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1 Introduction

We revisit trace anomalies in theories coupled to gravity, an old subject, [1–20], brought

back to people’s attention thanks to the importance acquired recently by conformal field

theories both in themselves and in relation to the AdS/CFT correspondence. What has

stimulated specifically this research is the suggestion by [22, 23] that trace anomalies may

contain a CP violating term (the Pontryagin density). It is well known that a basic condi-

tion for baryogenesis is the existence of CP non-conserving reactions in an early stage of

the universe. Many possible mechanisms for this have been put forward, but to date none

is completely satisfactory (see, for instance, [21]). The appearance of a CP violating term

in the trace anomaly of a theory weakly coupled to gravity may provide a so far unexplored

new mechanism for baryogenesis.

Let us recall that the energy-momentum tensor in field theory is defined by Tµν =
2√
|g|

δS
δgµν . Under an infinitesimal local rescaling of the metric: δgµν = 2σgµν we have

δS =
1

2

∫
d4x
√
|g|Tµνδgµν = −

∫
d4x
√
|g|σT µ

µ .

If the action is invariant, classically T µ
µ = 0, but at one-loop (in which case S is replaced by

the one-loop effective action W ) the trace of the e.m. tensor is generically non-vanishing.
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In D = 4 it may contain, [24, 25], in principle, beside the Weyl density (square of the

Weyl tensor)

W2 = RnmklR
nmkl − 2RnmR

nm +
1

3
R2 (1.1)

and the Gauss-Bonnet (or Euler) one,

E = RnmklR
nmkl − 4RnmR

nm + R2, (1.2)

another nontrivial piece, the Pontryagin density,1

P =
1

2

(
εnmlkRnmpqRlk

pq
)
. (1.3)

Each of these terms appears in the trace with its own coefficient:

Tµ
µ = aE + cW2 + eP (1.4)

The coefficients a and c are known at one-loop for any type of matter (see [36] for a review

and the textbooks [33–35] for various techniques used). The purpose of this paper is to

contribute to the analysis of the coefficient e. More specifically we analyse the one-loop

calculation of the trace anomaly in chiral models. Both the problem and the relevant

results cannot be considered new, they are somehow implicit in the literature (see for

example [19]): the trace anomaly contains beside the square Weyl density and the Euler

density also the Pontryagin density. What is important, and we stress in this paper, is

that the e coefficient is purely imaginary. This may entail a problem of unitarity at one-

loop. We argue that this introduces an additional consistency criterion for a theory. The

latter has to be compared with the analogous criterion for chiral gauge and gravitational

anomalies, which is since long a selective criterion for consistent theories. This may have

important physical consequences, as will be pointed out in the conclusive sections.

In this paper, for simplicity, we will examine the problem of the one-loop trace anomaly

in a prototype chiral theory, that of a free chiral fermion coupled to external gravity. In

section 2 we calculate the CP violating part of the trace anomaly in such a model using

the heat kernel and zeta function regularization, already available in the literature. In

section 3 we do the same using Feynman diagram techniques. In section 4, as an example,

we apply these results to the standard model in its old and modern formulation. Finally in

the last section we discuss some delicate aspects of the previous section. Three appendices

are devoted to some details of the calculations carried out in section 3.

2 One-loop trace anomaly in chiral theories

The model we will consider is the simplest possible one: a right-handed spinor coupled to

external gravity in 4d. The action is

S =

∫
d4x

√
|g| iψRγm

(
∇m +

1

2
ωm

)
ψR, (2.1)

1The εnmlk figuring in (1.3) is the Levi-Civita tensor, which means that it is the usual Levi-Civita

symbol divided by
√
|g|. We also recall that the Pontryagin density is a type-B anomaly according to the

classification of [26], see also [27].
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where γm = ema γ
a, ∇ (m,n, . . . are world indices, a, b, . . . are flat indices) is the covariant

derivative with respect to the world indices and ωm is the spin connection:

ωm = ωabmΣab

where Σab = 1
4 [γa, γb] are the Lorentz generators. Finally ψR = 1+γ5

2 ψ. Classically the

energy-momentum tensor

Tµν =
i

4
ψRγµ

↔
∇νψR + (µ↔ ν) (2.2)

is both conserved and traceless on-shell. At one-loop to make sense of the calculations one

must introduce regulators. The latter generally breaks both diffeomorphism and conformal

invariance. A careful choice of the regularization procedure may preserve diff invariance,

but anyhow breaks conformal invariance, so that the trace of the e.m. tensor takes the

form (1.4), with specific non-vanishing coefficients a, c and e. There are various techniques

to calculate the latter: cutoff, point splitting, Pauli-Villars, dimensional regularization

and etc. Here we would like to briefly recall the heat kernel method utilized in [17] and

in references cited therein. Denoting by D the relevant Dirac operator in (2.1) one can

show that

δW = −
∫
d4x
√
|g|σT µ

µ = − 1

16π2

∫
d4x
√
|g|σb4

(
x, x;D†D

)
.

Thus

T µ
µ =

1

16π2
b4

(
x, x;D†D

)
(2.3)

The coefficient b4
(
x, x;D†D

)
appears in the heat kernel. The latter has the general form

K (t, x, y;D) ∼ 1

(4πt)2
e−

σ(x,y)
2t
(
1 + tb2 (x, y;D) + t2b4 (x, y;D) + · · ·

)
,

where D = D†D and σ (x, y) is the half square length of the geodesic connecting x and y,

so that σ (x, x) = 0. For coincident points we therefore have

K (t, x, x;D) ∼ 1

16π2

(
1

t2
+

1

t
b2 (x, x;D) + b4 (x, x;D) + · · ·

)
. (2.4)

This expression is divergent for t → 0 and needs to be regularized. This can be done

in various ways. The finite part, which we are interested in, has been calculated first by

DeWitt, [28], and then by others with different methods. The results are reported in [17].

For a spin 1
2 right-handed spinor as in our example one gets

b4

(
x, x;D†D

)
=

1

180

(
aE4 + cW 2 + e P

)
, (2.5)

with

a =
11

4
, c = −9

2
, e =

15

4
. (2.6)
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This result was obtained with an entirely Euclidean calculation. Coming back to Lorentzian

signature the e.m. trace at one-loop is

Tµ
µ =

1

180× 16π2

(
11

4
E − 9

2
W2 + i

15

4
P

)
. (2.7)

As pointed out above the important aspect of (2.7) is the i appearing in front of the

Pontryagin density. The origin of this imaginary coupling is easy to trace. It comes from

the trace of gamma matrices including a γ5 factor. In 4d, while the trace of an even

number of gamma matrices, which give rise to first two terms in the r.h.s. of (2.7), is a

real number, the trace of an even number of gamma’s multiplied by γ5 is always imaginary.

The Pontryagin term comes precisely from the latter type of traces. It follows that, as a

one loop effect, the energy momentum tensor becomes complex, and, in particular, since

T 0
0 is the Hamiltonian density, we must conclude that unitarity may not be preserved in

this type of theories. It is legitimate to ask whether, much like chiral gauge theories with

non-vanishing chiral gauge anomalies are rejected as sick theories, also chiral models with

complex trace anomalies are not acceptable theories. We will return to this point later on.

3 Other derivations of the Pontryagin trace anomaly

The derivation of the results in the previous section are essentially based on the method

invented by DeWitt, [28], which is a point splitting method, the splitting distance being

geodesic. As such, it guarantees covariance of the anomaly expression. To our surprise we

have found that, while for the CP preserving part of the trace anomaly various methods

of calculation are available in the literature, no other method is met to calculate the coef-

ficient of the Pontryagin density. Given the important consequences of such a (imaginary)

coefficient, we have decided to recalculate the results of the previous section with a differ-

ent method, based on Feynman diagram techniques. We will use it in conjunction with

dimensional regularization.

To start with from (2.1) we have to extract the Feynman rules.2 More explicitly the

action (2.1) can be written as

S =

∫
d4x

√
|g|
[
i

2
ψRγ

µ
↔
∂ µψR −

1

4
εµabcωµabψRγcγ5ψR

]
(3.1)

where it is understood that the derivative applies to ψR and ψR only. We have used the

relation {γa,Σbc} = i εabcdγdγ5. Now we expand

eaµ = δaµ + χaµ + · · · , eµa = δµa + χ̂µa + · · · , and gµν = ηµν + hµν + · · · (3.2)

Inserting these expansions in the defining relations eaµe
µ
b = δab , gµν = eaµe

b
νηab, we find

χ̂µν = −χµν and hµν = 2χµν . (3.3)

2We follow closely the derivation of the chiral anomaly in [29, 30], although with a different regularization.

For other derivations of this anomaly see also [31, 32].
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From now on we will use both χaµ and hµν , since we are interested in the lowest order

contribution, we will raise and lower the indices only with δ. We will not need to pay

attention to the distinction between flat and world indices. Let us expand accordingly the

spin connection. Using

ωµab = eνa(∂µe
ν
b + eσbΓσ

ν
µ) and Γσ

ν
µ =

1

2
ηνλ(∂σhλµ + ∂µhλσ − ∂λhσµ) + · · · ,

after some algebra we get

ωµab ε
µabc = −εµabc ∂µχaλ χλb + · · · . (3.4)

For later use let us quote the following approximation for the Pontryagin density

εµνλρRµν
στRλρστ = 8εµνλρ

(
∂µ∂σχ

a
ν ∂λ∂aχ

σ
ρ − ∂µ∂σχaν ∂λ∂σχaρ

)
+ · · · (3.5)

Therefore, up to second order the action can be written (by incorporating
√
|g| in a redef-

inition of the ψ field3)

S ≈
∫
d4x

[
i

2
(δµa − χµa)ψRγ

a
↔
∂ µψR +

1

4
εµabc ∂µχaλ χ

λ
b ψRγcγ5ψR

]
The free action is

Sfree =

∫
d4x

i

2
ψRγ

a
↔
∂ aψR (3.6)

and the lowest interaction terms are

Sint =

∫
d4x

[
− i

2
χµa ψRγ

a
↔
∂ µψR +

1

4
εµabc ∂µχaλ χ

λ
b ψRγcγ5ψR

]
=

∫
d4x

[
− i

4
hµa ψRγ

a
↔
∂ µψR +

1

16
εµabc ∂µhaλ h

λ
b ψRγcγ5ψR

]
(3.7)

As a consequence of (3.6) and (3.7) the Feynman rules are as follows (the external gravi-

tational field is assumed to be hµν). The fermion propagator is

p
=

i

/p+ iε
. (3.8)

The two-fermion-one-graviton vertex (Vffg) is

p

p′

=
i

8

[(
p+ p′

)
µ
γν +

(
p+ p′

)
ν
γµ

] 1 + γ5
2

. (3.9)

3This is the simplest way to deal with
√
|g|. Alternatively one can keep it explicitly in the action and

approximate it as 1 + 1
2
hµµ; this would produce two additional vertices, which however do not contribute to

our final result.
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The two-fermion-two-graviton vertex (Vffgg) is

k

k′

p

p′
=

1

64
tµνµ′ν′κλ

(
k − k′

)λ
γκ

1 + γ5
2

, (3.10)

where the momenta of the gravitons are ingoing and

tµνµ′ν′κλ = ηµµ′ενν′κλ + ηνν′εµµ′κλ + ηµν′ενµ′κλ + ηνµ′εµν′κλ. (3.11)

Due to the non-polynomial character of the action the diagrams contributing to the trace

anomaly are infinitely many. Fortunately, using diffeomorphism invariance, it is enough

to determine the lowest order contributions and consistency takes care of the rest. There

are two potential lowest order diagrams (see figures 1 and 2 in the appendices A and B)

that may contribute. The first contribution, the bubble graph, turns out to vanish, see

appendix A. It remains for us to calculate the triangle graph. To limit the size and number

of formulas in the sequel we will be concerned only with the contribution of the diagrams

to the Pontryagin density.

3.1 The fermion triangle diagram

It is constructed by joining three vertices Vffg with three fermion lines. The external

momenta are q (ingoing) with labels σ and τ , and k1, k2 (outgoing), with labels µ, ν and

µ′, ν ′ respectively. Of course q = k1+k2. The internal momenta are p, p−k1 and p−k1−k2,
respectively. After contracting σ and τ the total contribution is

− 1

256

∫
d4p

(2π)4
tr

[(
1

/p
((2p− k1)µγν + (µ↔ ν))

1

/p− /k1
(3.12)

×
(
(2p− 2k1 − k2)µ′γν′ + (µ′ ↔ ν ′)

) 1

/p− /k1 − /k2
(2/p− /k1 − /k2)

)
1 + γ5

2

]

to which we have to add the cross diagram in which k1, µ, ν is exchanged with k2, µ
′, ν ′.

This integral is divergent. To regularize it we use dimensional regularization. To this end

we introduce additional components of the momentum running on the loop (for details see,

for instance, [33]): p→ p+ `, ` = (`4, . . . , `n−4)

Tµνµ′ν′(k1, k2) = − 1

256

∫
d4p

(2π)4

∫
dn−4`

(2π)n−4
tr

(
/p+ /̀

p2 − `2
(2p+ 2`− k1)µγν

× /p+ /̀− /k1
(p− k1)2 − `2

(2p+ 2`− 2k1 − k2)µ′γν′
/p+ /̀− /q

(p− q)2 − `2
(2/p+ 2/̀− /q)

1 + γ5
2

)
(3.13)
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where the symmetrization over µ, ν and µ′, ν ′ has been understood.4 After some manipu-

lations this becomes

Tµνµ′ν′(k1, k2) = T
(1)
µνµ′ν′(k1, k2) + T

(2)
µνµ′ν′(k1, k2)

− 1

256

∫
d4p

(2π)4

∫
dn−4`

(2π)n−4
tr

(
/p+ /̀

p2 − `2
(2p+ 2`− k1)µγν

× /p+ /̀− /k1
(p− k1)2 − `2

(2p+ 2`− 2k1 − k2)µ′γν′
/p+ /̀− /q

(p− q)2 − `2
/̀γ5

)
(3.14)

The terms T (1), T (2) turn out to vanish. The rest, after a Wick rotation (see ap-

pendix B), gives

Tµνµ′ν′(k1, k2) =
1

6144π2

(
k1 · k2 tµνµ′ν′λρ − t

(21)
µνµ′ν′λρ

)
kλ1k

ρ
2 (3.15)

where

t
(21)
µνµ′ν′κλ = k2µk1µ′ενν′κλ + k2νk1ν′εµµ′κλ + k2µk1ν′ενµ′κλ + k2νk1µ′εµν′κλ (3.16)

Finally we have to add the cross graph contribution, obtained by k1, µ, ν ↔ k2, µ
′, ν ′. Under

this exchange the t tensors transform as follows:

t↔ −t, t(21) ↔ −t(21), i 6= j (3.17)

Therefore the cross graph gives the same contribution as (3.15). So for the triangle diagram

we get

T
(tot)
µνµ′ν′(k1, k2) =

1

3072π2

(
k1 · k2 tµνµ′ν′λρ − t

(21)
µνµ′ν′λρ

)
kλ1k

ρ
2 (3.18)

To obtain the above results we have set the external lines on-shell. This deserves a comment.

3.2 On-shell conditions

Putting the external lines on-shell means that the corresponding fields have to satisfy the

EOM of gravity Rµν = 0. In the linearized form this means

�χµν = ∂µ∂λχ
λ
ν + ∂ν∂λχ

λ
µ − ∂µ∂νχλλ (3.19)

We also choose the de Donder gauge

Γλµνg
µν = 0 (3.20)

4Some attention has to be paid in introducing the additional momentum components `. Due to the

chiral projectors in the Vffg vertex it would seem that /̀ should not be present in the first and third terms

in (3.13) (because [/̀, γ5] = 0); however this regularization prescription would give a wrong result for the

CP even part of the anomaly. The right prescription is (3.13).
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which at the linearized level becomes

2∂µχ
µ
λ − ∂λχ

µ
µ = 0 (3.21)

In this gauge (3.19) becomes

�χµν = 0 (3.22)

In momentum space this implies that k21 = k22 = 0. Since we know that the final result is

covariant this simplification does not jeopardize it.

3.3 Overall contribution

The overall one-loop contribution to the trace anomaly in momentum space, as far as the

CP violating part is concerned, is given by (3.18). After returning to the Minkowski metric

and Fourier-antitransforming this we can extract the local expression of the trace anomaly,

as explained in appendix C. The saturation with hµν , hµ
′ν′ brings a multiplication by 4 of

the anomaly coefficient. The result is, to lowest order,

〈Tµµ (x)〉 =
i

768π2
εµνλρ

(
∂µ∂σh

τ
ν ∂λ∂τh

σ
ρ − ∂µ∂σhτν ∂λ∂σhτρ

)
(3.23)

Comparing with (3.5) we deduce the covariant expression of the CP violating part of the

trace anomaly

〈Tµµ (x)〉 =
i

768π2
1

2
εµνλρRµν

στRλρστ (3.24)

which is the same as (2.7).

4 Consequences of the Pontryagin trace anomaly in chiral theories

In this section we would like to expand on the consequences of a non-vanishing Pontryagin

term in the trace anomaly. To start with let us spend a few words on a misconception we

sometime come across: the gravitational charge of matter is its mass and, as a consequence,

gravity interacts with matter via its mass. This would imply in particular that massless

particles do not feel gravity, which is clearly false (e.g., the photon). The point is that

gravity interacts with matter via its energy-momentum tensor. In particular, for what

concerns us here, the e.m. tensor is different for left-handed and right-handed massless

matter, and this is the origin of a different trace anomaly for them.

As we have already noticed in 2, in theories with a chiral unbalance, as a consequence

of the Pontryagin trace anomaly, the energy momentum tensor becomes complex, and,

in particular, unitarity is not preserved. This raises a question: much like chiral gauge

theories with non-vanishing chiral gauge anomalies are rejected as unfit theories, should we

conclude also that chiral models with complex trace anomalies are not acceptable theories?

To answer this question it is important to put it in the right framework. To start with let

– 8 –
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us consider the example of the standard model. In its pre-neutrino-mass-discovery period

its spectrum was usually written as follows:(
u

d

)
L

, ûR, d̂R,

(
νe
e

)
L

, êR (4.1)

together with two analogous families (here and in the sequel, for any fermion field ψ, ψ̂ =

γ0Cψ∗, where C is the charge conjugation matrix, i.e. ψ̂ represents the Lorentz covariant

conjugate field). All the fields are Weyl spinors and a hat represents CP conjugation. If

a field is right-handed its CP conjugate is left-handed. Thus all the fields in (4.1) are

left-handed. This is the well-known chiral formulation of the SM. So we could represent

the entire family as a unique left-handed spinor ψL and write the kinetic part of the action

as in (2.1). However the coupling to gravity of a CP conjugate field is better described

as follows (see, for instance, [37]). First, for a generic spinor field ψ, let us define (with

L = 1−γ5
2 , R = 1+γ5

2 , and ψL = Lψ,ψR = Rψ)

ψ̂R = γ0Cψ∗R = γ0CR∗ψ∗ = Lγ0Cψ∗ = Lψ̂ = ψ̂L (4.2)

where we have used the properties of the gamma matrices and the charge conjugation

matrix C:

C−1γµC = −γTµ , CC† = 1, CC∗ = −1, CT = −C

and in particular C−1γ5C = γT5 . Let us stress in (4.2) the difference implied by the use

of ̂ and ˆ, respectively.

With the help of these properties one can easily show that√
|g| ψ̂L γm

(
∇m +

1

2
ωm

)
ψ̂L =

√
|g| ψ̂R γm

(
∇m +

1

2
ωm

)
ψ̂R

=
√
|g|ψTR C−1γmγ0

(
∇m +

1

2
ωm

)
Cψ∗L

which, after a partial integration and an overall transposition, becomes√
|g|ψR γm

(
∇m +

1

2
ωm

)
ψR (4.3)

i.e. the right-handed companion of the initial left-handed action. This follows in particular

from the property C−1ΣabC = −ΣT
ab.

From the above we see that in the multiplet (4.1) there is a balance between the left-

handed and right-handed field components except for the left-handed field νe. Therefore

the multiplet (4.1) when weakly coupled to gravity, will produce an overall non-vanishing

(imaginary) coefficient e for the Pontryagin density in the trace anomaly and, in general,

a breakdown of unitarity (this argument must be seen in the context of the discussion in

the following section). This breakdown is naturally avoided if we add to the SM multiplet

a right-handed neutrino field, because in that case the balance of chirality is perfect. An-

other possibility is that the unique neutrino field in the multiplet be Majorana, because a
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Majorana fermion can be viewed as a superposition of a left-handed and a right-handed

Weyl spinor, with the additional condition of reality, and, therefore its contribution to the

Pontryagin density is null. In both cases the neutrino can have mass.

In hindsight this could have been an argument in favor of massive neutrinos.

From a certain point of view what we have just said may sound puzzling because

it is often stated that in 4D massless Weyl and Majorana fermions are physically indis-

tinguishable: they have the same number of components and we can define a one-to-one

correspondence between the latter. A theory of Majorana fermions cannot have the kind

of (chiral) anomaly we have found. So where does our anomaly comes from? It is therefore

necessary to spend some time recalling the crucial difference between Weyl and Majorana

fields in 4D. To start with, the map between Majorana and Weyl fields mentioned above is

not representable by means of a linear invertible operator and this fact radically changes

the way they transform under Lorentz transformations. Majorana fields transform as real

representations and Weyl fields as complex representations of the Lorentz group. As a

consequence, the relevant Dirac operators are different. Now, when we compute anoma-

lies using the path integral we have to integrate over fields, not over particles. Therefore

anomalies are determined by the field content of the theory and by the appropriate Dirac

operator. On the other hand anomalies like our Pontryagin anomaly (and many others)

are not physical objects, but defects of the theory. Thus what we are saying is: if we

want to formulate a theory with a different number of left-handed and right-handed Weyl

fields, we are bound to find a dangerous anomaly in the trace of the em tensor. This does

not prevent us from constructing a theory with the same physical content in an another

way, which is anomaly-free, by using Majorana fields. But the path integrals of the two

theories are not coincident. This, in turn, is connected with a related question: it is well

known that, by means of mere algebraic manipulations, we can rewrite the kinetic action

term of a Weyl field as the kinetic term of the corresponding Majorana field. So at first

sight that seems to be no difference between the two. But this conclusion would forget

that the transformation from Weyl to Majorana fields is not linear and invertible, so that

one must take into account the Jacobian in the path integral. This is hard to compute

directly, but what we have stressed in this paper is that it manifests itself (at least) in the

Pontryagin anomaly.

5 Discussion and conclusion

The main point of this paper is a reassessment of the role of trace anomalies in theories

with chiral matter coupled to gravity. In particular we have explicitly calculated the trace

anomaly for a chiral fermion. The result is the expected one on the basis of the existing

literature, except for the fact that, in our opinion, it had never been explicitly stated before

(save for a footnote in [22, 23]), and, especially, its consequences had never been seriously

considered. As we have seen, for chiral matter the trace anomaly at one-loop contains the

Pontryagin density P with an imaginary coefficient. This implies, in particular, that the

Hamiltonian density becomes complex and breaks unitarity. This poses the problem of

whether this anomaly is on the same footing as chiral gauge anomalies in a chiral theory,

– 10 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
7

which, when present, spoil its consistency. It is rightly stressed that the standard model

is free of any chiral anomaly, including the gravitational ones. But in the case of ordinary

chiral gauge anomalies the gauge fields propagate and drag the inconsistency in the internal

loops, while in gravitational anomalies (including our trace anomaly) gravity is treated as

a background field. So, do the latter have the same status as chiral gauge anomalies?

Let us analyse the question by asking: are there cases in which the Pontryagin den-

sity vanishes identically? The answer is: yes, there are background geometries where the

Pontryagin density vanishes. They include for instance the FRW and Schwarzschild [38].

Therefore, in such backgrounds the problem of unitarity simply does not exist. But the

previous ones are very special ‘macroscopic’ geometries. For a generic geometry the Pon-

tryagin density does not vanish. For instance in a cosmological framework, we can imagine

to go up to higher energies where gravity inevitably back-reacts. In this case it does not

seem to be possible to avoid the conclusion that the Pontryagin density does not vanish

and unitarity is affected due to the trace anomaly, the more so because gravitational loops

cannot cancel it. Thus, seen in this more general context, the breakdown of unitarity due

to a chirality unbalance in an asymptotically free matter theory should be seriously taken

into account.

Returning now to the problem we started with in the introduction, that is the appear-

ance of a CP violating Pontryagin density in the trace of the energy-momentum tensor, we

conclude that unitarity seems to prevent it at one-loop, and we cannot imagine a mecha-

nism that may produce it at higher loops. In [22, 23] a holographic model was presented

which yields a Pontryagin density in the trace of the e.m. tensor, but again with a unitarity

problem [23]. Anyhow it would be helpful to understand its (very likely, non-perturbative)

origin in the boundary theory. This mechanism for CP violation is very interesting and,

above, we have seen another attractive aspect of it: its effect evaporates automatically

while the universe evolves towards ‘simpler’ geometries.
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A Calculation details: the bubble diagram

In this appendix we give a few details of the calculations in section 3. Let us consider first

the bubble graph (see figure 1). It is obtained by joining two vertices, Vffg (on the left)

and Vffgg (on the right) with two fermion propagators. The ingoing graviton in Vffg has

momentum q and Lorentz labels σ, τ and the two outgoing gravitons in Vffgg are specified
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p

p− q

q;σ, τ

k2;µ
′, ν ′

k1;µ, ν

Figure 1. Bubble diagram with ingoing momentum q and outgoing k1 and k2.

by k1, µ, ν and k2, µ
′, ν ′, respectively. Of course q = k1 + k2. The two fermion propagators

form a loop. The running momentum is clockwise oriented. We denote the momentum in

the upper branch of the loop by p and in the lower branch by p− q. This diagram is

2× i

512

∫
d4p

(2π)4
tr

[
1

/p
tµνµ′ν′λρ (k2 − k1)λγρ

1

/p− /q
((2pσ − qσ) γτ + (σ ↔ τ))

1 + γ5
2

]
(A.1)

The factor of two in front of it comes from the combinatorics of diagrams: this one must

contributes twice. Its possible contribution to the trace anomaly comes from contracting

the indices σ and τ with a Kronecker delta (in principle we should consider contracting also

the other couple of indices µ, ν and µ′, ν ′, but this gives zero due to the symmetry properties

of the t tensor). The integral is divergent and needs to be regularized. We use dimensional

regularization. To this end we introduce additional components of the momentum running

on the loop: p→ p+ `, ` = (`4, . . . , `n−4). The relevant integral becomes

Dµνµ′ν′(k1, k2) =
i

256

∫
d4p

(2π)4

∫
dn−4`

(2π)n−4
tµνµ′ν′λρ(k2 − k1)λ

× tr

(
/p+ /̀

p2 − `2
γρ

/p− /q + /̀

(p− q)2 − `2
(2/p+ 2/̀− /q)

)
(A.2)

After some algebra and introducing a parametric representation for the denominators, one

finally gets

Dµνµ′ν′(k1, k2) = − i

64
tµνµ′ν′λρ(k2 − k1)λ

∫ 1

0
dx

∫
d4p

(2π)4

∫
dn−4`

(2π)n−4

×
[(

3

2
(2x− 1)p2 + x(x− 1)(2x− 1)q2 − (2x− 1)`2

)
qρ
]

1

(p2 + x(1− x)q2 − `2)2
(A.3)

This vanishes because of the x integration.

B Calculation details: the triangle diagram

As for the triangle diagram (see figure 2), with reference to eq. (3.14), we have

T
(1)
µνµ′ν′(k1, k2) =− 1

256

∫
d4p

(2π)4

∫
dn−4`

(2π)n−4
tr

(
/p+ /̀

p2 − `2
(2p+ 2`− k1)µγν

× /p+ /̀− /k1
(p− k1)2 − `2

(2p+ 2`− 2k1 − k2)µ′γν′
γ5
2

)
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p

p− k1 − k2

p− k1q;σ, τ

k2;µ
′, ν ′

k1;µ, ν

(a) Triangle diagram.

q;σ, τ

k2;µ
′, ν ′

k1;µ, ν

(b) Crossed triangle dia-

gram.

Figure 2. In both these diagrams the momentum q is ingoing while the momenta k1 and k2 is

outgoing.

=− i

256

∫ 1

0
dx

∫
d4p

(2π)4

∫
dn−4`

(2π)n−4
ενν′λρk

ρ
1

p2

(p2 + x(1− x)k21 − `2)2

×
(
δλµ(2`− 2xk1 − k2)µ′ + δλµ′(2`− 2xk1 − k2)µ

)
, (B.1)

which evidently vanishes when we symmetrize µ with ν and µ′ with ν ′. T (2) is similar to

T (1) and vanishes for the same reason. Setting k21 = k22 = 0, the remaining term in (3.14)

can be written

Tµνµ′ν′(k1, k2) =
i

32
ενν′λρk

λ
1k

ρ
2

∫ 1

0
dx

∫ 1−x

0
dy

∫
d4p

(2π)4

∫
dn−4`

(2π)n−4

× `2
p2ηµµ′ + ((2x+ 2y − 1)k1 + 2yk2)µ(2(x+ y − 1)k1 + (2y − 1)k2)µ′

(p2 − `2 + 2y(1− x− y)k1 ·k2)3
.

(B.2)

It involves two integrals over the momenta∫
d4p

(2π)4

∫
dn−4`

(2π)n−4
`2

(p2 + x(1− x)q2 − `2)3
n→4
=

i

32π2
(B.3)

and ∫
d4p

(2π)4

∫
dn−4`

(2π)n−4
p2`2

(p2 + x(1− x)q2 − `2)3
n→4
=

i

16π2
2y (1− x− y) k1 ·k2. (B.4)

Integration over x and y is elementary and one gets (3.15). Both r.h.s. ’s are obtained by

Wick-rotating all the momenta.

C Local expression of the trace anomaly

The partition function depending on a classical external source jµν is

Z[jµν ] = 〈0|T ei
∫
dx
√
|g(x)|Tµν(x)jµν(x)|0〉 = eiW [jµν ]

=

∞∑
n=0

in

n!

∫ n∏
i=1

dxi
√
|g(xi)| jµiνi(xi) 〈0|T Tµ1ν1(x1) . . . T

µnνn(xn)|0〉. (C.1)
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The generating functional of connected Green functions is

W [jµν ] =
∞∑
n=1

in+1

n!

∫ n∏
i=1

dxi
√
|g(xi)| jµiνi(xi) 〈0|T Tµ1ν1(x1) . . . T

µnνn(xn)|0〉c. (C.2)

We will denote by

〈Tµν(x)〉 = − 2√
|g|

δW [j]

δjµν(x)

∣∣∣
jµν=gµν

(C.3)

the ‘quantum e.m. tensor’. Let us take now the variation of W with respect to a conformal

transformation jµν = gµν and δgµν(x) = 2ω(x)gµν(x) where gµν = δµν + hµν + · · · is

a classical metric configuration and hµν is the field attached to the external legs of the

Feynman diagrams of section 3. Due to the arbitrariness of ω, invariance of W [g] under

conformal transformations means vanishing the ‘quantum’ e.m. trace,

〈Tµµ (x)〉 = 2

∞∑
n=1

in+1

(n− 1)!

∫ n∏
i=2

dxi

√
|g(xi)| gµiνi(xi) 〈0|T Tµµ (x) . . . Tµnνn(xn)|0〉c. (C.4)

This means in particular that all the Green functions 〈0|T Tµµ (x) . . . Tµnνn(xn)|0〉c must

vanish in order to guarantee quantum conformal invariance. In this paper we focus on the

amplitude

〈T σσ (q)Tµν(k1)Tµ′ν′(k2)〉 =

∫
d4x d4y d4z ei(k1x+k2y−qz)〈T σσ (z)Tµν(x)Tµ′ν′(y)〉 (C.5)

at one-loop order. On the basis of the previous discussion, the local expression of the

anomaly is obtained by Fourier-antitransforming (3.18) and inserting it into (C.4), and,

simultaneously, identifying jµν(x) = gµν(x), where gµν(x) satisfies the eom and the de

Donder gauge (see section 3.1). One relevant contribution to (C.4) is tµνµ′ν′λρ k
λ
1k

ρ
2 k1 ·

k2 δ(q − k1 − k2), from which

tµνµ′ν′λρ

∫
d4k1
(2π)4

d4k2
(2π)4

d4q

(2π)4
e−i(k1x+k2y−qz) kλ1k

ρ
2 k1 · k2 δ(q − k1 − k2)

= tµνµ′ν′λρ∂
λ
x∂

τ
xδ(x− z) ∂ρy∂yτδ(y − z) (C.6)

Inserting this into (C.4) we get

〈Tµµ (x)〉(1) = tµνµ′ν′λρ

∫
d4xd4y(δµν + hµν)(δµ′ν′ + hµ′ν′)∂

λ
x∂

τ
xδ(x− z) ∂ρy∂yτδ(y − z)

= 4 ενν′λρ∂
λ∂τhµν ∂ρ∂τh

ν′
µ (C.7)

Another relevant contribution is given by (it comes from the term containing t(21))

k2νk1ν′ εµµ′λρ k
λ
1k

ρ
2 δ(q − k1 − k2)

= εµµ′λρ

∫
d4xd4yd4z ei(k1x+k2y−qz) ∂λx∂xν′δ(x− z) ∂ρy∂yνδ(y − z) (C.8)

Inserting it into (C.4) we get

〈Tµµ (x)〉(2) = 4 εµµ′λρ ∂
λ∂τh

µν ∂ρ∂νh
µ′τ (C.9)

This result is still Euclidean.
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