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1 Introduction

Recently, following an earlier suggestion of [1], a general method has been proposed, [2], to

obtain new exact analytic solutions in Witten’s cubic open string field theory (OSFT) [3],

and in particular solutions that describe inhomogeneous tachyon condensation. There is a

general expectation that an OSFT defined on a particular boundary conformal field theory

(BCFT) has classical solutions describing other boundary conformal field theories [6, 7].

Previously analytic solutions were constructed describing the tachyon vacuum [4, 5, 8–20]

and a general marginal boundary deformations of the initial BCFT [21–30], see also the

reviews [31, 32]. In this panorama an element was missing: the solutions describing in-

homogeneous and relevant boundary deformations of the initial BCFT were not known,

though their existence was predicted [6, 7, 33]. In [1, 2] such solutions were put forward,

in [34, 35] the energy of a D24-brane solution was calculated for the first time ([35] is char-

acterized by an approach different from ours and by a critical discussion of the equation of

motion). Here we wish to extend the method and the results of [34] and propose analytic

SFT solutions corresponding to D(25-p)-branes for any p. The extension is nontrivial be-

cause new aspects and problems arise for p > 1. Apart from a greater algebraic complexity,

we have a (new) dependence of the solutions on several (gauge) parameters and a different

structure of the UV subtractions. But the method remains essentially the same as in [34].

The energy of the various solutions turns out to be the expected one.

The paper is organized as follows. In section 2 we consider a solution ψu1,u2 for a D23

brane, compute its energy functional, study its UV and IR behaviour and verify that the

value of its energy functional depends on the parameter v = u2/u1. Next, in section 3,

in analogy with [34], we introduce the ǫ-regularized solutions ψǫ
u1,u2

, which represents the

tachyon condensation vacuum. Then we verify that the difference ψu1,u2 − ψǫ
u1,u2

, which

is a solution to the equation of motion over the vacuum represented by ψǫ
u1,u2

, has the

expected energy of a D23-brane. At this point the extension to a generic D(25-p)-brane is

straightforward and we summarize it in section 5.

– 1 –



J
H
E
P
1
2
(
2
0
1
1
)
0
3
3

2 A D23-brane solution

Let us briefly recall the technique to construct lump solutions by incorporating in SFT

exact renormalization group flows generated in a 2D CFT by suitable relevant operators.

To start with we enlarge the well-known K,B, c algebra defined by

K =
π

2
KL

1 |I〉, B =
π

2
BL

1 |I〉, c = c

(

1

2

)

|I〉, (2.1)

in the sliver frame (obtained by mapping the UHP to an infinite cylinder C2 of circum-

ference 2, by the sliver map f(z) = 2
π

arctan z), by adding a state constructed out of a

(relevant) matter operator

φ = φ

(

1

2

)

|I〉 (2.2)

with the properties

[c, φ] = 0, [B,φ] = 0, [K,φ] = ∂φ, (2.3)

such that Q has the following action:

Qφ = c∂φ+ ∂cδφ. (2.4)

One can show that

ψφ = cφ− 1

K + φ
(φ− δφ)Bc∂c (2.5)

does indeed satisfy the OSFT equation of motion1

Qψφ + ψφψφ = 0 (2.6)

In order to describe the lump solution corresponding to a D24-brane in [2, 34] we used the

relevant operator, [1],

φu = u(: X2 : +2 log u+ 2A) (2.7)

defined on C1, where X is a scalar field representing the transverse space dimension, u is

the coupling inherited from the 2D theory and A is a suitable constant.

In the case of a D23-brane solution, we propose, as suggested in [2], that the relevant

operator is given by

φ(u1,u2) = u1(: X
2
1 : +2 log u1 + 2A) + u2(: X

2
2 : +2 log u2 + 2A) (2.8)

where X1 and X2 are two coordinate fields corresponding to two different space directions.

There is no interaction term between X1 and X2 in the 2D action.

1The validity of the equation of motion for our proposed solution has been challenged by [35]. See our

counterarguments in appendix D of [34] and in [40].
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Then we require for φu the following properties under the coordinate rescaling ft(z) = z
t

ft ◦ φ(u1,u2)(z) =
1

t
φ(tu1,tu2)

(z

t

)

. (2.9)

The partition function corresponding to the operator (2.8) is factorized, [36, 37]:

g(u1, u2) = g(u1)g(u2) g(ui) =
1√
2π

√
2uiΓ(2ui)e

2ui(1−log 2ui) (2.10)

where in (2.10) we have already made the choice A = γ − 1 + log 4π. This choice implies

lim
u1,u2→∞

g(u1, u2) = 1 (2.11)

With these properties all the non-triviality requirements of [2, 34] for the solution ψ(u1,u2) ≡
ψφ(u1,u2)

are satisfied. Therefore we can proceed to compute the energy. To this end we

follow the pattern of appendix D of [2], with obvious modifications. So, for example,

〈X2
1 (θ)X2

2 (θ′)〉Disk = 〈X2
1 (θ)〉Disk〈X2

2 (θ′)〉Disk = Z(u1)hu1Z(u2)hu2 (2.12)

and so on.

Going through the usual derivation one gets that the energy functional is given by

E[ψ(u1,u2)] = −1

6
〈ψ(u1,u2)ψ(u1,u2)ψ(u1,u2)〉 (2.13)

where

E[ψ(u1,u2)] =
1

6

∫ ∞

0
dt1dt2dt3 E0(t1, t2, t3) g(u1T, u2T )

·
{

8u3
1G2u1T

(

2πt1
T

)

G2u1T

(

2π(t1 + t2)

T

)

G2u1T

(

2πt2
T

)

+8u3
2G2u2T (

2πt1
T

)G2u2T (
2π(t1 + t2)

T
)G2u2T (

2πt2
T

)

+

(

2u3
1

(

− ∂u1T g(u1T, u2T )

g(u1T, u2T )

)

+ 2u2
1u2

(

− ∂u2T g(u1T, u2T )

g(u1T, u2T )

)

)

·
(

G2
2u1T

(

2πt1
T

)

+G2
2u1T

(

2π(t1 + t2)

T

)

+G2
2u1T

(

2πt2
T

))

+

(

2u3
2

(

− ∂u2T g(u1T, u2T )

g(u1T, u2T )

)

+ 2u2
2u1

(

− ∂u1T g(u1T, u2T )

g(u1T, u2T )

)

)

·
(

G2
2u2T

(

2πt1
T

)

+G2
2u2T

(

2π(t1 + t2)

T

)

+G2
2u2T

(

2πt2
T

))

+

(

u1

(

− ∂u1T g(u1T, u2T )

g(u1T, u2T )

)

+ u2

(

− ∂u2T g(u1T, u2T )

g(u1T, u2T )

)

)3}

(2.14)

When writing ∂u1T g(u1T, u2T ) we mean that we differentiate (only) with respect to the

first entry, and when ∂u2T g(u1T, u2T ) (only) with respect to the second. This can be

written also as

E[ψ(u1,u2)] =
1

6

∫ ∞

0
dt1dt2dt3 E0(t1, t2, t3) g(u1T, u2T )
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{

8u3
1G2u1T

(

2πt1
T

)

G2u1T

(

2π(t1 + t2)

T

)

G2u1T

(

2πt2
T

)

+8u3
2G2u2T

(

2πt1
T

)

G2u2T

(

2π(t1 + t2)

T

)

G2u2T

(

2πt2
T

)

+

(

−2u2
1

∂T g(u1T, u2T )

g(u1T, u2T )

)

·
(

G2
2u1T

(

2πt1
T

)

+G2
2u1T

(

2π(t1 + t2)

T

)

+G2
2u1T

(

2πt2
T

))

+

(

−2u2
2

∂T g(u1T, u2T )

g(u1T, u2T )

)

·
(

G2
2u2T

(

2πt1
T

)

+G2
2u2T

(

2π(t1 + t2)

T

)

+G2
2u2T

(

2πt2
T

))

+

(

−∂T g(u1T, u2T )

g(u1T, u2T )

)3
}

(2.15)

where now ∂T g(u1T, u2T ) means differentiation with respect to both entries. A further

useful form is the following one

E[ψ(u1,u2)] =
1

6

∫ ∞

0
ds s2

∫ 1

0
dy

∫ y

0
dx

4

π
sinπx sinπy sinπ(x− y)g(s, vs) (2.16)

·
{

Gs(2πx)Gs(2π(x − y))Gs(2πy)

+v3Gvs(2πx)Gvs(2π(x− y))Gvs(2πy)

−1

2

(

∂sg(s, vs)

g(s, vs)

)

(

G2
s(2πx) +G2

s(2π(x − y)) +G2
s(2πy)

)

−1

2

(

v2 ∂sg(s, vs)

g(s, vs)

)

(

G2
vs(2πx) +G2

vs(2π(x − y)) +G2
vs(2πy)

)

+

(

−∂sg(s, vs)

g(s, vs)

)3
}

(2.17)

where s = 2u1T, v = u2
u1

and, by definition, g(s, vs) ≡ g(s/2, vs/2) = g(u1T, u2T ). The

derivative ∂s in ∂sg(s, vs) acts on both entries. We see that, contrary to [2], where the u

dependence was completely absorbed within the integration variable, in (2.17) there is an

explicit dependence on v.

2.1 The IR and UV behaviour

First of all we have to find out whether E[ψ(u1,u2)] is finite and whether it depends on v.

To start with let us notice that the structure of the x, y dependence is the same as

in [34]. Therefore we can use the results already found there, with exactly the same IR

(s → ∞) and UV (s ≈ 0) behaviour. The differences with [34] come from the various

factors containing g or derivatives thereof. The relevant IR asymptotic behaviour is

g(s, vs) ≈ 1 +
1 + v

24v

1

s
(2.18)
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for large s (v is kept fixed to some positive value). The asymptotic behaviour does not

change with respect to the D24-brane case (except perhaps for the overall dominant asymp-

totic coefficient, which is immaterial as far as integrability is concerned), so we can conclude

that the integral in (2.17) is convergent for large s, where the overall integrand behaves

asymptotically as 1/s2.

Let us come next to the UV behaviour (s ≈ 0). To start with let us consider the term

not containing Gs. We have

1

4π2
s2g(s, vs)

(

∂sg(s, vs)

g(s, vs)

)3

= − 1

16 (π3
√
v) s2

− 1

8π3
√
vs

(

(1 + v)(1 + 2γ) + 2 log 2 + 2(1 + v) log s+ 2v log(2v)
)

+ O((log s)2) (2.19)

The double pole in zero is to be expected. Once we integrate over s we obtain a behaviour

∼ 1
s

near s = 0. This singularity corresponds to ∼ δ(0)2 ∼ V 2, which can be interpreted

as the D25 brane energy density multiplied by the square of the (one-dimensional) volume,

see appendix C of [34]. In order to extract a finite quantity from the integral (2.17) we

have to subtract this singularity. We proceed as in [34] and find that the function to be

subtracted to the l.h.s. of (2.19) is

h1(v, s) =
(

− 1

16 (π3
√
v) s2

+
1

16π3
√
vs

− 1

8π3
√
vs

(

(1 + v)(1 + 2γ) + 2 log 2 + 2(1 + v) log s+ 2v log(2v)
)

)

·e
s

s2−1
(

1 + 2s− 2s2 + 2s3 + s4
)

(−1 + s2)2
(2.20)

in the interval 0 ≤ s ≤ 1 and 0 elsewhere. It is important to remark that both the

singularity and the subtraction are v-dependent.

As for the quadratic terms in Gs and Gvs the overall UV singularity is

− 3

16 (π3
√
v) s2

− 3(1 + v)

8 (π3
√
v) s

+ O((log s)2) (2.21)

and the corresponding function to be subtracted from the overall integrand is

h2(v, s) = −3e
s

s2−1
(

1 + 2s − 2s2 + 2s3 + s4
)

(1 + s+ 2sv)

16π3s2 (s2 − 1)2
√
v

(2.22)

in the interval 0 ≤ s ≤ 1 and 0 elsewhere. Also in this case the subtraction is v dependent.

Finally let us come to the cubic term in Gs and Gvs. Altogether the UV singularity

due to the cubic terms is

− 1

8 (π3
√
v) s2

+
(γ + log s)(1 + v) + log 2 + v log(2v)

4π3
√
vs

+ O((log s)2) (2.23)

The overall function we have to subtract from the corresponding integrand is

h3(v, s) =
2

16π3
√
vs

e
s

s2−1
(

1 + 2s− 2s2 + 2s3 + s4
)

(s2 − 1)2

·
(

−1 + s+ 2s(1 + v)(γ + log s) + s log 4 + 2sv log(2v)
)

(2.24)
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for 0 ≤ s ≤ 1 and 0 elsewhere. Also in this case the subtraction is v dependent.

As explained in [34] the result of all these subtractions does not depend on the particu-

lar functions h1, h2, h3 we have used, provided the latter satisfy a few very general criteria.

After all these subtractions the integral in (2.17) is finite, but presumably v depen-

dent. This is confirmed by a numerical analysis. For instance, for v = 1 and 2 we get

E(s)[ψ(u1,u2)] = 0.0892632 and 0.126457, respectively, where the superscript (s) means UV

subtracted. It is clear that this cannot represent a physical energy. This is not surprising.

We have already remarked in [34] that the UV subtraction procedure carries with itself a

certain amount of arbitrariness. Here we have in addition an explicit v dependence that

renders this fact even more clear. The way out is the same as in [34]. We will compare the

(subtracted) energy of ψ(u1,u2) with the (subtracted) energy of a solution representing the

tachyon condensation vacuum, and show that the result is independent of the subtraction

scheme.

3 The ǫ-regularization

As we did in section 8 of [34], we need to introduce the ǫ-regularization and the ǫ-regularized

solution corresponding to (2.8). We recall the general form of such solution

ψφ = c(φ + ǫ) − 1

K + φ+ ǫ
(φ+ ǫ− δφ)Bc∂c (3.1)

where ǫ is an arbitrary small number. In the present case

φ ≡ φ(u1,u2) = u1(: X
2
1 : +2 log u1 + 2A) + u2(: X

2
2 : +2 log u2 + 2A) (3.2)

It is convenient to split ǫ = ǫ1 + ǫ2 and associate ǫ1 to the first piece in the r.h.s. of (3.2)

and ǫ2 to the second. We will call the corresponding solution ψǫ
(u1,u2)

. After the usual

manipulations the result is

E[ψǫ
(u1,u2)

] =
1

6

∫ ∞

0
dt1dt2dt3 E0(t1, t2, t3) g(u1T, u2T ) e−ǫT

·
{

8u3
1 G2u1T

(

2πt1
T

)

G2u1T

(

2π(t1 + t2)

T

)

G2u1T

(

2πt2
T

)

+8u3
2G2u2T

(

2πt1
T

)

G2u2T

(

2π(t1 + t2)

T

)

G2u2T

(

2πt2
T

)

+

(

2u3
1

(

ǫ1
u1

− ∂u1T g(u1T, u2T )

g(u1T, u2T )

)

+ 2u2
1u2

(

ǫ2
u2

− ∂u2T g(u1T, u2T )

g(u1T, u2T )

)

)

·
(

G2
2u1T

(

2πt1
T

)

+G2
2u1T

(

2π(t1 + t2)

T

)

+G2
2u1T

(

2πt2
T

))

+

(

2u3
2

(

ǫ2
u2

− ∂u2T g(u1T, u2T )

g(u1T, u2T )

)

+ 2u2
2u1

(

ǫ1
u1

− ∂u1T g(u1T, u2T )

g(u1T, u2T )

)

)

·
(

G2
2u2T

(

2πt1
T

)

+G2
2u2T

(

2π(t1 + t2)

T

)

+G2
2u2T

(

2πt2
T

))
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+

(

u1

(

ǫ1
u1

− ∂u1T g(u1T, u2T )

g(u1T, u2T )

)

+ u2

(

ǫ2
u2

− ∂u2T g(u1T, u2T )

g(u1T, u2T )

)

)3}

(3.3)

or

E[ψǫ
(u1,u2)

] =
1

6

∫ ∞

0
dt1dt2dt3 E0(t1, t2, t3) g(u1T, u2T ) e−ǫT

·
{

8u3
1G2u1T

(

2πt1
T

)

G2u1T

(

2π(t1 + t2)

T

)

G2u1T

(

2πt2
T

)

+8u3
2G2u2T

(

2πt1
T

)

G2u2T

(

2π(t1 + t2)

T

)

G2u2T

(

2πt2
T

)

+

(

2u2
1

(

ǫ− ∂T g(u1T, u2T )

g(u1T, u2T )

)

)

·
(

G2
2u1T

(

2πt1
T

)

+G2
2u1T

(

2π(t1 + t2)

T

)

+G2
2u1T

(

2πt2
T

))

+

(

2u2
2

(

ǫ− ∂T g(u1T, u2T )

g(u1T, u2T )

)

)

·
(

G2
2u2T

(

2πt1
T

)

+G2
2u2T

(

2π(t1 + t2)

T

)

+G2
2u2T

(

2πt2
T

))

+

(

ǫ− ∂T g(u1T, u2T )

g(u1T, u2T )

)3
}

(3.4)

and finally

E[ψǫ
(u1,u2)

] =
1

6
lim
ǫ→0

∫ ∞

0
ds s2

∫ 1

0
dy

∫ y

0
dx E(1 − y, x) g(s, vs) e−ηs (3.5)

·
{

Gs(2πx)Gs(2π(x − y))Gs(2πy)

+v3Gvs(2πx)Gvs(2π(x− y))Gvs(2πy)

+
1

2

(

η − ∂sg(s, vs)

g(s, vs)

)

(

G2
s(2πx) +G2

s(2π(x− y)) +G2
s(2πy)

)

+
1

2
v2

(

η − ∂sg(s, vs)

g(s, vs)

)

(

G2
vs(2πx) +G2

vs(2π(x− y)) +G2
vs(2πy)

)

+

(

η − ∂sg(s, vs)

g(s, vs)

)3
}

where E(1 − y, x) = 4
π

sinπx sinπy sinπ(x− y) and η = ǫ
2u1

. It is worth remarking that the

result (3.5) does not depend on the splitting ǫ = ǫ1 + ǫ2.

The integrand in (3.5) has the same leading singularity in the UV as the integrand

of (2.17). The subleading singularity on the other hand may depend on ǫ. Thus it must

undergo an UV subtraction that generically depends on ǫ. We will denote the corresponding

subtracted integral by E(s)[ψǫ
(u1,u2)

]. The important remark here is, however, that in the

limit ǫ→ 0 both (3.5) and (2.17) undergo the same subtraction.
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The factor of e−ηs appearing in the integrand of (3.5) changes completely its IR struc-

ture. It is in fact responsible for cutting out the contribution at infinity that character-

izes (2.17) and (modulo the arbitrariness in the UV subtraction) makes up the energy of

the D23 brane.

In keeping with [34], we interpret ψǫ
(u1,u2)

as a tachyon condensation vacuum solution

and E(s)[ψǫ
(u1,u2)

] the energy of such vacuum. This energy is actually v- (and possibly

ǫ)-dependent. We will explain later on how it can be set to 0.

4 The energy of the D23-brane

As explained in [34], the problem of finding the right energy of the D23 brane consists in

constructing a solution over the vacuum represented by ψǫ
(u1,u2)

(the tachyon condensation

vacuum). The equation of motion at such vacuum is

QΦ + ΦΦ = 0, where QΦ = QΦ + ψǫ
(u1,u2)

Φ + Φψǫ
(u1,u2)

(4.1)

One can easily show that

Φ0 = ψ(u1,u2) − ψǫ
(u1,u2)

(4.2)

is a solution to (4.1). The action at the tachyon vacuum is

−1

2
〈QΦ0,Φ0〉 −

1

3
〈Φ0,Φ0Φ0〉. (4.3)

Thus the energy is

E[Φ0] = −1

6
〈Φ0,Φ0Φ0〉 = −1

6

[

〈ψ(u1,u2), ψ(u1,u2)ψ(u1,u2)〉 − 〈ψǫ
(u1,u2)

, ψǫ
(u1,u2)

ψǫ
(u1,u2)

〉

−3〈ψǫ
(u1,u2)

, ψ(u1,u2)ψ(u1,u2)〉 + 3〈ψ(u1,u2), ψ
ǫ
(u1,u2)

ψǫ
(u1,u2)

〉
]

. (4.4)

eq. (4.2) is the lump solution at the tachyon vacuum, therefore this energy must be the

energy of the lump.

The two additional terms 〈ψǫ
(u1,u2)

, ψ(u1,u2)ψ(u1,u2)〉 and 〈ψ(u1,u2), ψ
ǫ
(u1,u2)

ψǫ
(u1,u2)

〉 are

given by

〈ψǫ
(u1,u2)

, ψ(u1,u2)ψ(u1,u2)〉 = − lim
ǫ→0

∫ ∞

0
ds s2

∫ 1

0
dy

∫ y

0
dx e−ηsE(1 − y, x) eηsy g(s, vs)

·
{

(

η − ∂sg(s, vs)

g(s, vs)

)(

− ∂sg(s, vs)

g(s, vs)

)2

(4.5)

+Gs(2πx)Gs(2π(x − y))Gs(2πy) + v3Gvs(2πx)Gvs(2π(x− y))Gvs(2πy)

+
1

2

(

η − ∂sg(s, vs)

g(s, vs)

)

(

G2
s(2π(x)) + v2G2

vs(2π(x))
)

+
1

2

(

− ∂sg(s, vs)

g(s, vs)

)

(

G2
s(2πy)+G

2
s(2π(x−y))+v2

(

G2
vs(2πy)+G

2
vs(2π(x−y))

))

}

.
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and

〈ψ(u1,u2), ψ
ǫ
(u1,u2)

ψǫ
(u1,u2)

〉 = − lim
ǫ→0

∫ ∞

0
ds s2

∫ 1

0
dy

∫ y

0
dx e−ηsE(1 − y, x) eηsx g(s, vs)

·
{

(

η − ∂sg(s, vs)

g(s, vs)

)2(

− ∂sg(s, vs)

g(s, vs)

)

(4.6)

+Gs(2πx)Gs(2π(x− y))Gs(2πy) + v3Gvs(2πx)Gvs(2π(x− y))Gvs(2πy)

+
1

2

(

η − ∂sg(s, vs)

g(s, vs)

)

(

G2
s(2πx) +G2

s(2πy) + v2
(

G2
vs(2πx) +G2

vs(2πy)
))

+
1

2

(

− ∂sg(s, vs)

g(s, vs)

)

(

G2
s(2π(x− y)) + v2G2

vs(2π(x − y))
)

}

.

Now we insert in (4.4) the quantities we have just computed together with (2.17) and (3.5).

We have of course to subtract their UV singularities. As we have already remarked above,

such subtractions are the same for all terms in (4.4) in the limit ǫ → 0, therefore they

cancel out. So the result we obtain from (4.4) is subtraction-independent and we expect it

to be the physical result.

In fact the expression we obtain after the insertion of (2.17), (3.5), (4.5) and (4.6)

in (4.4) looks very complicated. But it simplifies drastically in the limit ǫ → 0. As was

noticed in [34], in this limit we can drop the factors eηsx and eηsy in (4.5) and (4.6) because

of continuity.2 What we cannot drop a priori is the factor e−ηs.

Next it is convenient to introduce g̃(s, vs) = e−ηsg(s, vs) and notice that

η − ∂sg(s, vs)

g(s, vs)
= −∂sg̃(s, vs)

g̃(s, vs)
(4.7)

Another useful simplification comes from the fact that (without the eηsx or eηsy factors)

upon integrating over x, y the three terms proportional to G2
s(2πx), G

2
s(2πy) and G2

s(2π(x−
y)), respectively, give rise to the same contribution. With this in mind one can easily realize

that most of the terms cancel and what remains is

E[Φ0] =
1

6
lim
ǫ→0

∫ ∞

0
ds s2

∫ 1

0
dy

∫ y

0
dx E(1 − y, x)

{

g(s, vs) (1 − e−ηs)

·
[

Gs(2πx)Gs(2π(x − y))Gs(2πy) + v3Gvs(2πx)Gvs(2π(x− y))Gvs(2πy)

+
1

2

(

−∂sg(s, vs)

g(s, vs)

)

(

G2
s(2πx) +G2

s(2π(x − y)) +G2
s(2πy)

)

+
1

2
v2

(

η − ∂sg(s, vs)

g(s, vs)

)

(

G2
vs(2πx) +G2

vs(2π(x− y)) +G2
vs(2πy)

)

+

(

−∂sg(s, vs)

g(s, vs)

)3
]

2It is useful to recall that the limit ǫ → 0 can be taken safely inside the integration only if the integral

without the factor e
ηsx or e

ηsy is convergent. This is true for the x and y integration, but it is not the case

for instance for the integral (4.9) below.
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+g̃(s, vs)

(

∂sg̃(s, vs)

g̃(s, vs)
− ∂sg(s, vs)

g(s, vs)

)3
}

(4.8)

The term proportional to 1− e−ηs vanishes in the limit ǫ→ 0 because the integral without

this factor is finite (after UV subtraction). Therefore we are left with

E[Φ0] =
1

6
lim
ǫ→0

∫ ∞

0
ds s2

∫ 1

0
dy

∫ y

0
dx E(1 − y, x) g(s, vs) e−ηs η3

=
1

4π2
lim
ǫ→0

∫ ∞

0
ds s2g(s, vs)η3e−ηs. (4.9)

where g(s, vs) = g(s)g(vs). In [34] the analog of this was the coefficient α that determines

the energy of the solution. This contribution comes from the ǫ3 term in the last line of (3.4).

If one knows the asymptotic expansion of the integrand for large s, it is very easy to extract

the exact ǫ→ 0 result of the integral. We recall that the UV singularity has been subtracted

away, therefore the only nonvanishing contribution to the integral (4.9) may come from

s → ∞. In fact splitting the s integration as 0 ≤ s ≤ M and M ≤ s < ∞, where M is a

very large number, it is easy to see the the integration in the first interval vanishes in the

limit ǫ→ 0. As for the second integral we have to use the asymptotic expansion of g(s, vs):

g(s, vs) ≈ 1 + 1+v
12v

1
s

+ . . .. Integrating term by term from M to ∞, the dominant one gives

1

4π2
e−ηM (2 + 2Mη +M2η2) (4.10)

which, in the ǫ → 0 limit, yields 1
2π2 . The other terms are irrelevant in the ǫ → 0 limit.

Therefore we have

E[Φ0] =
1

2π2
. (4.11)

We recall that 1 in the numerator on the r.h.s. is to be identified with lims→∞ g(s, vs).

We conclude that

T23 =
1

2π2
(4.12)

This is the same as T24, so it may at first be surprising. But in fact it is correct because

of the normalization discussed in appendix C of [34]. Compare with eqs. (C.1) and (C.7)

there: when we move from a Dp-brane to a D(p−1)-brane, the tension is multiplied by 2π

(remember that α′ = 1), but simultaneously we have to divide by 2π because the volume

is measured with units differing by 2π (see after eq. (C.6)).

In more detail the argument goes as follows (using the notation of appendix C of [34]).

The volume in our normalization is V = 2πV, where V is the volume in Polchinski’s

textbook normalization, [38], see also [39]. The energy functional for the D24 brane is

proportional to the 2D zero mode normalization (which determines the normalization of

the partition function). The latter is proportional to 1
V

. Since V = 2πV, normalizing with

respect to V is equivalent to multiplying the energy by 2π. This implies that

TD24 =
1

2π
TD24 (4.13)
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where T represents the tension in Polchinski’s units. The energy functional in (2.16) de-

pends linearly on the normalization of g(s, vs), which is the square of the normalization

of g(s), so is proportional to 1
V 2 . Therefore the ratio between the energy with the two

different zero mode normalizations is (2π)2. Consequently we have

TD23 =
1

(2π)2
TD23 (4.14)

Since, from Polchinski, we have

TD23 = 2π TD24 = (2π)2 TD25 = 2 (4.15)

eq. (4.12) follows.

We end this section with two comments. The first is about E(s)[ψǫ
u1,u2

]. This is

interpreted as the energy at the tachyon condensation vacuum after the UV subtraction,

which represents itself the energy of the tachyon condensation vacuum. Therefore it should

vanish. In fact it does not vanish and its value is (v, ǫ)-dependent. The reason it does not

vanish is that the subtraction itself is (v, ǫ)-dependent and this is due to the arbitrariness

of the subtraction scheme. However we can always fix E(s)[ψǫ
u1,u2

] to zero by subtracting

a suitable constant. Of course we have to subtract the same constant from E(s)[ψu1,u2].

The second comment concerns the dependence on ǫ of (4.4). The result we have derived

in this section makes essential use of the limit ǫ→ 0, but we believe that it should hold for

any ǫ. In [34] it was in fact argued that this should be so, based on the ǫ-independence of

the UV subtractions. In this paper the UV subtractions are generically ǫ-dependent and we

cannot use the same simple argument. However there is no reason to believe that the r.h.s.

of (4.4) is ǫ dependent, although it is more complicated to prove it. Such complication has

to do only with the technicalities of the ǫ-regularization. It is possible to envisage other

regularizations in which the UV subtractions are independent of the regulator. We will

pursue this point elsewhere.

5 D(25-p) brane solutions

The previous argument about D-brane tensions can be easily continued and we always find

that the value to be expected is

T25−p =
1

2π2
, ∀p ≥ 1 (5.1)

An analytic solution with such energy is easily found. We introduce the relevant operator

φu =

p
∑

i=1

ui(: X
2
i : +2 log ui + 2A) (5.2)

where Xi will represent the transverse direction to the brane and ui the corresponding 2D

couplings. Since the ui couplings evolve independently and linearly, the partition function

will be g(u1, . . . , up) = g(u1)g(u2) . . . g(up).

– 11 –
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The derivation of the energy of such solutions is a straightforward generalization of

the one above for the D23-brane and we will not repeat it. The final result for the energy

above the tachyon condensation vacuum is

E[Φ0] =
1

6
lim
ǫ→0

∫ ∞

0
ds s2

∫ 1

0
dy

∫ y

0
dx E(1 − y, x) g(s, v1s, . . . , vp−1s) e

−ηs η3

= − 1

4π2
lim
ǫ→0

∫ ∞

0
ds s2g(s, v1s, . . . , vp−1s)η

3e−ηs. (5.3)

where v1 = u2
u1
, v2 = u3

u1
, . . .. It is understood that the UV singularity has been subtracted

away from the integral in the r.h.s. , therefore the only contribution comes from the region

of large s. Since, again lims→∞ g(s, v1s, . . . , vp−1s) = 1, we find straightaway that

E[Φ0] =
1

2π2
. (5.4)

from which (5.1) follows.
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