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ABSTRACT 

In this paper we are reviewing the retrial queue with 
two-way communication and Poisson arrival process. If 
the server free, incoming call occupies it. The call that 
finds the server being busy joins an orbit and retries to 
enter the server after some exponentially distributed 
time. If the server is idle, it causes the outgoing call 
from the outside. The outgoing call can find server free, 
then it starts making an outgoing call in an exponentially 
distributed time. If the outgoing call finds the server 
occupied, then it is lost. To research the system in 
question we have derived first and second order 
asymptotics of a number of calls in the orbit in an 
asymptotic condition of a low rate of retrials. Based on 
found asymptotics we have built the Gaussian 
approximation of a number of calls in the orbit. 

INTRODUCTION 

Recently a lot of attention is being paid to the research 
of the retrial queues such as mathematical models of real 
call center systems, telecommunication networks, 
computer networks, economical systems (Artalejo and 
Gomez-Corral 2008). These systems are characterized 
by the fact that if the clients (calls, phone calls, 
messages etc. immediately they have 
to enter the virtual orbit where they wait out some delay 
before they could access the server for service again 
(Flajolet and Sedgewick 2009). 
As a rule, the ones that are considered are the retrial 
queues in which arriving calls are either served 
immediately or join the orbit where they are wait out a 

random delay before accessing the server again. 
Recently, however, server is more likely to have the 
ability to make an outgoing call. The example of that 
could be the common cellphone that has function of 
both incoming and outgoing calls. In different call 
centers operators could receive arriving calls but as soon 
as they have free time and are in standby mode they 
could make outgoing calls to advertise, promote and sell 
packages and services of the centre.  
Falin (Falin 1979) derives integral formulas for partial 
generating functions and some explicit expressions for 
characteristics of the M|G|1|1 retrial queues with 
outgoing calls. Choi et al. (Choi et al. 1995) extends 

and Resing (Artalejo and Resing 2010) have derived 
first moments for characteristics of the M/G/1/1 retrial 
queues, in which the times of serving arriving and 
outgoing calls are different. 
Martin and Artalejo (Martin and Artalejo 1995) are 
considering M|G|1|1 retrial queues with outgoing calls in 
which calls from an orbit access the server after an 
exponentially distributed delay in the order of arrival. 
Artalejo and Phung-Duc (Artalejo and Tuan 2012) are 
considering M|M|1|1 retrial queues with outgoing calls 
and a different service time for incoming and outgoing 
calls. In their paper the authors have found an explicit 
solution for two-dimensional probability distribution of 
a server state and a number of calls in an orbit. 
Likewise, the factorial moments are found, based on 
which the proposed numerical and recurrent algorithms 
may be applied. 
In this paper the main method of research is the 
asymptotic analysis method which allows to find in 
M|M|1|1 retrial queue with two-way communication type 
of limit distribution of a number of calls in the orbit in 
an asymptotic condition of a low rate of retrials and to 
show that limit distribution is Gaussian.  
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This result is achieved by using the original asymptotic 
analysis method without needing to find the nonlimiting 
distribution. Furthermore, the discrete distribution is 
constructed which approximates discrete distribution of 
a number of calls in an orbit. This distribution will be 
addressed as Gaussian approximation. Research of 
retrial queueing system under the asymptotic condition  
that the retrial rate is extremely low is stated in the 
following papers (Nazarov and Chernikova 2014) 
(Nazarov and Izmailova 2016).  
Furthermore, we have defined conditions of 
applicability of obtained approximation according to 
system defining parameters.  
The remainder of the paper is presented as follows. In 

, we describe the model 
in detail and preliminaries for later asymptotic analysis. 

, we present our main contribution for the 
model with Poisson input. In Section Approximation 
accuracy P(2)(i) and its application area  we have 
defined the conditions of applicability of the obtained 
approximation depending on values of system-defining 
parameters. Section  is devoted to 
concluding remark and future work. 

MATHEMATICAL MODEL 

Let s consider retrial queue (Figure 1) with Poisson 
arrival process of incoming calls with rate . 

Figure 1: Retrial queue with two-way communication 

The incoming call finds the server and goes into service 
for an exponentially distributed time with rate 1. If 
upon entering the system the call finds the server being 
busy the call immediately joins the orbit, where it stays 
during a random time distributed exponentially with rate 

If the server is idle (empty) it starts making outgoing 
calls from the outside with rate . If the outgoing call 
finds the server free the call goes into service for an 
exponentially distributed time with rate 2. If upon 
entering the system the outgoing call finds the server 
being busy the call is lost and is not considered in the 
future. 
i(t)  number of calls in the orbit at the time t, 

n(t)  server state: 0  server is free, 1  server is busy 
serving an incoming call, 2  server is busy serving an 
outgoing call. 

-dimensional Markovian process {i(t),
n(t)} for probability distribution 

P{i(t) = i, n(t) = n}= Pn(i, t) 
setting up system of Kolmogorov equations
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Introducing partial characteristic functions (Nazarov and 
Paul 2016), denoting 1j , 
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Rewriting system (1) in the following form 
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Characteristic function H(u) of a number of incoming 
calls in an orbit and server states probability distribution 
rn  are relatively easy expressed through partial 
characteristic functions Hn(u) by the following equations 
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rn = Hn(0),  n = 0, 1, 2. 
The task is put to find these characteristics of retrial 
queue with two-way communication. The main content 
of this paper is the solution of system (2) by using 
asymptotic analysis method in limit condition of a low 
rate of retrials  . 
This is due to the fact that for the more complicated 
queues with an incoming MMPP, the equation system 
similar to (2) is analytically unsolvable, but a solution 
by using asymptotic analysis method is allowed. 
Application of asymptotic results in prelimit situation is 
causing the necessity of specifying the area of its 
applicability, which is obtainable only through 
comparison of asymptotic and prelimit characteristics 
and that is relatively easy implemented for the retrial 
queue in question. For more complex systems prelimit 
characteristics are usually defined by results of 
imitational modeling or by using pretty complicated 
numerical algorithms. The asymptotic analysis method 
suggested below is implemented by sequential 
determination of first and second order asymptotics. 

FIRST ORDER ASYMPTOTIC  

We introduce the following notations 
 = ,   u = w,    Hn(u) = Fn(w, ), 

then we will get this system 
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Theorem 1. (First order asymptotic) Suppose i(t) is a 
number of calls in an orbit of stationary M|M|1 retrial 
queue with two-way communication, then the following 
equation is true 
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where the parameter 1 is defined by the following 
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Proof. Consider  then we will get 
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We will look for solution of the last system in form of 
nn rwwF )()( ,          (5) 

where rn is the scalar server state probability 
distribution, and the function (w) is defined in the 
following form  

}exp{)( 1jww . 
Then, if we look at the system, we could see that the first 
equation is a sum of the second and the third in the 

the normalization condition for stationary server state 
probability distribution 
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Value of the parameter 1 will be defined below. By 
summing equations of the system (3) we will get the 
following equation 
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i 0. 
Then we could write down this equation 
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By taking into consideration the normalization condition 
for server state probability distribution and solving the 
system (6) alongside with the system (8) we will get the 
values of probabilities rn and the value of parameter 1. 
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Parameter 1 is defined by equality 
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First order asymptotic i.e. the proven theorem, only 
defines the mean asymptotic value 1/  of a number of 
calls in an orbit in prelimit situation of nonzero values of 

. For more detailed research of a number i(t) of calls in 
 

 
SECOND ORDER ASYMPTOTIC 
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Theorem 2. (Second order asymptotic) In the context 
of Theorem 1 the following equation is true 
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expression 
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system (5)  
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Take note that the scalar function 2(w) is defined in the 
following form 
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We have found that the parameter 2 equals 
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Second order asymptotic i.e. the proven theorem 2, 
shows that the asymptotic probability distribution of a 
number i(t) of calls in an orbit is Gaussian with mean 
asymptotic 1/  and dispersion 2/ . Then, with the 
following prelimit distribution in mind  

P(i) = P0(i) + P1(i) + P2(i), 0i ,     (14) 
we could build an approximation for said distribution 
and in particular the P(2)(i) approximation 

P(2)(i) = (L(i + 0.5)  L(i  0.5))(1  L(  0.5))-1,   (15) 
where L(x) is the normal distribution function with 
parameters 1/  and 2/ . 
Gaussian approximation (15), as will be shown below, is 
fairly applicable at low values  < 0,05 and gives 
relative error at  > 0,05. Moreover, prelimit 
distribution (14) is asymmetrical whilst the Gaussian 

approximation (15) is built upon the basis of 
symmetrical normal distribution. 
 
NUMERICAL ALGORITM FOR SOLVING 
SYSTEM (1) 

i = 0, i = 1 and 2i , 
then we will have three systems  
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Let s consider P0(0) = 1. Using the third and the first 
equations of the system (16) we could write down 
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Using the second equation of the system (16) we could 
write down 
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Using the third and the first equations of the system (17) 
we could write down 
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Further at Ni2  the recurrent procedure is 
implemented by the following equations 
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By normalizing the obtained results we have found the 
solution Pn(i) of system (1) for all Ni0 .Suggested 
numerical algorithm is fairy effective as it allows finding 
the solution Pn(i) for large values (up to thousands) of N. 
 
APPROXIMATION ACCURACY P(2)(i) AND ITS 
APPLICATION AREA 

Approximation accuracy P(2)(i) will be defined by using 
Kolmogorov equation 
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For range between distributions P(i) and P(2)(i), where 
distribution P(i) is defined by using numerical algorithm 
and the approximation P(2)(i) is built upon the basis of 
the second asymptotic and the obtained Gaussian 
distribution. Tables 1-5 contain values for this range  
for various values of rate  and .We consider 1 = 1 
and 2 = 2 for all Tables. Let s consider  = 1. 

Table 1: Kolmogorov range 
 

  = 0,5  = 0,6  = 0,7 
 = 1 0,092 0,108 0,123 

 = 0,5 0,066 0,079 0,092 
 = 0,1 0,064 0,039 0,045 
 =0,05 0,026 0,028 0,032 

 
Table 2: Kolmogorov range 

 
  = 0,8  = 0,9  = 0,95 

 = 1 0,116 0,163 0,174 
 = 0,5 0,106 0,123 0,131 
 = 0,1 0,052 0,060 0,064 
 =0,05 0,037 0,042 0,045 

 
Analysis of values of Gaussian approximation tabulated 
in tables 1-2 lets us make the following conclusions.The 
approximation accuracy naturally increases with the 
deterioration of parameter  value. With increasing 
values of rate  (intensity of the incoming flow) the 
Gaussian approximation accuracy decreases
that the approximation error is allowed if the 
Kolmogorov range 0,05 and the second order 
approximation is allowed for fairly small values of  
parameter, to be precise  < 0,05. Consider  = 10. 

 
Table 3: Kolmogorov range 

 
  = 0,5  = 0,6  = 0,7 

 = 1 0,053 0,063 0,072 
 = 0,5 0,039 0,046 0,053 
 = 0,1 0,018 0,021 0,024 
 =0,05 0,013 0,014 0,017 

 
Table 4: Kolmogorov range 

 
  = 0,8  = 0,9  = 0,95 

 = 1 0,083 0,094 0,100 
 = 0,5 0,060 0,068 0,072 
 = 0,1 0,027 0,030 0,032 
 =0,05 0,019 0,021 0,023 

 
Considering  = 0,8, 1 = 1, 2 = 2, by changing values 
of parameters  and  and by numerically solving the 
probability distribution system (1), we could find 
Kolmogorov range between Gaussian approximation of 

probability distribution of a number of calls in an orbit 
and the numerical distribution. 
 

Table 5: Kolmogorov range 
 

 = 0,2 = 0,1 =0,03 =0,01 
 = 1 0,072 0,052 0,028 0,016 
 = 3 0,058 0,041 0,022 0,013 
 = 5 0,049 0,035 0,019 0,011 

 
Analysis of values tabulated in tables 3-5 shows that the 
accuracy of Gaussian approximation greatly increases 
while increasing , and therefore the area of 
applicability increases too. The area of applicability 
doubles in size and is applicable at 05,0 . Density 
diagrams of probability distributions and distribution 
function diagrams of a number of calls in an orbit are 
shown in figures 2-4. The dotted line represents 
designated density of asymptotical distribution 
probabilities. 
 

 

 
Figure 2:  = 0,8  = 1  = 1 1 = 1 2  

 

 

 
Figure 3:  = 0,8  = 0,1  = 1 1 = 1 2  



 

 

 

 
Figure 4:  = 0,8  = 0,03  = 1 1 = 1 2  
 
CONCLUSIONS  

In this paper we have considered retrial queue with two-
way communication. To research the system in question 
we have found first and second order asymptotics of a 
number of calls in an orbit in asymptotic condition of a 
low rate of retrials. Based on the obtained asymptotics 
we have built the Gaussian approximation of a 
probability distribution of a number of calls in an orbit. 
We have defined the conditions of applicability of the 
obtained approximation depending on values of system-
defining parameters. As criteria we have chosen the 
Kolmogorov range assuming that the allowed 
approximation error is less than 0,05. By analyzing the 
obtained results we can make the conclusion that the 
accuracy of Gaussian approximation increases while 
decreasing values of  parameter, increasing values of  
parameter and/or increasing values of  parameter 
The results obtained in this paper are planned to be 
generalized for the case of correlated incoming flow and 
random time of serving in retrial queues with two-way 
communication. 
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