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Abstract: Barrier European put option formed by additional clause putting in option contract with
payment limitation for issuer and guaranteed income for holder of the security are researched when
dividends on base risk active are paid. The equitable price, the optimal portfolio and a size of the capital
answered the hedging strategy are founded for the options under consideration on diffusion (B, §)-
financial market. Comparative price analysis for two option classes is carried out and specific properties

of decision and decision under limiting are explored.

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Financial market, stochastic financial mathematics, option price, hedging strategy, barrier
European put option, put option with guaranteed income for holder of the security, dividends.

1. INTRODUCTION

As of today the financial instruments of trading and risks
hedging (Hull, 2013) on the derivatives market are presented
by futures, forwards and options, particularly the exotic
options (Rubinstein, 2013, Burenin, 2011ab, Shiryaev et al,
2006) The lasts are of interest for investor due to variety of
the option’s payment liabilities (Shiryaev, 1999) and are the
stochastic financial mathematics object (Melnikov et al., 2002).
An European put option is a derivative (secondary) security,
it is the contract giving option’s buyer (the holder) the right
to sell stipulated underlying asset by a certain date for a
certain price, and option’s seller must satisfy an agreement
when exercising for an option premium (Hull, 2013).

The research is devoted to barrier European put option on
stocks when dividends on base risk active are paid. The
payoff function determined the payment size when the option
under consideration exercising is

£(8,) =min{(K, -8, )" . K, JilS, > H]+(H -5, )1[s, <H] (1)

where S, is risk asset’s spot price at expiration date 7, K, is
exercise price or strike price, K, — contracted constant
restricted payment of the option writer, on the one hand, and
guaranteed income for option, H is barrier for price Sy
(0£H<K,-K,). In accordance to (1) the exotic European
put option payoff liability assumed as (2) is base for barrier
option under study

;;ase(ST)z m]n{(Kl _ST)+,K2}’ (2)

and it goes on when intersection of barrier H by the spot
price S, top-down (in drop in prices phase). If at the moment

T the market state such as S, > H then the option holder
gets the size f;““(S,); in other cases (if S, < H ) the option
buyer earns rebate (H —S,.).

We denote the mathematical expectation by E{} , the normal
(Gaussian) density with the parameters a and b by N{a; b},

x 1 2
O(x) = [p(y)dy, @(y)= Tor eXp{—y?} are Laplace
= r

distribution function and probability density function
respectively.

2. STATEMENT OF THE PROBLEM

Let us consider complete, without arbitrage and risk-neutral
financial market of two assets, notably: risk (stocks) and risk
free (bank deposit) active. The stocks price evolution is given
on stochastic basis (Q,F,F=(F,)_,,P) (Shiryaev, 1999,

Shiryaev et al., 2006). The current prices of the securities S,

>0
uB,te [O,T], are specified by (3) and (4) respectively

ds, =S, (udr +caw,), s, =Sy expllu (0?2 + oW, }.3)
dB, = rB,dt , B, = B, expl{rt}, 4)

where W, is a standard Wiener process, S, >0 is the stock
initial cost, € R = (—co+00) is the percentage drift, o >0 is
the percentage volatility in a geometric Brownian motion,
B, >0 is the risk free asset initial price, r >0 is interest rate.

During time interval te [O,T] the investor forms self-
financing portfolio 7, =(8,,7,), where F,-measurable

processes S, and y, are parts of the risk free and risk assets
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at investment portfolio respectively, and this portfolio secures
investor capital X, = B, +7%,S,. As in (Shiryaev, 1999,
Shiryaev et al., 2006), for holding asset dividends are paid in
accordance to process D, at the rate of 7,S,, >0, that is

dD, = 0y,S,dt . Then capital change trajectory is described by
equation dX, = B,dB, +y,dS, +dD, . And as dX, = ,dB, +
+y,dS, ++B,dB, +S,dy,, then B,dp, +S,dy, =dD,
balance correlation replacing term B,df, +S,dy, =0 for self

is a

financing portfolio in the standard problem (Burenin, 2011ab).

The problem involves the fact that to form the portfolio
(hedging strategy) 7, =(£3,7,), the evolution of the capital
X, has option price P, =X, in accordance to the payoff
function (1), as well as, the hedging strategy and
corresponding capital, ensuring the fulfillment of payment
liability X, = f,(S;).

3. PRELIMINARY RESULTS

All results below are obtained on the assumption of the sole
risk-neutral measure existence. Relative to this measure the
process of the risk asset capitalized price S,/B, is

martingale, and that condition guarantees the assigned
problem solvability (Burenin, 2011ab, Shiryaev, 1999,
Shiryaev et al, 2006, Melnikov et al., 2002).

Theorems 1, 2 are proved with a glance of the base financial
relations (5)—(7) (Burenin, 201 1ab, Shiryaev, 1999, Shiryaev
et al, 2006, Melnikov et al., 2002)

Py :e_rTE*{fT(ST)}’ (@)

X, =01, (s,)8, ) (©)
_Xt(s) _(X,_%S,)

[ as > IBI - B > (7)

=S, t

* B .
where E {} — risk-neutral measure averaging.

Statement 1 (Shiryaev, 1999, Shiryaev et al., 2006). Let us that

risk-neutral (martingale) measure P* =P** is associated
with source measure P by transformation which looks like

dl)t:“_"Hs — Z;u—r+5dPt , (8)
where
2
Zr = exp{— HorEOy, 1(” - 5) z}. 9)
o 2 o

Then stochastic properties of the process defined by equation

ds, =S, (udt + cdw, ), (10)

with regard to measure P*"*° are coinciding with properties
of the process S (r,8) defined by equation

ds,(r,8)=S,((r— 8)dr + caw, ), (11)
with respect to the measure P, where
W =y =, Umrrd), (12)
o

is Wiener process with respect to measure Pu«—r+ =P* |

4. MAIN RESULTS
Theorem 1. Let us consider the function below (13)~(16)

n(1.8,)=In(k,/S,)~(r -5~ (c* /2 )olT. (13)

% (T.8,)=n((k, - K, )/8,)-(r—5 - (0?2} o/T , (12)

% (7.8,)=n(H/S,)-(r- 50?2 ) olT. (15

3.(T.Sy) =y, (T.S,)-0-IT, k=1,233. (16)

Then the value of the barrier European put option with payoff
function (1) when dividends on risk asset are paid is defined
as (17)

b = Kleirr [q)(Y1 (T’So ))_Q(Yz (T’So ))]_ Soeié‘[
'[q)(yl (T’So))_q)(yz(TvSO ))+cb(y3(T7SO ))]+ Kzeirr (I7)
'[(D(Y2 (T’So))_q)()’_s (T’So ))]"‘Heirr (D(Y3 (T’So ))

Proof. Accordance to (1), (5) and using changes of variables

z=x/JT, y=z+((u—r+8)/cWT we obtain

P = e"TE*{min{(Kl -8, ).k, }I[ST >H|+(H-S,)
efrT

x1[S, <H[}= @Texp{— (yz/Z)}min{(Kl —S,exp{(r-o

o2 v T i s, el 5- o7 2
+ yaﬁ}> H]+ (H =S, exp{(r—é‘— (0'2/2))T+ yaﬁ})
><I[S0 exp{(r -0- (0'2/2))1" + yO'x/?}S H]}dy.

Obviously that (13)—(15) are roots of equations below
s,explr—o-(c*/2)r +oTy}=K,.
syexpllr—6-(02/2)r + 0T y}= K, - K,.
syexpllr—6-(0*/2)r +o-Ty}=H.

So we get

T oo

2
P = :E ) (is‘] )exp{— );} min{(K, - S, exp{(r - &

0_2 \/7 * e—rT )'1(T~Sn) yZ
—— T+ yoT ;| ,K, pdy+— exps—— (18
2) y 2 £ p{ 2} (18)

X(H -S, exp{(r—é'—(az/2))7"+ yaﬁ})dy =P +P.
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Summands P} and P; are defined by the formulas

K [0y, (7.5,))-0(y,(T.S,))]
_S()e éT[(D(?l (T So)) (Y2(T’So))]+ (19)
+Kze_rT[ (Y2( ))_(D(ys(T’So))]v
PT2 = He_rTq)()% (T,S()))—S()e_ﬂ©(y3(T,S(, )) (20)

Then, (17) holds if we substitute (19), (20) into (18).

Theorem 2. For the barrier put option with payoff function
(1) the current values of the minimal hedging portfolio
T, = (ﬂ,, 7,) and the accordance investment portfolio X, are

described by (21)—(23)

7, == [0(5, (T - 1.5,)- 0(5,(T

8 e £l
A=/ Jols 7 1.5)-

1 (yz(T_tS))]
(K, /B0y, (T=1,8,)-0(y, (T 1,5, )]
+ Loy, (r-1,5,))-

i o)

X, =Koy, (T -1.5,) - 0(y, (T ~1.5,))]
=S5, @(3, (T ~1.5,) - 0(3, (T ~1.5,))
+(5,(T -1.5 )]+Ke‘” [( (T -1.5,))
~0(y;(T = 1.8, )+ He " 0y, (T -1.5,))

t,8,), y.,(T'-t,S,), k=12;3, are defined by
formulas (13)—(16) with substitutions 7 — (T'—¢), S, =S, .

-1,5,))
-1,5,)),

a5, (T @D

(22)

(23)

where y, (T —

Proof. In accordance to (5), (6) formula (23) arises from (17)
with replacements 7' — (T’ —1), S, =S, .

According to (7), (23), we obtain
¥, == (5, (T -1,8,)-@(3,(T-1,5,))

+®<%<T—ns,>>1+z<le"“’{“’(”f{“”

(T-1,5,))

_Se—STr 8(1)( by
s=S, ' aS 5=

_90(3,(T-1S,))
ds

_90(y,(T-1.8,))
s

S,
(24)

L 90(5,(r-1.5,)
ds

s=S,

+K e—r(T—t) aq)(yz(T_t’Sr))‘ _ a(D(y3(T_t’Sr))‘
’ 5=, aS s=S,

s :
+ He—r(T_t)a (I)(y3 (T —1, St ))/as‘szs

In consideration of form of functions (13)—(16), we have the
expressions

90(y,(T-1.5) __ 1 exp{_(yk(T—t,S,))z}
Os o, Jar
x(1/8,0T=1)=-lply, (T -1.5,))/s,0-/T =1}, k =123,

00(5,(T-1.5,))

__on(r-18) K i

os s, SoT-t § ’
00(y,(T=1,S,))  __¢on(T-15,) K=K, (s
ds loos, S,o\T—t S, ’

00(y,(T=1.8,)  __ ¢y(T=1.5)) H s

Os o=, SoT-t S ’

using of which in (24) brings us to (21). Formula (22) arises
from (7), (21) and (23).

5. DECISION PROPERTIES

Statement 2. Sensivity coefficients that determine the
dependences of the barrier put option value with payoff
function (1) on the stock initial cost P =P, /dS, ; on the
strike price P =0P,/0K,; on the contracted constant
restricted payment of the option writer, on the one hand, and

guaranteed income for option P> = 9P, /0K, ; on the barrier

=0P, /oH are defined like this

P =— "’T[CD W(T.8,))-0(5,(T.5,)) 25)
+0(y,(T.S,))]+|K,e T/ S, af);u (v,(T,5,)).

P —e’” [CD(yl (1.5,)-@(y,(T.S,))} (26)

P =" [0(y, (1.5 )) o(y,(T.5,))} 7)
P = (y, (TS, )~ w )

The format of (25)—(28) follows from the definition of PTSn s
BX . P P with (17).

T > T »
Statement 3. The sensivity coefficients (25)—(28) of barrier
put option value with the option payoff function (1) satisfy
the inequalities (29)

P A0, PN >0, PS>0, BT A0 (29)
Remark 1. According to (1), (2)
lim £, (S, )= £ (5, )= min{(K, -5, )", K.}
Statement 4. When H —0, we have P, — PTZ’““,

X, N X base , 7/’ N 7rba;e ,B, N ﬂtbase , Wh ere P T{Jase , Xrbase ,

e =(ﬂb"”,;ff’““ ), are value, capital and investment

portfolio of the exotic put option with payoff function (2) that
defined in (Andreeva, 2010).
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Remark 2. Statement 4 and (17), expressions for the exotic
put option value from (Andreeva, 2010) make possible to

compare options prices and obtain that P, < P/,

6. CONCLUSIONS

According to (29) analytically obtained properties P >0,
PX: >0 are corroborated graphically (Fig. 1, 2) and can be
interpreted with (1) as follows: strike price K, increment
leads to probability that K, ranks over S, increase. Thus,
payment size under exercising increases (if S; >H ) and
derivative cost increases too. When S, > H the more size of
the K,

respectively. Option buyer risk decreases, and for less risk
should pay more.

the more payment size for option emitter

£

0 0.2 04 0.6 0.8 o

Fig. 1. Value of option with payoff function (1) with various
K, andfixed K, , S,, H .

e

i

E, =100

K, =110

0 0.6 0.8 o

Fig. 2. Value of option with payoff function (1) with various
K, andfixed K,, S,, H .

It is not succeed to establish analytically derivative value
dependence on stock initial cost S, and on barrier H .
However graphical solution (Fig. 3, 4) shows that P> <0,

P <0 and these properties can be explained as follows: at

the average spot price increment is expected when value S
is more. Probability that S, ranks over exercise price K,

increases. In this case, option buyer risk increases, and for
this risk should pay less. The more size of the barrier H the
less probability that S, ranks over H . Consequently

probability that (H —ST) will be paid increases. As

(H-S,) is less than
decreasing function of barrier H .

fhee(s,), barrier option price is

P

(=]

0 0.2 0.4 0.6 0.8 o

Fig. 3. Value of option with payoff function (1) with various
S, and fixed K|, K,, H .
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Fig. 4. Value of option with payoff function (1) with various
H andfixed K, K,, S,.
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