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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract  

Deformation of a heterogeneous material containing internal interfaces or/and free surfaces is accompanied by collective vortex 
motion near these boundaries. One should expect that rotational motion in nanomaterials takes place at different scales, from the 
atomic scale to the macroscopic one. Nevertheless such a fundamental factor as elastic vortex motion in material formed during 
dynamic loading still remains out of discussion. The aim of this paper is revealing the role of vortex displacements in contact 
interaction of the strengthening coating with a hard counter-body by means of 3D modeling using movable cellular automata 
(MCA). MCA method is an efficient numerical method in particle mechanics, which assumes that the material is composed of a 
certain amount of elementary objects interacting among each other according to many-particle forces. In this paper MCA method 
is applied to 3D modeling deformation of the coating-substrate system under its contact loading by the rigid indenter. Main 
attention of the research is focused on the role of vortex structures in the velocity fields in elastic and non-elastic deformation of 
the strengthening coating and substrate. The mechanical properties of the model coating correspond to multifunctional 
nanostructured film and the properties of the substrate, to nanostructured titanium. The loading is performed by a hard conical 
indenter with various ratios of normal and tangential components. The peculiarities of the velocity vortex formation and 
propagation, as well as interaction with the structural elements are studied. 
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1. Introduction 

Usually dynamic loading of solids is attended by generation and propagation of the surface elastic waves of 
elliptical polarization which manifest themselves as vortex structures in the velocity field (Landau and Lifshitz, 
1970; Psakhie et al., 1997). Such vortex structures are also typical for the Lamb waves taking place in thin plates as 
shown by Chertov et al. (2004). Deformation of a heterogeneous material containing internal interfaces or/and free 
surfaces is accompanied by collective vortex motion near these boundaries (Panin et al., 2016; Psakhie et al., 2014b; 
Moiseenko et al., 2013). For example, molecular dynamics simulations by Psakh’e and Zol'nikov (1997) showed that 
vortex structures in the velocity field are formed at grain boundaries under shear loading of polycrystals. Therefore, 
one should expect that rotational motion in nanomaterials takes place at different scales from the atomic scale to the 
macroscopic one. The results of theoretical studies and experimental evidence by Zhang et al. (2005) indicate that in 
nanomaterials the contribution of rotational mode of deformation can significantly increase under the condition of 
dynamic loading. Nevertheless such a fundamental factor as the elastic vortex motion in material formed during 
dynamic loading still remains out of discussion. Thus, revealing the role of vortex displacement in redistribution of 
elastic energy and, as a result, in the process of deformation and fracture of nanomaterials is a topical fundamental 
problem in materials science. 

Due to principal significance of free surface, internal interfaces and dynamic nature of the considered vortex 
phenomena the main method of studying them seems to be computer simulation based on particle methods (Yu et 
al., 2014). Therefore, the aim of this paper is revealing the role of vortex displacements in the contact interaction of 
strengthening coating with hard counter-body by means of 3D modeling using movable cellular automata. 

2. Description of the Model 

For modeling interaction of a small counter-body moving over the coating surface we used movable cellular 
automaton (MCA) method, which is a new efficient numerical method in particle mechanics. Within the frame of 
MCA, it is assumed that any material is composed of a certain amount of elementary objects (automata) which 
interact among each other and can rotate and move from one place to another, thereby simulating a real deformation 
process (Psakhie et al., 2014a; Shilko et al., 2015; Smolin et al., 2015). The automaton motion is governed by the 
Newton-Euler equations: 
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where Ri, i, mi and Ĵi are the location vector, rotation velocity, mass and moment of inertia of ith automaton, 
respectively; Fij

pair is the interaction force of the pair of ith and jth automata; and Fi
 is the volume-dependent force 

acting on ith automaton and depending on the interaction of its neighbors with the remaining automata. In the latter 
equation, Mij = qij(nijFij

pair) + Kij, where qij is the distance from the center of ith automaton to the point of its 
interaction (“contact”) with jth automaton, nij = (Rj − Ri)/rij is the unit vector directed from the center of ith 
automaton to the jth one and rij is the distance between automata centers, Kij is the torque caused by relative rotation 
of automata in the pair. 

Note that the automata of the pair may represent the parts of different bodies or one consolidated body. Therefore 
its interaction is not always really contact one. That is why we put the word “contact” in quotation marks. More of 
that, the size of the automaton is characterized by one parameter di, but it does not mean that the shape of the 
automaton is spherical. Real shape of the automaton is determined by area of its “contacts” with neighbors. For 
example, if we use initial fcc packing, then the automata are shaped like a rhombic dodecahedron; but if we use 
cubic packing then the automata are cube-shaped. 
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For locally isotropic media, the volume-dependent component of the force can be expressed in terms of the 
pressure Pj in the volume of the neighboring automaton j as follows: 
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where Sij is the area of interaction surface of automata i and j; and A is a material parameter depending on elastic 
properties. 

The total force acting on automaton i can be represented as a sum of explicitly defined normal component Fij
n and 

tangential (shear) component Fij
τ: 
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where Fij
pair,n and Fij

pair,τ are the normal and tangential pair interaction forces depending respectively on the automata 
overlap hij and their relative tangential displacement lijshear calculated with taking into account the rotation of both 
automata. Note that, although the last expression of Eq. (3) formally corresponds to the form of element interaction 
in conventional discrete element models, it differs fundamentally from them in many-particle central interaction of 
the automata. 

Using the homogenization procedure for stress tensor in a particle described by Psakhie et al. (2014a), the 
expression for components of the average stress tensor in the automaton i takes the form: 
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where α and β denote the axes X, Y, Z of the global coordinate system; Vi is the current volume of the automaton i; 
nij,α is the α-component of the unit vector nij; and Fij,β is β-component of the total force acting at the point of 
“contact” between the automata i and j. 

The interaction parameters of movable cellular automata are considered in relative (specific) units. Thus, the 
central and tangential interactions of the automata i and j are characterized by the corresponding stresses ηij and τij : 
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To characterize the deformation of the automaton i under its normal interaction with the automaton j, we can use 
the following dimensionless parameter (normal strain) 
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In general case, each automaton of a pair represents different material, and the overlap of the pair is distributed 
between ith and jth automata : 

 22 jjiiijjiijij ddqqh    (7) 
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where symbol Δ denotes the increment of a parameter per time step Δt of numerical integration of the motion 
equation (1). The distribution rule for strain in the pair is intimately associated with the expression for computing the 
interaction forces of the automata. This expression for central interaction is similar to Hooke's relations for diagonal 
stress tensor components: 

 iijij PK
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where K is the bulk modulus; G is the shear modulus of the material of ith automaton; and Pi is the pressure of the 
automaton i, which may be computed using Eqs. (3) and (4) at previous time step or by predictor-corrector scheme. 

To determine a parameter characterizing shear deformation in the pair of automata i–j, we start with formula for 
tangential component of rotational velocity of the pair as a rigid body 
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Besides such rotation of the pair as a whole (defined by the difference in translational velocities of the automata), 
each automaton rotates with its own rotational velocity i. The difference between these rotational velocities 
produces a shear deformation. Thus, the increment of shear deformations of the automata i and j per time step Δt is 
defined by the relative tangential displacement at the contact point lijshear: 
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The expression for tangential interaction of movable cellular automata is similar to Hooke's relations for non-
diagonal stress tensor components and is pure pairwise: 

 )(2 ijij G γτ  . (11) 

The difference in automaton rotation leads also to the deformation of relative “bending” and “torsion” (the last 
only in 3D) of the pair. It is obvious that the resistance to relative rotation in the pair cause the torque, which value is 
proportional to the difference between the automaton rotations: 

  tGG ijjiij ))(( ωωK  (12) 

Eqs. (1)–(8), (10)–(12) describe the mechanical behavior of a linearly elastic body in the framework of MCA 
method. Note that Eqs. (7), (8), (10)–(12) are written in increments, i.e., in the hypoelastic form. Psakhie et al. 
(2011) showed that this model gives the same results as the numerical solving usual equation of continuum 
mechanics for isotropic linearly elastic medium by finite-difference method. That makes it possible to couple MCA 
method with the numerical methods of continuum mechanics. Smolin et al. (2009) showed that the rotation allows 
the movable cellular automata to describe the isotropic response of material correctly. 

In this paper the coating of multifunctional bioactive nanostructured film (TiCCaPON) on nanostructured 
titanium substrate (Levashov et al., 2013) has been modeled using approach by Psakhie et al. (2009, 2013). These 
materials are used in medicine for producing various kinds of implants. The thickness of the model coating is H = 
60 nm, the model sample length L = 350 nm, width M = 250 nm, the size of the automata d = 3 nm (Fig. 1,a). 
Diamond counter-body has a conical shape with a base diameter of 60 nm. We use cubic packing of automata, which 
is much more suitable for studying elastic deformation of the material due to less number of automata in the model 
and more uniform shape of the crack-like defects. Motion of the counter-body is simulated by setting the constant 
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velocity V = 5 cm/s in the direction of axis Y for automata of the upper layer of the counter-body (Fig. 1). The lower 
surface of the sample is fixed and its lateral surfaces are free. Removing of automata from initial packing allows 
explicitly account of voids or pores in the material. Changing sort (i.e. mechanical properties) of the automata in the 
initial packing allows account of various kind of inhomogeneity in the material. 

a)          b)  

Fig. 1. General view of the modeled system (a) and cross-section of the coating with a pore (b). 

3. Results of Simulation 

Main attention of this research is focused on the role of vortex-like structures in the velocity fields in the 
strengthening coating. That is why first we studied the peculiarities of the velocity field in homogeneous coating 
under contact loading with hard conical counter-body moving along the free upper surface. Due to artificial 
roughness caused by discrete representation of the material and its surface, the movement of the counter-body along 
the surface with constant velocity results in periodic loading of the coating surface right in the contact patch. This 
cause generation of elastic waves in the coating, which propagate in the bulk and along the surface, and interact with 
another waves and structure elements of the material. As a result, the velocity field in the coating is drastically non-
uniform and time dependent. 

a)       b)  

Fig. 2. Vortex in the velocities of coating particles in front of the moving counter-body shown in cross-section of the sample (a, 2D picture)  
and in streamlines of the velocity field in 3D (b). 

Analysis of numerical 2D vector field is very easy, one can see vortices right from the picture of vectors shown as 
arrows or lines. Analysis of 3D vector fields is much more complicated problem. One can try to look at 2D vector 
fields in a series of parallel sections of the 3D body. But, to see a vortex in this case you need making sections by 
planes perpendicular to the vortex direction (Fig. 2,a). This means that first you need to compute the vorticity. To 
analyze vorticity of the 3D vector field we used post-processor software VisIt. To find vortices we plot streamlines 
of the velocity field at characteristic time steps (Fig. 2,b). To make the picture clearer we try different options and 
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stress tensor components: 

 iijij PK
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where K is the bulk modulus; G is the shear modulus of the material of ith automaton; and Pi is the pressure of the 
automaton i, which may be computed using Eqs. (3) and (4) at previous time step or by predictor-corrector scheme. 

To determine a parameter characterizing shear deformation in the pair of automata i–j, we start with formula for 
tangential component of rotational velocity of the pair as a rigid body 
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Besides such rotation of the pair as a whole (defined by the difference in translational velocities of the automata), 
each automaton rotates with its own rotational velocity i. The difference between these rotational velocities 
produces a shear deformation. Thus, the increment of shear deformations of the automata i and j per time step Δt is 
defined by the relative tangential displacement at the contact point lijshear: 
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The expression for tangential interaction of movable cellular automata is similar to Hooke's relations for non-
diagonal stress tensor components and is pure pairwise: 

 )(2 ijij G γτ  . (11) 

The difference in automaton rotation leads also to the deformation of relative “bending” and “torsion” (the last 
only in 3D) of the pair. It is obvious that the resistance to relative rotation in the pair cause the torque, which value is 
proportional to the difference between the automaton rotations: 

  tGG ijjiij ))(( ωωK  (12) 

Eqs. (1)–(8), (10)–(12) describe the mechanical behavior of a linearly elastic body in the framework of MCA 
method. Note that Eqs. (7), (8), (10)–(12) are written in increments, i.e., in the hypoelastic form. Psakhie et al. 
(2011) showed that this model gives the same results as the numerical solving usual equation of continuum 
mechanics for isotropic linearly elastic medium by finite-difference method. That makes it possible to couple MCA 
method with the numerical methods of continuum mechanics. Smolin et al. (2009) showed that the rotation allows 
the movable cellular automata to describe the isotropic response of material correctly. 

In this paper the coating of multifunctional bioactive nanostructured film (TiCCaPON) on nanostructured 
titanium substrate (Levashov et al., 2013) has been modeled using approach by Psakhie et al. (2009, 2013). These 
materials are used in medicine for producing various kinds of implants. The thickness of the model coating is H = 
60 nm, the model sample length L = 350 nm, width M = 250 nm, the size of the automata d = 3 nm (Fig. 1,a). 
Diamond counter-body has a conical shape with a base diameter of 60 nm. We use cubic packing of automata, which 
is much more suitable for studying elastic deformation of the material due to less number of automata in the model 
and more uniform shape of the crack-like defects. Motion of the counter-body is simulated by setting the constant 
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velocity V = 5 cm/s in the direction of axis Y for automata of the upper layer of the counter-body (Fig. 1). The lower 
surface of the sample is fixed and its lateral surfaces are free. Removing of automata from initial packing allows 
explicitly account of voids or pores in the material. Changing sort (i.e. mechanical properties) of the automata in the 
initial packing allows account of various kind of inhomogeneity in the material. 

a)          b)  

Fig. 1. General view of the modeled system (a) and cross-section of the coating with a pore (b). 

3. Results of Simulation 

Main attention of this research is focused on the role of vortex-like structures in the velocity fields in the 
strengthening coating. That is why first we studied the peculiarities of the velocity field in homogeneous coating 
under contact loading with hard conical counter-body moving along the free upper surface. Due to artificial 
roughness caused by discrete representation of the material and its surface, the movement of the counter-body along 
the surface with constant velocity results in periodic loading of the coating surface right in the contact patch. This 
cause generation of elastic waves in the coating, which propagate in the bulk and along the surface, and interact with 
another waves and structure elements of the material. As a result, the velocity field in the coating is drastically non-
uniform and time dependent. 

a)       b)  

Fig. 2. Vortex in the velocities of coating particles in front of the moving counter-body shown in cross-section of the sample (a, 2D picture)  
and in streamlines of the velocity field in 3D (b). 

Analysis of numerical 2D vector field is very easy, one can see vortices right from the picture of vectors shown as 
arrows or lines. Analysis of 3D vector fields is much more complicated problem. One can try to look at 2D vector 
fields in a series of parallel sections of the 3D body. But, to see a vortex in this case you need making sections by 
planes perpendicular to the vortex direction (Fig. 2,a). This means that first you need to compute the vorticity. To 
analyze vorticity of the 3D vector field we used post-processor software VisIt. To find vortices we plot streamlines 
of the velocity field at characteristic time steps (Fig. 2,b). To make the picture clearer we try different options and 
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select the optimal ones. Of course, the resulting streamlines show just a tendency of the particle motion at the current 
time step, not real trajectories like in fluid dynamics. Nevertheless, this approach allows detecting position and 
“power” of vortex structures in 3D vector field of velocities and therefore is quite applicable for our task. 

The results of simulation show that vortices mainly occur in the corners of the coating as a result of relaxation of 
elastic energy near free surface where it is allowed to move in several directions. The vortex in the vicinity of 
counter-body is formed periodically in time in front of the counter-body. Then it becomes wider, propagates ahead 
and rounds the counter-body. Lifetime of such vortex structure is about 0.015 ns, which corresponds to the time of 
sound propagation through the coating height. The vortex size is commensurable with half of the coating height. 

Then we considered the coating containing damages. The damage of the coating was simulated by specifying the 
extended discontinuities, nano-pores. These nano-pores were located periodically at the predetermined distance from 
one another and inclined to the upper surface by 45° (Fig. 1,b). In this case vortex-like motion takes place only in the 
material between the pores, and due to their specific geometry the vortex axis cannot round about the counter-body 
(Fig. 3,a). The size of the vortex is less than one in case of intact material. The vortex is generated approximately in 
the middle of height of the coating. Then it becomes larger, propagates towards the lower surface along the 
orientation of the pores, and finally is divided into two parts which start to propagate to the right and left lateral 
surfaces of the coating correspondingly and vanishes. 

The third sample contained hard inclusions of the same geometry as the pores in the sample of second kind. 
Elastic properties of the inclusions are two times greater than elastic properties of the coating. Typical vortex in this 
sample is shown in Fig. 3,b. One can see that it is similar to the case of intact material, but a little bit smaller. 

a) b)  

Fig. 3. Streamlines showing the vortices in the particles velocities of the coating with pores (a) and hard inclusions (b). 

The next problem considered in this work was the role of vortex mechanism in the rearrangement of elastic 
energy in vicinity of interfaces and in the initiation of plastic deformation in nanostructured materials under contact 
loading. For this purpose we considered the same samples with inclusions as above but the material of inclusions 
was soft and could undergo plastic deformation. These inclusions imitated weak grain boundaries of a 
nanocrystalline material and crossed all the samples along axis OX i.e. in the direction transversal to the direction of 
counterbody motion (Fig. 1). Cross sections of the inclusions were varied in size as well in shape (Fig. 4).  

a)  b)  

c)  d)  

Fig. 4. Cross-sections of the different samples with soft inclusions. 
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The simulations show that in the case if thin inclusions (Fig. 4,a) the vortex in the velocity field is formed and 
propagates only in the matrix; the vortex dissipates when it approaches to the inclusion due to plastic deformation of 
the inclusion material. In the case of thick inclusions (Fig. 4,b and 4,c) the vortex can be formed in the material of 
inclusion also. The third place where the vortex can be formed is the inclusion-matrix interface. It is interesting to 
note, that at this time the Mises stress in the inclusion reaches yield limit, and as the vortex propagates forward along 
the inclusion the Mises stress decreases (Fig. 5). This means that such vortices can be considered as precursors of 
stress relaxation in nanomaterials in local loading conditions.  

 

 

 

Fig. 5. Velocity field (left) and Mises stress (right) in the cross-section of the sample with thick soft inclusions at different times: before the 
vortex generation (the upper row), at the vortex propagation (the middle row) and after vortex dissipation (the bottom row). 

It has to be noted, that lifetime of the vortices formed and propagating in the elastic matrix is much larger than 
that in the plastic inclusions. The last one corresponds to the time of elastic wave propagation along the inclusion 
thickness. 
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select the optimal ones. Of course, the resulting streamlines show just a tendency of the particle motion at the current 
time step, not real trajectories like in fluid dynamics. Nevertheless, this approach allows detecting position and 
“power” of vortex structures in 3D vector field of velocities and therefore is quite applicable for our task. 

The results of simulation show that vortices mainly occur in the corners of the coating as a result of relaxation of 
elastic energy near free surface where it is allowed to move in several directions. The vortex in the vicinity of 
counter-body is formed periodically in time in front of the counter-body. Then it becomes wider, propagates ahead 
and rounds the counter-body. Lifetime of such vortex structure is about 0.015 ns, which corresponds to the time of 
sound propagation through the coating height. The vortex size is commensurable with half of the coating height. 

Then we considered the coating containing damages. The damage of the coating was simulated by specifying the 
extended discontinuities, nano-pores. These nano-pores were located periodically at the predetermined distance from 
one another and inclined to the upper surface by 45° (Fig. 1,b). In this case vortex-like motion takes place only in the 
material between the pores, and due to their specific geometry the vortex axis cannot round about the counter-body 
(Fig. 3,a). The size of the vortex is less than one in case of intact material. The vortex is generated approximately in 
the middle of height of the coating. Then it becomes larger, propagates towards the lower surface along the 
orientation of the pores, and finally is divided into two parts which start to propagate to the right and left lateral 
surfaces of the coating correspondingly and vanishes. 

The third sample contained hard inclusions of the same geometry as the pores in the sample of second kind. 
Elastic properties of the inclusions are two times greater than elastic properties of the coating. Typical vortex in this 
sample is shown in Fig. 3,b. One can see that it is similar to the case of intact material, but a little bit smaller. 
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Fig. 3. Streamlines showing the vortices in the particles velocities of the coating with pores (a) and hard inclusions (b). 

The next problem considered in this work was the role of vortex mechanism in the rearrangement of elastic 
energy in vicinity of interfaces and in the initiation of plastic deformation in nanostructured materials under contact 
loading. For this purpose we considered the same samples with inclusions as above but the material of inclusions 
was soft and could undergo plastic deformation. These inclusions imitated weak grain boundaries of a 
nanocrystalline material and crossed all the samples along axis OX i.e. in the direction transversal to the direction of 
counterbody motion (Fig. 1). Cross sections of the inclusions were varied in size as well in shape (Fig. 4).  
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Fig. 4. Cross-sections of the different samples with soft inclusions. 
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The simulations show that in the case if thin inclusions (Fig. 4,a) the vortex in the velocity field is formed and 
propagates only in the matrix; the vortex dissipates when it approaches to the inclusion due to plastic deformation of 
the inclusion material. In the case of thick inclusions (Fig. 4,b and 4,c) the vortex can be formed in the material of 
inclusion also. The third place where the vortex can be formed is the inclusion-matrix interface. It is interesting to 
note, that at this time the Mises stress in the inclusion reaches yield limit, and as the vortex propagates forward along 
the inclusion the Mises stress decreases (Fig. 5). This means that such vortices can be considered as precursors of 
stress relaxation in nanomaterials in local loading conditions.  

 

 

 

Fig. 5. Velocity field (left) and Mises stress (right) in the cross-section of the sample with thick soft inclusions at different times: before the 
vortex generation (the upper row), at the vortex propagation (the middle row) and after vortex dissipation (the bottom row). 

It has to be noted, that lifetime of the vortices formed and propagating in the elastic matrix is much larger than 
that in the plastic inclusions. The last one corresponds to the time of elastic wave propagation along the inclusion 
thickness. 
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4. Conclusions 

Modeling results show that a counter-body sliding on the coating surface generates periodically vortex structures 
in the coating velocity field. Each of these vortices is located in front of the counter-body at a distance of the contact 
area radius. Lifetime of the vortex is about the time of sound propagation through the coating height. After this time 
the vortex vanishes, and then after certain time appears again. Presence of pores and hard inclusions can change the 
shape and size of the vortex. Presence of weak (plastic) inclusions of extended geometry can lead to vortex 
generation at the inclusion-matrix interface if the stress in the inclusion reaches yield limit. In this case after 
propagation of the vortex the stress in the inclusion decreases. 
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