

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

SISSA Digital Library

Heisenberg-Clifford superalgebra and instantons

This is a pre print version of the following article:

Original

Heisenberg-Clifford superalgebra and instantons / Bruzzo, Ugo. - 2:4(2005), pp. 3048-3049. ((Intervento presentato al convegno Heterotic strings, derived categories and stacks tenutosi a Oberwolfach nel 13-19 novembre 2005.

Availability: This version is available at: 20.500.11767/15342 since:

Publisher: European Mathematical Society Publ. House

Published DOI:10.4171/OWR/2005/52

Terms of use: openAccess

Testo definito dall'ateneo relativo alle clausole di concessione d'uso

Publisher copyright

(Article begins on next page)

Heisenberg-Clifford superalgebra and instantons

U. Bruzzo

Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, 34100 Trieste, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Trieste

Instanton moduli spaces. Let $\mathcal{M}_0^{reg}(r,n)$ be the moduli space of framed instantons on \mathbb{R}^4 of rank r and instanton charge n (taken modulo gauge transformations fixing the framing). It is a smooth complex affine variety of complex dimension 2rn. It is not compact. A "partial compactification" is obtained by adding the so-called *ideal instantons*. An ideal instanton may regarded as a collection of m points x_i in \mathbb{R}^4 (with $0 < m \leq k$) and a framed instanton (∇, ϕ) on $\mathbb{R}^4 - \{x_1, \ldots, x_m\}$ of instanton charge k-m, such that the measure associated with the curvature of the ASD connection ∇ approaches the Dirac delta concentrated at x_i when $x \to x_i$. In this way one gets a moduli space $\mathcal{M}_0(r, n)$ which is singular at the points corresponding to the ideal instantons. Resolving the singularities one obtains a space $\mathcal{M}(r, n)$ which is a quasi-projective smooth variety, and may be regarded as a moduli space parametrizing geometric objects, namely, torsion-free coherent sheaves \mathcal{E} on the complex projective plane \mathbb{P}^2 , which are locally free in a neighbourhood of a fixed line $\ell_{\infty} \subset \mathbb{P}^2$, and are equipped with an isomorphism $\Phi \colon \mathcal{E}_{|\ell_{\infty}} \xrightarrow{\sim} \mathcal{O}_{\ell_{\infty}}^{\oplus r}$.

Heisenberg-Clifford superalgebra. We want to define operators $q_i[u]$, where *i* is an integer, and *u* is a homology class (with compact support) in \mathbb{R}^4 . This will act as a linear map

$$q_i[u]: H_{\bullet}(\mathcal{M}(r,n),\mathbb{Q}) \to H_{\bullet}(\mathcal{M}(r,n+i),\mathbb{Q})$$

(the integer r will be kept fixed during the whole treatment). When $i \ge 0$ we consider the cartesian product $\mathcal{M}(r, n) \times \mathcal{M}(r, n+i) \times X$ with projections

$$X \stackrel{p_1}{\leftarrow} \mathcal{M}(r,n) \times \mathcal{M}(r,n+1) \times X \xrightarrow{p_2} \mathcal{M}(r,n) \times \mathcal{M}(r,n+i)$$

We define the closed subscheme $\mathcal{M}_r^{[n,i]}$ of $\mathcal{M}(r,n) \times \mathcal{M}(r,n+i) \times X$ whose elements are the triples $(\mathcal{E}, \mathcal{E}', x)$ such that the sheaves $\mathcal{E}, \mathcal{E}'$ fit into an exact sequence $0 \to \mathcal{E} \to \mathcal{E}' \to A_x \to 0$, where A_x is a skyscraper sheaf concentrated at the point x. We define $\omega(u) \in H_{\bullet}(\mathcal{M}(r,n) \times M(r,n+i), \mathbb{Q})$ by letting $\omega(u) = p_{2*}(p_1^* u \cap [\mathcal{M}_r^{[n,i]}])$, and define the linear map $q_i[u]$ by letting

$$q_i[u](\alpha) = \pi_{2*} \big(\pi_1^* \alpha \cap \omega(u) \big)$$

where π_1 , π_2 are the projections of $\mathcal{M}(r, n) \times \mathcal{M}(r, n+i)$ onto the factors. When *i* is negative, the operator $q_i[u]$ is defined by replacing the product $\mathcal{M}(r, n) \times \mathcal{M}(r, n+i)$ with the product $\mathcal{M}(r, n+i) \times \mathcal{M}(r, n)$ and proceeding as above.

We define among these operators the graded commutator

$$[q_i[u], q_j[v]] = q_i[u] \circ q_j[v] - (-1)^{\deg(u) \cdot \deg(v)} q_j[v] \circ q_i[u].$$

Theorem. The operators $q_i[u]$ verify the commutation relations

$$\left[q_i[u], q_j[v]\right] = (-1)^{ri-1} ri \langle u, v \rangle \ \delta_{i+j,0} \cdot Id, \qquad (1)$$

where $\langle u, v \rangle$ is the intersection product of the homology classes u, v.

This result has been proved in the case r = 1 by Nakajima [6] and Grojnowski [5].

The case r = 1. In this case the moduli space $\mathcal{M}(1, n)$ reduces to the Hilbert scheme $\mathcal{H}_n = (\mathbb{C}^2)^{[n]}$ parametrizing 0-dimensional subschemes of length n of the space \mathbb{C}^2 . The commutation relations (1) may be proved as follows. Define the closed subschemes \mathcal{M}_n and $\mathcal{M}_n(p)$ of \mathcal{H}_n (where p is a point in \mathbb{C}^2) as follows:

 $\mathcal{M}_n = \{ Z \in \mathcal{H}_n / Z \text{ is topologically supported at one point } \},$

 $\mathcal{M}_n(p) = \{ Z \in \mathcal{H}_n / Z \text{ is topologically supported at } p \}.$

Briançon has shown [2] that \mathcal{M}_n and $\mathcal{M}_n(p)$ are irreducible projective varieties, with dim $(\mathcal{M}_n) = n + 1$ and dim $\mathcal{M}_n(p) = n - 1$. Moreover, Ellingsrud and Strømme [4] have computed the intersection product of these subschemes of \mathcal{H}_n , obtaining

$$[\mathcal{M}_n] \cap [\mathcal{M}_n(p)] = (-1)^{n-1} n.$$

This computes the constants in the commutation relations (1), since $q_n[\text{pt}]\mathbb{I} = [\mathcal{M}_n(p)]$ and $q_n[X]\mathbb{I} = [\mathcal{M}_n]$, where \mathbb{I} is the generator of $H_{\bullet}(\emptyset)$, and X is the fundamental class in the homology of \mathbb{R}^4 with compact support.

The constants may also be computed by noting that

$$[\mathcal{M}_n] \cap [\mathcal{M}_n(p)] = s_{n-1}(\mathcal{M}_n(p))$$

where $s_{n-1}(\mathcal{M}_n(p))$ is the top Segre class of the scheme $\mathcal{M}_n(p)$ [7].

The instanton case. For r > 1 one introduces the subschemes of $\mathcal{M}(r, n)$

$$\operatorname{Quot}(r,n) = \left\{ \mathcal{O}_X^{\oplus_r} \to A \to 0 \right\}, \qquad \operatorname{Quot}_p(r,n) = \left\{ \mathcal{O}_X^{\oplus_r} \to A_p \to 0 \right\},$$

where A is a rank zero sheaf whose topological support is a point, and A_p is a rank zero sheaf whose topological support is a fixed point p. The sets $\operatorname{Quot}(r,n)$ and $\operatorname{Quot}_p(r,n)$ are irreducible projective varieties of dimension rn + 1 and rn - 1, respectively [1, 3]. Again the intersection product $[\operatorname{Quot}(r,n)] \cdot \operatorname{Quot}_p[(r,n)]$ computes the constants in the commutation relations (1). Moreover, also in this case the one has the identification

$$[\operatorname{Quot}(r,n)] \cdot \operatorname{Quot}_p[(r,n)] = s_{2n-1}(\operatorname{Quot}_p(r,n))$$

The idea is to compute this Segre classe using a Bott formula for the equivariant cohomology of the moduli space $\mathcal{M}(r, n)$ with respect to a naturally defined action of \mathbb{C}^* [8].

References

- V. Baranovsky, On punctual Quot schemes on algebraic surfaces, alg-geom/9703034.
- [2] J. Briançon, Description de Hilbⁿ $\mathbb{C}\{x, y\}$, Invent. Math. 41 (1977), pp. 45-89.
- [3] G. Ellingsrud and M. Lehn, Irreducibility of the punctual quotient scheme of a surface, Ark. Mat. 37 (1999), pp. 245-254.
- [4] G. Ellingsrud and S. A. Strømme, An intersection number for the punctual Hilbert scheme, Trans. Amer. Math. Soc. 350 (1998), pp. 2547-2552.
- [5] I. Grojnowski, Instantons and affine algebras. I: The Hilbert schemes and vertex operators, Math. Res. Lett 3 (1995), pp. 275-291.
- [6] H. Nakajima, *Lectures on Hilbert schemes of points*, University Lectures Series 18, American Mathematical Society 1999.
- [7] A. Tacca, Heisenberg-Clifford superalgebras and moduli spaces of instantons, PhD thesis, University of Genova 2005.
- [8] In preparation.