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ABSTRACT 

Tandem of two queueing systems with infinite number 

of servers is considered. Customers arrive at the first 

stage of the tandem according to Markovian modulated 

Poisson process, and after a completion of their 

services, they go to the second stage. Each customer 

carries some data package with a random value 

(capacity of the customer). Service time does not 

depend on the customers’ capacities in this study, 

capacities are used just to fix some additional 

characteristic of the system evolution. It is shown that 

two-dimensional probability distribution of total 

capacities at the stages of the system is two-dimensional 

Gaussian under the asymptotic condition of a high rate 

of arrivals. Presented numerical experiments and 

simulations allow to determine an applicability area of 

the asymptotic result. 

INTRODUCTION 

Infinite-server queuing systems are used as relevant 

models in some fields such as finance, insurance, etc. 

Furthermore, they may be applicable in case of models 

with a limited number of server devices as described in 

(Moiseev and Nazarov 2016a). 

Queues with random capacities of customers are also 

useful for analysis and design problems in information 

and economic systems (Tikhonenko 1991; Tikhonenko 

and Klimovich 2001). In the case of information 

systems, the object under study is data received in the 

form of random-sized messages. In the case of 

economic systems, capacity of a customer refers to 

money that the customer pays to bank account. Also, 

such models are important in modeling of engineering 

devices where it is necessary to calculate a sufficient 

volume of buffer for data storing (Tikhonenko 2005 and 

2015). 

Results for single-server queues with limited buffer and 

LIFO service discipline were presented in the papers 

(Pechinkin 1998; Tikhonenko 2010). Algorithms for 

calculation of stationary characteristics were obtained 

for the models.  

In the work (Cascone et al. 2011), the system 

Geok/G/1/∞ was studied under a condition of limited 

total capacity of customers. In that paper, capacities 

were modeled as discrete random variables that allowed 

the authors to obtain simple and efficient algorithms for 

the calculation of basic stationary characteristics of the 

system evolution. 

In the paper (Naumov et al. 2016), a multi-server queue 

with losses is considered. Losses in the model are 

caused by the lack of resources required for customers’ 

service. A customer accepted for service takes a random 

amount of resources of several types according to given 

distribution functions. Under the assumption of Poisson 

arrivals and exponential service time, authors derived an 

asymptotical joint probability distribution of the number 

of customers in the system and a distribution of vector 

of occupied resources’ volumes. There is an example 

which illustrates applying of the model for analysis of 

characteristics of video conference service in a wireless 

network LTE. 

A new trend in the study of queuing systems is analysis 

of the systems with non-Poisson arrivals and non-

exponential service time. So, in the works (Pankratova 

and Moiseeva 2014 and 2015; Moiseev and Nazarov 

2016a), queues and networks with MAP and renewal 

arrivals are studied under various asymptotic conditions. 

Tandem queues (Reich 1957) are the models with 

sequential processing of customers at the stages of the 

system. When a customer arrives at the system, it goes 

to the first stage of the tandem. There, it is serviced 

during a random period, and when the service is 

complete, it goes to the next stage, and so on, until its 

service will be completed at the last stage of the system. 

The analytical results for the number of customers at the 

stages of the system were obtained in the papers 

(Moiseev and Nazarov 2014 and 2016b) for tandem 

queues with renewal and MAP arrivals and non-

exponential service time. Analytical results about 

distributions of total capacities of customers at the 

stages of tandem queues for such models are not 

obtained yet. 

The goal of the paper is to study total capacities’ 

volume at the stages of the tandem system with 

incoming Markovian modulated Poisson process, two 

stages with infinite number of servers and non-

exponential service time distribution. 

MATEMATICAL MODEL 

Consider a queue tandem with two stages and infinite 

number of servers at each stage. Customers arrive 

according to Markovian modulated Poisson process 

(MMPP). The process is given by generator matrix 
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Q=||qij|| of size KK   and conditional rates K ,...,1

which we compose into a diagonal matrix 

 K ,...,diag 1Λ . Denote the underlying Markov 

chain of the MMPP as Ktk ...,,2,1)(  . Let each 

customer has some random capacity υ > 0 with 

distribution function G(y). Arriving customer instantly 

occupies a server at the first stage of the system. Service 

time at this stage has distribution function B1(x). When 

the service is complete, the customer moves to the 

second stage for the further service. Service time at the 

second stage has distribution function B2(x). When the 

service is complete at the second stage, the customer 

leaves the system. Customers’ capacities, service times 

are not dependent on each other and are not dependent 

on epochs of customers’ arrivals. 

Denote the number of customers at the first and at the 

second stages of the system at a moment t by i1(t) and 

i2(t), and denote the total capacities of all customers at 

the first and at the second stages by V1(t) and V2(t) 

respectively. Let us obtain probabilistic characteristics 

of multi-dimensional process {i1(t), V1(t), i2(t), V2(t)}. 

This process is not Markovian, therefore, we use the 

dynamic screening method (Moiseev and Nazarov 

2016a) for its investigation. 

Consider three time axes that are numbered from 0 to 2 

(Fig. 1). Let axis 0 show the epochs of customers’ 

arrivals. Axes 1 and 2 correspond to the stages of the 

system. 

Figure 1: Screening of the Customers’ Arrivals 

We introduce a set of two functions S1(t), S2(t) (dynamic 

probabilities) that satisfy the conditions 

0 ≤ S1(t) ≤ 1,   0 ≤ S2(t) ≤ 1,     121  tStS . 

We assume that an epoch t of customer’s arrival may be 

screened to axis 1 with the probability S1(t), or to axis 2 

with the probability S2(t), or may be not screened 

anywhere with the probability S0(t) = 1 – S1(t) – S2(t). 

Let the system be empty at moment t0, and let us fix 

some arbitrary moment T in the future. We will use S1(t) 

as the probability that a customer arrived at the moment 

t will be serviced at the first stage at the moment T, and 

S2(t) as the probability that a customer arrived at the 

moment t will be serviced at the second stage of the 

system at the moment T. It is shown (Moiseev and 

Nazarov 2014) that 

S1(t) = 1 – B1(T – t),   S2(t) = B1(T – t) – B2
*(T – t) 

for t0 ≤ t ≤ T, where 

      




0

1221

*

2 *)( ydByBBBB

is a convolution of functions B1(x) and B2(x). 

Denote the number of arrivals screened before the 

moment t on axes 1 and 2 by n1(t) and n2(t), and denote 

the total capacities of customers screened on axis 1 and 

2 by W1(t) and W2(t) respectively. 

As it is shown in (Moiseev and Nazarov 2016b), the 

multi-dimensional joint probability distribution of the 

number of customers at the stages of the tandem system 

at the moment T coincides with multi-dimensional joint 

probability distribution of the number of screened 

arrivals on respective axes: 

         22112211 ,, mTnmTnPmTimTiP 

for all m1, m2 = 0, 1, 2, … It is easy to prove the same 

property for extended process {i1(t), V1(t), i2(t), V2(t)}: 

         22221111 ,,, zTVmTizTVmTiP

        22221111 ,,, zTWmTnzTWmTnP     (1) 

for all m1, m2 = 0, 1, 2, … and z1, z2 ≥ 0. We use 

Equalities (1) for investigation of the process 

{i1(t), V1(t), i2(t), V2(t)} via analysis of the process 

{n1(t), W1(t), n2(t), W2(t)}. 

KOLMOGOROV DIFFERENTIAL EQUATIONS 

Let us consider the five-dimensional Markovian process 

{k(t), n1(t), W1(t), n2(t), W2(t)}. Denoting the probability 

distribution of this process by  twnwnkP ,,,,, 2211

          22221111 ,,,, wtWntnwtWntnktkP 

and taking into account the formula of total probability, 

we can write the following system of Kolmogorov 

differential equations: 

 






t

twnwnkP ,,,,, 2211

       twnwnkPtStSk ,,,,,λ 221121

     
1

0

22111 ,,,,1,λ

w

k ydGtwnywnkPtS

     
2

0

22112 ,,1,,,λ

w

k ydGtywnwnkPtS

 
ν

2211ν ,,,,,ν twnwnPq k

for k = 1…K, n1, n2 = 0,1,2,…, w1, w2 > 0. 

We introduce the partial characteristic function: 

  tvuvukh ,,,,, 2211

 tdwndwnkPeeee
wjv

n

njuwjv

n

nju
,,,,, 2211

0000

22

2

2211

1

11










, 

where 1j  is an imaginary unit. Then we can write 

the following equations: 

 
 




tvuvukh

t

tvuvukh
k ,,,,,λ

,,,,,
2211

2211

0 

1 

2 

T 



           11 2

*

21

*

1
21 vGetSvGetS

juju  

 
ν

2211ν ,,,,,ν twnwnhq k  

for k = 1…K, where    ydGevG
jvy





0

* . 

Let us rewrite this system in the matrix form: 

 
 




tvuvu

t

tvuvu
,,,,

,,,,
2211

2211 H
H

 

           QΛ  11 2

*

21

*

1
21 vGetSvGetS

juju   (2) 

with the initial condition   rH 02211 ,,,, tvuvu , where  

H(u1, v1, u2, v2, t) = 

[h(1, u1, v1, u2, v2, t), …, h(K, u1, v1, u2, v2, t)], 

and r = [r(1), …, r(K)] is a vector of the stationary 

distribution of the underlying Markov chain. Vector r 

satisfies the following linear system: 









,1

,

re

0rQ
                                 (3) 

where e is a column vector with all entries equal to 1. 

 

ASYMPTOTIC ANALYSIS 

The exact solution of Equation (2) is not possible in 

general case, but it may be solved under an asymptotic 

condition. In the paper, we consider the asymptotic 

condition of an infinitely growing arrivals’ rate. Let us 

substitute Λ = NΛ1 and Q = NQ1 into Equation (2), 

where N is some parameter which is used for the 

asymptotic analysis (N → ∞ in theoretical studies). 

Then Equation (2) may be rewritten as follows: 

 
  




12211

2211 ,,,,
,,,,1

QH
H

tvuvu
t

tvuvu

N
 

          11 2

*

21

*

11
21  vGetSvGetS

juju
Λ    (4) 

with the initial condition 

  rH 02211 ,,,, tvuvu .                        (5) 

We solve Problem (4)–(5) under the asymptotic 

condition and we obtain a solution in the form of 

approximations which are named as “first-order 

asymptotic”    tvuvutvuvu ,,,,,,,, 2211

)1(

2211 HH   and 

“second-order asymptotic”   tvuvu ,,,, 2211H  

 tvuvu ,,,, 2211

)2(
H . These approximations have 

different order of accuracy. 

 

First-order Asymptotic Analysis 

We formulate and prove the following statement. 

Lemma. The first-order asymptotic characteristic 

function of the probability distribution of the process 

{k(t), n1(t), W1(t), n2(t), W2(t)} has the form 

     













 

t

t

dSajvjuNtvuvu

0

ττκexp,,,, 111112211

)1(
rH  

   













 

t

t

dSajvju

0

ττ2122
, 

where erΛ11κ  , and  



0

1 yydGa  is the mean of a 

customer capacity. 

Proof. 

Let us perform the substitutions 

N

1
ε  , 11 εxu  , 11 εyv   22 εxu  , 22 εyv  , 

   ε,,,,,,,,, 22112211 tyxyxtvuvu
1
FH   

in Expressions (4) and (5). Using such substitutions 

allows us to exclude a direct influence of an asymptotic 

parameter from the variables x1, x2, y1, y2. Then we 

obtain the following equation 

 
 




ε,,,,,

ε,,,,,
ε 22111

22111 tyxyx
t

tyxyx
F

F
          (6) 

     1)ε()(1)ε()( 2

*ε

21

*ε

111
21  yGetSyGetS
xjxj

ΛQ  

with initial condition 

  rF ε,,,,, 022111 tyxyx .                  (7) 

Let us find the asymptotic solution of Problem (6)–(7) 

   ε,,,,,lim,,,, 22111
0ε

22111 tyxyxtyxyx FF


  in two steps. 

Step 1. Substituting ε = 0 in (6), we obtain 

  0QF 122111 ,,,, tyxyx . 

Comparing this equation with the first one in (3), we 

can conclude that  tyxyx ,,,, 22111F  can be expressed as 

   tyxyxtyxyx ,,,,,,,, 2211122111  rF ,        (8) 

where  tyxyx ,,,, 22111  is some scalar function which 

satisfies the condition 

  1,,,, 022111  tyxyx .                  (9) 

Step 2. Let us multiply (6) by vector e, substitute (8), 

divide the results by ε and perform the asymptotic 

transition ε → 0. Then taking into account Q1e = 0 and 

re = 1, we obtain the following differential equation for 

the function  tyxyx ,,,, 22111  

 
 




tyxyx

t

tyxyx
,,,,

,,,,
22111

22111  

    122211111 )()(κ ajyjxtSajyjxtS  .    (10) 

The solution of Problem (9)–(10) is as follows: 

   













 

t

t

dSajyjxtyxyx

0

τ)τ(κexp,,,, 1111122111  



 













 

t

t

dSajyjx

0

ττ)(2122
. 

Substituting this expression into (8) and making inverse 

substitutions, we obtain 

     tvuvutvuvu ,,,,,,,, 2211

)1(

2211 HH  

   













 

t

t

dSajyjx

0

ττκexp 11111r  

   













 

t

t

dSajyjx

0

ττ2122
. 

Thus, the proof is complete. 

 

Second-order Asymptotic Analysis 

The main result is the following theorem. 

Theorem. The second-order asymptotic characteristic 

function of the probability distribution of the process 

{k(t), n1(t), W1(t), n2(t), W2(t)} has the form 

     






  ττκexp,,,,

0

111112211

)2(
dSajvjuNtvuvu

t

t

rH  

      ττκ

0

21221 dSajvjuN

t

t

 

 
    














 

t

t

t

t

dSNdSN
ju

00

ττκττκ
2

2

1211

2

1  

 
    














 

t

t

t

t

dSaNdSaN
jv

00

ττκττκ
2

2

1

2

12121

2

1  

    













 

t

t

t

t

dSaNdSaNjvju

00

ττκττκ
2

11211111  (11) 

 
    














 

t

t

t

t

dSNdSN
ju

00

ττκττκ
2

2

2221

2

2  

 
    














 

t

t

t

t

dSaNdSaN
jv

00

ττκττκ
2

2

2

2

12221

2

2  

    













 

t

t

t

t

dSaNdSaNjvju

00

ττκττκ
2

21221122  

    
t

t

dSSNjuju

0

τττκ 21121
 

    
t

t

dSSaNjvjv

0

τττκ 21

2

1221
 

     






 
t

t

dSSaNjvjujvju

0

τττκ 21121221 , 

where  eIΛg 112 κ2κ  ,  



0

2

2 ydGya , and a row 

vector g satisfies the linear matrix system 

 









.1

,κ 111

ge

ΛIrgQ
 

Proof. 

Let  tyxyx ,,,, 22112H  be a vector function that satisfies 

the equation 

     tvuvutvuvu ,,,,,,,, 221122211 HH             (12) 

       



























 

t

t

t

t

dSajyjxdSajyjx

00

ττττκexp 212211111 . 

Substituting this expression into (4) and (5), we obtain 

the following problem: 

 
  




12211

2211 κ,,,,
,,,,1

tvuvu
t

tvuvu

N
2

2 H
H

 

          tSajvjutSajvju 21221111  

  tvuvu ,,,, 22112
H                       (13) 

           
12

*

21

*

11 11 21 QΛ  vGetSvGetS
juju  

with the initial condition 

  rH
2

02211 ,,,, tvuvu .                    (14) 

Let us make the substitutions 

N

1
ε
2
 , 11 εxu  , 11 εyw  , 22 εxu  , 22 εyw  , 

   ε,,,,,,,,, 22112211 tvuvutvuvu
22
FH  .        (15) 

Using these notations, Problem (13)–(14) can be 

rewritten in the form 

 
  




12211

22112
κε,,,,,

ε,,,,,
ε tyxyx

t

tyxyx
2

2 F
F

 

        11121111 εεεε ayjxjtSayjxjtS  

  ε,,,,, 2211 tyxyx
2
F                     (16) 

           
12

*ε

21

*ε

11 1ε1ε 21 QΛ  yGetSyGetS
xjxj  

with the initial condition 

  rF
2

ε,,,,, 02211 tyxyx .                    (17) 

Let us find the asymptotic solution of this problem 

   ε,,,,,lim,,,, 22112
0ε

22112 tyxyxtyxyx FF


  in three steps. 

Step 1. Substituting ε = 0 in (16)–(17), we obtain the 

following system of equations: 

 

 







.,,,,

,,,,,

02211

12211

rF

0QF

2

2

tyxyx

tyxyx
 

Therefore, taking into account (3), we can write 

   tyxyxtyxyx ,,,,,,,, 2211222112  rF ,      (18) 

where  tyxyx ,,,, 22112  is some scalar function which 

satisfies the condition 

  1,,,, 022112  tyxyx .               (19) 



Step 2. Using (18), the function  tyxyx ,,,, 22112F  can 

be represented in the expansion form 

     rF
2

tyxyxtyxyx ,,,,ε,,,,, 221122211      (20) 

        2
12221111 εεεεε Og  ayjxjtSayjxjtS , 

where g is the row vector that satisfies the condition 

ge = 1, and  2εO  is a row vector of infinitesimals of 

the order 
2

ε . Let us use substitution (20) and expansion 

 2ε
εε1 Oxje

xj
  in Equation (16). Taking into 

account (3) and making a transition ε → 0, we obtain 

matrix equation for the vector g 

 
111 κ ΛIrgQ  , 

where I is an identity matrix. 

Step 3. We multiply Equation (16) by vector e and use 

Expression (20) and the second-order expansion 

   3
2

ε
ε

2

ε
ε1 O

xj
xje

xj
 . 

After some transformations, using the notation 

 eIΛg 112 κ2κ  , 

we obtain the following differential equation for the 

function  tyxyx ,,,, 22112  

 
 




tyxyx

t

tyxyx
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,,,,
22112
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2
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2
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2

21221122 κκ  

        tStSajyjytStSjxjx 21

2

122121121 κκ  
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2

2221

2

2
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2
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




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2

2

12221

2

2 κκ
2

. 

The solution of this equation with initial condition (19) 

is as follows: 

   tyxyx ,,,, 22112  
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     
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dSSajxjyjyjx
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Substituting this expression in Formula (18) and 

performing the substitutions that are inverse to (15) and 

(12), we obtain Expression (11) for the asymptotic 

characteristic function of the process {k(t), n1(t), W1(t), 

n2(t), W2(t)}. The proof is complete. 

Corollary 1. Assuming t = T and t0 → –∞ and using 

Equalities (1), we obtain the steady-state characteristic 

function of the process under study 

{i1(t), V1(t), i2(t), V2(t)}: 

     1111112211 κexp,,, bajvjuNvuvuh  

 
 

  122111

2

1
211221 κκ

2
κ bNbN

ju
bajvjuN  

    12

2

121121

2

1 κκ
2

baNbaN
jv

 

 
 

  222211

2

2
1212111111 κκ

2
κκ bNbN

ju
baNbaNjvju  

    22

2

122121

2

2 κκ
2

baNbaN
jv

            (21) 

  2212211122 κκ baNbaNjvju  

 baNjvjvbNjuju
2

1221121 κκ  

  baNjvjujvju 121221 κ , 

where 

 




0

111 ττ)(1 dBb ,  




0

2

112 ττ)(1 dBb , 

 




0

*

2121 ττ)(τ)( dBBb ,  




0

2*

2122 ττ)()τ( dBBb , 

  




0

*

211 ττ)(τ)(τ)(1 dBBBb . 

From the form of characteristic function (21), it is clear 

that the probability distribution of four-dimensional 

process {i1(t), V1(t), i2(t), V2(t)} is asymptotically 

Gaussian. 

Corollary  2. The steady-state joint probability 

distribution of two-dimensional process of the total 

capacity at the stages of the system is asymptotically 

Gaussian with a vector of means 



 21111111 κκ babaN a  

and a covariance matrix 


















22

2

122121

2

12

2

1212

2

121121

κκκ

κκκ

bababa

bababa
NK . 

 

NUMERICAL EXAMPLE 

Result (21) is obtained under the asymptotic condition 

N → ∞. Therefore, the result may be used just as an 

approximation and it is applicable when N is great 

enough. So, we need in determining of a low boundary 

of parameter N which cause the approximation (21) be 

applicable. To do this we make series of simulation 

experiments and compare asymptotic distributions with 

empiric ones by using the Kolmogorov distance 

)()(max xAxF
x

                    (22) 

as an accuracy. Here F(x) is a cumulative distribution 

function of total capacity of customers at a stage of the 

tandem which is constructed on the basis of simulation 

results, and A(x) is a Gaussian cumulative distribution 

function with respective mean and variance from 

Expression (21). Increasing value of parameter N step 

by step from one experiment to another, we can find the 

value of N at which the accuracy (22) is small enough. 

Consider the following numerical example. The MMPP 

is given by parameters Q = NQ1 and Λ = NΛ1 where 

























8,04,04,0

3,06,03,0

4,04,08,0

1Q , 



















400

030

002

1Λ . 

Fundamental rate of arrivals is NNN  3κ 11 erΛ . 

Capacities of customers have uniform distribution in the 

range [0; 1]. Service time has gamma distribution with 

shape and inverse scale parameters α1 = 1,5 and β1 = 2 

at the first stage of the system, and α2 = 0,5 and β2 = 1,5 

at the second stage. So, the fundamental rate of arrivals 

exceeds exactly by N times the service rate at the second 

stage, therefore, we consider marginal distributions of 

the total capacity at this stage. 

A vector of means and a covariance matrix of the 

Gaussian approximation for this example are as follows: 

 5,0125,0 Na , 









352,0039,0

039,0921,0
NK . 

So, in Formula (22) F(x) will be a cumulative 

distribution function of total capacity of customers at 

the second stage of the system constructed on 

simulation results, and A(x) will be a Gaussian 

cumulative distribution function with mean and variance 

equal to 0,5N and 0,352N respectively. Values of the 

Kolmogorov distance for increasing values of parameter 

N are presented in Table 1. We can notice that the 

asymptotic results become more accurate while a value 

of the parameter N (fundamental rate of arrivals) is 

increasing. Figures 2 show probability densities of 

asymptotic and empiric distributions at the second stage 

of the system and they confirm the effect. 

 

Table 1: Kolmogorov Distances between Simulation 

and Asymptotic Results for the Total Capacity  
 

N 5 10 20 50 100 

Δ 0,056 0,035 0,027 0,015 0,009 
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Figures 2: Probability Densities of Asymptotic (Marked 

as “Theoretical”) and Empiric (Marked as “Simulation”) 

Distributions of the Total Capacity  

 

We suppose that an approximation is applicable if its 

Kolmogorov distance less than 0,03. Then we can draw 



a conclusion that the asymptotic results are applicable 

for values of the parameter N equal to 20 or more 

(marked by boldface in Table 1).  

 

CONCLUSION 

In the paper, the queue tandem with MMPP arrivals, 

infinite number of servers and non-exponential service 

time is considered. The problem under study is a 

capacity which each customer brings to the system. The 

analysis is performed under the asymptotic condition of 

high rate of arrivals (high values of a fundamental rate 

of the MMPP). It is shown that two-dimensional 

probability distribution of total capacities at the stages 

of the system is two-dimensional Gaussian under this 

asymptotic condition. Numerical results show that 

asymptotic results have enough accuracy for marginal 

distribution of total capacity at a stage of the system 

when a fundamental rate of arrivals exceeds service rate 

at the stage by 20 times or more. 

Future studies may be devoted to analysis of customers’ 

capacities in queueing tandems with MAP arrivals and 

systems in random environment. 
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