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We study Ising chains with arbitrary multispin finite-range couplings, providing an explicit solu-
tion of the associated inverse Ising problem, i.e. the problem of inferring the values of the coupling
constants from the correlation functions. As an application, we reconstruct the couplings of chain
Ising Hamiltonians having exponential or power-law two-spin plus three- or four-spin couplings. The
generalization of the method to ladders and to Ising systems where a mean-field interaction is added
to general finite-range couplings is as well as discussed.

I. INTRODUCTION

Parameter estimation is a central issue in system modeling: a typical problem is to start from a certain amount of
information on a given system (e.g. its correlation functions) and then extract the parameters of a model which is
supposed to describe the its properties [1, 2]. The parameter estimation procedure gives insight on the validity of the
model and can suggest the introduction of more appropriate and efficient models.
A usual approach is to extract the parameters from an instance of the problem in certain conditions and subsequently

testing the model in other instances. From this point of view is useful to deal with systems in conditions where the
relation between observables and model parameters is more transparent: e.g. for a statistical mechanics system
this corresponds to high/low temperature or field. Once the parameters have been estimated, one moves to more
interesting parameter regions, where the full complexity of the system shows up. Such an approach, when translated
into the wide arena of complex systems, generally cannot be carried out since no knob such as temperature or field is
available, so that we may be faced with the inverse problem in the hardest region.
A huge interest in obtaining accurate parameter estimation stems from the current availability of large datasets

in several areas of biology, economy and social sciences, to name a few examples DNA sequences, stock market time
series and Internet traffic data (see more references in [3]). This great amount of data has made even more pressing
the quest for efficient models, allowing us to extract and encode the relevant information. Various techniques have
been developed in order to solve this problem: two general approaches which can be flexibly adapted to the specific
problems are Bayesian model comparison [4] and Boltzmann-machine learning [5].
In the past decade a significant contribution to topic of parameter estimation came from the application of typical

statistical mechanics techniques which turned out to be very useful in the modeling and study of different fields
ranging from neurobiology [6–8] to the economy [9]. The description of a system using statistical models (and in
particular Ising-like models) appears natural in many contexts: e.g., effective Ising models generally arise when the
space of states is intrinsically discrete (e.g., for DNA and proteins) and, even when this is not the case, some Ising
variables may be lurking behind the continuous ones. In the statistical physics realm such emergence of effective Ising
models could occur near a critical point when the microscopic model is in the Ising universality class [10] - but one
can also find more subtle examples where discrete Ising-like spin degrees of freedom describe some hidden order, e.g.
the chiral ordering in frustrated continuous spin models [11–14].
A paradigmatic example considered by the statistical physics community in the context of parameter estimation is,

of course, the inverse Ising problem, i.e. the problem of inferring the values of the coupling constants of a general Ising
model from the correlation functions. The inverse Ising problem has been tackled by numerical and analytical methods,
often adapting old techniques to the problem at hand. Among these attempts we mention Monte Carlo optimization
[15], Message Passing based algorithms [16] and Thouless-Anderson-Palmer equations approaches [17] (see [18] for a
review). Field theoretical techniques has been used by Sessak and Monasson [19] who perturbatively calculated, in
terms of the correlations, expressions for the interaction parameters of a general (heterogeneous) Ising model with
two-body interaction and external field. Most of the available results on the inverse Ising problem concerns Ising
models having two-spin interactions: in this context exact methods, solving the inverse Ising problem with general
multispin interactions, are welcome.
We decided to concentrate in this paper on the inverse Ising problem in one dimension. The motivation is three-

fold: firstly one-dimensionality allows for exact solutions. In this manuscript we indeed present explicit analytical
formulas to exactly perform the inversion for one-dimensional Ising systems having general multispin interactions.
Our results therefore provide a theoretical laboratory where different approximate inverse Ising techniques [15–17]
can be benchmarked against the exact results obtained using our method: in the following we compare some other
approximate methods with exact results. The possibility of testing approximate methods against exact results in
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one-dimensional systems is not our only motivation: indeed one-dimensional classical models are often employed
to describe the conformational transition of systems, as proteins or DNA, naturally possessing an underlying one-
dimensional structure. Such simple models are found to capture some of the global properties of these complex systems
as long as conformational properties are concerned. The existence of exact methods would then help to determine
the parameters and the important interactions of effective models describing the properties of such systems. More
in detail, the use of one-dimensional statistical mechanics models applied to systems like proteins or DNA is usually
based on the individuation of a reduced set of states representing the conformational state of a given elementary
unit: e.g. in protein systems the states could be chosen as helix, coil and sheet (for aminoacids belonging to an
α-helix, to a coil and to a β-sheet, respectively). The task is then, given this reduced set of states, to estimate the
probabilities to have the consecutive elements in different states [20, 21] and then our method (working for Ising and
Potts models) would then allow for the determination of the parameters of effective discrete models. We notice that in
our method we can consider also longer ranged couplings (i.e., longer than nearest-neighbour) emulating interactions
among aminoacids distant along the chain, but near in physical space [22].
Another motivation for our work is based on the fact that one-dimensional Ising-like models can also be used to

deal with stationary time-series of correlated data: as we will later discuss in the Conclusions, it is possible to connect
stationary time-series of data by using a mapping onto an equilibrium discrete Markov chain having finite memory.
For this application, the inversion task (to which we can refer as an inverse Markov problem) consists in extracting
from the data the transition probabilities of the associated guessed Markov chain: therefore, given the similarity of
the two inversion (Ising and Markov) problems, the existence of exact techniques can provide in perspective a way
to effectively attack the inverse Markov problem. We observe that the method of using Markov chains to describe
sequences of data may prove useful even in biological realms when statistical properties of e.g. DNA sequences are
concerned [23].
In the following we study the one-dimensional inverse Ising problem with general finite-range multispin interactions:

by finite range R we mean that that two spins exceeding the distance R do not interact (this implies that at maximum
R-spin couplings can be present). We will then consider the reconstruction of Ising models having exponential or
power-law two-spin couplings (and three- or four-spin interactions), approximating them with a finite range R and
checking the validity of the reconstructed couplings. A remark about dimensionality is due: being the dimension
set to one, the system cannot order at finite temperature. However we show that mean-field like interactions can
be included in our formalism, so that one can treat systems having finite-range multispin couplings and long-range
mean-field interactions giving rise to finite-temperature transitions. Another possibility would be to extend the range
of the interaction and perform a so-called finite-range scaling. Such a technique has been employed [24, 25] to the
Ising model with power-law 1/rα decaying interactions, a model exhibiting a rich behaviour including a Berezinskii-
Kosterlitz-Thouless transition (for α = 2) [26–29] and gaussian and non-gaussian RG fixed points (in the range of α
between 1 and 2) as the decay exponent α is varied [30–32].
In this paper we present the solution of the inverse problem for a one-dimensional Ising model with finite-range

arbitrary interactions, i.e. not restricted to the one- and two-body type. The main result of our paper is formula
(10) which expresses the entropy of a one-dimensional translational invariant system (in equilibrium) in terms of a
sufficiently large number of correlation functions, from which the inversion formula (9) immediately follow.
We observe that Ising chains are usually treated via transfer matrix method, but when longer range or multispin

types of interaction are included the search for the parameters reproducing the observables might become very onerous.
Our method provides a direct method of estimating the parameters when a sufficiently large number of correlation
function is known. The inclusion of many-body interactions may prove useful for the description of complex systems
where the two-body assumption is not justified or in more traditional many-body systems with long-range interaction,
where the construction of low-energy effective theories quite naturally leads to the appearance of multispin interactions
[33].
The paper is structured as follows: in section II we introduce our notations and we state the mathematical problem.

Section III contains our main result on the entropy in terms of the correlation functions and the resulting inversion
formula. The obtained result is illustrated on simple problems in section IV. In section V we examine more complicated
examples where the usefulness of our result is shown. We analyze models formally not have finite-range interactions
and having exponential or power-law two-spin interactions plus multispin interactions. The data generated by Monte
Carlo simulations are analyzed with our technique which correctly detects the structure of interactions. In section VI
we briefly discuss how the developed formalism may be modified to allow mean-field interactions. Finally we draw
our conclusions in VII. The Appendix present checks of the obtained findings for small values of the range R using
the transfer matrix method, and as well as supplementary material on the j1 − j2 Ising model.
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II. NOTATION AND STATEMENT OF THE PROBLEM

We consider a general one-dimensional Ising model with multispin interactions defined by the Hamiltonian

H(σN ) = −
∑

i1

j
(1)
i1

si1 −
∑

(i1,i2)

j
(2)
i1,i2

si1si2 −
∑

(i1,i2,i3)

j
(3)
i1,i2,i3

si1si2si3

−
∑

(i1,i2,i3,i4)

j
(4)
i1,i2,i3,i4

si1si2si3si4 − . . . (1)

where σN = {s1, s2, . . . , sN} is the configuration of the N Ising spins (si = ±1); periodic boundary conditions will be
assumed so that sn = sm for n ≡ mmodN . The sums runs over distinct couples, triples and so on; the temperature

dependence is absorbed in the coupling constants: explicitly, j
(1)
i1

≡ βJ
(1)
i1

, j
(2)
i1,i2

≡ βJ
(2)
i1,i2

, and so on (where e.g. J
(2)
i1,i2

is the two-body coupling among a spin in i1 and a spin in i2 - as usual β = 1/kBT ).
The couplings j(n) are assumed to be invariant under translation by ρ spins (for simplicity we will assume N/ρ is

an integer, but since we are interested in the N → ∞ limit this is not strictly necessary): this condition reads

j
(n)
i1,i2,...,in

= j
(n)
i1+ρ,i2+ρ,...,in+ρ (2)

(if the indices on the right hand side exceed N , they have to be replaced by the indices equivalent modulo N contained
in the set {1, . . . , N}). Finally we assume that the couplings are zero if their indices cannot be brought by a translation
of a multiple of ρ to a subset of {1, . . . , R}.
Since the use of the form (1) of the Hamiltonian may be cumbersome, it is convenient introduce a more compact

notation, rewriting Hamiltonian (1) as

H(σN ) = −

′
∑

Rg(µ)≤R

N/ρ
∑

i=1

jµOµ+iρ(σN ), (3)

where µ is a subset of {1, . . . , R} (this is encoded in the writing Rg(µ) ≤ R, which stands for “the range of the
interaction is less or equal than R”). ρ is the periodicity of the interaction and Oµ+iρ is an operator associated to the
subset µ = {n1, n2, . . . n|µ|} (|µ| is the number of elements of µ) translated by iρ which acts on the spins as

Oµ+iρ(σN ) = sn1+iρsn2+iρ . . . sn|µ|+iρ. (4)

For the null subset ∅ we define O∅(·) = 1. The prime in the sum over µ in (3) indicates that the null subset (which
would contribute just to a constant in the Hamiltonian) is not included and that the terms related by a translation
of a multiple of ρ are counted only once, in order to avoid the presence of equivalent operators in the Hamiltonian.
Once the Hamiltonian is specified we proceed in the usual calculation of the thermodynamic quantities, defining

the partition function

ZN =
∑

σN

e−H(σN ), (5)

the free energy per elementary unit cell in the infinite volume limit (i.e. ρ spins)

f = − lim
N→∞

1

N/ρ
log(ZN ) (6)

and the correlation functions associated to the operator µ

gµ = 〈Oµ〉 ≡ lim
N→∞

1

Z

∑

σ

Oµ(σN )e−H(σN ) (7)

(by definition, g∅ = 1).
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III. INVERSION FORMULA

The inverse problem for the system introduced in the previous section is stated as follows: given the set of correlations
{gµ} determine the couplings {jµ}. The Hamiltonian is the one specified in equation (3), i.e. the most general finite-
range multispin Hamiltonian; in section VI we will extend this treatment to include long-range mean-field interactions.
The calculation is based on the evaluation of the entropy per unit cell s({gµ}) characterized by the set of correlation

functions {gµ}. Once s({gµ}) is known we may compute the free energy

f({gµ}) = e({gµ})− s({gµ}) = −

′
∑

Rg(µ)≤R

gµjµ − s({gµ}) (8)

where e({gµ}) = 〈H〉
N/ρ is the energy of a unit cell which is readily evaluated using directly (3) and (7) on a state

specified by the set of correlations {gµ}. The minimization of the above expression yields the inversion formulas:

jµ = −
∂s({gµ})

∂gµ
(9)

We may state now our main result for the entropy s({gµ}), which is given by

s({gµ}) = s(R)({gµ})− s(R−ρ)({gµ}). (10)

The entropy (10) is written in terms of the functions s(Q)({gµ}) (to which we may refer as “entropy at range Q”),
given by

s(Q)({gµ}) = −
∑

τQ

p(τQ) log p(τQ), (11)

p(τQ) = 2−Q
∑

Rg(µ)≤Q

gµOµ(τQ) (12)

where τQ = {t1, t2, . . . , tQ} is the configuration of Q auxiliary Ising spins. Notice that the sum over µ now includes
every subset, including the null one. The entropy can be shown to be convex in the variables {gµ}, thus the equation
(9) admits a solution, unless some of the pQ’s used in the calculation become negative, signaling a set of “nonphysical”
correlations.
We now discuss the derivation of the formula (10). Let us think how the measurement of a correlation gµ is

operatively defined: we look at R consecutive spins and we perform the measurement. Each of the microscopic
configuration τR will occur with a given probability p(τR) which would give rise to a mean value of gµ given by

gµ = 2−R
∑

τR

p(τR)Oµ(τR). (13)

Since we know all of the correlations within the subsets of the R spins, the system of the equations above may be
inverted giving rise to (12) with Q = R. Then the Boltzmann formula s = −

∑

i pi log pi is applied to this set of
probabilities obtaining the expression (12) (always for Q = R). To derive (10) we calculate the entropy of the unit
cell of size ρ, regardless of the state of the remaining R − ρ spins; in terms of number of states it is

♯(ρ spins) = ♯(R spins)/♯(R− ρ spins) (14)

where ♯(n spins) denotes the number of microstates of a set of spins n (subject to the constraints imposed by the
correlations). It should be noted that the R−ρ spins to be traced out cannot be chosen at will: by inspection it turns
out that the first R − ρ spins is a good choice. Thus taking the logarithm of (14) we obtain our expression for the
entropy of a state characterized by the set of correlations {gµ}. The number of correlations required to specify the
state can be shown by simple counting to be equal to 2R − 2R−ρ.
The above procedure can be formally applied also to a finite system of size R: this is achieved by letting ρ = R.

In this case the system looks like a set of N/R disjoint assemblies of R spins for which the entropy is given by
s(R)({gµ}) being s(0)({gµ}) = 0. This result refers to a general finite system of Ising spins with arbitrary heterogeneous
couplings without translational invariance and it should be used if one wants to treat datasets obtained from finite
heterogeneous systems and extract Ising couplings [34]. In general, the number of needed correlations to be known
grows exponentially with the system size: in the case of the present paper, exponentially with R. Therefore, our
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FIG. 1: Entropy per spin in terms of the nearest-
neighbour correlation g and the magnetization m for
R = 2 and ρ = 1.

j1

j1

j2

j3

j4

j5

j6

s1 s s3 5

s1 s s3 5

s ss2 4 6

s ss2 4 6

j j j j2 3 4 5 j6

FIG. 2: Simple representation of how a spin ladder hav-
ing 2 legs may be mapped onto a spin chain with R = 4
and ρ = 2. The filled circles represent spins which are
present in the different operators considered (and associ-
ated to the couplings j1, · · · , j6). In the middle part of
the figure we represent them on the ladder system, while
on the bottom part we show how they look like on the
chain. Explicitly these operators correspond to the fol-
lowing terms in the Hamiltonian (1): −j1

∑
i even

sisi+1,
−j2

∑
i even

sisi+2, −j3
∑

i even
sisi+3, −j4

∑
i odd

sisi+1,
−j5

∑
i odd

sisi+2 and −j6
∑

i even
sisi+1si+2si+3

result might be of practical importance if R is small, N is very large (i.e., near the thermodynamical limit) and the
underlying Ising model is supposed to be one-dimensional.
Although the number of required correlation grows exponentially with the range R, some simplifications may occur.

For example if the system is known to be invariant under reflection si → −si, then odd couplings vanish and we do
not have to measure the corresponding correlation function which are trivially zero. More generally, if we know that
a coupling is equal to a given value jν = j0ν then one has the additional (nonlinear) equation:

j0ν = −
∂s({gµ})

∂gν
, (15)

thus reducing the number of independent correlation functions. The technique described may be easily adapted to
other discrete spin systems as Potts or Blume-Emery-Griffith models by using two or more Ising spins to encode the
state of the discrete spin, although such a mapping may obscure the symmetries of the original model.
To conclude this section, we finally observe that it is possibler to show in general the equivalence between the

problem we have solved with the problem of finding, from a set of known correlations, the transition rates of an
equilibrium - i.e. satisfying detailed balance - Markov chain with finite memory: we postpone such discussion to the
Conclusions.

IV. SIMPLE EXAMPLES

As a first application of the results presented in the previous section, we consider a model with R = 2 and ρ = 1
(i.e. the Hamiltonian is H = −h

∑

i si − j
∑

i sisi+1 where h is the magnetic field and j is the coupling). The only
independent correlations are the one-body correlator, i.e. the magnetization m ≡ g{1}, and the nearest-neighbour
correlator g ≡ g{1,2}. Using (10) the entropy is calculated as

s(m, g) = −
1 + 2m+ g

4
log

(

1 + 2m+ g

4

)

−
1− 2m+ g

4
log

(

1− 2m+ g

4

)

−
1− g

2
log

(

1− g

4

)

+
1 +m

2
log

(

1 +m

2

)

+
1−m

2
log

(

1−m

2

)

(16)
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which agrees with the expression obtained in [35] by combinatorial means. In figure 1 we plot the entropy: the
convexity of s guarantees to obtain the field and nearest-neighbour interaction in terms of m and g. The system we
have just described presents no phase transitions, apart from the zero temperature ones which occur at the border
of the surface depicted in figure 1; in section VI we will see how the addition of a mean-field type interaction is
easily included, making phase transitions possible. Interestingly on the lines 1± 2m+ g = 0 the system is frustrated
and our approach readily provides an expression for the ground state degeneracy. Differentiation of the entropy (16)
allows us to obtain the couplings, field h ≡ j{1} and nearest-neighbour interaction j ≡ j{1,2} conjugated to m and g
respectively:

h =−
∂s(m, g)

∂m
=

1

2
log

(1−m)(1 + 2m+ g)

(1 +m)(1− 2m+ g)
(17)

j =−
∂s(m, g)

∂g
=

1

4
log

(1 + 2m+ g)(1− 2m+ g)

(1− g)2
. (18)

In Appendix A we examine this example (R = 2 and ρ = 1) and higher range ones (R = 3, 4 and ρ = 1), explicitly
checking the validity of the inversion formula (9) using the transfer matrix method.
We will consider now a translationally invariant spin ladder with interaction among the nearest-neighbors of the

same and other chain. For simplicity we will restrict ourselves to even interactions, i.e. in the Hamiltonian only terms
containing an even number of spins enter. As shown explicitly in figure 2 this system may be mapped onto a chain
system with R = 4 and ρ = 2, where the original interactions (allowed by symmetry) and the new ones are shown.
In terms of our subset notation used in (3) the interaction parameters are defined as j1 ≡ j{1,2}, j2 ≡ j{1,3}, j3 ≡
j{1,4}, j4 ≡ j{2,3}, j5 ≡ j{2,4}, j6 ≡ j{1,2,3,4}. This is easily generalized to ladders made up of more than two chains
and higher interaction range, and thus our method is suited to treat general finite-range ladder systems.
We point out that the inversion formula allows to explicitly write the relation among the j’s and g’s while the

transfer matrix approach, e.g. in the simple ladder system described above, already entails the solution of a fourth
order algebraic equation.

A. Nearest-neighbour and next-to-nearest-neighbour plus four-spin interactions

In this section we consider another simple example, in which nearest-neighbour and next-to-nearest-neighbour

interactions are present together with a four-spin interaction: denoting the coefficients j
(2)
i,i+1, j

(2)
i,i+2 and j

(4)
i,i+1,i+2,i+3

by j1, j2 and λ respectively, the Hamiltonian (1) reads

H = −
∑

i

(j1sisi+1 + j2sisi+2 + λsisi+1si+2si+3) . (19)

This Hamiltonian can be exactly treated in our framework; the case λ = 0 (the j1 − j2 model) is discussed in the
Appendix. Here we aim at comparing approximate inverse Ising methods against exact results, focusing in particular
on the low-correlation expansion (LCE) [19] which is in the following compared with exact findings. We will use the
LCE discussed in [19] using as input a finite number of correlations, coherently with what is done in this work (notice
that for the present case our method needs just four correlation functions in order to recover exactly the couplings);
the maximal range of two-body correlators for the LCE is denoted by Rrec.
The LCE is discussed in [19] to present an approximate technique for inverse Ising models having at most two-spin

interactions: since Hamiltonian (1) has only two-spin interactions for λ = 0, we present LCE results for the case
λ = 0 in the Appendix where we discuss the j1 − j2 model in detail, presenting the explicit solution using the transfer
matrix approach. As expected, for low temperatures (i.e. large couplings), the LCE breaks down and, as it can be
seen in the right panel of figure 8, for moderate temperatures the expansion may settle to an incorrect value of the
coupling as the range Rrec is increased. In order to further test the performance of the LCE against exact results we
present in figure 3 results for λ = 0 and λ = 0.2j1: although the LCE is developed in [19] for two-spin interactions
(and the extension to treat multispin interactions is expected to be cumbersome), the LCE reconstructed two-spin
couplings with λ 6= 0 may partially take into account the effect of the four-spin interaction. To test to what extent
this occurs, we consider two observables, susceptibility and specific heat, calculated using the reconstructed couplings:
the comparison with the exact results is in figure 3. As we can see in the left panel the specific heat is more sensitive
than the susceptibility to reconstruction errors, even without four-spin interaction (i.e. λ = 0). This may be traced
back to this type of LCE inversion procedure which aims at reproducing two body correlators which in this model
are required to calculate the susceptibility while the specific heat already contains averages of four body operators.
Obviously the LCE, being not designed to infer models with multispin interaction, gives no hint on the value λ but
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FIG. 3: Values for inverse susceptibility (green crosses) and specific heat (blue triangles) calculated with the LCE reconstructed
couplings compared with the exact ones (full lines) as the inverse coupling j1 is varied. The value j2/j1 is held fixed at the
value 1. The figure on the right includes the four-spin interaction whose coupling is fixed at the value λ = 0.2 j1. The inset
shows the ratio between the predicted values of specific heat and inverse susceptibility and the exact ones. Both figures are
obtained keeping Rrec = 8 correlation functions and using third order loop resummed expansion to reconstruct the couplings,
as presented in [19].
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j(2
) i,j

|i-j|
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Exact values
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j(2
) i,j

|i-j|

Rmax=8
Rmax=6

Exact values

FIG. 4: Two examples of reconstructed values of the two-body couplings j
(2)
i,j (empty symbols) and the values of the couplings

really used to generate the correlations (filled circles) - the full line is a guide to the eye. The figures refers to Hamiltonian (20)
with parameters J0 = 0.2, ξ = 1.6, Rmax = 6, 4 (left) and J0 = 0.1, ξ = 2.3, Rmax = 8, 6 (right).

in the right panel of figure 3 we apply it for λ = 0.2 in order to test how it can reproduce the considered observables
anyway: we can see that the addition of such an operator reduce the temperature range where the observables are
correctly reproduced. As noted above the specific heat is more subjected to errors than the susceptibility at contains
higher-body operators. From numerical inspection we saw that the LCE rather well performs in the high temperature
regime even for relatively large values of λ, but deviates from exact results at lower temperature even for small values
of λ as shown in figure 3.

V. EXPONENTIAL AND POWER-LAW TWO-SPIN PLUS HIGHER-SPIN COUPLINGS

In this section we consider examples where we cannot access the full knowledge of our system: our inversion
procedure will therefore yield approximate results. First, we consider an Ising model with an exponentially decaying
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FIG. 5: Measured values of the correlations gµ (top) and the inferred couplings jµ (bottom) for the µ’s allowed by translational
symmetry (filled blue circles) and exact values (empty purple triangles). The black diamonds refer to LCE results obtained
with the perturbative expansion up to third order [19]. The figure at the bottom is a logarithmic plot of the absolute values
of the jµ’s, while the inset gives for comparison the linear plot of the same jµ’s. The figures refer to Hamiltonian (20) with
parameters J0 = 0.2, ξ = 1.6. The reconstruction range is Rmax = 6. In abscissa are reported the µ’s denoting the various
coupling and correlators with the subset notation introduced in section II, e.g. g{1} = 〈s1〉 is the correlation of the subset
µ = {1}, g{1,2,4} = 〈s1s2s4〉 is the correlation of the subset µ = {1, 2, 4} and so on.

two-body interaction

HI = −
∑

(i,j)

j
(2)
i,j sisj , j

(2)
i,j = J0e

−|i−j|/ξ. (20)

Since the interaction now is not formally of “finite range” i.e. it does not vanish for distances beyond a given value
of R, the transfer matrix method is not viable (although we still may perform a finite-range scaling in the size of
the transfer matrix [24, 25]). The set of synthetic correlation functions is generated by a Monte Carlo method. Of
course we will not record all of the correlation function, but we will fix a maximal range Rmax, thus we will have to
measure on the order of 2Rmax correlation functions. The results for such a reconstruction are shown in figure V for
two values of the parameters. We see that the agreement improves as the value of Rmax is increased (at the expense
of calculating a larger number of correlation functions). In figure 5 a full set of the correlations and inferred couplings
is shown; if we look at the lower panel, the nonzero couplings are clearly singled out (even for a value of Rmax as low
as 6), thus our reconstruction procedure gives useful hints to build a faithful model of an unknown system. In figure
5 results obtained with the LCE are also reported: one sees that there is a good agreement for the considered value
of the temperature between the LCE results and the findings obtained using our reconstruction procedure.
In order to test the procedure on a system with more-body couplings we consider the Hamiltonian

HII = HI − j{1,2,4}
∑

i

si+1si+2si+4 − j{1,3,4,5}
∑

i

si+1si+3si+4si+5 (21)
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FIG. 6: Same as figure 5 except for the black diamonds which are obtained with the TAP approach [17]. The figures refer to
Hamiltonian (21) with parameters J0 = 0.3, ξ = 1.6, j{1,2,4} = 0.02, j{1,3,4,5} = −0.03. The reconstruction range is Rmax = 6.
The arrows mark the multispin interactions.

which includes three- and four-body interactions. As we see in figure 6, even in this case the reconstruction procedure
gives useful hints on the couplings present in the system, although some of the inferred couplings, which were zero in
the starting model, are predicted to be of comparable size to the nonzero ones (especially the j{1,2,3,4} coupling). This
is due to the finite reconstruction range and to the, albeit small (indeed smaller than the symbols in the figures 5, 6,
7), errors in the determination of the correlation. This implies that in order to clearly distinguish the contribution of
the different couplings, the correlation should be known with high accuracy. As for modeling purposes, this is not a
problem since the values of the coupling obtained give rise to a set of correlations not distinguishable from the original
one. For reference we also plot in figure 6 the results of the TAP equation approach developed in [17], which of course
provides no information on the multispin couplings, but as far as one-body operators and two-body operators are
concerned this approach at the temperature considered in figure 6 performs very well.
Finally we examine a model with power-law decay of the interaction

HIII = −
∑

(i,j)

j
(2)
i,j sisj , j

(2)
i,j =

J0
|i− j|α

. (22)

As can be seen in figure 7 (with α = 3), the results are good also in this case: it can be generally observed that the
reconstructed interactions are higher than the exact ones, due to the fact that the interaction within the reconstruction
range have to account for the interactions lying outside this range.
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FIG. 7: Same as figure 5. Measured values of the correlations gµ (top) and inferred couplings jµ (bottom) for the power-law
decaying Hamiltonian (22) with parameters J0 = 0.4, α = 3. The reconstruction range is Rmax = 6.

VI. MEAN-FIELD COUPLINGS

In this section we briefly discuss how our previous results can be used in presence of mean-field long-range in-
teractions, showing that our inversion approach may be used on this class of systems. We consider a system with
energy e of general form, i.e. a non-linear function of the correlators. The number of couplings entering the energy
e should still equal the number of independent correlation functions in order to perform, at least in principle, the
inversion procedure. Such an energy will be denoted by eMF ({gµ}, {j

MF
m }) where the index m runs over the mean-field

couplings.
By requiring the free energy fMF ({gµ}, {j

MF
m }) = eMF ({gµ}, {j

MF
m }) − s({gµ}) to have a minimum when the gµ

are set to the known values will give the equations implicitly determining all the couplings, including the mean-filed
ones {jMF

m }. When the energy is differentiable these equations read

∂eMF ({gµ}, {j
MF
m })

∂gµ
=

∂s({gµ})

∂gµ
. (23)

This set of equations will in general have multiple solutions or possibly no solutions at all. If more solutions are present
the one (or ones) rendering the free energy minimal should be chosen. The points where the absolute minimum of
the free energy branches or it changes discontinuously will signal a phase transition. As described in the section III
some values of the couplings may be known in advance thus reducing the number of equations to be solved. Another
possibility is that a function of the coupling is fixed; a notable example being the energy itself, corresponding to the
microcanonical description of the system. We remark that in the class of models we consider all of these steps can be
carried out exactly since the explicit form of entropy (10) is known.
As an example we may consider the first model examined in section IV (R = 2, ρ = 1) by adding mean-field

two-body couplings. Instead of the energy e(m, g) = −hm − jg (where h = j{1} and j = j{1,2} ) we will set
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e = eMF (m, g) = −jMFm2 − jg. The appearance of the nonlinear term m2 in the energy is due to the presence of

non-local mean-field operators in the spin Hamiltonian like −jMF /N
(

∑N
i=1 si

)2

. It should be noted that such an

operator is not uniquely defined, e.g. the operator

−
jMF

∑N
i=1

1
iα

∑

i,j

sisj
|i− j|α

(0 < α < 1) (24)

and other Kac-rescaled nonextensive potentials give rise to the term −jMFm2 in the energy density at the thermo-
dynamic limit when evaluated on a state with magnetization m and nearest-neighbour correlation g [36]. If we set
j = 0 we get the usual mean-field model, otherwise we obtain a model with competing mean-field and short-range
coupling introduced by Kardar [37], exhibiting a complex phase diagram which shows nonequivalence between the
canonical and microcanonical description [35] (for a review on inequivalence between ensembles and other issues con-
cerning nonextensive systems see [38]). As already observed the entropy of such a model within our approach is easily
computed [see (16)] and it could be generalized thus allowing one to treat one-dimensional models possessing multiple
competing finite-range and mean-field interactions.

VII. CONCLUSIONS

In this paper we presented the explicit solutions of the inverse Ising problem for a one-dimensional translational
invariant model with arbitrary finite-range multispin interactions once a number ∼ 2R (where R is the range of the
interactions) of independent correlations is known. When applied to unknown systems this method correctly detects
arbitrary interactions; our results are then applied to systems with a range extending beyond the one set by maximum
distance of the spins of the recorded correlation functions, giving useful hints on the interactions that should be kept
in an effective model.
As an application, we reconstructed the couplings of chain Ising Hamiltonians having exponential or power-law

two-spin plus three- or four-spin couplings. We also discussed the generalization of the method to ladders. Mean-field
interactions can be also included in the framework, allowing us to describe systems exhibiting phase transitions. The
presence of both finite-range (local) and mean-field (nonlocal) interactions can give rise to interesting competition
effects greatly enhancing the descriptive power of the models we can exactly solve with our techniques. Our results
provide then a theoretical laboratory where different approximate inverse Ising techniques can be benchmarked against
the exact results obtained using our method: in the paper we performed such comparison is some illustrative examples.
The one-dimensional inverse Ising problem we have solved in the present paper is analogous to what may be called

the inverse Markov chain problem: given a specific set of correlations at equilibrium, find the corresponding transition
rates. The two inversion (Ising and Markov) problems are related since it is possible to associate an Ising model to an
equilibrium Markov Ising chain with finite memory in full generality: to show it, for definiteness let us consider Ising
variables (although extensions to other discrete state spaces is straightforward). The finite-range R in our solution of
the inverse one-dimensional Ising problem is the counterpart of the finite memory in the inverse Markov problem: let
the state of the next ρ spins be ruled by the state of the preceding R−ρ spins. We put the new spins on the right side
of the old ones: the time of the Markov process is increasing from left to right. The correlations impose constraints
on the transition rates: it turns out that the number of independent correlations required to solve the inverse Markov
problem is the same as the number needed to solve the (related) inverse Ising problem in one dimension of range R
and period ρ, i.e. the number of independent correlations is 2R − 2R−ρ. Adapting the procedure discussed in section
III which lead to (12) it is possible to compute the transition rates from the state τR−ρ of R− ρ spins to the state θρ
of ρ spins. These transitions are given by

wτR−ρ→θρ =
p(ηR)

p(τR−ρ)
, (25)

where the p’s are calculated according to formula (12) where the input correlations {gµ}’s are plugged in, and ηR is
the configuration of R spins obtained by juxtaposing the states τR−ρ (on the left) and θρ (on the right). The transition
matrix obtained this way is a 2R−ρ by 2ρ matrix; in order to have a square matrix we have to fold more steps of the
the transition matrix until we obtain the probability to go from a set of max(R−ρ, ρ) to the next max(R−ρ, ρ) spins
[39]. The transition matrix satisfies detailed balance by construction, therefore this is a reversible Markov chain. This
mapping has already been worked out in a discrete different form in [40] where the connection to discrete statistical
models is also discussed.
According to the previous discussion, we may thus associate an Ising model to the an equilibrium Markov Ising

chain with finite memory in full generality, allowing us to treat systems where one direction (typically time) is singled
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out. As a possible example deserving future investigation one could consider time-series of financial data and try
to estimate with the procedure discussed before the transition probabilities of the associated guessed Markov chain
in order to test the validity of such a description. It is intended - in order to apply the previous results - that the
analyzed data should be discretized on a timescale such that nontrivial correlations occur, and that the whole time of
observation is such that the system can be reliably considered at equilibrium. Obviously a way to encode significant
information in an Ising variable has to be devised, being this in general a nontrivial task; for example, we may think
of “up” and “down” spin corresponding to a price raise or lowering respectively. The next step would be to analyze
the correlations among different time-series of data to determine if and how correlations among different stocks occur.
For example the Ising ladder system depicted in figure 2 may reproduce the correlations among two stocks whose
state depends on the value of the other stock at the same timestep and on the value of the same or other stock at
the previous timestep (for simplicity, in figure 2 odd interactions are not depicted). E.g., it should be noted that
the inclusion of the interaction dubbed j6 in figure 2 may reproduce some kind of nontrivial many-body interaction
among the stocks. Extending the number of chains in the ladder system and/or the range allows us to treat larger
sets of stocks with longer correlations in time.
We think that studying stationary time-series of correlated data using the techniques presented in this paper (and

as well the mapping onto Markov chains discussed in this section) will be an interesting subject of future research.
In perspective, one could apply the method here discussed to datasets and/or statistical mechanics models which
are supposed to be described by effective one-dimensional Ising chains near the thermodynamical limit. To this aim,
one should address in the future a treatment of the case where large errors in the measured correlation functions are
present and/or some of the correlations are missing; our exact result could be a good starting point to move in that
direction. Next, our results could be extended in higher dimensional cases (where of course one does not expect to
find closed formulas), hierarchical or tree-like models. Some preliminary results in the two dimensional case seem
to indicate that this approach leads to equations resembling the Dobrushin-Lanford-Ruelle ones [41, 42]. Another
interesting direction could be to use the a renormalization group approach on the correlation functions, in order to
study how the couplings determined by correlations at some scale R are related to the ones computed at a larger scale
R′.
Acknowlegments: We wish to thank I. Mastromatteo and M. Marsili for many very useful discussions. This work

has been supported by the grants INSTANS (from ESF) and 2007JHLPEZ (from MIUR).

Appendix A: Transfer Matrices

In this Appendix we work out the transfer matrix for the general translational invariant (ρ = 1) Ising model
with range R = 2, 3, 4 and we check that the results obtained analytically and numerically with the transfer matrix
formalism are fully consistent with the predictions of the formula (10).
We start by briefly recalling the method (see e.g. [43]). In general the transfer matrix T is built by identifying

the 2B states of a block of spins B with independent and orthogonal vector of a space of dimension 2B such that the
matrix elements of T are

〈a|T|b〉 = e−Hint(a)−Hext(a,b), (A1)

where Hext(a, b) is the interaction energy among two consecutive blocks of spins a and b (a is placed to the left of b),
Hint(a) is the interaction energy among the spins belonging to the same block. The vector corresponding to the spin
state a is denoted, using the ket notation, by |a〉. The size of the blocks B has to be chosen according to the range
and size of the unit cell ρ of the system in order to have all of the interaction terms contained in Hint or Hext. The
partition function of the system of size N is simply given by ZN = Tr(TN/B) so that in the infinite size limit the free
energy per unit cell may be written in terms of the largest eigenvalue λmax of T:

f = −
1

B/ρ
logλmax. (A2)

The existence and unicity of λmax is guaranteed by Perron-Frobenius theorem, being all elements of T strictly positive
(for nonvanishing temperature). The correlation functions may be obtained just by differentiation of the free energy
f .
We start with the simple example of R = 2 which has been worked out in section IV. The two independent couplings

will be denoted as usual by j{1} = h (magnetic field) and j{1,2} = j (nearest-neighbour coupling). The 2 by 2 transfer
matrix T, with the states identification | ↑〉 = (1, 0) and | ↓〉 = (0, 1), reads

T =

(

eh+j eh−j

e−h−j e−h+j

)

. (A3)
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FIG. 8: On the left the ratio between the exact and reconstructed value of the nearest-neighbour coupling in terms of j1. The
various lines denote how many correlation functions are kept in the reconstruction formulas as indicated. The continuous and
dotted line refer respectively to the third and seventh order in the LCE of [19] (including the loop contributions). On the right
the ratio of reconstructed jrec1 (above), jrec2 (below) and the exact value of j1 in terms of the reconstruction range Rrec are
shown. Only the result for the seventh order LCE is shown. In both figures the green straight lines are the exact values and
the nearest-neighbour coupling j2 is set to the half of j1.

The free energy is then given by

f(h, j) = − log

[

ej coshh+

√

e2j cosh2 h− 2 sinh(2j)

]

. (A4)

Differentiating f(h, j) with respect to h and j gives the magnetization m and the nearest-neighbour correlation g
respectively:

m =−
∂f(h, j)

∂h
=

ej sinhh
√

e2j cosh2 h− 2 sinh(2j)
(A5)

g =−
∂f(h, j)

∂j
= coth(2j)−

coshh

sinh(2j)
√

1 + e4j sinh2 h
. (A6)

The inversion of the above formulas with respect to h and j yields the expressions (17).
Now we consider a model with only even interactions and range R = 3, i.e. containing the coupling j1 = j{1,2} and

j2 = j{1,3} which we dub j1 − j2 model: the corresponding Hamiltonian is given by (19) with λ = 0. This model may
be mapped onto the previous example (R = 2, ρ = 1) by introducing “kink” variables sisi+1 with the identifications
j1 = h, j2 = j (we do not report the corresponding results). In figure 8 we plot the couplings reconstructed according
to the low-coupling expansion (LCE) introduced in [19] against the exact results which can be found by the method
discussed in this paper or by the transfer matrix approach. The LCE allows to infer the magnetic fields and the
two-body couplings from the two-body correlators and magnetizations. In [19] the LCE has been carried out, in
the zero field case, up to seventh order in the correlations with loop resummation. We have used the LCE as both
the order of the expansion and the number of correlation function we assume to know are increased. The maximal
range of two-body correlations which are used as input is denoted by Rrec. In figure 8 we depict the reconstructed
couplings jrec1 , jrec2 and the exact ones for different values of Rrec. The ratio j1/j2 is kept fixed, thus j1 serves as
inverse temperature. As expected as the temperature is lowered the agreement gets worse, and it may be noticed that
the inclusion of higher order terms in this case does not significantly improve the performance of the inversion: as
one can see, the lower order results depicted in the left panel of figure 8 is more reliable at lower temperatures (this
is the reason why in figure 3 we employed the third order LCE). In the right panel of figure 8 we can see how the
the increase of Rrec improves the quality of the inversion but beyond a given range the reconstructed couplings jrec1,2

settle to a value which, in the lower temperature case examined, deviates from the exact one.
We move on to the next example, the R = 3 case with no restriction on the symmetry of the couplings. Identifying

the states as | ↑↑〉 = (1, 0, 0, 0), | ↑↓〉 = (0, 1, 0, 0), | ↓↑〉 = (0, 0, 1, 0), | ↓↓〉 = (0, 0, 0, 1) and the couplings as j{1} = j1,
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j{1,2} = j2, j{1,3} = j3, j{1,2,3} = j4, the transfer matrix reads

T =









e2j1+2j2+2j3+2j4 e2j1−2j4 e2j1+2j2 e2j1−2j3

1 e−2j2+2j3 e−2j3−2j4 e−2j2+2j4

e−2j2−2j4 e−2j3+2j4 e−2j2+2j3 1
e−2j1−2j3 e−2j1+2j2 e−2j1+2j4 e−2j1+2j2+2j3−2j4 .









(A7)

Proceeding as before, we can obtain the entropy and correlation functions. The comparison between the resulting
obtained findings and our inversion formula are shown in the left panel of figure 9. The plot shows the numerically
calculated entropy and the analytical one (10) where the numerical correlations are plugged in, for some values of
the coupling constants. The entropy in this case is given by the expression (the subscripts in the g’s just indicate to
which coupling they are conjugated):

s(g1, g2, g3, g4) = −
1 + g1 − g3 − g4

4
log

(

1 + g1 − g3 − g4
8

)

−
1 + g1 − 2g2 + g3 − g4

8
log

(

1 + g1 − 2g2 + g3 − g4
8

)

−
1− 3g1 + 2g2 + g3 − g4

8
log

(

1− 3g1 + 2g2 + g3 − g4
8

)

−
1− g1 − g3 + g4

4
log

(

1− g1 − g3 + g4
8

)

−
1− g1 − 2g2 + g3 + g4

8
log

(

1− g1 − 2g2 + g3 + g4
8

)

−
1 + 3g1 + 2g2 + g3 + g4

8
log

(

1 + 3g1 + 2g2 + g3 + g4
8

)

+
1− g2

2
log

(

1− g2
4

)

+
1− 2g1 + g2

4
log

(

1− 2g1 + g2
4

)

+
1 + 2g1 + g2

4
log

(

1 + 2g1 + g2
4

)

.

As a last case we consider a translation invariant chain with range R = 4: identifying the states as | ↑↑↑〉 =
(1, 0, 0, 0, 0, 0, 0, 0), | ↑↑↓〉 = (0, 1, 0, 0, 0, 0, 0, 0), | ↑↓↑〉 = (0, 0, 1, 0, 0, 0, 0, 0), | ↑↓↓〉 = (0, 0, 0, 1, 0, 0, 0, 0), | ↓↑↑〉 =
(0, 0, 0, 0, 1, 0, 0, 0), | ↓↑↓〉 = (0, 0, 0, 0, 0, 1, 0, 0), | ↓↓↑〉 = (0, 0, 0, 0, 0, 0, 1, 0), | ↓↓↓〉 = (0, 0, 0, 0, 0, 0, 0, 1) and the
couplings as j{1} = j1, j{1,2} = j2, j{1,3} = j3, j{1,4} = j4, j{1,2,3} = j5, j{1,2,4} = j6, j{1,3,4} = j7, j{1,2,3,4} = j8, the
8 by 8 transfer matrix reads:

T =

(

T1 T2

T3 T4

)

(A8)

where the 4× 4 matrices T1, · · · ,T4 are

T1 =











e3j1+3j2+3j3+3j4+3j5+3j6+3j7+3j8 e3j1+j2+j3+j4−j5−j6−j7−3j8 e3j1+3j2+j3+j4+j5+j6−j7−j8 e3j1+j2−j3−j4+j5−3j6−j7+j8

ej1+j2+j3+j4+j5+j6+j7+j8 ej1−j2−j3+3j4−3j5+j6+j7−j8 ej1+j2−j3−j4−j5−j6−3j7−3j8 ej1−j2−3j3+j4−j5−j6+j7+3j8

ej1−j2+j3+j4−j5−j6+j7−j8 ej1−3j2+3j3−j4−j5−j6+j7+j8 ej1−j2−j3+3j4−3j5+j6+j7−j8 ej1−3j2+j3+j4+j5+j6−3j7+j8

e−j1+j2−j3−j4+j5+j6−j7+j8 e−j1−j2+j3+j4+j5−3j6+3j7−j8 e−j1+j2−3j3+j4−j5+3j6−j7+j8 e−j1−j2−j3+3j4+3j5−j6−j7−j8











T2 =











e3j1+3j2+3j3+j4+3j5+j6+j7+j8 e3j1+j2+j3−j4−j5+j6−3j7−j8 e3j1+3j2+j3−j4+j5−j6+j7+j8 e3j1+j2−j3−3j4+j5−j6+j7−j8

ej1+j2+j3−j4+j5−j6−j7−j8 ej1−j2−j3+j4−3j5+3j6−j7+j8 ej1+j2−j3−3j4−j5−3j6−j7−j8 ej1−j2−3j3−j4−j5+j6+3j7+j8

ej1−j2+j3−j4−j5−3j6−j7−3j8 ej1−3j2+3j3−3j4−j5+j6−j7+3j8 ej1−j2−j3+j4−3j5−j6+3j7+j8 ej1−3j2+j3−j4+j5+3j6−j7−j8

e−j1+j2−j3−3j4+j5−j6−3j7−j8 e−j1−j2+j3−j4+j5−j6+j7+j8 e−j1+j2−3j3−j4−j5+j6+j7+3j8 e−j1−j2−j3+j4+3j5+j6+j7−3j8











T3 =











ej1−j2−j3+j4−3j5−j6−j7−3j8 ej1+j2−3j3−j4+j5−j6−j7+3j8 ej1−j2+j3−j4−j5+j6−j7+j8 ej1+j2−j3−3j4−j5+j6+3j7−j8

e−j1−3j2+j3−j4−j5−3j6+j7−j8 e−j1−j2−j3+j4+3j5+j6−3j7+j8 e−j1−3j2+3j3−3j4+j5−j6+j7+3j8 e−j1−j2+j3−j4+j5+3j6+j7−3j8

e−j1−j2−3j3−j4+j5−j6−3j7+j8 e−j1+j2−j3−3j4+j5+3j6+j7−j8 e−j1−j2−j3+j4+3j5−3j6+j7+j8 e−j1+j2+j3−j4−j5+j6+j7−j8

e−3j1+j2−j3−3j4−j5+j6−j7−j8 e−3j1+3j2+j3−j4−j5+j6−j7+j8 e−3j1+j2+j3−j4+j5−j6+3j7−j8 e−3j1+3j2+3j3+j4−3j5−j6−j7+j8











T4 =











ej1−j2−j3+3j4−3j5+j6+j7−j8 ej1+j2−3j3+j4+j5−3j6+j7+j8 ej1−j2+j3+j4−j5+3j6−3j7−j8 ej1+j2−j3−j4−j5−j6+j7+j8

e−j1−3j2+j3+j4−j5−j6+3j7+j8 e−j1−j2−j3+3j4+3j5−j6−j7−j8 e−j1−3j2+3j3−j4+j5+j6−j7+j8 e−j1−j2+j3+j4+j5+j6−j7−j8

e−j1−j2−3j3+j4+j5+j6−j7+3j8 e−j1+j2−j3−j4+j5+j6+3j7−3j8 e−j1−j2−j3+3j4+3j5−j6−j7−j8 e−j1+j2+j3+j4−j5−j6−j7+j8

e−3j1+j2−j3−j4−j5+3j6+j7+j8 e−3j1+3j2+j3+j4−j5−j6+j7−j8 e−3j1+j2+j3+j4+j5+j6+j7−3j8 e−3j1+3j2+3j3+3j4−3j5−3j6−3j7+3j8











Results are shown in figure 9 (we do not write down the entropy for this case). By inspecting figure 9 we find that
the agreement between the two approaches is complete. We do not report here the other checks we performed for
higher values of R.
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