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Abstract

Background: In the field of drug discovery, assessing the potential of multidrug therapies is a difficult task because
of the combinatorial complexity (both theoretical and experimental) and because of the requirements on the
selectivity of the therapy. To cope with this problem, we have developed a novel method for the systematic in silico
investigation of synergistic effects of currently available drugs on genome-scale metabolic networks.

Results: The algorithm finds the optimal combination of drugs which guarantees the inhibition of an objective
function, while minimizing the side effect on the other cellular processes. Two different applications are considered:
finding drug synergisms for human metabolic diseases (like diabetes, obesity and hypertension) and finding
antitumoral drug combinations with minimal side effect on the normal human cell. The results we obtain are
consistent with some of the available therapeutic indications and predict new multiple drug treatments. A cluster
analysis on all possible interactions among the currently available drugs indicates a limited variety on the metabolic
targets for the approved drugs.

Conclusion: The in silico prediction of drug synergisms can represent an important tool for the repurposing of drugs
in a realistic perspective which considers also the selectivity of the therapy. Moreover, for a more profitable exploitation
of drug-drug interactions, we have shown that also experimental drugs which have a different mechanism of action
can be reconsider as potential ingredients of new multicompound therapeutic indications. Needless to say the clues
provided by a computational study like ours need in any case to be thoroughly evaluated experimentally.
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Background
In spite of the advances in molecular and computational
biology, the discovery of new drugs still remains a very
challenging task which requires a very long period of
research and development before any new compound can
be commercialized. A possible alternative to the search of
new active compounds is to make use of the unexploited
properties of already available drugs, since a wide knowl-
edge about both their therapeutic and toxicity effects has
already been gathered during the study for their approval.
In this perspective, a natural approach to broaden the

*Correspondence: zampieri@imsb.biol.ethz.ch; altafini@sissa.it
2Institute of Molecular Systems Biology, ETH (Eidgenoessische Technische
Hochschule), Wolfgang Pauli Str. 16 - 8093, Zurich, Switzerland
3Functional Analysis Department, SISSA (International School for Advanced
Studies), Via Bonomea 265 - 34136, Trieste, Italy
Full list of author information is available at the end of the article

range of applications of the existing drugs is to try to com-
bine them in multiple drug therapies [1-3]. However, even
though both the financial burden of conducting trials as
well as the risk of adverse events in trial populations is
expected to be sensibly lower for already approved drugs,
so far the experimental investigations of multicomponent
therapies have been quite limited [4,5]. Major obstacles to
this approach are the high number of possible combina-
tions but also our limited understanding of the complex
mode of action of a multidrug treatment. Indeed, multiple
perturbations can show three types of interaction, which
have been classified as synergistic, antagonistic and addi-
tive [6] (alternatively called, aggravating, buffering and
non-epistatic [7]). We have focused our attention on the
first type, where the use of drug combinations represents
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an enhancement with respect to the superposition of the
single perturbations.
In order to identify synergistic effects, Ref. [4] investi-

gated all pairs of a set of known drugs at different doses,
obtaining a functional classification of the interactions
by looking at their inhibitory effect. Various computa-
tional approaches, based on reconstructed genome-scale
metabolic networks, have been also developed in Refs.
[7-10], in order to identify the synergistic effects triggered
by multiple drugs or multiple genetic perturbations (for
example the so-called “synthetic lethality”). Unfortunately,
a systematic evaluation of the effects of all possible combi-
nations of drugs is unfeasible, because their number scales
exponentially with the number of chemicals taken into
account (for an exhaustive search over 40 drugs, more
than a trillion possible combinations should be tested).
Moreover, a drug profile is given by both its therapeutic
effect and by its side effect, the latter being related to its
selectivity. For example, drugs such as anticancer agents
have to selectively act only on tumor cells [11]. Similarly,
metabolic diseases are induced by the imbalance of key
metabolic pathways which, if modulated without affect-
ing other vital functions, can rescue from the pathology
[12,13]. Referring to these specific needs, we have devel-
oped an algorithm based on the metabolic network of
humans and on the comparison between the metabolic
networks of human and cancer cells (as reconstructed
recently in [14]) aimed at expanding the spectrum of
applications of the existing drugs to new selective treat-
ments against metabolic diseases and tumors.
The algorithm here proposed is based on Flux Balance

Analysis (FBA) [15,16]: in spite of its simple formal-
ism, FBA has already proven to be reliable in providing
quantitative understanding of cell metabolism. The com-
putational method presented in this paper is based on a
bilevel optimization which, after reformulation through
duality theory, allows the algorithm to efficiently search
the interactions between drugs. With respect to the avail-
able literature [7-9,17-19], the procedure we are proposing
presents at least three important differences: (i) the syner-
gisms are efficiently explored over all drug combinations
without limiting only to pairwise combinations but with-
out doing an exhaustive search, thanks to the application
of duality theory; (ii) the multiple drug treatments sug-
gested by the method guarantee both the inhibition of
the chosen target (efficacy) and a minimal side effect on
the other cellular functions (selectivity); (iii) in our proce-
dure, any metabolic process of the network can be chosen
as possible disease and phenotype readout, not only cell
growth as common in the FBA literature (a more detailed
comparison with the current literature is reported in
the Additional file 1). Inspired by works such as Refs.
[20,21], we treat the inhibition of a metabolic reaction by
a drug as the silencing of the gene which codes for the

catalyzing enzyme. In this simplified framework, the syn-
ergistic effect resulting from multiple perturbations of the
metabolic network is still well captured [7,22] (see Figure 1
for a simple example). The selectivity of any drug treat-
ment is correlated to its side effect, which is estimated as
number of stopped reactions (see Figure 1 (C) vs (D)) plus
a correction term for the known non-metabolic targets.
Further details are described in the Methods Section. It
is worth noting that, because of the steady state assump-
tion of FBA, this formalism does not identify synergisms
between drugs that manifest themselves as alterations of
kinetic parameters and consequently of concentration of
metabolites, like the case of drugs which act on the same
linear path (as e.g. Trimethoprim and Sulfamethoxazole
do on folate synthesis [23]). Similarly, interactions where
for instance one drug inhibits the biodegradation of the
others cannot be found by FBA-based methods [24].
In spite of the limitations of restricting our analysis only

to metabolic networks, the results presented in the follow-
ing provide a promising example of how in silico models
can be used as practical tools for exploring the functional
interactions between drugs and of the (little explored)
potential offered by synergistic drug combinations.

Results and discussion
In order to explore its potentialities and limitations, the
algorithm (described in the Methods Section) has been
applied to two different case studies:

1. finding drug synergisms for metabolic diseases (like
diabetes, obesity and hypertension) on the human
network [25];

2. finding antitumoral drug combinations with minimal
side effect on the normal human cell (using the cancer
network of [14] to model the metabolism of a human
tumor).

Some features of these two metabolic networks are
listed in Table 1, together with the number of drugs cur-
rently approved (from [26]). In particular, in order to gen-
erate realistic solutions, the available information about
these existing drugs has been carefully filtered, select-
ing only inhibitions of metabolic human targets that have
been experimentally proven (more details in Methods,
Additional file 1: Table S1 and Additional file 2).

Humanmetabolism
In this Section, we consider the inhibition of specific func-
tions of the human metabolism obtained without impair-
ing other vital processes. First, the inhibitory effect of each
single drug on the whole network has been calculated.
Then, the following screening is performed: we systemat-
ically consider each reaction of the network as a potential
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Figure 1 Example of drug synergism in FBA. For the toy network depicted in (A) the aim is to stop the objective reaction v10 (in red) by choosing
a combination of drugs (the three valves “��”) while blocking the minimum number of reactions other than v10. In the drawing, blue arrows indicate
active fluxes while gray arrows refer to stopped reactions; the valve is red if the drug is used, gray otherwise. Panel (B) shows how the use of a single
drug (v4 or v7) does not stop the objective reaction, while the drug at v2 blocks the objective reaction v10 but it also blocks all fluxes of the network
(panel (C)). Therefore, the optimal drug combination blocking the objective function v10 with minimal side effect is given by the synergism of the
two drugs acting at v4 and v7 (panel (D)). The comparison of panels (B) and (D) shows how a synergism is a behavior which cannot be simply
inferred by the superposition of the effects of the single drugs, but that structurally depends from the topology of the network.

objective function and we apply the algorithm, search-
ing for the most selective synergism capable of blocking
this objective reaction. Comparing this solution with the
single-drug effects evaluated in advance, we distinguish
three cases:

a) the drug combination leads to a new inhibition since
no single drug can stop the objective reaction;

b) the objective reaction can be stopped also by a single
drug but the drug combination is more selective (has
a minor side effect);

Table 1 Features of themetabolic networks considered in
the paper

Human [25] Cancer [14]

Number of reactions 2469 940

Number of metabolites 1587 654

Number of compartments 8 8

Number of pathways 83 62

Number of drugs 85 55

The human network has been obtained from BIGG (bigg.ucsd.edu/),
whereas the cancer network has been provided us by the authors of [14]. The
number of reactions here reported is before the splitting of every reversible
process in a pair of irreversible reactions. Drugs have been selected from
DrugBank database [26] as described in Methods. The complete list is reported
in Additional file 1: Table S1).

c) the objective reaction can be stopped also by a single
drug and the multiple drug solution is less selective
(this solution is not interesting because it triggers a
larger side effect).

In all cases where a single or a multidrug solution
is found, also all suboptimal solutions are hierarchically
identified, iterating the procedure while excluding the cur-
rent optimum, until the problem becomes unfeasible (i.e.
no more solutions exist, capable of blocking that objective
reaction). At the end of the screening, we obtained a set of
32multicomponent solutions, ranging from combinations
of two up to four compounds (see Table 2). The following
characterization of the synergistic effects is performed.
For each combination we identify the set Y of metabolic
reactions which cannot be stopped by any single drug of
the combination, but which are stopped when all these
drugs are used together. Then, the synergism is described
by the vector s ∈ {0, 1}Nr , where sj = 1 if reaction j belongs
to Y (Nr is the number of reactions in the metabolic
network). From the vectors s of the 32 multiple drug
solutions a matrix of distances can be constructed and a
cluster analysis performed on these distances; the result-
ing distance-based tree (similar to a phylogenetic tree) is
drawn in Figure 2 (upper panel). The synergisms are clus-
tered in six classes (with clearly identifiable subclasses in
some of them) labeled from “A” to “F”. This classification

bigg.ucsd.edu/
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Table 2 List of all drug synergisms

Drugs Side eff. Syn. ratio Class

Rosiglitazone (#7) - Quinacrine (#36) - Cerulenin (#62) - Tyloxapol (#85) 363.8 91 25.0% A

Rosiglitazone (#7) - Quinacrine (#36) - Orlistat (#65) - Tyloxapol (#85) 377.7 91 24.0% A

Rosiglitazone (#7) - Indomethacin (#22) - Cerulenin (#62) - Tyloxapol (#85) 390.6 91 23.2% A

Rosiglitazone (#7) - Diclofenac (#35) - Cerulenin (#62) - Tyloxapol (#85) 397.5 91 22.8% A

Rosiglitazone (#7) - Indomethacin (#22) - Orlistat (#65) - Tyloxapol (#85) 404.5 91 22.4% A

Rosiglitazone (#7) - Diclofenac (#35) - Orlistat (#65) - Tyloxapol (#85) 411.4 91 22.1% A

Rosiglitazone (#7) - Cerulenin (#62) 298.9 52 17.3% A

Rosiglitazone (#7) - Orlistat (#65) - 312.8 52 16.6% A

Indomethacin (#22) - Fomepizole (#75) 84.7 1 1.1% B

Naftifine (#43) - Acetylsalicylic acid (#55) 116.0 6 5.1% C

Acetylsalicylic acid (#55) - Tioconazole (#60) 116.0 6 5.1% C

Simvastatin/Pravastatin (#4) - Acetylsalicylic acid (#55) 123.9 6 4.8% C

Rosiglitazone (#7) - Tioconazole (#60) 280.9 6 2.1% C

Rosiglitazone (#7) - Naftifine (#43) 280.9 6 2.1% C

Simvastatin/Pravastatin (#4) - Rosiglitazone (#7) 288.8 6 2.0% C

Carbidopa (#6) - Droxidopa (#24) 93.1 1 1.0% D

Droxidopa (#24) - Selegiline (#45) 96.1 1 1.0% D

Droxidopa (#24) - Minaprine (#49) 152.4 1 0.6% D

Droxidopa (#24) - Zonisamide (#54) 289.7 1 0.3% D

Mycophenolic acid (#42) - Mercaptopurine (#58) 11.0 5 45.4% E

Ribavirin (#51) - Mercaptopurine (#58) 23.9 5 20.9% E

Udenafil (#10) - Mycophenolic acid (#42) - Mercaptopurine (#58) - 18.0 7 38.8% E

Mycophenolic acid (#42) - Dipyridamole (#57) - Mercaptopurine (#58) 22.0 7 31.8% E

Udenafil (#10) - Ribavirin (#51) - Mercaptopurine (#58) 30.9 7 22.6% E

Ribavirin (#51) - Dipyridamole (#57) - Mercaptopurine (#58) 34.9 7 20,0% E

Theophylline (#18) - Mycophenolic acid (#42) - Mercaptopurine (#58) 41.7 7 16.7% E

Mycophenolic acid (#42) - Pentoxifylline (#50) - Mercaptopurine (#58) 53.8 7 13.0% E

Theophylline (#18) - Ribavirin (#51) - Mercaptopurine (#58) 54.6 6 10.9% E

Pentoxifylline (#50) - Ribavirin (#51) - Mercaptopurine (#58) 66.7 6 8.9% E

Pentoxifylline (#50) - Arsenic trioxide (#72) 118.2 17 14.3% F

Cladribirne (#16) - Pentoxifylline (#50) 118.2 17 14.3% F

Gemcitabine (#30) - Pentoxifylline (#50) 157.8 15 9.5% F

The table reports the multiple drug solutions in the humanmetabolic network, the side effect σ(D), the synergism size (i.e. the number of stopped reactions which
exceeds the linear superposition of single drug effects), the ratio between these two quantities, and their classification (see Figure 2 and main text for the clustering
analysis). Drug numbers refer to Additional file 1: Table S1. Bold font indicates that the solution (or part of it) has an experimental validation.

can be used to build also a proximity network for the
drugs, linking those that belong to the same synergistic
interaction. The outcome is drawn in Figure 2 (bottom
panel) and shows that the same clustering applies to the
drugs involved in the synergisms. The result highlights
how drugs can often be used in alternative one to the
others: for example, the synergistic pairs of class C con-
tain one drug among those labeled with the number 7 or
55 (Rosiglitazone or Acetylsalicylic acid) in combination
with one drug among number 4 or 43 or 60 (Pravastatin

or Naftifine or Tioconazole; see Additional file 1: Table S1
for all correspondences between names and numbers).
Being the cardinality of class C equal to 6, we can deduce
that these solutions are generated only by the combina-
tion of the pair and the triplet just mentioned. Three
exceptions to the sharp clusterization of Figure 2 are rep-
resented by drugs labeled with the numbers 7, 22 and
50, respectively Rosiglitazone, Indomethacin and Pen-
toxifylline. Indeed Rosiglitazone targets many metabolic
reactions (60, all in the fatty acid metabolism) which
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Figure 2 Classification of the synergisms for the humanmetabolic network. Top panel: Each leaf of the tree represents a multidrug solution
that we have found. The layout of the graph is obtained through the same method used for phylogenetic trees (a distance tree, see text) and
manifestly shows the clustering of these synergisms; the six clearly visible classes have been labeled with letters (from “A” to “F”). Names of the
pathways mainly affected by each class are reported near the clusters. Bottom panel: This network of drugs represents a detailed characterization of
the classes of synergisms. Each drug is indicated by a circle (whose radius is proportional to the number of its direct targets; drugs are labeled with
numbers according to Additional file 1: Table S1). Each synergism is drawn as a colored line which connects the drugs involved (each synergism has
its own color and the line thickness is proportional to the number of stopped reactions). Even in this more detailed representation, the six classes are
still visible. Some subclasses can also be identified: drug pairs (7, 62) and (7, 65) in class A and drug pairs (42, 58) and (51, 58) in class E (indicated with
broken lines) exploit part of the synergism of the entire class; indeed these 4 pairs are the isolated leaves in the corresponding clusters in the top
panel. Note the role of drugs 7, 22 and 50 in bridging classes A-C, A-B and E-F. Details of the metabolic functions to which these classes of
synergisms correspond are given in Figure 3.

allow two types of interaction: class A for fatty acid acti-
vation and class C for cholesterol metabolism. On the
other hand, Indomethacin causes only 7 inhibitions, some
belonging to glycerolphospholipids metabolism and some
others to pyruvate pathways: the first interact synergisti-
cally with drugs which target fatty acid reactions (class A),
whereas the second can be combined with drugs acting on
pyruvate metabolism (like Fomepizole, drug number 75,
in class B). Finally, Pentoxifylline inhibits reactions both
in the salvage pathway for nucleotides (which give syn-
ergisms in class E) and in pyrimidine catabolism (class
F).
The analysis of the complete results obtained from

the screening over all metabolic reactions is shown in

Figure 3, where the stoppable reactions are grouped on
the basis of the metabolic pathway to which they belong.
Figure 3 reports also the class and the targets of the
drug combinations which induces the inhibition. As one
can see, some synergisms occur between reactions which
belong to different pathways: in particular, sphingolipids
subsystems, CoA and pyrimidine biosynthesis contain
reactions whose inhibitions are caused by interactions
situated in other pathways, since none of the combined
drugs have targets on them. Moreover, among the mul-
tiple drug solutions of Figure 3, there are several new
inhibitions and a few more selective cases (a comparison
of the side effects induced by single and multiple drug
solutions is reported in Additional file 1: Figure S1).
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Figure 3 Drug synergisms for the humanmetabolic network. Left panel: For each affected pathway, the histogram reports the number of
objective reactions which can be stopped; gray-scale bars represent reactions stopped only by a Single drug or multidrug solution, classified as New
inhibition (meaning that no single drug is capable of triggering the inhibition),More selective and Less selective inhibitions (referring to the case
where both single and multiple drug treatments are possible and the multiple one has respectively a lower and a higher side effect). Right panels:
The two plots refer to multiple drug solutions only. For the same pathways as in the left panel, we report here the fraction of the direct drug targets
and the fraction of the synergistic inhibitions which are induced by the six classes of synergisms (shown in Figure 2): the comparison between the
two stacks shows that synergistic interactions can occur on pathways that are not direct targets of the drugs.

Among the cases of new inhibitions, the case of
Guanylate kinase, although of no therapeutic interest,
represents an easily visualizable example of the nonlin-
earity in the superposition of the effects as anticipated
in the hypothetical situation presented in Figure 1. We
consider the phosphorylation of GMP into GDP cat-
alyzed by guanylate kinase as objective reaction. Since
the blockage of GMP production will cause also the
arrest of any transcription process, this inhibition con-
stitutes only a toy example of synergism devoid of any
practical value. For this problem, the algorithm proposes
the combination of Mercaptopurine, Dipyridamole and
Mycophenolic acid: the synergism takes place through
the simultaneous inhibition of guanine phosphoribosyl-
transferase, 3′,5′-cyclic-nucleotide phosphodiesterase and
IMP dehydrogenase (see Figure 4 for a representation of
the corresponding subnetwork). Indeed, these reactions
are alternative ways of GMP biosynthesis. When and
only when they are all blocked, Guanylate kinase lacks its
substrate and stops as well.
The complete list of the objective reactions, with rela-

tive pathways and synergistic inhibitions, is reported in
Additional file 1: Table S2: this list contains many inhibi-
tions in the fatty acid, cholesterol and carnitine transport
pathways, which may represent solutions for obesity. In
particular, concerning the case of hyperlipidemia diseases,
the algorithm finds the combination of Rosiglitazone and
Cerulenin (class A) as inhibitor of many reactions in the
carnitine transferase and fatty acid desaturase pathways.

This synergism has been reported in the literature for
being active versus the biosynthesis of fatty acids in
prostate tumors [27]: the mean IC50 are 45μM and 32μM
for Rosiglitazone and Cerulenin alone, whereas it reduces
to 5μM when they are combined: the authors claimed
that this effect comes from the reduced production of
fatty acids preventing the growth and differentiation of
prostate cells. It is worth noting that we predict this

Figure 4 Nonlinearity in the synergism: the example of
Guanylate kinase. The part of the human network here represented
shows the nonlinear interaction when the three drug targets (the
three valves, with the name of the drugs) are simultaneously inhibited:
when this is the case, the objective reaction of Guanylate kinase (in
red) is stopped. Gray arrows and gray circles indicate respectively
stopped reactions and metabolites which become unavailable.



Facchetti et al. BMC Systems Biology 2012, 6:115 Page 7 of 14
http://www.biomedcentral.com/1752-0509/6/115

combination also in three anticancer solutions (together
with an additional target on palmitate conversion, see next
subsection). Moreover, this pair is part of other six syner-
gisms on the human metabolism, all concerning the same
pathways (i.e. a very similar mechanism of interaction).
Another significant example is represented by the inhi-

bition of Dihydroceramide desaturase. Indeed, ceramide is
the hydrophobicmembrane anchor of sphingolipids and is
involved as a bioactive molecule in cell growth regulation,
apoptosis, senescence, and diverse cell responses, partic-
ularly those linked to stress situations [28,29]; moreover,
recent studies have shown the role for ceramide biosyn-
thesis in body weight regulation, energy expenditure,
hence in the metabolic obesity syndrome [30]. For these
reasons Dihydroceramide desaturase has been proposed
as a promising potential target for metabolic diseases.
Currently some specific inhibitors of Dihydroceramide
desaturase are under investigation and development (for
example GT11, XM462 and analogous [31,32]) although
there is no approved drug yet. Indeed in our model no sin-
gle drug can stop this reaction. Our algorithm finds some
possible multidrug treatments that block this reaction:
among them, there are the synergistic pairs of Rosiglita-
zone plus Simvastatin (Pravastatin), and Acetylsalicyclic
acid plus Atorvastatin (Pravastatin). Concerning the first
synergism, clinical experiments have shown that combin-
ing these two drugs a significant reduction (about 30%
less) of the intracellular accumulation of lipid is achieved
[33]. Moreover, the authors of [34] investigate the adverse
effect of single and combined therapies (hypoglycemia,
body weight increase) and claim that adverse events
are generally similar (the safety profile of Rosiglitazone
was not adversely affected by the addition of Atorvas-
tatin). Also our results predict a limited worsening of the
adverse effect: indeed, after the combination with Ator-
vastatin the side effect of Rosiglitazone passes from 252.7
(Additional file 1: Table S1) to 288.8 (Table 2), i.e. it
increases of about 14% only. For the same therapeutic pur-
pose, the pair of Acetylsalicyclic acid and Atorvastatin
has been also studied. Clinical trials are currently ongo-
ing [35] and some of them have already shown promising
results [36]. The rationale for this approach is based on
the restoration of platelet sensitivity by reduction of the
cholesterol levels. Moreover, as mentioned above, it is
known that ceramide is involved in apoptosis. Indeed, this
combination has been tested for the treatment of prostate
cancer: the results have shows a linear synergism between
these two drugs [37].

Human vs Cancer
A similar approach can be used to improve the selectivity
and specificity of the treatment when dealing simulta-
neously with more than one type of cells. With a small
adjustment, our procedure can force the solution to

preserve the metabolism of one cell while inhibiting an
objective reaction of another (see Additional file 1 for
a detailed formulation). Indeed, a drug interaction can
explore the differences in the topologies of the metabolic
networks and, in this way, bypass the restrictions caused
for instance by targets homology. This is crucial in case of
anticancer therapy since tumoral and normal cells share
the same genes.
For this purpose, we use the metabolic network of a

generic human cancer assembled in [14] and the human
metabolic network. We apply the modified version of
the algorithm to the biomass reaction of the cancer net-
work (which must be stopped), while minimizing the side
effect on the regular human metabolism. As in the pre-
vious section, the procedure is iterated until the problem
becomes unfeasible. The results are shown in Figure 5 and
Table 3. The solutions are mainly single drugs which differ
one from the other in terms of side effect on the human
network. Many are known chemotherapeutic agents
such as Floxuridine, Mycophenolic acid, Methotrex-
ate, Pemetrexed, Ribavirin, Myo-Inositol, Simvastatin,
Leflunomide, Indomethacin, Hydroxyurea, Arsenic triox-
ide, Gemcitabine [38-49]. Since only one synergism is
present, between Fomepizole and Auranofin, these results
suggest that approved drugs do not seem to induce signif-
icant interactions at the level of the metabolism.
In order to increase the range of putative synergisms,

we have tried to use the algorithm to set up a search for
targets potentially interacting with the currently available
drugs. Instead of searching for the reactions which are
synthetically lethal (as partially done, for instance, in [14])
and proposing them as potential new targets, we look for
the reactions whose single inhibition may give a lethal
synergism with any combination of the approved drugs.
The problem is formally equivalent to the one we have
already described: we search again for the optimal drug
combination after having deleted a reaction in the can-
cer network (the same reaction is removed also from the
human network; this reaction is called “additional target”
since it will be the target of an additional new drug). We
systematically consider each reaction of the cancer net-
work as an additional target; the results of this screening
are reported in Additional file 3: Table S3. After a search
in literature of possible inhibitors of the additional tar-
gets of the results, we identify some interesting solutions.
For instance, the inhibition of methenyltetrahydrofolate
cyclohydrolase (combined with the use of Mimosine) can
be induced by the experimental drug 5,6,7,8- tetrahydro-
N5,N10- carbonylfolic acid [50]; therefore, its combination
with Mimosine could represent a potential antitumor
therapy. Also for other four additional targets there exist
experimental inhibitors whose activity is reported in the
literature [51-53] (details are shown in Additional file 3:
Table S3). Concerning the drug solutions identified by
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Figure 5 Results on cancer vs human selectivity problem. Left panel: The iterative application of the algorithm to the cancer vs human networks
finds 21 solutions before becoming unfeasible (magenta line). Including the possibility of inhibiting an additional target, other 31 solutions are
found (blue line). Right panel: The bars count the number of solutions which stop the biomass metabolite in the cancer metabolism (same color
code). Solutions have been classified according to the necessity or less of the inhibition of an additional target (see Tables 3, Additional file 3: Table
S3 for more details).

the algorithm, the pair Rosiglitazone plus Cerulenin is
proposed in combination with three possible additional
targets. One is the palmitate fatty acid conversion: it is
worth noting that the validated antitumoral activity of this
pairs versus prostate cancer cells (as mentioned above) is
due to the reduction of the synthesis of fatty acids [27].
In our prediction, indeed, among the metabolites which
are no longer available because of this inhibition, there
are cholesterol ester, mono-, di- and tri-acylglycerol. The
other two additional targets are related to phosphatidyl-
choline. Part of the phosphatidyilcholine pathway has
been already identified as synthetic lethal [14], but without
mentioning any possible exploitation. Our results suggest
the use of a combined drug therapy as possible way to take
advantage of this synthetic lethality.

Conclusions
The field of drug combinatorics is largely unexplored
experimentally and the potential of combined drug ther-
apies is difficult to assess, mostly for lack of suitable
systematic methodologies. To try to fill this gap, we have
developed an algorithm which is capable of exploring

efficiently the optimal synergisms among all possible drug
combinations and of characterizing them in terms of side
effect and selectivity. Indeed, the success of a drug dis-
covery process depends on multiple aspects, not least on
the fulfillment of requirements regarding selectivity and
toxicity: for metabolic diseases the modulation of the key
pathways without affecting the other vital functions can
be instrumental for rescuing from the pathology. Similarly,
anticancer compounds should only kill cancer cells with-
out affecting normal ones. These requirements are rarely
taken into account in standard computational approaches.
The results we obtained by applying our algorithm to the
human and tumor vs human metabolic networks show
the possibility to take advantage of drug synergisms in
proposing new therapies: the potentialities lay in the pos-
sibility to intervene with a different mechanism of action
with respect to those that are currently available. In this
enlarged repertoire of possibilities, we have identified
examples of drug repurposing (some of them were previ-
ously demonstrated experimentally), a procedure which is
becoming more andmore attractive thanks to the reduced
costs on the preclinical and clinical steps.
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Table 3 Solutions for the cancer vs human problem

# Drugs Side effect

1 Floxuridine (#20) 1

2 Mycophenolic acid (#42) 4

3 Trimethoprim (#29) 5

4 Methotrexate (#11) 5

5 Atovaquone (#69) 6

6 Tyloxapol (#85) 6

7 Ezetimibe (#56) 12

8 Pemetrexed (#41) 15

9 Ribavirin (#51) 17

10 Quinacrine (#36) 22

11 Myo-Inositol (#82) 29

12 Tioconazole (#60) 34

13 Naftifine (#43) 34

14 Simvastatin (#4) 42

15 Leflunomide (#66) 42

16 Auranofin (#59) - Fomepizole (#75) 47

17 Indomethacin (#22) 48

18 Diclofenac (#35) 55

19 Hydroxyurea (#16) 56

20 Arsenic trioxide (#72) 56

21 Gemcitabine (#30) 99

We report the solutions and the side effects σ(D) for the inhibition with
approved drugs. Drug numbers refer to Additional file 1: Table S1. Bold font
indicates that the solution has an experimental validation.

One of the main features of FBA-based knockout stud-
ies is that metabolic networks appear to be robust [1,17],
meaning that there seem to be an high degree of redun-
dancy of the pathways inside a network (property alter-
natively reported as “nonessentiality” of the gene in Refs.
[8,19]). In the context of drug synergism, this property
reflects into the presence of optimal solutions consisting
of many drugs (in our case up to four, or even more if we
consider the number of inhibition targets of each drug).
For the same reason, the results show the necessity to
extend the search to all possible drug combinations with-
out limiting to those of low cardinality. This fact becomes
significant especially when the drugs to combine present
a high similarity in terms of inhibited targets; indeed, the
characterization of the synergisms we have found shows a
limited variety of possible interactions between the avail-
able drugs (only six classes were identified, see Figure 2).
However, beside increasing the cardinality of the solu-
tions, a very strong robustness may also reduce the total
number of solutions because it makes more difficult to
induce the simultaneous inhibition of all the redundant
pathways; indeed, if the screening we have run on the

human metabolism is applied also to the less robust can-
cer network (seen as stand-alone network), the number of
possible inhibitions is much higher (see Additional file 1:
Figure S2 in comparison with Figure 3). Moreover, when
we want to stop the biomass reaction of the cancer, mainly
single drug solutions are found: this is again an index of
the low redundancy of the cancer network (see Table 3)
and of the limited variety in the metabolic targets for the
available drugs.
Nevertheless, adding the possibility to inhibit an extra

target, we could identified some experimental compounds
(other than the drugs from DrugBank) which may be used
as anticancer in a combination with the approved drugs
(see Additional file 3: Table S3). These examples show that
predictive tools like the method we are proposing become
more important if one considers also the possibility of
combining active compounds which are not yet approved
but for which a minimal characterization of the mech-
anism of action is available. In this perspective, experi-
mental compounds which inhibit additional targets that
are different from those affected by the approved drugs
may represent a good chance for improving, through syn-
ergism, the spectrum of the whole set of the currently
available drugs. Moreover, the application of our method
can be extended to situations where multiple networks are
compared and contrasted. It is expected that problems like
this will become important as soon as tissue-specific net-
works of humanmetabolism and cancer-specific networks
will become available in the near future.
In a broader perspective, if instead of confining our

study only to the human network we consider also the
metabolism of microorganisms, the exploitation of drug
synergisms obtained with our algorithm can be useful in
investigating a wide range of situations: (i) when specific
enzyme inhibitors are not currently available, multiple
drug solutions could represent an example of the reprofil-
ing of existing drugs for new therapeutic indications; (ii)
when the target enzyme has undergone a mutation ren-
dering ineffective the original therapy, a synergistic solu-
tion may bypass the resistance acting on other enzymes
and therefore help in fighting resistance; (iii) when the
optimal synergism has no lethal impact while the sin-
gle drug solution has. This change in lethality can be
important for instance in cases of human-hosted bacteria
producing toxic by-products: in order to save the use-
ful symbiosis with these commensal bacteria, a selective
(but not lethal) inhibition of the toxic processes must be
pursued [54,55].
Apart from the specific cases we have studied, the main

objective of this paper is to propose an efficient method to
single out drug combinations with potentially interesting
therapeutic effect. Given the exponential character of the
combinatorics involved, unguided “fishing expeditions”
are intrinsically ill posed. Hence we expect that methods
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like the one proposed in this paper should be of help in
dealing with such a complex problem. Needless to say, as
the predictions are based on in silicomodels of metabolic
pathways, the validity of the results must be assessed
experimentally, but this is beyond the scope of the work.

Methods
The drug-synergism algorithm is developed in the frame-
work of FBA (see Supporting Information for a brief com-
parison with the available literature on similar methods).
The problem deals with the following sets (and numbers):

R = {1, . . . ,Nr} = set of reactions;
M = {1, . . . ,Nm} = set of metabolites;
D = {1, . . . ,Nd} = set of drugs;
Tj = {1, . . . ,Nt,j} = set of drugs having the reaction

j as a target.

Then, the optimal synergism problem can be stated as
follows:
Problem: Given:

• a metabolic network, which means a stoichiometric
matrix S ∈ R

Nm×Nr and a vector of fluxes v with
upper-bounds U, both laying in R

Nr ;
• an objective reaction flux vobj which has to be

stopped;
• the set D of drugs together with their inhibition

targets;

we want to find the subset of drugs D ⊆ D such that D
blocks vobj causing the minimal side effect, i.e. a minimum
perturbation on the overall reaction fluxes.
Of course, we are not interested in procedures which

perform an exhaustive search in the space of all drugs
combinations.
By decomposing any reversible reaction in a couple of

irreversible reactions, we can always assume that fluxes
have non-negative values. Then, the spaceH of all possible
steady state fluxes v as defined by FBA is

H := {v : Sv = 0, 0 ≤ vj ≤ Uj ∀j ∈ R},

where vj and Uj are the j-th components of the vec-
tors v and U respectively. Given the inhibition targets
of each drug, we assume that a drug inhibits completely
the enzymes responsible for the targeted reactions, hence
stopping the relative fluxes. Therefore, adding a drug com-
bination D to the problem means forcing (directly or
indirectly) to zero some of the fluxes. We introduce the
binary variables {dk}k∈D such that

dk =
{
0 if drug k is used (i.e. k ∈ D);
1 if drug k is not used (i.e. k /∈ D).

Then, if the k-th drug targets the j-th reaction we write:

vj ≤ Ujdk .

This reduces the space of feasible steady state fluxes to
a subset H(D) ⊂ H (notice that H(∅) ≡ H). We can
now introduce a definition which quantifies the side effect,
σ(D), of a drug combination D on the reaction fluxes.
Clearly, there are many possible definitions. If we were

dealing with microorganisms we could adapt the analo-
gous MOMA (Minimization of Metabolic Adjustment) or
ROOM (Regulatory On/Off Minimization) [20,21] crite-
ria modeling the perturbation effect (induced by knockout
effect, in the literature) on the fluxes with respect to
the “wild type” fluxes. This requires however to know
the unperturbed fluxes (the wild type reference) which
for a microorganism corresponds to using the biomass
production as cost function of the FBA problem [56].
Unfortunately, for human metabolic network such a com-
monly accepted FBA criterion is unavailable, hence it is
not possible to determine the metabolic fluxes for the
unperturbed network (“wild type”). Consequently, also the
calculation of the perturbed fluxes and the quantification
of the side effect are more ambiguous. Our choice in this
paper is to quantify the side effect as number of stopped
reaction (more precisely the number of reactions that can-
not take place because of the perturbation). This bypasses
the lack of the reference fluxes and allows to quantify the
number of cellular functions which are no longer avail-
able, regardless to the type of tissue to which the human
cell belongs.
Since the available drugs we selected do not have only

metabolic targets, a measure of the side effect based exclu-
sively on metabolic reactions disregards the perturbation
induced by the drugs on other cellular functions (for
example signaling cascades, protein synthesis, etc). This
additional information can be incorporated in the model
weighting each drug variable dk in the objective function
according to its non-metabolic effects (for which only a
pure superposition is considered because of the lack of
more quantitative models). Following this approach, we
define:

σ(D) :=
Nr∑
j=1

(1 − yj) +
Nd∑
k=1

βk(1 − dk); (1)

where the parameter βk is an estimation of the non-
metabolic perturbation induced by drug k and yj is a
binary variable such that yj = 0 when the flux is lower
than a threshold ε (ε = 0.1 in this paper); this can be
expressed by means of the following linear constraints:

εyj ≤ vj ∀j ∈ R;
Ujyj ≥ vj ∀j ∈ R.
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In order to avoid a double count, for reversible reactions
we impose the additional constraint

yj + yl ≤ 1 ∀j and l ∈ R s.t. vj
and vl are opposite fluxes.

Although the choice of the weights βk is quite arbitrary,
we have tried to evaluate both terms of (1) using a homo-
geneous criteria, relating the values of βk to the number of
non-metabolic targets of each drug. In particular we set:

βk := β̄ · [# non-metabolic targets of drug k] ,

where the numerical coefficient β̄ captures the spread
of the perturbation across the non-metabolic systems. In
analogy with the metabolic network, β̄ is equal to the
mean number of metabolic reactions that are stopped
when a single metabolic target is inhibited. Referring
to the human metabolic network and averaging over all
drugs we selected, we obtain β̄ = 7.7.
The optimal solution can be described as follows:

Solution: For any subset of drugs D ⊆ D, we can find
the set H(D) and the minimal perturbation σ(D). By
restricting to drug combinations which inhibit the objective
reaction (i.e. such that maxv∈H(D)(vobj) = 0) the optimal
solution Y is

Y = arg min[
D ⊆ D

maxv∈H(D)(vobj) = 0

] σ(D). (2)

The resulting bilevel optimization is a min-max inte-
ger linear programming problem [57]. The inner problem
adjusts the fluxes in order to achieve the maximum flow
for the objective reaction when all fluxes are subjected
to the inhibitions (drugs) imposed by the outer problem
and to the stoichiometric constraints. The outer problem
selects the combination of drugs whichminimizes the side
effect, restricting to those solutions of the inner problem
which guarantee no flow for the objective reaction.
The bilevel optimization problem is the following:

where the parameter b � 1 (b = 0.001 in this paper) is
introduced in the objective function of the outer problem
in order to exclude the combinations containing redun-
dant inhibitions and therefore avoiding an “over-selection”
of drugs.
To solve this bilevel optimization we apply the strong

duality theorem which consists in appending a list of con-
straints corresponding to the dual of the inner problem
and setting the primal objective function equal to the dual
[58,59]. This leads to a single minimization problem. By
calling the dual variables as follows

μ1, . . . ,μNm ∈ R : associated to the first Nm

constraints in the inner problem;
λ1, . . . , λNr ∈ R+ : associated to the second set of the

constraints of the inner problem;
δ1, . . . , δNt ∈ R+ : associated to drugs targets (third

set of constraints; Nt :=
∑Nr

j=1
Nt,j),

the final optimization problem becomes:

Minimize
Nr∑
j=1

αj(1 − yj) +
Nd∑
k=1

βk(1 − dk) − b
Nd∑
k=1

dk

such that

Nr∑
j=1

Si,jvj = 0 ∀i ∈ M;

vj ≤ Uj ∀j ∈ R;
vj ≤ Ujdk ∀j ∈ R, k ∈ Tj;

Nm∑
i=1

Si,jμi + λj +
Nt,j∑
i=1

δi ≥ 0 ∀j ∈ R \ {obj};

Nm∑
i=1

Si,jμi + λj +
Nt,j∑
i=1

δi ≥ 1; for j = obj;

Minimize
∑Nr

j=1 αj(1 − yj) + ∑Nd
k=1 βk(1 − dk) − b

∑Nd
k=1 dk “outer problem”

such that ⎡
⎢⎢⎢⎢⎣
Maximize vobj “inner problem”
such that ∑Nr

j=1 Si,jvj = 0 ∀i ∈ M
vj ≤ Uj ∀j ∈ R
vj ≤ Ujdk ∀j ∈ R, k ∈ Tj;

⎤
⎥⎥⎥⎥⎦

vobj = 0;
εyj ≤ vj ∀j ∈ R;
Ujyj ≥ vj ∀j ∈ R;
yj + yl ≤ 1 ∀j ∈ R such that vl is the opposite flux of vj,



Facchetti et al. BMC Systems Biology 2012, 6:115 Page 12 of 14
http://www.biomedcentral.com/1752-0509/6/115

vobj=
Nr∑
i=1

Ui

⎛
⎝λi+δi

∑
k∈Ti

dk

⎞
⎠ ;

vobj = 0;
εyj ≤ vj ∀j ∈ R;

Ujyj ≥ vj ∀ j ∈ R;
yj + yl ≤ 1 ∀j∈R such that vl is

the opposite flux of vj.
(3)

The key simplification is that the nonlinear terms
δidk =: zik in (3) (the strong duality theorem equality) are
exactly linearizable as follows:

0 ≤ zik ≤ δmax
i dk (4)

δi − δmax
i (1 − dk) ≤ zik ≤ δi (5)

where δmax
i is the upper bound for the dual variable δi

(chosen arbitrarily big in the implementation).
The codes for the algorithm have been developed in

MATLAB (MathWorks R2010b) and are available in Addi-
tional files 4, 5, 6, 7, 8 and 9. All Mixed Integer Linear
Optimizations have been performed using the ILOG-IBM
CPLEX 12.1, under free academic license.

Selection procedure for the drugs
In order to generate realistic solutions, drugs have
been accurately selected from www.drugbank.ca [26]
according to the following procedure (the output of the
query is summarized in Additional file 1: Table S1):

1. the whole database contains 6708 drugs;
2. only approved drugs have been picked out, restricting

the search to 1570 drugs;
3. we filter for drugs which act on human enzymes

(identified by the EC number): the set reduces to 473
drugs;

4. we select only drugs for which an inhibitory effect
on at least one enzyme of the human metabolism
has been experimentally proven. The set reduces to
267 drugs (with the EC numbers of the inhibited
enzymes). For these drugs, we count the number of
non-metabolic targets, including also cases of ago-
nism, antagonism and activation, since they all repre-
sent a perturbation to the regular functioning of the
target (activation is not considered for metabolic tar-
gets because it does not affect the number of stopped
reaction in our FBA formulation).

5. the reactions of the metabolic network directly inhib-
ited by each drug are identified through the available
correspondence between EC numbers of the inhib-
ited enzymes and the gene codes first, and then
through the correspondence between gene codes and

metabolic reactions. During this step, it may happen
that many genes, and hence many reactions, are asso-
ciated to the same EC number. Therefore, although
in the original database a drug inhibits only a single
or a few targets, the number of metabolic reactions
affected by the drug can be high. For instance, this is
the case of Rosiglitazone which inhibits a single tar-
get, the long-chain-fatty-acid-CoA ligase an enzyme
responsible for the binding of the acyl-CoA group
to a long fatty acid chain. Since the substrate of this
enzyme can be any carbon chain, regardless of the
unsaturation (presence or not of double bonds C=C)
and of the exact length (it just requires a chain longer
than 12 carbons atoms), we end up with a drug which
inhibits up to 60 metabolic targets.

6. drugs which have exactly the same metabolic tar-
gets are grouped; the final 85 groups are listed in
Additional file 1: Table S1. For each group only a rep-
resentative is reported, namely the drug which has the
minimal number of targets outside the metabolism.
The full list of drugs in each group is reported in the
Additional file 2.

Additional files

Additional file 1: Supplementary information. It contains: a brief
literature survey about the main computational methods in the literature,
details about the algorithm for competitive organisms (cancer vs human),
Additional file 1: Table S1 with the list of drugs selected from DrugBank
database, Additional file 1: Table S2 of the reactions of human metabolism
inhibited by multiple drug solutions, Additional file 1: Figure S1 for the
comparison of the side effects and Additional file 1: Figure S2 about the
results on cancer metabolic network alone.

Additional file 2: Drugs. Excel file with the details about the results of the
query on DrugBank, including the name of all drugs with the same
metabolic targets (and the group representative we have chosen).

Additional file 3: Table S3. Cancer vs human network: solutions with an
additional target.

Additional file 4: Human.MATLAB script for running the algorithm on
the human metabolic network.

Additional file 5: Human PROBLEM.MATLAB data with the model of
the human metabolic network.

Additional file 6: Best drug synergism.MATLAB function with the
implementation of the algorithm for single network problems (a short help
is inside the code).

Additional file 7: Cancer VS Human.MATLAB script for running the
algorithm on cancer vs human network.

Additional file 8: Cancer VS Human PROBLEMS.MATLAB data with
the information about the problem of cancer vs human.

Additional file 9: Best drug synergism 2.MATLAB function with the
implementation of the algorithm for competitive networks (a short help is
inside the code).
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58. Matoušek J, Gärtner B: Understanding and Using Linear Programming.
Berlin: Springer; 2000.

59. Schrijver A: Theory of Linear and Integer Programming. New York: John
Wiley Sons; 1986.

doi:10.1186/1752-0509-6-115
Cite this article as: Facchetti et al.: Predicting and characterizing selective
multiple drug treatments for metabolic diseases and cancer. BMC Systems
Biology 2012 6:115.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Results and discussion
	Human metabolism
	Human vs Cancer

	Conclusions
	Methods
	Selection procedure for the drugs

	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References

