0.

Now we show that the nilpotent approximation (M, f̂) is a Carnot group. Consider the fields
f1, . . . , f2n defining the original structure, and any field f0 transversal to D. Then

(28) [fi, fj ] =

2n∑

k=1

ckijfk + c0ijf0, ∀i, j = 1, . . . , 2n,

for some family of smooth functions c0ij and ckij . Now consider the blowup of Eq. (28), namely

we act on both sides with ε2δ1/ε∗, and we take the limit for ε → 0. The first term on the r.h.s.

vanishes in the limit (due to the factor ε2), and we obtain

[f̂i, f̂j] = Aij f̂0.

where Aij := c0ij(p0) is a constant skew-symmetric matrix. Analogously, one can check that

[f̂i, f̂0] = [f̂0, f̂0] = 0, ∀i = 1, . . . , 2n.

Thus the fields f̂1, . . . , f̂2n and f̂0 define a graded, nilpotent Lie algebra g = g1 ⊕ g2 with

g1 := span{f̂1, . . . , f̂2n}, g2 = span{f̂0}.

Since M = R2n+1 is simply connected and the Lie algebra of vector fields g is nilpotent, there
exists a unique group structure on M such that g is its Lie algebra of left-invariant vector fields.
The definition of the product law can be written explicitly in exponential coordinates on G
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adapted coordinates
(x, z) ∈ R2n × R

dilations δε
δε(x, z) = (εx, ε2z)

nilpotent approximation

f̂ = lim
ε→0

εδ 1
ε
∗
f

exponential coordinates
(θ, ρ) ∈ R2n × R

change of coordinates (x, z) = (Bθ, θ∗Sθ + cρ)

Figure 8. Adapted coordinates on M define the dilation map δε that, in turn,

defines the nilpotent approximation (M, f̂).

induced by the fields f̂1, . . . , f̂2n, f̂0 through the Backer-Campbell-Hausdorff formula and is left

to the reader. Thus G := (M, f̂) has the structure of a contact Carnot group. Finally,

dα(fi, fj) = fi(α(fj))− fj(α(fi)) − α([fi, fj]) = −c0ijα(f0).

Using the relation Aij = c0ij(p0), it is sufficient to evaluate the above formula at p0 to obtain

Aij = −
dα(fi, fj)

α(f0)

∣
∣
∣
∣
p0

.

Indeed A is not degenerate, as a consequence of the non-degeneracy assumption on dα|D. �

7.2. Adapted vs exponential coordinates. Recall that, at the beginning of this section
we put adapted coordinates (x, z) ∈ R2n × R on M . This choice defined the family of non-

homogeneous dilations δε that, in turn defined the nilpotent approximation (M, f̂) as the “limit”
of the ε-blowup structures. Any choice of a global orthonormal frame fi and f0 transverse to D
for the original structure induces a global orthonormal frame f̂i and f̂0 (transverse to D̂) for the
nilpotent approximation, where

f̂i = lim
ε→0

εδ 1
ε
∗fi, f̂0 = lim

ε→0
ε2δ 1

ε
∗f0.

Since G = (M, f̂) is a contact Carnot group, the fields f̂1, . . . , f̂2n and f̂0 induce exponential
coordinates (θ, ρ) ∈ R2n × R. Namely a point has coordinates (θ, ρ) if and only if

(x, z) = expG

(
2n∑

i=1

θif̂i + ρf̂0

)

.

The next lemma clarifies the relation between adapted coordinates (x, z) and exponential coor-
dinates (θ, ρ) on the same base space M = R2n+1.

Lemma 42. Let (x, z) ∈ R2n × R be adapted coordinates for the contact structure (R2n+1, f),

and let (θ, ρ) ∈ R2n × R be exponential coordinates for the Carnot structure (R2n+1, f̂), induced

by some choice of fi, f0 (and consequently f̂i, f̂0). Then the two sets of coordinates are related
by

x = Bθ, z = θ∗Sθ + cρ,

where B ∈ GL(2n), c ∈ R \ {0} and S ∈ Mat(2n).

Proof. For i = 1, . . . , 2n we have, in adapted coordinates:

fi =

2n∑

j=1

Bji(x, z)
∂

∂xj
+ bi(x, z)

∂

∂z
, f0 =

2n∑

j=1

Cj(x, z)
∂

∂xj
+ c(x, z)

∂

∂z
,

for some smooth functions Bij , bi, Cj , c : R
2n+1 → R that satisfy:

(29) bi(0, 0) = 0, detBij(0, 0) 6= 0, c(0, 0) 6= 0.
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By explicit computation we obtain

f̂i =

2n∑

j=1

Bji(0, 0)
∂

∂xj
+

2n∑

j=1

∂bi
∂xj

(0, 0)xj
∂

∂z
, f̂0 = c(0, 0)

∂

∂z
.

By definition of exponential coordinates (see the proof of Lemma 17) we obtain that

x = Bθ, and z = θ∗Sθ + cρ,

where B is the matrix with components Bij(0, 0), c = c(0, 0) and the matrix S has components

�Sij =
1

2

2n∑

ℓ=1

∂bi
∂xℓ

(0, 0)Bℓj(0, 0), B ∈ GL(2n) by (29).

The following proposition compares the geometry of the original structure with the ε-blowup
and is left to the reader.

Proposition 43. The composition γ 7→ γε = δ 1
ε
γ gives a homeomorphism between the set of

admissible curves for (M, f) and admissible curves for (M, f ε). If γ(0) = 0, γ(1) = p and γ is a
geodesic for (M, f), then γε is a geodesic for (M, f ε) with γε(0) = 0, γε(1) = δ 1

ε
(p); the energies

of these curves are related by Jε(γε) = ε−2J(γ).

7.3. Semicontinuity of the counting function. Let Eε, Ê : T ∗
p0
M → M be, respectively, the

sub-Riemannian exponential maps for (M, f ε) and (M, f̂). We define now the counting functions
νε, ν̂ : M → (0,∞] as:

νε(p) = #E−1
ε (p) and ν̂(p) = #Ê−1(p).

In other words, νε(p) counts the number of geodesics between 0 and p for the ε-blowup and
ν̂(p) for the limit Carnot group. Setting ν = ν1 (the counting function for the original structure
(M, f)), we notice that Prop. 43 implies indeed:

νε(p) = ν(δε(p)).

In fact given a geodesic γ : I → M for (M, f) between 0 and δε(p), then δ 1
ε
γ is a geodesic for

(M, f ε) with final point δ 1
ε
(γ(1)) = δ 1

ε
(δε(p)) = p (and vice-versa). The next theorem compares

the asymptotics of ν(δε(p)) with the one of ν̂(p).

Theorem 44 (Counting in the limit). Let M be a contact sub-Riemannian manifold. For the
generic p ∈ M sufficiently close to p0:

ν̂(p) ≤ lim inf
ε→0

ν(δε(p)).

where δε is the non-homogeneous dilation defined in some set of adapted coordinates in a neigh-
bourhood of p0.

Proof. If p is a regular value of Ê, then the fiber if Ê−1(p) is discrete, hence ν̂(p) is finite by
Thm. 22. Consider an open bounded set U ⊂ T ∗

0M , where bounded means that it is contained
in a compact set K, such that:

Ê−1(p) ⊂ U ⊂ K.

We claim that there exists εK > 0 such that p is a regular value of Eε|U for every ε < εK .
If this was not true, then we can find a sequence {εn}n∈N converging to zero and a sequence
{λn}n∈N ⊂ K such that Eεn(λn) = p and rank(dλn

Eεn) < dim(M). Then, by compactness

of K, up to subsequences we can assume λn → λ̂ with Ê(λ̂) = p, by uniform convergence of

Eεn |K to Ê|K with all derivatives (see [3, Prop. 5.15]). Moreover, by the same argument,
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b

b

b

b

b

b

b

εεK

T ∗
0M

Ê−1(p)
b

Figure 9. Picture of
⋃

ε∈I E
−1
ε (p) ⊂ I × T ∗

0M . Even if εK is small, some
geodesics can still “escape” out of K. The shaded region denotes [0, εK ]×K.

dλn
Eεn → dλ̂Ê and since the set of points where the rank of dÊ is not maximal is closed, we

also have rank(dλ̂Ê) < dim(M), which contradicts the fact that p was a regular value of Ê.

Consider now the function Ē : U → M (where U = U × [0, εK ]) given by (u, ε) 7→ Eε(u)

(where we have set E0 = Ê); the uniform convergence of Eε with all derivatives on compact sets
implies Ē is smooth (in fact C1 is enough for us). By the above observation X̄ = Ē−1(p) is a
smooth submanifold of U and its dimension is one. In fact:

(d(u,ε)Ē)(u̇, ε̇) = (duEε)u̇+
∂Ē

∂ε
(u, ε)ε̇, (u̇, ε̇) ∈ T(u,ε)U.

Since p is a regular value of Eε for all ε ∈ [0, εK ], the image of duEε is enough to generate TpM .
On the other hand, we claim that zero is a regular value for the the projection π : X̄ → [0, εK ]

on the second factor. To prove this, observe that tangent space to X̄ at (u, 0) is:

T(u,0)X̄ =

{

(u̇, ε̇)
∣
∣ (duÊ)u̇+

∂Ē

∂ε
(u, 0)ε̇ = 0

}

,

and since Ê a submersion at p:

T(u,0)X̄ ∩ kerdπ ≃ TuÊ
−1(p) = {0}.

Thus T(u,0)X̄ must contain some vector (u̇, ε̇) with ε̇ 6= 0, i.e. zero is not critical for π, proving
the claim. Then ε′ > 0 small enough also is noncritical for π; in particular, by Ehresmann’s
theorem, π|π−1[0,ε′] is a fibration (U is contained in a compact set) and:

∀ε < ε′ : Eε|
−1
U (p) ≃ Ê|−1

U (p).

Since νε(p) ≥ #Eε|
−1
U (p) the conclusion follows (see Fig. 9). �

Theorem 45. Let M be a contact manifold and (x, z) be Darboux’s coordinates on a neighbour-
hood U of q ∈ M . There exist constants C(q), R(q) such that, for the generic p = (x, z) ∈ U :

lim inf
ε→0

ν(δε(p)) ≥ C(q)
|z|

‖x‖2
+R(q).
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Proof. We consider on U the original structure (U, f) and the nilpotent structure (U, f̂) defined
in adapted (e.g. Darboux’s) coordinates (see Fig. 8). The classical Sard theorem implies that

the generic p ∈ U is a regular value for Ê : T ∗
q U → U . Then, by Thm. 44,

lim inf
ε→0

ν(δε(p)) ≥ ν̂(p).

Now choose some orthogonal local frame f1, . . . , f2n and f0 transversal to D for the original
structure. This induces exponential coordinates (θ, ρ) on U (see Sec. 7.2). By Prop. 41, the

nilpotent structure (U, f̂) is a contact Carnot group such that

[f̂i, f̂j ] = Aij f̂0, Aij =
dα(fj , fi)

α(f0)

∣
∣
∣
∣
q

.

The generic point p has exponential coordinates (θ, ρ) with all θj 6= 0. Then, by Thm. 24 we
have

ν̂(p) ≥ C1
|ρ|

‖θ‖2
+R1,

where C1 = C1(q) and R1 = R1(q) are computed in the proof of Thm. 24 in terms of the singular
values of A. Indeed they depend on the point q at which we consider the nilpotentization.
Darboux’s (adapted) coordinates (x, z) and exponential coordinates (θ, ρ) are related by the
transformation of Lemma 42 and we obtain the result. �

Theorem 46. Let M be a contact sub-Riemannian manifold and q ∈ M . Then there exists a
sequence {qm}m∈N in M such that:

lim
m→∞

qm = q and lim
m→∞

ν(qm) = ∞.

Proof. In Darboux’s coordinates in a neighbourhood U of q, for every m ∈ N pick a point

pm = (xm, zm) such that: 1) pm is a regular value of Ê and 2) |zm|
‖xm‖2 ≥ m. The existence of

such pm is guaranteed by Sard’s Lemma. Consider now δε(pm).

If pm is regular value for Ê, then ν̂(pm) is finite. Hence one can choose a fixed Um in the
proof of Thm. 45 containing all geodesics arriving at pm, and thus there exists εm such that

#Ê−1(pm) = #Eε|
−1
Um

≤ ν(δε(pm)), ∀ε ≤ εm.

Notice that we can assume limm→+∞ εm = 0. Setting qm = δεm(pm) yields the statement. �
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