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1

Chapter I

Introduction

Disclaimer : Those lecture notes were written to support a Master course given by the author at Toulouse between
2016 and 2018. Since then, they were regularly updated but are still far from being complete and many references of
the literature are lacking (I promise they will be added in the next release !).

It still contains almost surely many mistakes, inaccuracies or typos. Any reader is encouraged to send me1 any
comments or suggestions.

I.1 What is it all about ?

We shall consider a very unprecise setting for the moment : consider a (differential) dynamical system

{
y′ = F (t, y, v(t)),

y(0) = y0,
(I.1)

in which the user can act on the system through the input v. Here, y (resp. v) live in a state space E (resp. a control
space U ) which are finite dimensional spaces (the ODE case) or in infinite dimensional spaces (the PDE case).

We assume (for simplicity) that the functional setting is such that (I.1) is globally well-posed for any initial data
y0 and any control v in a suitable functional space.

Definition I.1.1
Let y0 ∈ E. We say that:

• (I.1) is exactly controllable from y0 if : for any yT ∈ E, there exists a control v : (0, T )→ U such
that the corresponding solution yv,y0 of (I.1) satisfies

yv,y0(T ) = yT .

If this property holds for any y0, we simply say that the system is exactly controllable.

1franck.boyer@math.univ-toulouse.fr
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2 Chapter I. Introduction

• (I.1) is approximately controllable from y0 if : for any yT ∈ E, and any ε > 0, there exists a
control v : (0, T )→ U such that the corresponding solution yv,y0 of (I.1) satisfies

‖yv,y0(T )− yT ‖E ≤ ε.

If this property holds for any y0, we simply say that the system is approximately controllable.

• (I.1) is controllable to the trajectories from y0 if : for any ȳ0 ∈ E, and any v̄ : (0, T ) → U , there
exists a control v : (0, T )→ U such that the corresponding solution yv,y0 of (I.1) satisfies

yv,y0(T ) = yv̄,ȳ0(T ).

If this property holds for any y0, we simply say that the system is controllable to trajectories.

It is clear from the definitions that

exact controllability =⇒ approximate controllability,

exact controllability =⇒ controllability to trajectories.

Moreover, for linear problems we have

controllability to trajectories =⇒ null-controllability,

and it can be often observed that

controllability to trajectories =⇒ approximate controllability.

We will possibly also discuss about related topics like :

• Optimal control : find v such that the couple (y, v) satisfies some optimality criterion.

• Closed-loop stabilisation : Assume that 0 is an unstable fixed point of y 7→ F (y, 0) (we assume here that F
is autonomous), does it exist an operator K such that, if we define the control v = Ky, then 0 becomes an
asymptotically stable fixed point of y′ = F (y,Ky).

I.2 Examples

Let us present a few examples.

I.2.1 The stupid example {
y′ + λy = v,

y(0) = y0.

We want to drive y to a target yT . Take any smooth function y that satisfy y(0) = y0 and y(T ) = yT and set
v = y′ − λy and we are done ... Of course there is much more to say on this example, like finding an optimal control
in some sense.

Thanks to the Duhamel formula, we can write the solution explicitly as a function of y0 and v

y(t) = e−λty0 +

∫ t

0
e−λ(t−s)v(s) ds.

It follows that y(T ) = yT for some v, if we have∫ T

0
e−λ(T−s)v(s) ds = yT − e−λT y0.

cbna F. BOYER - FEBRUARY 7, 2020



I.2. Examples 3

Any function satisfying this integral condition will be a solution of our problem. It is clear that there exists plenty of
such admissible functions.

• Let us try to consider a constant control v(s) = M for any s ∈ [0, T ] and for some M . The equation to be
solved is

M
1− e−λT

λ
= yT − e−λT y0.

It follows that

M = λ
yT − e−λT y0

1− e−λT .

The L2 norm on [0, T ] of this control is given by

‖v‖L2(0,T ) = |M |
√
T .

– If yT 6= 0, we thus have
‖v‖L2(0,T ) ∼λ→+∞ λ

√
T |yT |.

This proves that the cost of such a control blows up as λ→∞.
This is natural since the equation is more dissipative when λ is large and thus the system has more diffi-
culties to achieve a non zero state.

– Conversely, if yT = 0, we have

‖v‖L2(0,T ) ∼λ→+∞ λ
√
T |y0|e−λT ,

and thus the cost of the control is asymptotically small when λ is large.

• Why do not take an exponential control ? For a given µ ∈ R, we set

v(t) = Me−µ(T−t),

the controllability condition reads

M
1− e−(λ+µ)T

λ+ µ
= yT − e−λT y0,

so that

M = (λ+ µ)
yT − e−λT y0

1− e−(λ+µ)T
.

Let us compute the L2 norm of such a control∫ T

0
|v(t)|2 dt = M2 1− e−2µT

2µ

=
(λ+ µ)2

2µ

(yT − e−λT y0)2

(1− e−(λ+µ)T )2
(1− e−2µT ).

We will see later that this quantity is minimal for µ = λ and we then obtain∫ T

0
|v(t)|2 dt = 2λ

(yT − e−λT y0)2

(1− e−2λT )2
(1− e−2λT ),

so that
‖v‖L2(0,T ) ∼λ→+∞

√
2λ|yT |.

Observe that this cost behaves like
√
λ for large λ compared to the constant control case which behaves like λ

for large λ.
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4 Chapter I. Introduction

I.2.2 The rocket

We consider a rocket which is trying to land on the ground. The rocket is supposed to be a single material point (!!)
and the motion is 1D (in the vertical direction). Let x be the altitude of the rocket and y its vertical velocity. The initial
altitude is denoted by x0 > 0 and the initial velocity is denoted by y0 (we assume y0 ≤ 0 without loss of generality).

The control v is the force generated by the engines of the rocket. The equations of motion of this very simple
example are 

x′(t) = y(t),

y′(t) = v(t)− g,
x(0) = x0 > 0,

y(0) = y0 ≤ 0,

The goal is to land the rocket at time T : we want x(T ) = y(T ) = 0.
An explicit computation leads to

y(t) = y0 − gt+

∫ t

0
v(s) ds,

x(t) = h0 +

∫ t

0
y(τ) dτ = h0 + y0t−

1

2
gt2 +

∫ t

0
v(s)(t− s) ds.

We conclude that, for a given T > 0, the control law v does the job if and only if it satisfies
∫ T

0
v(s) ds = gT + |y0|,∫ T

0
v(s)s ds =

1

2
gT 2 + h0.

(I.2)

This is our first (and not last !) contact with a moment’s problem.
There is clearly an infinite number of solutions to the system (I.2). Let us try to build two examples:

• For some T0 ∈ (0, T ) and some M > 0 to be fixed later, we look for a control of the following form

v(t) =

{
M for t < T0,

0 for t > T0.

System (I.2) leads to

MT0 = gT + |y0|,

M
T 2

0

2
=

1

2
gT 2 + h0.

This can be solved as follows

T0 =
gT 2 + 2h0

gT + |y0|
,

and

M =
(gT + |y0|)2

gT 2 + 2h0
.

Note that the condition T0 ≤ T gives
2h0 ≤ |y0|T,

which mean that such a solution is possible only for a control time T large enough.

cbna F. BOYER - FEBRUARY 7, 2020



I.2. Examples 5

• For some α, β to be fixed later, we set

v(t) = α+ βt, ∀t ∈ (0, T ).

System (I.2) leads to

αT + β
T 2

2
= gT + |y0|,

α
T 2

2
+ β

T 3

3
=

1

2
gT 2 + h0,

that we can solve explicitely

β
T 3

12
= h0 −

T |y0|
2

,

α
T 2

8
=
h0

4
+

1

8
gT 2 − h0 +

T |y0|
2

,

to obtain

v(t) =

(
g +
|y0|
T

)
+ (t− T/2)

(
12h0

T 3
− 6|y0|

T 2

)
. (I.3)

We observe that there is no condition on the time T for this function to be a mathematical solution of our
problem. However, we have

max
[0,T ]
|v(t)| ∼T→0

6h0

T 2
,

which proves that, for small control times T , the magnitude of the necessary power of the engines may be
infinite. This is of course not reasonable.

Similarly, for a real rocket, we expect v to be a non negative function. Looking at the expression above, we see
that the non-negativity of v holds if and only if the following condition holds

|6h0 − 3|y0|T | ≤ gT 2 + |y0|T.
Here also, this condition is satisfied if T is large enough and certainly not satisfied for small values of T . It thus
seems that this particular control is not physically admissible for small control times T .

The above solution defined in (I.3) is nevertheless interesting (from a modeling and mathematical point of view)
since we can show that it is, for a given T , the unique solution among all possible solutions which has a minimal
L2 norm. ∫ T

0
|v(t)|2 dt = argmin

w admissible

∫ T

0
|w(t)|2 dt.

Let us prove this in few lines : if w : [0, T ] → R is a control function that drives the solution at rest at time T ,
then it also solves the equations (I.2) and in particular we have∫ T

0
(v − w)(s) ds = 0,∫ T

0
s(v − w)(s) ds = 0.

Since v is a linear function, that is a combination of s 7→ 1 and s 7→ s, the above relations give∫ T

0
v(v − w) ds = 0.

This means that v − w is orthogonal to v in L2 and the Pythagorean theorem leads to

‖w‖2L2 = ‖(w − v) + v‖2L2 = ‖w − v‖2L2 + ‖v‖2L2 ≥ ‖v‖2L2 ,

with equality if and only if v = w.

The solution v is thus the optimal cost control with this particular definition of the cost.
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6 Chapter I. Introduction

Exercise I.2.2 (The damped rocket model)
In practice, the command of the pilot is not instantaneously transmitted to the rocket. To model this behavior,
we introduce a delay time τ > 0 and replace the previous model with the following one

x′(t) = y(t),

y′(t) = w(t)− g,

w′(t) =
1

τ
(v(t)− w(t)),

x(0) = x0 > 0,

y(0) = y0 ≤ 0,

w(0) = 0.

By using the same approach as before, show that the previous system is controllable at any time T > 0.
Compute explicitly such controls and try to find the one with minimal L2(0, T ) norm.

I.2.3 Nonlinear examples

We consider a nonlinear autonomous (this is just for simplicity) ODE system of the form (I.1) and we assume that
F (0, 0) = 0 in such a way that (y, v) = 0 is a solution of the system. We would like to study the local controllability
of the nonlinear system. To this end, we consider the linearized system

y′ = Ay +Bv, (I.4)

where A = DyF (0, 0) and B = DvF (0, 0) are the partial Jacobian matrices of F with respect to the state and the
control variable respectively.

We will not discuss this point in detail but the general philosophy is the following:

• Positive linear test:

If the linearized system (I.4) around (0, 0) is controllable, then the initial nonlinear system (I.1) is locally
controllable at any time T > 0. More precisely, it means that for any T > 0, there exists ε > 0 such that for
any y0, yT ∈ Rn satisfying ‖y0‖ ≤ ε and ‖yT ‖ ≤ ε, there exists a control v ∈ L∞(0, T,Rm) such that the
solution of (I.1) starting at y0 satisfies y(T ) = yT .

• Negative linear test:

Unfortunately (or fortunately !) it happens that the linear test is not sufficient to determine the local controlla-
bility of a nonlinear system around an equilibrium. In other words : nonlinearity helps !

There exists systems such that the linearized system is not controllable and that are nevertheless controllable.

• The nonlinear spring:
y′′ = −ky(1 + Cy2) + v(t).

The linearized system around the equilibrium (y = 0, v = 0) is

y′′ = −ky + v,

which is a controllable system (exercise ...). Therefore, we may prove that the nonlinear system is also control-
lable locally around the equilibrium y = y′ = 0.

• The baby troller: This is an example taken from [Cor07].

The unknowns of this system are the 2D coordinates (y1, y2) of the center of mass of the troller, and the direction
y3 of the troller (that is the angle with respect to any fixed direction). There are two controls v1 and v2 since
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I.2. Examples 7

the pilot can push the troller in the direction given by y3 (with a velocity v1) or turn the troller (with an angular
veloctiy v2). The set of equations is then 

y′1 = v1 cos(y3),

y′2 = v1 sin(y3),

y′3 = v2.

Observe that any point ȳ ∈ R3, v̄ = 0 ∈ R2 is an equilibrium of the system. The linearized system around this
equilibirum reads 

y′1 = v1 cos(ȳ3),

y′2 = v1 sin(ȳ3),

y′3 = v2.

It is clear that this system is not controllable since the quantity

sin(ȳ3)y1 − cos(ȳ3)y2,

does not depend on time.

It follows that the (even local) controllability of the nonlinear system is much more difficult to prove ... and
actually cannot rely on usual linearization arguments. However, it is true that the nonlinear system is locally
controllable, see [Cor07].

I.2.4 PDE examples

• The transport equation : Boundary control

Let y0 : (0, L)→ R and c > 0, we consider the following controlled problem
∂ty + c∂xy = 0, ∀(t, x) ∈ (0,+∞)× (0, L),

y(0, x) = y0(x), ∀x ∈ (0, L),

y(t, 0) = v(t).

(I.5)

When posed on the whole space R, the exact solution of the transport problem reads

y(t, x) = y0(c− xt), ∀t ≥ 0,∀x ∈ R.

This can be proved by showing that the solution is constant along (backward) characteristics. In presence of an
inflow boundary, the same property holds but it may happen that the characteristics touch the boundary at some
positive time. In this case, the boundary condition has to be taken into account.

Therefore, for a given y0 and v, the unique solution to Problem (I.5) is given by

y(t, x) =

{
y0(x− ct), for x ∈ (0, L), t < x/c,

v(t− x/c), for x ∈ (0, L), t > x/c.

In the limit case t = x/c there is an over-determination of the solution that cannot be solved in general. It
follows that, even if y0 and v are smooth, the solution is a weak solution which is possibly discontinuous. If,
additionally, the initial condition and the boundary data satisfy the compatibility condition

y0(x = 0) = v(t = 0),
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then the exact solution is continuous.

Theorem I.2.3

– If T ≥ L/c the transport problem is exactly controllable at time T , for initial data and target in
L2(0, L) and with a control in L2(0, T ).

If additionally we have T > L/c and y0,yT are smooth, then we can find a smooth control v that
produces a smooth solution y.

– If T < L/c the transport problem is not even approximately controllable at time T .

• The heat equation : distributed internal control acting everywhere.

Let y0 : (0, L)→ R, we consider the following controlled problem
∂ty − ∂2

xy = v(t, x), ∀(t, x) ∈ (0,+∞)× (0, L),

y(0, x) = y0(x), ∀x ∈ (0, L),

y(t, 0) = y(t, L) = 0, ∀t > 0.

(I.6)

Take L = π to simplify the computations. We look for y, v as a development in Fourier series

y(t, x) =
√

2/π
∑
n≥1

yn(t) sin(nx),

v(t, x) =
√

2/π
∑
n≥1

vn(t) sin(nx).

For each n the equation (I.6) gives
y′n(t) + n2yn(t) = vn(t),

where yn(0) = yn,0 =
√

2/π
∫ π

0 y0(x) sin(nx) dx is the n-th Fourier coefficient of the initial data y0. We try
to achieve a state yT ∈ L2(Ω) whose Fourier coefficients are given yn,T .

For each n we thus have to build a control vn for a single ODE. We have seen that there are many solutions to
do so. We need to take care of this choice since, at the end, we need to justify the convergence in some sense of
the series that defines v.

– Reachable set from 0. We assume that y0 = 0 and we would like to understand what kind of targets can
be achieved and the related regularity of the control.

∗ If we choose vn to be constant in time, the computations of Section I.2.1 show that

vn(t) =
n2yn,T

1− e−n2T
∼+∞ n2yn,T .

Formally, we have thus found a time independent control v that reads

v(x) =
√

2/π
∑
n≥1

n2yn,T

1− e−n2T
sin(nx).

The question is : what is the meaning of this series. Does it converges in L2(0, π) for instance ? We
see that

v ∈ L2(0, π) ⇔ yT ∈ H2(0, π) ∩H1
0 (0, π),

v ∈ H−1(0, π) ⇔ yT ∈ H1
0 (0, π),

v ∈ H−2(0, π) ⇔ yT ∈ L2(0, π).
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∗ Can we do better ? We have seen in Section I.2.1, that a better control (in the sense of a smaller L2

norm) consists in chosing an exponential control vn(t) = Mne
−n2(T−t). In that case, we have the

estimate
‖vn‖L2(0,T ) ∼+∞ Cn|yn,T |.

It can then be checked that the regularity of such a control is related to the regularity of yT as follows.

v ∈ L2(0, T, L2(0, π)) ⇔ yT ∈ H1
0 (0, π),

v ∈ L2(0, T,H−1(0, π)) ⇔ yT ∈ L2(0, π).

As a conclusion, if one wants to control to a target which is in L2(0, π), we can either take a time-
independent control in H−2(0, π) or a time dependent control in L2(0, T,H−1(0, π)). In some sense we
pay the higher regularity in space of v by a smaller regularity in time of v.
Another way to understand this analysis is that, if one wants to be able to control the equation with a
control that only belongs to L2((0, T )×Ω), we need to impose yT ∈ H1

0 (0, π). A target yT belonging to
L2(0, π) \H1

0 (0, π) (such as a indicatrix function for instance) is not achievable by controls in L2.

– Null-controllability : We ask now a different question : we assume that yT = 0 and that y0 is any
function. Is it possible to achieve 0 at time T starting from any y0 ?

∗ If we choose vn to be constant in time, the computations of Section I.2.1 show that

vn(t) =
−n2e−n

2T yn,0

1− e−n2T
∼+∞ −n2e−n

2T yn,0.

Formally, we have thus found a time independent control v that reads

v(x) =
√

2/π
∑
n≥1

−n
2e−n

2T yn,0

1− e−n2T
sin(nx).

and we observe that this series converges for any y0 in a possibly very negative Sobolev space H−k.
This is a nice consequence of the regularizing effect of the heat equation (without source terms).
It follows immediately that the null-controllability of the heat equation is much more easy to achieve
than the exact controllability to any given trajectory.
∗ Just like before we could then try to find the optimal control in the L2 sense. We will discuss this

question in a more general setting later on.

In practice, we will be interested in control problems for the heat equation that are supported in a subset of the
domain Ω or on the boundary. This makes the problem much more difficult as we will see in the sequel since
it is no more possible to use a basic Fourier decomposition that lead to the resolution of a countable family of
controlled scalar, linear, and independent ODEs.
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Chapter II

Controllability of linear ordinary differential
equations

In this chapter, we focus our attention on the following controlled system{
y′(t) +Ay(t) = Bv(t),

y(0) = y0,
(II.1)

where A ∈ Mn(R), B ∈ Mn,m(R), y(t) ∈ Rn and v(t) ∈ Rm. Note that A and B do not depend on time (even
though some part of the following analysis can be adapted for non autonomous systems).

We shall often denote by E = Rn the state space and by U = Rm the control space.

II.1 Preliminaries

II.1.1 Exact representation formula

Given an initial data y0 ∈ Rn and a control v, we recall that (II.1) can be explicitely solved by means of the funda-
mental solution of the homogeneous equation t 7→ e−tAz, z ∈ Rn and of the Duhamel formula. We obtain

y(t) = e−tAy0 +

∫ t

0
e−(t−s)ABv(s) ds, ∀t ∈ [0, T ].

In particular, the solution at time T (which is the object we are interested in) is given by

y(T ) = e−TAy0 +

∫ T

0
e−(T−s)ABv(s) ds. (II.2)

We recall that the exponential of any matrix M is defined by the series

eM =
∑
k≥0

Mk

k!
,

which is locally uniformly convergent.
The linear part (in v) of the solution will be denoted by

LT v
def
=

∫ T

0
e−(T−s)ABv(s) ds,

it corresponds to the solution of our system with the initial data y0 = 0.
In the non-autonomous case, we need to use the resolvant matrix as recalled in Section A.1 of Appendix A.
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II.1.2 Duality

As we will see later on, it will be very useful to adopt a dual point of view in our analysis. For the moment, we simply
pick any qT ∈ Rn and we take the Euclidean inner product of (II.2) by qT . We get

〈y(T ), qT 〉E = 〈e−TAy0, qT 〉E +

∫ T

0
〈e−(T−s)ABv(s), qT 〉E ds,

that we can rewrite, using the adjoint operators (=transpose matrix in this context), as follows

〈y(T ), qT 〉E = 〈y0, e
−TA∗qT 〉E +

∫ T

0
〈v(s), B∗e−(T−s)A∗qT 〉U ds. (II.3)

We can still reformulate at little bit this formula by introducing the adjoint equation of (II.1) which is the backward in
time homogeneous system (i.e. without any control term)

− q′(t) +A∗q(t) = 0, (II.4)

with the final data q(T ) = qT and which can be explicitely computed

q(t) = e−(T−t)A∗qT .

We will see in Section II.5 the reason why the adjoint equation enters the game.
With this notation, (II.3) becomes

〈y(T ), q(T )〉E = 〈y0, q(0)〉E +

∫ T

0
〈v(s), B∗q(s)〉U ds, (II.5)

and this equation holds true for any solution q of the adjoint system (II.4)

II.1.3 Reachable states. Control spaces

The solution of our system (II.2) is well-defined as soon as v ∈ L1(0, T,Rm) = L1(0, T, U), see section A.2 of
Appendix A and the corresponding solution map LT : v 7→ y is continuous from L1(0, T, U) into C0([0, T ], E).

For any subspace V ⊂ L1(0, T, U) we define the set of reachable states at time T as follows

RT,V (y0)
def
=

{
e−TAy0 +

∫ T

0
e−(T−s)ABv(s) ds, for v ∈ V

}
= e−TAy0 + LT (V ).

We immediately see that RT,V (y0) is a (finite dimensional) affine subspace of E = Rn. Moreover, since LT is
continuous for the L1(0, T, U) topology, we obtain that

RT,V (y0) = RT,V (y0),

and since this last space is finite dimensional, we finally have

RT,V (y0) = RT,V (y0).

As a consequence, for any dense subspace V of L1(0, T, U), we have

RT,V (y0) = RT,L1(0,T,U)(y0).

Therefore, in the sequel we can choose, without consequence, any dense subspace of L1(0, T, U) to study the con-
trollability properties of our system and the corresponding reachable set will simply be denoted by RT (y0).

As a consequence of the previous analysis, we have that if yT ∈ RT (y0) we can actually achieve this target with
a control belonging to the space C∞c (]0, T [).
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II.2 Kalman criterion. Unique continuation

The first criterion we have in order to decide whether or not (II.1) is controllable is the following famous result.

Theorem II.2.1 (Kalman rank criterion)
Let T > 0. The following propositions are equivalent.

1. Problem (S) is exactly controllable at time T (for any y0, yT ...)

2. Problem (S) is approximately controllable at time T (for any y0, yT ...)

3. The matrices A and B satisfy

rank(K) = n, with K
def
=
(
B|AB| . . . |An−1B

)
∈Mn,mn(R). (II.6)

If any of the above properties hold we say that the pair (A,B) is controllable.

The matrix K in this result is called the Kalman matrix.

Remark II.2.2

• This result shows, in particular, that in this framework the notions of approximate and exact control-
lability are equivalent.

• It also shows that those two notions are independent of the time horizon T .

• It is very useful to observe that the rank condition (II.6) is equivalent to the following property

Ker K∗ = {0}.

Proof :
In this proof, we assume that y0 is any fixed initial data.

1.⇔2. Since we work in a finite dimensional setting, it follows from (II.2) that

exact controllability from y0 ⇐⇒ RT (y0) = E

⇐⇒ RT (y0) is dense in E

⇐⇒ approximate controllability from y0.

1.⇒3. Assume that rank(K) < n, or equivalently that Ker K∗ 6= {0}; it follows that there exists qT ∈ Rn \ {0} such
that K∗qT = 0. But we have

K∗qT = 0⇐⇒ B∗(A∗)pqT = 0, ∀p < n

⇐⇒ B∗(A∗)pqT = 0, ∀p ≥ 0, by the Cayley-Hamilton Theorem

⇐⇒ B∗e−sA
∗
qT = 0, ∀s ∈ [0, T ], by the properties of the exponential.

By (II.3), we deduce that such a qT is necessarily orthogonal to the vector spaceRT (y0)−e−TAy0, and therefore
this subspace cannot be equal to Rn.

3.⇒1. Assume that our system is not exactly controllable at time T . It implies that, there exists a qT 6= 0 which is
orthogonal to RT (y0)− e−TAy0. By (II.3), we deduce that for any control v we have∫ T

0
〈v(s), B∗e−(T−s)A∗qT 〉U ds = 0.
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We apply this equality to the particular control v(s) = B∗e−(T−s)A∗qT to deduce that we necessarily have

B∗e−sA
∗
qT = 0, ∀s ∈ [0, T ].

The equivalences above show that qT ∈ Ker K∗ and thus this kernel cannot reduce to {0}.

Remark II.2.3
At the very beginning of the proof we have shown that

qT ∈ Ker K∗ ⇐⇒ qT ∈ QT ,

where QT is the set of the non-observable adjoint states defined by

QT
def
= {qT ∈ Rn, B∗e−sA

∗
qT = 0, ∀s ∈ [0, T ]}.

Thus, another formulation of the Kalman criterion is

(A,B) is controllable⇐⇒
(
B∗e−sA

∗
qT = 0, ∀s ∈ [0, T ]⇒ qT = 0

)
.

This last property is called the unique continuation property of the adjoint system through the observation
operator B∗.
The point we want to emphasize here is that, in the infinite dimension case, it can be difficult to define a
Kalman matrix (or operator) if A is an unbounded linear operator (because we need to compute successive
powers of A) but however, it seems to be affordable to define the set QT as soon as we have a suitable
semi-group theory that gives a sense to e−sA

∗
for s ≥ 0 since it is not possible in general to simply set

e−sA
∗

=
∑

k≥0
1
k!(−sA∗)k when A∗ is a differential operator.

More precisely, if we imagine for a moment that A is an unbounded linear operator in an Hilbert space (for
instance the Laplace-Dirichlet operator in some Sobolev space), then it is very difficult to define a kind of
Kalman operator since it would require to consider successive powers of A, each of them being defined on
different domains (that are getting smaller and smaller at each application of A).

Example II.2.4
Without loss of generality we can assume that B is full rank rank(B) = m.

1. If the pair (A,B) is controllable, then the eigenspaces of A∗ (and thus also those of A) has at most
dimension m. For instance if m = 1, a necessary condition for the controllability of the pair (A,B)
is that each eigenvalue of A∗ is geometrically simple.

Another necessary condition is that the minimal polynomial of A∗ is of degree exactly n.
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2. Second order systems. With the same notations as before, the second order controlled system

y′′ +Ay = Bv,

is controllable if and only if the pair (A,B) satisfies the Kalman criterion.

3. Conditions on the control: If the pair (A,B) is controllable then we can find controls satisfying
additional properties.

• For any v0 ∈ Rm and vT ∈ Rm we can find a control v from y0 to yT for our system such that

y(0) = y0, y(T ) = yT , v(0) = v0, and v(T ) = vT .

• We can find a control v ∈ C∞c (0, T ) such that y(0) = y0 and y(T ) = yT .

In view of the techniques we will present later on on the controllability of parabolic PDEs, we shall now present
another proof of the previous theorem.
Proof (of Theorem II.2.1 - direct proof):

We shall actually prove that, if the Kalman condition is satisfied then our system is indeed controllable. Moreover,
we shall give a constructive proof of the control.

For simplicity (and since we are mainly interested in presenting the method and not in the general result that we
have already proved before), we shall assume that m = 1. We also assume that yT = 0 (which is always possible for
a linear system).

By assumption the square (since m = 1) matrix K is invertible and thus we shall use the change of variable
y = Kz in order to transform our control system. A simple computation shows that

B = K


1
0
...
0


︸ ︷︷ ︸

=B̄

, and AK = K



0 · · · · · · 0 a1,n

1 0 · · · ... a2,n

0
. . .

... a3,n
...

. . . . . . 0
...

0 · · · 0 1 an,n


︸ ︷︷ ︸

=Ā

.

It follows that the equation for z
Kz′ +AKz = Bv,

becomes
K(z′ + Āz) = KB̄v,

and since K is invertible
z′ + Āz = B̄v (II.7)

With the Kalman matrix, we thus have been able to put our system into a canonical form where Ā has a companion
structure (it looks pretty much like a Jordan block) and B̄ is the first vector of the canonical basis of Rn.

This structure if often called cascade systems in control theory. The important feature of Ā is that its under
diagonal terms do not vanish. It reveals the particular way by which the control v acts on the system. Indeed, v
directly appears in the first equation and then tries to drive z1 to the target at time T (observe however that the
dynamics is also coupled with the rest of the system by the term a1,nzn)

z′1(t) + a1,nzn(t) = v(t).

The control v does not appear in the second equation

z′2(t) + z1(t) + a2,nzn(t) = 0,
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but this equation contains a term z1 that plays the role of an indirect control of z2, and so on ...
Let us now give the construction of the control v:

• We start by defining (z̄i)1≤i≤n to be the free solution of the system (the one with v = 0).

• We choose a truncature function η : [0, T ]→ R such that η = 1 on [0, T/3] and η = 0 on [2T/3, T ].

• We start by choosing
zn(t)

def
= η(t)z̄n(t),

then, by using the last equation of the system (II.7), we need to define

zn−1(t)
def
= z′n(t)− an−1,nzn(t).

Similarly, by using the equation number n− 1 of (II.7), we set

zn−2(t)
def
= z′n−1(t)− an−2,nzn(t).

by induction, we define zn−3, ..., z2 in the same way.

Finally, the first equation of the system (II.7) gives us the control we need

v(t) = z′1(t) + a1,nzn(t).

By such a construction, the functions (zi)i satisfy the controlled system with the control v we just defined.

• Let us prove, by reverse induction that, for any k we have{
zk = z̄k, in [0, T/3],

zk = 0, in [2T/3, T ].
(II.8)

This will in particular prove that z(T ) = 0 and that z(0) = z̃(0) = z̄(0) = z0.

– For k = n, the properties (II.8) simply comes from the choice of the truncature function.

– For k = n− 1, we observe that, by construction and induction, for any t ∈ [0, T/3],

zn−1(t) = z′n(t)− an−1,nzn(t) = z̄n
′(t)− an−1,nz̄n(t) = z̄n−1(t),

the last equality coming from the fact that z̄ solves the free equation.

– And so on up to k = 1, ...

Exercise II.2.5
Propose a similar proof to deal with the case m = 2 and rank(B) = m = 2.

Exercise II.2.6
Assume that A,B are such that the rank r of the Kalman matrix K satisfies r < n. Then there exists a
P ∈ GLn(R) such that

A = P

(
A11 A12

0 A22

)
P−1, and B = P

(
B1

0

)
,

and moreover the pair (A11, B1) is controllable.
What are the consequences of this result for the controllability of the initial system ?
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Exercise II.2.7 (Partial controllability)
We assume given p ≤ n and a matrix P ∈ Mp,n(R). We say that (II.1) is partially controllable relatively
to P if and only if for any y0 ∈ Rn and any ȳT ∈ Rp there exists a control v ∈ L2(0, T ;U) such that the
associated solution to (II.1) satisfies

Py(T ) = ȳT .

Show that (II.1) is partially conntrollable relatively to P if and only if

rank(KP ) = p,

where
KP

def
=
(
PB|PAB| . . . |PAn−1B

)
∈Mp,mn(R).

II.3 Fattorini-Hautus test

We are going to establish another criterion for the controllability of autonomous linear ODE systems. This one
will only be concerned with the eigenspaces of the matrix A∗, and we know that there are plenty of unbounded
operators for which we can define a suitable spectral theory. It is then easy to imagine that we will be able, at least, to
formulate a similar result in the infinite dimension case.

Theorem II.3.8 (Fattorini-Hautus test)
The pair (A,B) is controllable if and only if we have

Ker (B∗) ∩ Ker (A∗ − λI) = {0}, ∀λ ∈ C. (II.9)

In other words : (A,B) is controllable if and only if

B∗φ 6= 0, for any eigenvector φ of A∗.

Let us start with the following straightforward lemma (in which the space QT is considered as a subspace of Cn).

Lemma II.3.9
For any polynomial P ∈ C[X] we have

P (A∗)QT ⊂ QT .

Proof :
Let qT ∈ QT . By definition, we have

B∗esA
∗
qT = 0, ∀s ∈ R,

so that by differentiating k times with respect to s, we get

B∗esA
∗
(A∗)kqT = 0, ∀s ∈ R.

It means that (A∗)kqT ∈ QT . The proof is complete.
Proof (of Theorem II.3.8):

The Kalman criterion says that (A,B) is controllable if and only if we have Ker K∗ = {0}. Moreover, we saw at
the end of Section II.2 that this condition is equivalent to saying that there is no non-observable adjoint states excepted
0, that is

QT = {0}.
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• Assume first that (II.9) is not true. There exists a λ ∈ C and a φ 6= 0 such that

A∗φ = λφ, and B∗φ = 0.

Note that, in particular, λ is an eigenvalue of A∗. A straighforward computation shows that

B∗e−sA
∗
φ = B∗

(
e−sλφ

)
= e−sλB∗φ = 0.

This proves that φ ∈ QT so that QT 6= {0}. Therefore the system does not fulfill the Kalman criterion. We
have proved the non controllability of the system.

• Assume that (II.9) holds and let φ ∈ QT . We shall prove that φ = 0. To begin with we take λ ∈ C an eigenvalue
of A∗ and we introduce Eλ the generalized eigenspace associated with λ, that is

Eλ = Ker Cn(A∗ − λI)n.

Linear algebra says that we can write the direct sum

Cn = Eλ1 ⊕ · · · ⊕ Eλp ,

with distinct values of (λi)i.

We recall that the projector on Eλ associated with such a direct sum can be expressed as a polynomial in A∗ :
there exists polynomials Pλ ∈ C[X] such that

φ =

p∑
i=1

Pλi(A
∗)φ, with Pλi(A

∗)φ ∈ Eλi , ∀i ∈ {1, ..., p}. (II.10)

By Lemma II.3.9, we have φλ
def
= Pλ(A∗)φ ∈ QT . We want to show that φλ = 0. If it is not the case, there

exists k ≥ 1 such that
(A∗ − λI)kφλ = 0, and (A∗ − λI)k−1φλ 6= 0.

This proves that (A∗ − λI)k−1φλ is an eigenvector of A∗ and, by Lemma II.3.9 it belongs to QT . Since by
definition we have QT ⊂ Ker B∗, we have proved that

(A∗ − λI)k−1φλ ∈ Ker (B∗) ∩ Ker (A∗ − λI),

which is a contradiction with (II.9).

Therefore, φλ = 0 for any eigenvalue λ and, by (II.10), we eventually get φ = 0.

Remark II.3.10
The above proof of the Fattorini-Hautus test is not necessarily the simplest one in the finite dimension case
but it has the advantage to be generalizable to the infinite dimensional setting, see Theorem III.3.7.

Exercise II.3.11 (Simultaneous control)
Let us assume that m = 1 and we are given two pairs (A1, B1) (dimension n1) and (A2, B2) (of dimension
n2). We assume that both pairs are controllable and we ask the question of whether they are simultaneously
controllable (that is we can drive the two systems from one point to another by using the same control for
both systems).
Show that the two systems are simultaneously controllable if and only if Sp(A1) ∩ Sp(A2) = ∅.
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II.4 The moments method

We shall now describe, still in the simplest case of an autonomous linear controlled system of ODEs, one of the
methods that can be used to construct a control and that will appear to be powerful in the analysis of the control of
evolution PDEs in the next chapters. We will assume that the Fattorini-Hautus condition (II.9) holds and we fix the
target to be yT = 0 to simplify a little the computations.

This method relies on more or less explicit formulas for the exponential matrices e−sA
∗

using eigenelements of
A∗.

We present the method in the case m = 1 (B is thus a single column vector) even though it can be adapted to
more general settings. Let us denote by Λ = Sp(A∗) the complex spectrum of A∗. Since m = 1, we known by the
Hautus test (or by Example II.2.4) that all the eigenspaces are one dimensional.

For each λ ∈ Λ, we can then choose one eigenvector Φ0
λ ∈ Cn. Let αλ ∈ N∗ be the algebraic multiplicity of the

eigenvalue λ and Φj
λ, 1 ≤ j ≤ αλ − 1 be an associated Jordan chain, that is a sequence of generalized eigenvectors

that satisfy
(A∗ − λ)Φl

λ = Φl−1
λ , l ∈ {1, ..., αλ}.

Those vectors are defined up to the addition of any multiple of the eigenvector Φ0
λ. Since B∗Φ0

λ 6= 0 by (II.9) we
can impose, in addition, the condition

B∗Φl
λ = 0, ∀1 ≤ l ≤ αλ − 1. (II.11)

With those notations, we can compute for any s ∈ R, the action of the exponential on the Jordan chain as follows

e−sA
∗
Φl
λ =

l∑
j=0

es[(λ)j+1]Φl−j
λ ,

or with the Leibniz formula
e−sA

∗
Φl
λ = (esΦ)[(λ)l+1].

Using (II.3), we see that a function v is a control (with target yT = 0) if and only if we have (here U = R)∫ T

0
v(s)B∗e−(T−s)A∗qT ds = −〈y0, e

−TA∗qT 〉E = −〈e−TAy0, qT 〉E , ∀qT ∈ Rn.

Note that we can also test this equality with complex adjoint states qT ∈ Cn.
By linearity, it is enough to test this equality on a basis of Cn. In particular, we can use the basis (Φl

λ) λ∈Λ
0≤l≤αλ−1

and we obtain that v is a control if and only if we have∫ T

0
v(s)(eT−sB

∗Φ)[(λ)l+1] ds = −〈e−TAy0,Φ
l
λ〉, ∀λ ∈ Λ, ∀0 ≤ l ≤ αλ − 1.

Using (II.11), we get that this set of equations simplifies as follows

(B∗Φ0
λ)

∫ T

0
v(s)eT−s[(λ)l+1] ds = −〈e−TAy0,Φ

l
λ〉, ∀λ ∈ Λ, ∀0 ≤ l ≤ αλ − 1.

Defining

ωlλ
def
= −〈e

−TAy0,Φ
l
λ〉

B∗Φ0
λ

,

we see that v is control for our problem if and only if the function u(t) = v(T − t) (introduced to simplify the
formulas) satisfies ∫ T

0
u(s)es[(λ)l+1] ds = ωlλ, ∀λ ∈ Λ, ∀0 ≤ l ≤ αλ − 1. (II.12)
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This kind of problem is called a moments problem : we need to find a function u whose integrals against a given
family of functions is prescribed, or in other words, to find a function u whose L2(0, T ) inner products against a
family of functions in L2 is prescribed. If this family was orthogonal in L2 the solution will be straightforward but
unfortunately it is clearly not the case here.

However it can easily be seen that

E = {e[(λ)l+1], λ ∈ Λ, 0 ≤ l ≤ αλ},

is a linearly independent family in L2(0, T ).
By Proposition A.4.10, we know that there exists a biorthogonal family in L2(0, T ) to E that we denote by

F = {f lλ, λ ∈ Λ, 0 ≤ l ≤ αλ}.

This means that we have ∫ T

0
es[(λ)l+1]fkµ(s) ds = δλ,µδl,k.

It is then clear that the function

u(t) =
∑
λ∈Λ

αλ−1∑
l=0

ωlλf
l
λ(t),

is a solution to (II.12). Therefore v(t) = u(T − t) is a control that drives the solution to our system to yT = 0 at time
T .

Remark II.4.12
The argument above is actually an alternative proof that the Fattorini-Hautus criterion is a sufficient con-
trollability condition for our system (indeed we managed to build a control by simply using the fact that
B∗φ 6= 0 for any φ which is an eigenvector of A∗).

Remark II.4.13 (Optimal L2(0, T ) control)
The construction above strongly depends on the choice of the biorthogonal family F since there are infinitely
many such families. However, choosing the unique such family that satisfy

F ⊂ Span(E), (II.13)

as mentioned in Proposition (A.4.10), then we can prove that the associated control, that we call v0, is the
one of minimal L2(0, T )-norm.
Indeed, assume that v ∈ L2(0, T ) is any other admissible control for our problem and let u0(t) = v0(T −t)
and u(t) = v(T−t). Since u and u0 both satisfy the same system of linear equations (II.12), we first deduce
that ∫ T

0
(u(s)− u0(s))es[(λ)l+1] ds = 0, ∀λ ∈ Λ,∀0 ≤ l ≤ αλ − 1.

Using now the fact that u0 is a combination of the elements in F and by the assumption (II.13), we conclude
that ∫ T

0
(u(s)− u0(s))u0(s) ds = 0.

This naturally implies that
‖u‖2L2 = ‖u0‖2L2 + ‖u− u0‖2L2 ,

and of course that
‖v‖2L2 = ‖v0‖2L2 + ‖v − v0‖2L2 .

This actually proves that v0 is the unique admissible control with minimal L2 norm.
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II.5 Linear-Quadratic optimal control problems

In this section, we will discuss a class of problems which is slightly different from the controllability issues that
we discussed previously. However, some of those results will be useful later on and are interesting by themselves (in
particular in applications).

II.5.1 Framework

Since it does not change anything to the forthcoming analysis we do not assume in this section that the linear ODE
we are studying is autonomous. More precisely, we suppose given continuous maps t 7→ A(t) ∈ Mn(R) and
t 7→ B(t) ∈Mn,m(R) and an initial data y0 and we consider the following controlled ODE{

y′(t) +A(t)y(t) = B(t)v(t),

y(0) = y0.
(II.14)

Following Sections A.1 and A.2 of the Appendix A, this problem is well-posed for v ∈ L1(0, T,Rm), in which
case the solution satisfies y ∈ C0([0, T ],Rn) and the solution map v ∈ L1 7→ y ∈ C0 is continuous.

Let now t 7→My(t) ∈ S+
n (R), t 7→Mv(t) ∈ S+

m(R) be two continuous maps with values in the set of symmetric
semi-definite positive matrices S+

n (R) and MT ∈ S+
n be a symmetric semi-definite positive matrix. We assume that

Mv is uniformly definite positive :

∃α > 0, 〈Mv(t)ξ, ξ〉U ≥ α‖ξ‖2, ∀ξ ∈ Rm,∀t ∈ [0, T ]. (II.15)

For any given control function v ∈ L2(0, T,Rm), we can now define the cost functional

F (v)
def
=

1

2

∫ T

0
〈My(t)y(t), y(t)〉E dt+

1

2

∫ T

0
〈Mv(t)v(t), v(t)〉U dt+

1

2
〈MT y(T ), y(T )〉E ,

where, in this formula, y is the unique solution to (II.14) associated with the given control v. Since y depends linearly
on the couple (y0, v), we see that the functional F is quadratic and convex. Moreover, it is strictly convex thanks to
the assumption (II.15).

II.5.2 Main result. Adjoint state
Theorem II.5.14

Under the assumptions above, there exists a unique minimiser v̄ ∈ L2(0, T,Rm), of the functional F on
the set L2(0, T,Rm).
Moreover, v̄ is the unique function in L2(0, T,Rm) such that there exists q ∈ C1([0, T ],Rn) satisfying the
set of equations 

y′(t) +A(t)y(t) = B(t)v̄(t),

y(0) = y0,

−q′(t) +A∗(t)q(t) +My(t)y(t) = 0,

q(T ) = −MT y(T ),

v̄(t) = Mv(t)
−1B∗(t)q(t).

(II.16)

Moreover, the optimal energy is given by

inf
L2(0,T,Rm)

F = F (v̄) = −1

2
〈q(0), y0〉E .

Such a function q is called adjoint state associated with our optimization problem.
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Observe that there is no assumption on A and B for such an optimization problem to have a solution.

Remark II.5.15
One of the consequence of the previous theorem is that the optimal control v̄ is at least continuous in time
and, if all the matrix-valued functions in the problem are Ck then the solution v̄ is itself Ck.

Before proving the theorem we can make the following computation.

Proposition II.5.16
Assume that (y, q, v) is a solution to system (II.16), then we define φ(t) = 〈y(t), q(t)〉 and we have

φ′(t) = 〈My(t)y(t), y(t)〉E + 〈Mv(t)v(t), v(t)〉U .

In particular, the solution of (II.16) (if it exists) is unique.

Proof :
We just compute the derivative of φ to get

φ′(t) = 〈q′(t), y(t)〉E + 〈q(t), y′(t)〉E
= 〈A∗(t)q(t) +My(t)y(t), y(t)〉E − 〈q(t), A(t)y(t)−B(t)v(t)〉E
= 〈My(t)y(t), y(t)〉E + 〈B∗(t)q(t), v(t)〉U
= 〈My(t)y(t), y(t)〉E + 〈Mv(t)v(t), v(t)〉U .

In particular, φ is non-decreasing. If y0 = 0, then φ(0) = 0 and thus φ(T ) ≥ 0 and by construction we have

φ(T ) = −〈MT y(T ), y(T )〉E ≥ 0.

By assumption onMT , we deduce thatMT y(T ) = 0 (notice thatMT is not assumed to be definite positive) and using
the equation relating q(T ) to y(T ), we deduce that q(T ) = 0 and that φ(T ) = 0.

It follows, by integration over the time interval (0, T ), that∫ T

0
〈Myy, y〉E + 〈Mvv, v〉U dt =

∫ T

0
φ′(t) dt = φ(T )− φ(0) = 0.

By assumption on Mv, we deduce that v = 0. The equation for y leads to y = 0 and finally the equation on q gives
q = 0.

Let us now prove the main result.
Proof (of Theorem II.5.14):

Uniqueness of the minimizer comes from the strict convexity of F . Moreover, F is non-negative and therefore
has a finite infimum. In order to prove existence of the minimizer, we consider a minimizing sequence (vn)n ⊂
L2(0, T,Rm) :

F (vn) −−−→
n→∞

inf F.

We want to prove that (vn)n is convergent. We may proceed by weak convergence arguments (that are more general)
but in the present case we can simply use the fact that F is quadratic and that the dependence of y with respect to v is
affine. In particular, we have

8F

(
v1 + v2

2

)
=

∫ T

0
〈My(y1 + y2)(t), (y1 + y2)(t)〉E dt

+

∫ T

0
〈Mv(v1 + v2)(t), (v1 + v2)(t)〉U dt+ 〈MT (y1 + y2)(T ), (y1 + y2)(T )〉E ,
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and by the parallelogram formula we have

8F

(
v1 + v2

2

)
= 4F (v1) + 4F (v2)

− 8

(∫ T

0
〈My(y1 − y2)(t), (y1 − y2)(t)〉E dt+

∫ T

0
〈Mv(v1 − v2)(t), (v1 − v2)(t)〉U dt

+ 〈MT (y1 − y2)(T ), (y1 − y2)(T )〉E
)
.

By (II.15), we deduce that

2F

(
v1 + v2

2

)
≤ F (v1) + F (v2)− α‖v1 − v2‖2L2 .

Applying this inequality to two elements of the minimizing sequence vn and vn+p, we get

2 inf F ≤ 2F

(
vn + vn+p

2

)
≤ F (vn) + F (vn+p)− α‖vn − vn+p‖2L2 ,

from which we deduce that

lim
n→∞

(
sup
p≥0
‖vn − vn+p‖L2

)
= 0.

This proves that (vn)n is a Cauchy sequence in L2(0, T,Rm). Since this space is complete, we deduce that (vn)n
converges towards some limit v̄ in this space. Let yn be the solution of (II.14) associated with vn and ȳ the solution
associated with v̄. The continuity of the solution operator v 7→ y (see Appendix A.2) gives that yn converges towards
ȳ in C0([0, T ],Rn).

It is thus a simple exercice to pass to the limit in the definition of F (vn) and to prove that it actually converges
towards F (v̄). The proof of the first part is complete.

Let us compute the differential of F at the equilibrium v̄ in the direction h ∈ L2(0, T,Rm). We have

dF (v̄).h =

∫ T

0
〈My(t)y(t), δ(t)〉E dt+

∫ T

0
〈Mv(t)v̄(t), h(t)〉U dt+ 〈MT y(T ), δ(T )〉E ,

where δ is the solution of the problem {
δ′(t) +A(t)δ(t) = B(t)h(t),

δ(0) = 0.

Let q be the unique solution to the adjoint problem{
−q′(t) +A∗(t)q(t) +Myy(t) = 0,

q(T ) = −MT y(T ),

We deduce that∫ T

0
〈My(t)y(t), δ(t)〉E dt = −

∫ T

0
〈−q′(t) +A∗(t)q(t), δ(t)〉E dt

= −
∫ T

0
〈q(t), δ′(t) +A(t)δ(t)〉E dt+ 〈q(T ), δ(T )〉E − 〈q(0), δ(0)〉E

= −
∫ T

0
〈q(t), B(t)h(t)〉E dt− 〈MT y(T ), δ(T )〉E

= −
∫ T

0
〈B∗(t)q(t), h(t)〉U dt− 〈MT y(T ), δ(T )〉E .
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It follows that

dF (v̄).h =

∫ T

0
〈Mv(t)v̄(t)−B∗(t)q(t), h(t)〉U dt.

The Euler-Lagrange equation for the minimization problem for F gives dF (v̄) = 0 so that we finally find that

Mv(t)v̄(t) = B∗(t)q(t), ∀t ∈ [0, T ].

This is the expected condition between the optimal control v̄ and the adjoint state q. The first part of the proof is
complete.

We introduce the function φ(t) = 〈q(t), y(t)〉E , we have φ(T ) = −〈MT y(T ), y(T )〉E , and by Proposition II.5.16
we conclude that

inf
L2(0,T,Rm)

F = F (v̄) = −1

2
φ(T ) +

1

2

∫ T

0
φ′(t) dt = −1

2
φ(0) = −1

2
〈y0, q(0)〉E .

II.5.3 Justification of the gradient computation

It remains to explain how we obtain in general the equations for the adjoint state. The formal computation (that may
be fully justified in many cases) makes use of the notion of Lagragian.

Let us set J(v, y) to be the same definition as F but with independent unknowns v and y. Minimizing F amounts
at minimizing J with the additional constraints that y(0) = y0 and y′(t) +A(t)y(t) = B(t)v(t).

To take into account those constraints, we introduce two dual variables q : [0, T ] → Rn and q0 ∈ Rn. The
Lagrangian functional is thus defined by

L(v, y, q, q0) = J(v, y) +

∫ T

0
〈q(t), y′(t) +A(t)y(t)−B(t)v(t)〉E dt+ 〈q0, y(0)− y0〉E .

A simple integration by parts leads to

L(v, y, q, q0) = J(v, y) +

∫ T

0
〈−q′(t) +A∗(t)q(t), y(t)〉E dt−

∫ T

0
〈B∗(t)q(t), v(t)〉U dt

+ 〈q(T ), y(T )〉E − 〈q(0), y(0)〉E + 〈q0, y(0)− y0〉E .

And finally, the initial functional F satisfies

F (v) = L(v, y[v], q[v], q0[v]),

for any choice of q[v] and q0[v] since y[v] satisfies both constraints. It follows that the differential of F satisfies

dF (v).h = ∂vL.h+ ∂yL.(dy[v].h) + ∂qL.(dq[v].h) + ∂q0L.(dq0[v].h),

= ∂vL.h+ ∂yL.(dy[v].h),

since ∂qL and ∂q0L are precisely the two constraints satisfied by y[v]. The idea is now to choose q[v] and q0[v] so as
to eliminate the term in ∂yL.

For any δ : [0, T ]→ Rn, we have

∂yL.δ =

∫ T

0
〈Myy(t)− q′(t) +A∗(t)q(t), δ(t)〉E dt+ 〈MT y(T ), δ(T )〉E + 〈q(T ), δ(T )〉E − 〈q(0)− q0, δ(0)〉E .

This quantity vanishes for any δ if and only if we have the relations
q0 = q(0),

q(T ) = −MT y(T ),

−q′(t) +A∗(t)q(t) = −Myy(t).
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This defines the dual variables q and q0 in a unique way for a given v (and thus a given y). Those are the Lagrange
multipliers of the constrained optimization problem.

Once we have defined those values, the computation of the differential of F leads to

dF (v).h = ∂vL(v, y[v], q[v], q0[v]).h =

∫ T

0
〈Mv(t)v(t), h(t)〉U dt−

∫ T

0
〈B∗q(t), h(t)〉U dt,

which is of course the same expression as above.

II.5.4 Ricatti equation

The set of optimality equations (II.16) is in general a complicated system of coupled ODEs that is not a Cauchy
problem. It is remarkable that its solution can be obtained through the resolution of a Cauchy problem for a nonlin-
ear matrix-valued ordinary differential equation. It has in particular some important applications to the closed-loop
stabilization of the initial problem.

Theorem II.5.17 (Adjoint state and Ricatti equation)
Under the previous assumptions, there exists a matrix-valued map t ∈ [0, T ] 7→ E(t) that only depends on
A,B,My,Mv,MT , and T , such that the adjoint state q in the previous theorem satisfies

q(t) = −E(t)y(t), ∀t ∈ [0, T ].

In other words, the optimal control v̄ can be realized, whatever the initial data y0 is, as a closed-loop
control

v̄(t) = −Mv(t)
−1B∗(t)E(t)y(t).

Moreover, the function E is the unique solution in [0, T ] to the following (backward in time) Cauchy
problem associated with a Ricatti differential equation{

E′(t) = −My(t) +A∗(t)E(t) + E(t)A(t) + E(t)B(t)Mv(t)
−1B∗(t)E(t),

E(T ) = MT .
(II.17)

Finally, E(t) is symmetric semi-definite positive for any t and even definite positive if MT is definite
positive, and we have

inf
L2(0,T,Rm)

F (v) =
1

2
〈E(0)y0, y0〉E .

Observe that the Ricatti equation is a matrix-valued nonlinear differential equation which is not necessarily easy to
solve. Actually, it is not even clear that the solution exists on the whole time interval [0, T ]; this will be a consequence
of the proof.
Proof :

The Cauchy-Lipschitz theorem ensures that (II.17) has a unique solution locally around t = T .
We start by assuming that this solution is defined on the whole time interval [0, T ]. It is clear that E∗ satisfies the

same Cauchy problem as E and thus, by uniqueness, E = E∗.
Then we define y to be the unique solution of the Cauchy problem{

y′(t) +A(t)y(t) = −B(t)Mv(t)
−1B∗(t)E(t)y(t),

y(0) = y0.

Then we set
q(t)

def
= −E(t)y(t),

and
v(t)

def
= −Mv(t)

−1B∗(t)E(t)y(t).
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In order to show that such a v is the optimal control, we need to check all the equations in (II.16). The first two
equations and the last two are satisfied by construction, it remains to check the third equation. This is a simple
computation

−q′(t) +A∗(t)q(t) =E′(t)y(t) + E(t)y′(t)−A∗(t)E(t)y(t)

=−My(t)y(t) + E(t)y′(t)

+ E(t)
[
A(t)y(t) +B(t)Mv(t)

−1B∗(t)E(t)y(t)
]

=−My(t)y(t).

This proves the fact that, provided that E exists, the triple (y, v, q) is the unique solution of our optimality condition
equations.

The fact that the optimal energy is given by 1
2〈E(0)y0, y0〉E is a simple consequence of Proposition II.5.16 and

of the fact that φ(T ) = −〈MT y(T ), y(T )〉E , so that

inf
L2(0,T,Rm)

F = F (v) = −1

2
φ(T ) +

1

2

∫ T

0
φ′(t) dt = −1

2
φ(0).

As a consequence, φ(0) is non-positive for any y0, which proves that E is semi-definite positive.
Moreover, we deduce that 1

2〈E(0)y0, y0〉E is not larger than the value of the cost functional F when computed on
the control v = 0. A simple computation of the solution of the ODE without control gives that the following bound
holds

〈E(0)y0, y0〉E ≤
(
‖MT ‖+

∫ T

0
‖My‖

)
e

2

∫ T

0
‖A‖
‖y0‖2, ∀y0 ∈ Rn.

This gives a bound on ‖E(0)‖.
We can now prove the global existence of E on [0, T ]. Indeed, if we assume that E is defined on [t∗, T ] for some

0 ≤ t∗ < T , the previous computation (with the initial time t∗ instead of 0) shows that

‖E(t∗)‖ ≤
(
‖MT ‖+

∫ T

t∗
‖My‖

)
e2
∫ T
t∗ ‖A‖

≤
(
‖MT ‖+

∫ T

0
‖My‖

)
e2
∫ T
0 ‖A‖.

It follows that E is bounded independently of t∗ and therefore can not blow up in finite time. Therefore the existence
and uniqueness of E over the whole time interval [0, T ] is proved.

II.6 The HUM control

Let us come back now to the controllability question (and we assume again that A and B are time-independent).
We would like to address the question of the characterisation of a best control among all the possible controls, if

such controls exist. Of course, this notion will depend on some criterion that we would like to choose as a measure of
the “quality” or the “cost” of the control.

The HUM formulation Assume that y0, yT are such that yT ∈ RT (y0). We can easily prove that the set of
admissible controls

adm(y0, yT )
def
= {v ∈ L2(0, T ;U), yv(T ) = yT },

is a non-empty convex set which is closed in L2(0, T ;U). Therefore, there exists a unique control of minimal L2-
norm, that we denote by v0. It satisfies the optimization problem

F (v0) = inf
v∈adm(y0,yT )

F (v), (II.18)
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where we have introduced

F (v)
def
=

1

2

∫ T

0
‖v(t)‖2U dt, ∀v ∈ L2(0, T ;U).

We recall the definition of the solution operator (without initial data)

LT : v ∈ L2(0, T ;U) 7→
∫ T

0
e−(T−s)ABv(s) ds ∈ E,

in such a way that the (affine) constraint set reads

adm(y0, yT ) = {v ∈ L2(0, T ;U), LT (v) = yT − e−TAy0}.

Since v0 is a solution of the constrained optimisation problem, we can use the Lagrange multiplier theorem to affirm
that there exists a vector qT ∈ E such that

dF (v0).w = 〈qT , dLT (v0).w〉E , ∀w ∈ L2(0, T ;U).

Since LT is linear, we have dLT (v0).w = LT (w) and the differential of the quadratic functional F is given by

dF (v0).w =

∫ T

0
〈v0(s), w(s)〉U ds, ∀w ∈ L2(0, T ;U).

It follows that v0 satisfies, for some qT ∈ E and for any w ∈ L2(0, T ;U) the equation∫ T

0
〈v0(s), w(s)〉U ds =

∫ T

0
〈qT , e−(T−s)ABw(s)〉E ds,

which gives
v0(s) = B∗e−(T−s)A∗qT . (II.19)

This proves that the HUM control v0 has a special form as shown above. In particular if one wants to compute v0

we only have to determine the Lagrange multiplier qT . To this end, we plug the form (II.19) into the equation that v0

has to fulfill

yT = e−TAy0 +

(∫ T

0
e−(T−s)ABB∗e−(T−s)A∗ ds

)
qT ,

which is a linear system in qT that we write

ΛqT = yT − e−TAy0, (II.20)

where we have introduced the Gramian matrix

Λ
def
=

∫ T

0
e−(T−s)ABB∗e−(T−s)A∗ ds.

We observe that Λ is a symmetric positive semi-definite matrix and that is definite if and only if the Kalman criterion
is satisfied.

Finally, the HUM control v0 can be computed by solving first the linear system (II.20), whose unique solution is
denoted by qT,opt and then by using (II.19).

It is also of interest to observe that the optimal qT,opt ∈ E is the unique solution of the optimization problem

J(qT,opt) = inf
qT∈E

J(qT ), (II.21)

where we have introduced the functional

J(qT )
def
=

1

2

∫ T

0

∥∥∥B∗e−(T−s)A∗qT

∥∥∥2

U
ds+ 〈y0, e

−TA∗qT 〉E − 〈yT , qT 〉E .
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One can prove, by the Fenchel-Rockafellar duality theorem, that J is the adjoint problem associated with the initial
optimisation problem (II.18).

Observe that (II.21) is an unconstrained finite dimensional optimization problem whereas (II.18) is a constrained
infinite dimensional optimization problem. This is one of the reason why it is often more suitable to solve (II.21)
instead of (II.18).

Actually, the explicit computation of the matrix Λ and its inversion can be quite heavy (in large dimension) and,
in practice, we may prefer to solve the linear system (II.20) by using an iterative method (like the conjugate gradient
for instance) that only necessitates to compute matrix-vector products. For any given qT , the product ΛqT , can be
obtained with the following general procedure:

• Solve the adjoint (backward) equation −q′(t) +A∗q(t) = 0 with the final data q(T ) = qT , in the present case,
it gives

q(t) = e−(T−t)A∗qT .

• Define the control v by v(t) = B∗q(t).

• Solve the primal (forward) problem y′(t) + Ay(t) = Bv(t), with initial data y(0) = 0. In the present case it
gives

y(t) =

∫ t

0
e−(t−s)ABv(s) ds.

• The value of ΛqT is then given by
ΛqT = y(T ),

since we have

y(T ) =

∫ T

0
e−(T−s)ABv(s) ds

=

∫ T

0
e−(T−s)ABB∗q(s) ds

=

∫ T

0
e−(T−s)ABB∗e−(T−s)A∗qT ds

Remark II.6.18

At the end of this analysis, we have actually proved that the optimal control in L2(0, T ;U) (the HUM
control) has the particular form (II.19), which proves in particular that v0 is smooth and thus the ODE
system is satisfied in the usual sense for this control.

Remark II.6.19
Our analysis shows, as a side effect, that v0 is the unique possible control for our system that we can write
under the form (II.19).

Exercise II.6.20
Assume that the pair (A,B) is controllable, and let T > 0 given. Show that there exists ε > 0 such
that for any y0, yT ∈ E, there exists a control for our problem that belongs to C∞([0, T ]) and such that
Supp v ⊂ [ε, T − ε].
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II.7 How much it costs ? Observability inequalities

We can now ask the question of computing the cost of the control. We suppose given A, B, the initial data y0 and
the target yT .

The best control v0 (the so-called HUM control) is given as a solution of the optimization problem described
above and we have the following result.

Proposition II.7.21
Assume that the Kalman rank condition is satisfied for the pair (A,B), then the optimal cost of control
from y0 to yT for our system is given by∫ T

0
‖v0(t)‖2U dt = sup

qT∈E

|〈yT , qT 〉E − 〈y0, e
−TA∗qT 〉E |2

〈ΛqT , qT 〉E
,

where Λ is the Gramiam operator that we built in the previous section.

Proof :
Let C be the value of the supremum in the right-hand side (this supremum is finite since the quantity is homoge-

neous in qT and, by the Kalman condition, we know that 〈ΛqT , qT 〉E 6= 0 as soon as qT 6= 0).
Let qT,opt be the unique solution to (II.20), in such a way that v0(s) = B∗e−sA

∗
qT,opt. We observe first that

〈ΛqT,opt, qT,opt〉E =

∫ T

0
‖B∗e−sA∗qT,opt‖2U ds =

∫ T

0
‖v0(s)‖2U ds,

and second, by (II.20), we have

〈ΛqT,opt, qT,opt〉E = 〈yT , qT,opt〉E − 〈y0, e
−TA∗qT,opt〉E .

It follows that

C ≥ |〈yT , qT,opt〉E − 〈y0, e
−TA∗qT,opt〉E |2

〈ΛqT,opt, qT,opt〉E
= 〈ΛqT,opt, qT,opt〉E =

∫ T

0
‖v0(s)‖2U ds.

Conversely, if v is any control that drives the solution from y0 to yT we see from (II.5) and the Cauchy-Schwarz
inequality that

|〈yT , qT 〉E − 〈y0, e
−TA∗qT 〉E | ≤

(∫ T

0
‖v(s)‖2U ds

) 1
2

〈ΛqT , qT 〉
1
2
E .

Taking the square of this inequality and then the supremum over all the possible qT gives that

C ≤
∫ T

0
‖v(s)‖2U ds,

and since this is true for all possible controls, this is in particular true for the optimal control v0 and we get

C ≤
∫ T

0
‖v0(s)‖2U ds.

The previous result gives an estimate of the control cost, in the case where the pair (A,B) is controllable. We can
actually be a little bit more precise: we shall prove that the boundedness of the supremum in the previous condition is
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a necessary and sufficient condition for the system to be controllable from y0 to yT .

Theorem II.7.22
Let A,B be any pair of matrices (we do not assume that the Kalman condition holds). Then, System (II.1)
is controllable from y0 to yT if and only if, for some C ≥ 0, the following inequality holds

|〈yT , qT 〉E − 〈y0, e
−TA∗qT 〉E |2 ≤ C2

∫ T

0
‖B∗e−(T−s)A∗qT ‖2U ds, ∀qT ∈ E. (II.22)

Moreover, the best constant C in this inequality is exactly equal the L2(0, T ;U) norm of the HUM control
v0 from y0 to yT .

The above inequality is called an observability inequality on the adjoint equation. It amounts to control some
information on any solution of the problem (in the left-hand side of the inequality) by the observation (which is the
right-hand side term of the inequality). The operator B∗ is called the observation operator.

We also note that, by definition of the Gramiam Λ, the right-hand side of the required observability inequality can
also be written as follows

C2〈ΛqT , qT 〉E .
Proof :

Since e−TA is invertible 1 we can always write

yT = e−TA
(
eTAyT

)
.

So that the control problem is the same if we replace yT by 0 and y0 by y0− eTAyT and we see that the left-hand side
in the inequality is changed accordingly.

From now on, we will thus assume without loss of generality that yT = 0 and that y0 is any element in E.

• We first assume that there exists a control v ∈ L2(0, T ) that drives y0 to 0 at time T . Hence the set adm(y0, 0)
is not empty. We define v0 to be the unique minimal L2-norm element in adm(y0, 0). The same argument as in
the previous proposition shows that for any qT we have

|〈y0, e
−TA∗qT 〉E |2 ≤

(∫ T

0
‖v0(s)‖2U ds

)(∫ T

0
‖B∗e−(T−s)A∗qT ‖2 ds

)
.

This proves (II.22) with C = ‖v0‖L2(0,T ;U).

• Assume now that (II.22) holds for some C > 0. We would like to prove that adm(y0, 0) is not empty. The idea
is to replace the constraint v ∈ adm(y0, 0) (that is y(T ) = 0) in the optimization problem (II.18) by a penalty
term.

For any ε > 0, we set

Fε(v) =
1

2

∫ T

0
‖v(s)‖2U ds+

1

2ε
‖y(T )‖2E ,

where in this expression, y is the unique solution of (II.1) starting from the initial data y0.

The last term penalizes the fact that we would like y(T ) = 0. Formally, we expect that, as ε→ 0, this term will
impose y(T ) to get close from yT .

We consider now the following optimization problem: to find vε ∈ L2(0, T ;U) such that

Fε(vε) = inf
v∈L2(0,T ;U)

Fε(v). (II.23)

1this will not be true anymore for infinite dimensional problems when the underlying equation is not time reversible, which is precisely the
case of parabolic equations
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This functional exactly falls into the framework of the LQ optimal control problems that we studied in Section
II.5, in the particular case where

Mv(t) = Id, My(t) = 0, ∀t ∈ [0, T ], and MT =
1

ε
Id.

The characterisation theorem II.5.14 implies that this functional Fε has a unique minimiser vε which is charac-
terised by the following set of equations

y′ε(t) +Ayε(t) = Bvε(t),

yε(0) = y0,

−q′ε(t) +A∗qε(t) = 0,

qε(T ) = −1

ε
yε(T ),

vε(t) = B∗qε(t).

Our goal is to study the behavior of (vε, yε, qε) when ε → 0. To this end, we try to obtain uniform bounds on
those quantities.

To this end, we multiply (in the sense of the euclidean inner product of E) the state equation (the first one) by
qε(t) and we integrate the result over (0, T ). Using integration by parts and the other equations in the optimality
system above, we obtain∫ T

0
‖vε‖2 dt =

∫ T

0
〈vε, B∗qε〉U dt

=

∫ T

0
〈Bvε, qε〉E dt

=

∫ T

0
〈y′ε +Ayε, qε〉E dt

= 〈yε(T ), qε(T )〉E − 〈y0, qε(0)〉E +

∫ T

0
〈yε,−q′ε +A∗qε〉E , dt

= −1

ε
‖yε(T )‖2 − 〈y0, qε(0)〉E .

It follows that
‖vε‖2L2(0,T,U) +

1

ε
‖yε(T )‖2 = −〈y0, qε(0)〉E .

And, if we set qT,ε = qε(T ), we can write this formula by using only the adjoint variable∫ T

0
‖B∗e−(T−t)A∗qT,ε‖2 dt+ ε‖qT,ε‖2 = −〈y0, e

−TA∗qT,ε〉E . (II.24)

We use now the observability inequality (II.22) (where we recall that yT was taken to be 0 here). This inequality
exactly gives us a bound on the right-hand side term

−〈y0, e
−TA∗qT,ε〉E ≤ C

(∫ T

0
‖B∗e−(T−t)A∗qT,ε‖2 dt

) 1
2

.

We deduce that

‖vε‖2L2 =

∫ T

0
‖B∗e−(T−t)A∗qT,ε‖2 dt ≤ C2,

ε‖qT,ε‖2 ≤ C2.
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From those estimates we obtain that (vε)ε is bounded in L2(0, T ;U) and therefore we can extract a subsequence
(vεk)k that weakly converges towards some v ∈ L2(0, T ;U). Let y be the solution of (II.1) associated with
this control v and the initial data y0. Since the solution operator LT is continuous from L2(0, T ;U) into E, we
deduce that (LT (vεk))k weakly converges towards LT (v) as k →∞ (note however that E is finite dimensional
so that this convergence is also strong). It follows that yε(T )→ y(T ) as ε→ 0

Moreover, by definition of qT,ε, we have the relation

yε(T ) = −εqT,ε,

and from the bound below we deduce that

‖yε(T )‖E ≤ ε‖qT,ε‖E ≤ C
√
ε −−−→
ε→0

0.

Gathering all the above properties, we have shown that the weak limit v is such that the solution y satisfies

y(T ) = 0,

which exactly means that the control v drives the solution of our system from 0 to yT , or in other words
v ∈ adm(y0, 0).

This set being non empty we can consider the miminal L2 norm control v0 and, from the first part of the proof
we know that necessarily we have

C ≤ ‖v0‖L2(0,T ;U) ≤ ‖v‖L2(0,T ;U).

Coming back to the bound on vε obtained above we see that

lim sup
k→∞

‖vεk‖L2(0,T ;U) ≤ C,

and since v is the weak limit of (vεk)k we conclude by usual properties of weak convergence in an Hilbert space
that the convergence is actually strong and that we have the equality ‖v‖L2(0,T ;U) = C.

This implies in particular that ‖v‖L2(0,T ;U) ≤ ‖v0‖L2(0,T ;U) and since v0 is the unique minimal L2-norm
control, we deduce that v = v0. In particular C = ‖v0‖L2(0,T,U).

The standard uniqueness argument finally shows that the whole family (vε)ε strongly converges towards the
HUM control v0.

Observe that the family of the optimal adjoint states for the penalized problems (qT,ε)ε may not converge in this
setting (except in the case where the Kalman rank condition is satisfied).

Remark II.7.23
If we have no other information on the matrices A, B or on the initial data y0, the only hope to bound the
right-hand side of (II.24) is to write

−〈y0, e
−TA∗qT,ε〉E ≤ ‖y0‖‖e−TA

∗‖‖qT,ε‖,

and to use the Young inequality to absorb the norm of qT,ε by the second term in the left-hand side to obtain∫ T

0
‖B∗e−(T−t)A∗qT,ε‖2 dt+ ε‖qT,ε‖2 ≤

1

ε
‖y0‖2‖e−TA

∗‖2.

This estimate is clearly useless since it does not provide a uniform bound on the control vε (and this is of
course what is expected !).
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As a conclusion of this analysis, we have converted a controllability question (which is a problem of proving the
existence of some mathematical object satisfying some requirements) into an observability question which is : can we
prove an a priori inequality like (II.22) that concerns solutions to an uncontrolled equation (the adjoint problem).

Remark II.7.24
If, for any qT , we introduce t 7→ q(t) the solution of the adjoint equation

−q′(t) +A∗q(t) = 0, q(T ) = qT ,

the observability inequality can be written as follows

|〈yT , qT 〉E − 〈y0, q(0)〉E |2 ≤ C2

∫ T

0
‖B∗q(s)‖2U ds, ∀qT ∈ Rn,

which is slightly more general since it does not require any semi-group theory (and in particular can be
generalised to non-autonomous equations).

Let us consider two particular cases of interest:

• Exact controllability : we assume that y0 = 0 and yT ∈ Rn is any target. The control cost is denoted by
C(0, yT ) and is the best constant in the inequality

|〈yT , qT 〉E |2 ≤ C(0, yT )2

∫ T

0
‖B∗e−(T−s)A∗qT ‖2U ds, ∀qT ∈ E. (II.25)

• Null-controllability : we assume that yT = 0 and y0 ∈ E is any initial data. The control cost is denoted by
C(y0, 0) and is the best constant in the inequality

|〈y0, e
−TA∗qT 〉E |2 ≤ C(y0, 0)2

∫ T

0
‖B∗e−(T−s)A∗qT ‖2U ds, ∀qT ∈ E. (II.26)

In the finite dimensional setting those two cases are very similar but it will make some difference when we will study
parabolic PDEs.

Let φ be a normalized eigenvector of A∗ associated with the eigenvalue λ and we assume that Re (λ) > 0 (we
mimick here the expected behavior of a parabolic PDE). Let us evaluate the costs C(φ, 0) and C(0, φ).

• We first take qT = φ in (II.25) (with yT = φ) to get

C(0, φ)2 ≥ 2Re (λ)

‖B∗φ‖2U (1− e−2TRe (λ))
,

and we can obtain a rough bound from below

C(0, φ)2 ≥ 2Re (λ)

‖B∗φ‖2U
.

This illustrates the fact that, if B∗ is a given bounded operator, the cost of the exact controllability for a given
eigenmode increases at least with the dissipation rate Re (λ). In the limit Re (λ) → ∞, this cost is therefore
blowing up.

This is not a good news if one imagines that we eventually want to control parabolic PDEs which are typically
based on operators with sequences of eigenvalues that tends to infinity.

The physical interpretation of this phenomenon is clear : the natural behavior of such a system for large values
ofRe (λ) is to strongly dissipate the solution with time which is exactly the converse of the fact that we require
the solution to be driven to a constant normalized state φ at time T .

This is the first appearance of the fact that, for dissipative systems (i.e. parabolic PDEs), the exact controllability
property is not a good notion.
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• Let us do the same computation in (II.26) by taking y0 = φ and qT = φ, we get

C(φ, 0)2 ≥ 2Re (λ)e−2Re (λ)T

‖B∗φ‖2U
.

This is a much better behavior : if B∗φ remains away from zero, the lower bound of the cost exponentially
decreases whenRe (λ) increases. Of course, this is only a lower bound and thus it does not give any information
on the boundedness of C(φ, 0) itself but it seems to be reasonable to expect null controllability for a dissipative
system, and bounds that are in some sense, uniform in λ.

Observe that, in both cases, the observability cost for one single mode φ depends on the size of ‖B∗φ‖U . The smaller
this quantity is, the larger is the observability cost.

Global notions If we want to come back to more global properties (namely that are independent of the initial data
and of the target) we have the following characterisations.

Theorem II.7.25

1. System (II.1) is exactly controllable at time T if and only if for some Cobs,exact ≥ 0 we have

‖qT ‖2E ≤ C2
obs,exact

∫ T

0
‖B∗e−sA∗qT ‖2U ds, ∀qT ∈ Rn.

If this inequality holds, then for any y0, yT there exists a control v ∈ adm(y0, yT ) such that

‖v‖L2(0,T ;U) ≤ Cobs,exact‖yT − e−TAy0‖E .

2. System (II.1) is null-controllable at time T if and only if for some Cobs,null ≥ 0 we have

‖e−TA∗qT ‖2E ≤ C2
obs,null

∫ T

0
‖B∗e−sA∗qT ‖2U ds, ∀qT ∈ Rn.

If this inequality holds, then for any y0 there exists a control v ∈ adm(y0, 0) such that

‖v‖L2(0,T ;U) ≤ Cobs,null‖y0‖E .

Of course, in the finite dimensional setting the two notions are equivalent but the values of the constants Cobs,exact
and Cobs,null may not be the same.

Exercise II.7.26 (Asymptotics of the observability constants, see [Sei88])
The above observability constants actually depend on the control time T and it is clear that this cost should
blow up when T gets smaller.
More precisely, we can show (by mentioning explicitly the dependence in T of the consant) that

Cobs,exact,T ∼
T→0

γ

TK+ 1
2

,

where K is the smallest integer such that

rank(B|AB| . . . |AKB) = n,

and γ > 0 is a computable constant depending only on A and B.
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Chapter III

Controllability of abstract parabolic PDEs

III.1 General setting

Let us consider now an abstract setting : E and U are two Hilbert spaces

• A : D(A) ⊂ E → E is some unbounded operator1 such that −A generates a strongly continuous semi-group
in E. The semi-group will be denoted by t 7→ e−tA ∈ L(E). We refer to usual textbooks in functional analysis
for precise definition of those concepts (see for instance [Bre83], [Cor07, Appendix A], [TW09], [EN00]. We
will also give a simple contruction of the heat semi-group at the beginning of Chapter IV.

We recall that a necessary and sufficient condition for the existence of this semigroup is (Hille-Yosida theorem)
that D(A) is dense in E and

∃ω ∈ R,M ≥ 1, s.t. (λI +A) is invertible for any λ > ω and ‖(λI +A)−m‖ ≤M(λ− ω)−m, ∀m ≥ 0.

We will sometimes need to assume that the semi-group is analytic which means that there exists an analytic
extension z 7→ e−zA in a sector of C of the form

Sα = {z ∈ C, Re (z) ≥ 0, and |Imz| ≤ αRe z},

for some α > 0. This property always holds in the case for parabolic equations.

The adjoint semi-group will be denoted by t 7→ e−tA
∗
.

• B : U → D(A∗)′ the control operator. It is actually more easy to work with the adjoint B∗ of B, which is, by
definition an operator from D(A∗) into U (since we identify U with its dual space).

• We assume that B is admissible in the following sense(
s 7→ B∗e−sA∗qT

)
∈ L2(0, T ;U), ∀qT ∈ E,

and moreover, there exists a C > 0 such that∫ T

0
‖B∗e−(T−t)A∗qT ‖2U dt ≤ C2‖qT ‖2E , ∀qT ∈ E.

In practice, it is enough to check the above inequality for qT ∈ D(A∗) since D(A∗) is dense in E.

The (formal) control problem we are looking at is the following{
∂ty +Ay = Bv in ]0, T [,

y(0) = y0.
(III.1)

1let say self-adjoint with compact resolvent, if you want to simplify
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The suitable meaning we give to this problem is by duality.

Theorem III.1.1 (Well-posedness in a dual sense)

For any y0 ∈ E and v ∈ L2(0, T ;U), there exists a unique y = yv,y0 ∈ C0([0, T ], E) such that

〈y(t), qt〉E − 〈y0, e
−tA∗qt〉E =

∫ t

0
〈v(s),B∗e−(t−s)A∗qt〉U ds, ∀t ∈ [0, T ], ∀qt ∈ E.

Moreover, there exists C > 0 such that

sup
t∈[0,T ]

‖y(t)‖E ≤ C(‖y0‖E + ‖v‖L2(0,T ;U)).

Proof :
This is a consequence of the admissibility assumption for B and of the Riesz representation theorem.

• Let us fix a t ∈ [0, T ]. We consider the linear map

qt ∈ E 7−→ 〈y0, e
−tA∗qt〉E +

∫ t

0
〈v(s),B∗e−(t−s)A∗qt〉U ds.

Thanks to the admissibility condition for B, we see that this linear map is continuous on E. Thanks to the Riesz
representation theorem, we deduce that there exists a unique element yt ∈ E satisfying the equality

〈yt, qt〉E = 〈y0, e
−tA∗qt〉E +

∫ t

0
〈v(s),B∗e−(t−s)A∗qt〉U ds, ∀qt ∈ E.

Additionally, we have the bound

‖yt‖E ≤ C(‖y0‖E + ‖v‖L2(0,T ;U)),

for some constant C > 0.

• We set y(t) = yt for any t. It is clear, by definition, that y(0) = y0. It remains to check that the map y is
strongly continuous in time.

Let (tn)n ⊂ [0, T ] a sequence that converges towards some t ∈ [0, T ], we need to prove that y(tn) → y(t) in
E. To this end, we consider (qtn)n ⊂ E a sequence that weakly converges towards some qt ∈ E and we want
to show that

〈y(tn), qtn〉E −−−→n→∞
〈y(t), qt〉E .

We consider v̄ ∈ L2(R) the extension of v by zero outside the interval (0, T ). We can write

〈y(tn), qtn〉E = 〈y0, e
−tnA∗qtn〉E +

∫ tn

0
〈v(s),B∗e−(tn−s)A∗qtn〉U ds

= 〈e−tnAy0, qtn〉E +

∫ tn

0
〈v(tn − s),B∗e−sA

∗
qtn〉U ds

= 〈e−tnAy0, qtn〉E +

∫ T

0
〈v̄(tn − s),B∗e−sA

∗
qtn〉E ds.

The first term is treated by the weak-strong convergence property and using the strong continuity of the semi-
group. The second term is treated in the same way by using:

– The admissibility condition that leads to the weak convergence of s 7→ B∗e−sA∗qtn in L2(0, T, U) and
the strong convergence of the translations s 7→ v̄(tn − s) in L2(0, T, U).
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Actually, we shall also encounter cases where the admissibility condition for B does not hold exactly as written
above. More precisely, assume that there exists an Hilbert space F continuously and densely embedded in E and such
that (

t 7→ B∗e−sA∗qT
)
∈ L2(0, T ;U), ∀qT ∈ F,

and ∫ T

0
‖B∗e−(T−t)A∗qT ‖2U dt ≤ C2‖qT ‖2F , ∀qT ∈ F.

In that case, we may consider the dual space F ′ (more precisely, its representation obtained by using E as a pivot
space) and prove the following result

Theorem III.1.2 (Well-posedness in a dual sense - weaker form)

Under the assumptions above, for any y0 ∈ E and v ∈ L2(0, T ;U), there exists a unique y = yv,y0 ∈
C0([0, T ], F ′) such that

〈y(t), qt〉F ′,F − 〈y0, e
−tA∗qt〉E =

∫ t

0
〈v(s),B∗e−(t−s)A∗qt〉U ds, ∀t ∈ [0, T ], ∀qt ∈ F.

Moreover, if F is stable by the semi-group generated by A∗, the above definition can be extended to any
initial data y0 ∈ F ′.

Here also we have seen the important role played by the adjoint problem (which is a backward in time parabolic
problem)

− ∂tq +A∗q = 0, (III.2)

III.2 Examples

Let Ω be a bounded smooth connected domain of Rd. Let ω be a non empty open subset of Ω and Γ0 a non empty
open subset of ∂Ω.

• Distributed control for the heat equation.

We consider the problem {
∂ty −∆y = 1ωv, in Ω

y = 0, on ∂Ω.

The natural state space is E = L2(Ω), the control space is also U = L2(Ω) (we could have defined U = L2(ω)
without any real difference), the domain ofA is D(A) = H2(Ω)∩H1

0 (Ω), and the control operator is B = 1ω,
so that we get also B∗ = 1ω.

• (Dirichlet) Boundary control for the heat equation.

Let us consider the problem {
∂ty −∆y = 0, in Ω

y = 1Γ0v, on ∂Ω.

Here the control operator B is not so easy to define and it is in fact easier to define its adjoint B∗ (through a
formal integration by parts). More precisely, we set

B∗ def
= 1Γ0∂n.
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In order for the admissibility condition for this operator to hold, we see that we have, for instance, to work in
the space F = H1

0 (Ω). Indeed, in that case, one can show by standard arguments that

t 7→ e−tA
∗
qT ∈ L2(0, T,H2(Ω)), ∀qT ∈ F,

and by trace theorems

t 7→ ∂n(e−tA
∗
qT ) ∈ L2(0, T,H1/2(∂Ω)) ⊂ L2(0, T, L2(∂Ω)).

Actually, one may use for any any of the spaces F = D(As) with s > 1/2.

• Distributed control for parabolic systems.

In the last part of the course, we will be interested in coupled parabolic systems, as for instance the following
problem {

∂ty −∆y + C(t, x)y = 1ωBv, in Ω

y = 0, on ∂Ω,
(III.3)

where y is now a n-component function. The state space isE = (L2(Ω))n, the control space is U = (L2(Ω))m,
B ∈Mn,m(R) is the control matrix and C(t, x) ∈Mn,n(R) is the coupling matrix.

In that case, the control operator is B = 1ωB and its adjoint is B∗ = 1ωB
∗.

• (Dirichlet) Boundary control for parabolic systems.

Similarly, we can consider the boundary control problem{
∂ty −∆y + C(t, x)y = 0, in Ω

y = 1Γ0Bv, on ∂Ω.
(III.4)

The definition of the functional spaces and of the operator are clear.

• More general examples:

Of course we may consider a large number of other examples such as : time- and or space-dependent diffusion
coefficients, different diffusion operators for each component, first or second order coupling terms, non linear
terms, etc ...

III.3 Controllability - Observability

The general definitions for approximate/exact/null- controllability questions are formally the same as before.
We have already seen in the first chapter that exact controllability for parabolic equations is certainly not a suitable

notion. We may in fact prove that, in general, the set of reachable functions for the heat equation with a distributed
control supported on a strict subset of Ω is a very small set. For instance, usual regularity properties for such PDEs
show that any reachable target must be smooth (at least C∞) in Ω \ ω.

We will thus restrict our attention now on the approximate and null-controllability properties. By adapting the
arguments given in the finite dimensional case, we can prove the following properties.

Theorem III.3.3 (Approximate controllability and Unique continuation)
Our system (III.1) is approximately controllable at time T > 0 if and only if the adjoint system (III.2)
satisfies the unique continuation property with respect to the observation operator B∗, namely : for any
solution q of (III.2) with q(T ) ∈ F , we have(

B∗q(t) = 0,∀t ∈ (0, T )

)
=⇒ q ≡ 0.
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With the semi-group notation, the Unique Continuation property writes(
B∗e−(T−t)A∗qT = 0,∀t ∈ (0, T )

)
=⇒ qT = 0.

Notice that, if the semi-group generated by−A∗ is analytic, then the unique continuation property does not depend
on T , and thus so is the approximate controllability.
Proof :

• Assume that the Unique Continuation property does not hold. There exists qT ∈ F , qT 6= 0 such that
B∗e−(T−t)A∗qT = 0. By definition, for any control v, we have

〈y(T ), qT 〉F ′,F − 〈y0, e
−TA∗qT 〉E =

∫ T

0
〈v(s),B∗e−(T−s)A∗qT 〉U ds = 0, (III.5)

and if follows that
〈y(T )− e−TAy0, qT 〉F ′,F = 0,

which proves that the reachable space at time T cannot be dense in F ′. Indeed, if z ∈ F ′ is any element such
that 〈z, qT 〉F ′,F 6= 0, then e−TAy0 + εz is not reachable for any ε > 0.

• Assume that the approximate controllability does not hold in F ′. By the Hahn-Banach theorem, it means that
there exists a yT ∈ F ′ and a qT ∈ F \ {0} such that

〈yT , qT 〉F ′,F ≥ 〈y(T ), qT 〉F ′,F ,

for any control v ∈ L2(0, T, U).

From (III.5) we deduce that, for any v ∈ L2(0, T, U)∫ T

0
〈v(s),B∗e−(T−s)A∗qT 〉U ds ≤ 〈yT − e−TAy0, qT 〉F ′,F .

We apply this inequality to v = 1
δB∗e−(T−s)A∗qT , with δ > 0, which gives

1

δ

∫ T

0
‖B∗e−(T−s)A∗qT ‖2U ds ≤ 〈yT − e−TAy0, qT 〉F ′,F .

Letting δ going to 0 leads to ∫ T

0
‖B∗e−(T−s)A∗qT ‖2U ds = 0

and since qT 6= 0, we obtained that the unique continuation property does not hold for the adjoint problem.

Theorem III.3.4 (Null controllability and Observability)
Our system (III.1) is null-controllable in E at time T > 0 if and only if the adjoint system (III.2) satisfies
the following observability property with respect to the observation operator B∗, namely :
There exists a C > 0 such that for any solution q of (III.2) with q(T ) ∈ F , we have

‖q(0)‖2E ≤ C2

∫ T

0
‖B∗q(t)‖2U dt.
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With the semi-group notation, the observability inequality writes

‖e−TA∗qT ‖2E ≤ C2

∫ T

0
‖B∗e−(T−t)A∗qT ‖2U dt, ∀qT ∈ F.

Remark III.3.5
If we are interested in the null-controllability with initial data in F ′, then the above inequalities should hold
with ‖q(0)‖2F in the left-hand side.

Proof :
This result is a straightforward consequence of the following general result in functional analysis (which is itself

a consequence of the closed graph theorem).

Lemma III.3.6 (see Proposition 12.1.2 in [TW09])
LetH1, H2, H3 be three Hilbert spaces and F : H1 → H3,G : H2 → H3 be two bounded linear operators.
Then the following properties are equivalent

1. The range of F is included in the range of G.

2. There exists a C > 0 such that the following inequalities hold

‖F ∗x‖H1 ≤ C‖G∗x‖H2 , ∀x ∈ H3.

If those properties are true, there exists a bounded linear operator L : H1 → H2 such that

F = G ◦ L, and ‖L‖H1→H2 ≤ C.

To prove the theorem, we apply the previous lemma with H2 = L2(0, T ;U), H1 = H3 = E, and

F : y0 ∈ E 7→ e−TAy0 ∈ E,

G : v ∈ L2(0, T, U) 7→
∫ T

0
e−(T−s)ABv(s) ds ∈ E,

(this integral being well-defined by duality as seen before).

There is no natural (and easy to manage) generalization of the Kalman rank criterion in the infinite dimension
case. However, the Fattorini-Hautus test still holds under quite general assumptions but it will of course only gives an
approximate controllability result .

Theorem III.3.7 (Fattorini-Hautus test)
Assume that:

• A∗ has a compact resolvant and a complete system of root vectors.

• B∗ is a bounded operator from D(A∗) (with the graph norm) into U .

We also assume that the semi-group generated by −A∗ is analytic, even though the result can be adapted if
it is not the case.
Then, our system (III.1) is approximately controllable at time T > 0 if and only if we have

(Ker B∗) ∩ Ker (A∗ − λI) = {0}, ∀λ ∈ C.

In particular, the approximate controllability property does not depend on T .
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For a proof of this result in the framework above which is more general than the original one by Fattorini, we refer
to [Oli14].
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Chapter IV

The heat equation

In this chapter we are interested in the controllability properties of a parabolic scalar equation of the heat type in a
bounded domain. We will actually be a little bit more general by looking at the following equation.

Let Ω be a bounded connected smooth domain of Rd. Let γ ∈ C0(Ω,R) be a diffusion coefficient such that
γmin

def
= infΩ γ > 0 and α ∈ C0(Ω,R) a potential term. Let A be the differential operator defined by

(Ay)(x) = −div (γ(x)∇y) + α(x)y. (IV.1)

We shall consider the partial differential evolution equation given by

∂ty +Ay = 0, in (0, T )× Ω. (IV.2)

If we look at A as an unbounded operator in L2(Ω) with domain D(A) = H2(Ω) ∩H1
0 (Ω), we know that A is

self-adjoint and with compact resolvent. As a consequence, we have a complete spectral theory for this operator:

• The spectrum Λ of A = A∗ is only made of positive eigenvalues, moreover Λ is locally finite, unbounded but
satisfies the bound from below

inf Λ > inf
Ω
α. (IV.3)

• For each λ ∈ Λ, the eigenspace Ker (A − λ) is finite dimensional and we have the orthogonality property in
L2(Ω)

Ker (A− λ) ⊥ Ker (A− µ), ∀λ 6= µ ∈ Λ.

We denote by πλ the orthogonal projection in L2(Ω) onto the eigenspace Ker (A− λ).

• We have an orthogonal spectral decomposition of the space L2(Ω). This means that for any ψ ∈ L2(Ω) we
have

ψ =
∑
λ∈Λ

πλψ, (IV.4)

this family being summable in L2(Ω), and we have the Bessel-Parseval equality

‖ψ‖2L2(Ω) =
∑
λ∈Λ

‖πλψ‖2L2(Ω).

• For any ψ ∈ H1
0 (Ω), the sum (IV.4) is also converging in H1

0 (Ω) and there exists C1, C2 > 0, depending only
on the coefficients γ and α, such that

C1

∑
λ∈Λ

(1 + |λ|)‖πλψ‖2L2 ≤ ‖ψ‖2H1 ≤ C2

∑
λ∈Λ

(1 + |λ|)‖πλψ‖2L2 .
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• −A generates a semi-group that can be explicitely computed as follows

e−tAψ =
∑
λ∈Λ

e−tλπλψ, ∀ψ ∈ L2(Ω).

Notice in particular the following energy estimate

‖e−tAψ‖L2(Ω) ≤ e−t inf Λ‖ψ‖L2(Ω), ∀ψ ∈ E,∀t ≥ 0. (IV.5)

In the case where inf Λ > 0, we see that the system is dissipative in L2(Ω), see Remark IV.0.1.

• We shall need the following spaces
Eµ

def
=
⊕
λ∈Λ
λ≤µ

Ker (A− λ). (IV.6)

Let Pµ be the orthogonal projection in L2 onto Eµ, which can be expressed as follows

Pµ =
∑
λ∈Λ
λ≤µ

πλ.

We can prove the following additional dissipation property

‖e−tAψ‖L2(Ω) ≤ e−tµ‖ψ‖L2(Ω), ∀ψ ∈ E, s.t. Pµψ = 0, ∀t ≥ 0. (IV.7)

We will see in the sequel that other qualitative properties for the spectrum of the operator will be needed to analyze
the controllability of the system.

We will analyze two types of controls:

• The distributed control problem: Let ω be a non empty open subset of Ω. We look for a control v ∈ L2(]0, T [×ω) =
L2(0, T ;U) with U = L2(ω) such that the solution y ∈ C0([0, T ], E), with E = L2(Ω), of the problem

∂ty +Ay = 1ωv, in Ω,

y = 0, on ∂Ω,

y(0) = y0

(IV.8)

satisfies either ‖y(T )− yT ‖E ≤ ε (approximate controllability) or y(T ) = 0 (null-controllability).

• The boundary control problem: Let Γ0 be a non empty open subset of Γ. We look for a control v ∈ L2(]0, T [×Γ0) =
L2(0, T ;U) with U = L2(Γ0) such that the solution y ∈ C0([0, T ], E), with E = H−1(Ω), of the problem

∂ty +Ay = 0, in Ω,

y = 1Γ0v, on ∂Ω,

y(0) = y0

(IV.9)

satisfies either ‖y(T )− yT ‖E ≤ ε (approximate controllability) or y(T ) = 0 (null-controllability).

Remark IV.0.1
From the point of view of controllability we can always assume, if necessary, that the potential α is non
negative, which implies inf Λ > 0 (see (IV.3)), and thus all the eigenvalues are positive.
Indeed, is one sets ỹ = e−aty we see that ỹ solves the problem

∂tỹ + (A+ a)ỹ = 1ωe
−atv, in Ω,

y = 0, on ∂Ω,

y(0) = y0,

which amounts at adding the constant a to α.

As a consequence of the previous remark, we will systematically assume in the sequel that α ≥ 0.
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IV.1 Further spectral properties and applications

IV.1.1 The 1D case

We assume in this section that Ω = (0, 1). From a spectral point of view this particularly implies that all the eigen-
values are simple, therefore we can choose one eigenfunction φλ in each eigenspace Ker (A− λ), that we shall take
normalized in L2(Ω). The projection operator πλ is thus simply given for any λ ∈ Λ by

πλψ = 〈ψ, φλ〉L2φλ, ∀ψ ∈ L2(Ω).

The second property which is specific to the 1D case1 is the following asymptotic property, called Weyl’s law

N(r) ∼
r→∞

N̄
√
r,

for some constant N̄ > 0, where N is the counting function of the family Λ (see Section A.6). We will present a
proof of a weaker (but sufficient) version of this result below.

IV.1.1.1 Spectral estimates

The properties stated in this section are very classical but we adopt here the formalism and proofs introduced in
[ABM16] that have the advantage to being easy to extend to more general situations like the discrete setting for
instance.

Proposition IV.1.2
Under the assumptions above, for both boundary and distributed control problems, we have

B∗φλ 6= 0, ∀λ ∈ Λ.

In particular, the heat equation is approximately controllable at any time T > 0 in both cases.

Proof :
In both cases, if we assume that B∗φλ = 0, it implies that there exists a point a ∈ [0, 1] such that φλ(a) =

φ′λ(a) = 0. Indeed, we either take a to be a boundary point of Ω, or a point inside the control domain ω.
Since φλ satisfies a second order linear homogeneous differential equation, this would imply φλ ≡ 0 which is

impossible.
The approximate controllability in both cases is now a consequence of the Fattorini-Hautus test (see Theorem

III.3.7).
Let us introduce the notations

∂lφ
def
= −φ′(0), and ∂rφ

def
= φ′(1),

for the left and right normal derivatives of a function φ : (0, 1)→ R.

Theorem IV.1.3
Under the assumptions above, there exists C1(α, γ, ω) > 0 and C2(α, γ), C3(α, γ) > 0 such that

‖φλ‖2L2(ω) ≥ C1(α, γ, ω), ∀λ ∈ Λ,

|∂•φλ| ≥ C2(α, γ)
√
λ, ∀λ ∈ Λ,∀• ∈ {l, r},

|λ− µ| ≥ C2(α, γ)
√
λ, ∀λ 6= µ ∈ Λ,

NΛ(r) ≤ C3(α, γ)
√
r, ∀r > 0.

1Weyl’s law also holds in higher dimension but it becomes N(r) ∼ N̄r
2
d , where d is the space dimension
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Remark IV.1.4 (Laplace operator)
For the standard Laplace operator γ = 1, α = 0, the eigenfunctions and eigenvalues are explicitely given
by

Λ = {k2π2, k ∈ N∗},
φλ(x) =

√
2 sin(

√
λx), λ ∈ Λ.

The properties proved in the above theorem are thus straightforward it this case. Moreover, there are
clearly optimal.

We begin with the following lemma.

Lemma IV.1.5
Let ω be a non-empty open subset of Ω. There exists C1(α, γ) > 0 and C2(α, γ, ω) > 0 such that we have,
for any λ ∈ Λ,

1

λ
|∂•φλ|2 ≥ C1(α, γ)Rλ, ∀• ∈ {l, r},

and
‖φλ‖2L2(ω) ≥ C2(α, γ, ω)Rλ,

where we have defined

Rλ def
= inf

x,y∈Ω

|φλ(x)|2 + γ(x)
λ |φ′λ(x)|2

|φλ(y)|2 + γ(y)
λ |φ′λ(y)|2

. (IV.10)

Proof :

• By definition ofRλ, and the fact that φλ(0) = 0, we have

γ(0)

λ
|φ′λ(0)|2 ≥ Rλ

(
|φλ(y)|2 +

γ(y)

λ
|φ′λ(y)|2

)
≥ Rλ|φλ(y)|2, ∀y ∈ Ω.

By integration over y ∈ Ω, we can use the normalisation condition and the equation satisfied by φλ to find that

γ(0)

λ
|φ′λ(0)|2 ≥ Rλ.

For λ large enough, we deduce that
γ(0)

λ
|φ′λ(0)|2 ≥ Rλ,

which gives the claim for ∂lφλ. A similar proof holds for ∂rφλ.

• Let (a, b) ⊂ ω be a connected component of ω. The Sturm comparison theorem (see Theorem A.5.15 and
Corollary A.5.16) implies that there is a λ0(α, γ, ω) such that for λ ≥ λ0, we can find two zeros aλ < bλ of φλ
such that (aλ, bλ) ⊂ (a, b) and

bλ − aλ ≥ (b− a)/2. (IV.11)

We multiply by φλ the equation satisfied by φλ on (aλ, bλ) and we integrate by parts, using that aλ and bλ are
zeros of φλ. We obtain ∫ bλ

aλ

γ|φ′λ|2 + α|φλ|2 = λ

∫ bλ

aλ

|φλ|2,

and since we have assumed that α ≥ 0, we find that∫ bλ

aλ

|φλ|2 ≥
∫ bλ

aλ

γ

λ
|φ′λ|2. (IV.12)
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By definition ofRλ we have, for any x, y ∈ Ω

|φλ(x)|2 +
γ(x)

λ
|φ′λ(x)|2 ≥ Rλ

(
|φλ(y)|2 +

γ(y)

λ
|φ′λ(y)|2

)
.

We can integrate this inequality with respect to x ∈ (aλ, bλ) on the one hand and with respect to y ∈ Ω = (0, 1)
on the other hand to get∫ bλ

aλ

|φλ|2 +

∫ bλ

aλ

γ

λ
|φ′λ|2 ≥ Rλ(bλ − aλ)

∫ 1

0

(
|φλ|2 +

γ

λ
|φ′λ|2

)
≥ Rλ(bλ − aλ).

By (IV.12), the normalisation condition of φλ in L2(Ω) and (IV.11), we arrive to∫ bλ

aλ

|φλ|2 ≥ Rλ
b− a

4
,

so that, for λ ≥ λ0, we have ∫
ω
|φλ|2 ≥

∫ bλ

aλ

|φλ|2 ≥ Rλ
b− a

4
.

Since there is a finite number of eigenvalues that satisfy λ < λ0, the claim is proved thanks to Proposition
IV.1.2.

Now we propose a reformulation of the differential equation that will permit us to prove uniform lower bounds
for the quantityRλ.

Lemma IV.1.6
Let f : Ω → R be a continuous function and λ > 0. Suppose that u : Ω → R satisfies the second-order
differential equation (without any prescribed boundary conditions)

Au(x) = λu(x) + f(x), ∀x ∈ Ω, (IV.13)

then the following equation holds

U ′(x) = M(x)U(x) +Q(x)U(x) + F (x), ∀x ∈ Ω, (IV.14)

where we have defined the vectors

U(x)
def
=

(
u(x)√
γ(x)
λ u′(x)

)
and F (x)

def
=

(
0

− f(x)√
γ(x)λ

)
.

and the matrices

M(x)
def
=

 0
√

λ
γ(x)

−
√

λ
γ(x) 0

 and Q(x)
def
=

 0 0
α(x)√
λγ(x)

√
γ(x)

(
1√
γ

)′
(x)

 .

The key-point of this formulation is that the large terms in
√
λ only appear in the skew-symmetric matrix M(x),

while the matrix Q(x) only contain bounded terms with respect to λ.
As a consequence of this particular structure, we can obtain the following estimates.
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Lemma IV.1.7

With the same notations as in Lemma IV.1.6, and assuming that λ ≥ 1, there exists C def
= C(α, γ), indepen-

dent of λ, such that for any x, y ∈ Ω, we have

‖U(y)‖ ≤ C(α, γ)

(
‖U(x)‖+

∣∣∣∣∫ y

x
‖F (s)‖ ds

∣∣∣∣) . (IV.15)

Proof :
Let x, y ∈ Ω. Without loss of generality we assume y > x. It is fundamental to notice that the matrices (M(s))s

pairwise commute, so that the resolvant operator associated with x 7→M(x) simply reads

S(y, x)
def
= exp

(∫ y

x
M(s) ds

)
.

We can then use Duhamel’s formula to deduce from the equation (IV.14) the following expression

U(y) = S(y, x)U(x) +

∫ y

x
S(y, s) (Q(s)U(s) + F (s)) ds. (IV.16)

We use now the fact that the matrix M(s) is skew symmetric for any s, and so is
∫ y
x M(s) ds. It follows that the

resolvant S(y, s) is unitary ‖S(y, s)‖ = 1 for any y, s. We get

‖U(y)‖ ≤ ‖U(x)‖+

∣∣∣∣∫ y

x
‖F (s)‖ ds

∣∣∣∣+

∣∣∣∣∫ y

x
‖Q(s)‖‖U(s)‖ ds

∣∣∣∣ .
Gronwall’s lemma finally yields

‖U(y)‖ ≤
(
‖U(x)‖+

∣∣∣∣∫ y

x
‖F (s)‖ ds

∣∣∣∣) exp

(∣∣∣∣∫ y

x
‖Q(s)‖ ds

∣∣∣∣) ,
which gives the result since Q(s) is bounded uniformly in s and λ, by using the assumptions on the coefficient γ and
α

We can now prove the main Theorem of this section.
Proof (of Theorem IV.1.3):

A first remark is that it is enough to prove the claims for λ large enough and in particular we can assume without
loss of generality that λ ≥ 1.

• We begin with the proof of the first two points of the theorem. By definition, φλ is solution of the equation

Aφλ = λφλ,

which is exactly (IV.13) with u = φλ and f = 0. From Lemma IV.1.7 we deduce that there existsC def
= C(γ, α),

independent of λ, such that for any x, y ∈ Ω,

|φλ(y)|2 +
γ(y)

λ
|φ′λ(y)|2 ≥ C

(
|φλ(x)|2 +

γ(x)

λ
|φ′λ(x)|2

)
, (IV.17)

which exactly proves that the quantityRλ defined in (IV.10) is uniformly bounded from below. The claim thus
immediately follows from Lemma IV.1.5.

• We shall now prove the third point in Theorem IV.1.3. For any two λ > µ in Λ with µ ≥ 1, we define

u(x)
def
= φ′µ(1)φλ(x)− φ′λ(1)φµ(x),
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in such a way that u(1) = u′(1) = 0 and
Au = λu+ f,

with
f(x)

def
= φ′λ(1) (λ− µ)φµ(x), ∀x ∈ Ω.

Using the notations introduced in Lemma IV.1.6, we observe that by construction we have U(1) = 0 so that the
estimate (IV.15) specialized in x = 1 leads to

‖U(y)‖ ≤ C
∫ 1

y
‖F (s)‖ ds ≤ C

∫ 1

0
‖F (s)‖ ds, ∀y ∈ Ω.

Using the expression for F and f , we find that

‖U(y)‖ ≤ C√
γmin

(
λ− µ√

λ
|φ′λ(1)|

)∫ 1

0
|φµ(s)| ds, ∀y ∈ Ω.

Thanks to the normalisation condition ‖φµ‖L2(Ω) = 1 and the expressions of U and u, we obtain for any y ∈ Ω,

∣∣φ′µ(1)φλ(y)− φ′λ(1)φµ(y)
∣∣2 ≤ C

γmin

(
λ− µ√

λ
|φ′λ(1)|

)2

.

We integrate this inequality with respect to y ∈ (0, 1) and we use the L2(Ω) orthonormality of φλ and φµ to
finally get

|φ′λ(1)|2 ≤
(
φ′λ(1)

)2
+
(
φ′µ(1)

)2 ≤ C

γmin

(
λ− µ√

λ
|φ′λ(1)|

)2

,

and since φ′λ(1) 6= 0, we conclude that
λ− µ ≥ C̄

√
λ,

for some C̄ > 0 independent of λ and µ.

• Let us finally prove the estimate on the counting function NΛ. We first observe that the estimate we proved
above implies that

|λ− µ| ≥ C1

2
|
√
λ+
√
µ|, ∀λ 6= µ ∈ Λ,

from which we deduce
|
√
λ−√µ| ≥ C1

2
, ∀λ 6= µ ∈ Λ. (IV.18)

Let us fix r > 0 and let λ1 < · · · < λNΛ(r) all the elements in Λ ∩ [0, r]. We set λ0 = 0.

We can write on the one hand

NΛ(r)∑
k=1

(√
λk −

√
λk−1

)
=
√
λNΛ(r) ≤

√
r,

and on the other hand, by using (IV.18),

NΛ(r)∑
k=1

(√
λk −

√
λk−1

)
≥ C1

2
(NΛ(r)− 1) +

√
λ1 ≥ CNΛ(r),

with C = min(
√
λ1, C1/2). Combining the two inequalities above we obtain

NΛ(r) ≤ 1

C

√
r,

and the proof is complete.
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IV.1.1.2 Approximate controllability

The results obtained in Theorem IV.1.3 and the Fattorini-Hautus test (Theorem III.3.7) immediately shows that both
problems (IV.8) and (IV.9) are approximately controllable in 1D at any time T > 0.

IV.1.1.3 Null-controllability

We shall now prove the null-controllability of (IV.8) and (IV.9), still in 1D, by using the moments method. We already
encountered this method in Section II.4 in order to deal with the controllability of finite dimensional linear differential
systems.

The main difference here is that there is now a countable infinite number of frequencies in the system. In this
framework, this strategy were for instance used in the seminal papers [FR71, FR75].

That is the reason why we will need to be able to prove the existence of a countable biorthogonal family functions
to the set of all real exponential functions present in the definition of semigroup of the operator. Moreover, we shall
need precise estimate on those families.

To begin with, let us introduce a few notations. For any λ > 0 we define e[λ] ∈ L2(0,+∞) to be the exponential
function

e[λ] :=
(
t 7−→ e−λt

)
.

When evaluating this function at time t we shall write et[λ] = e−λt. This bracket notation is motivated by the fact
that we shall need, later, to use the divided differences formalism recalled in Section A.3.

Let Λ be a family of real numbers in (0,+∞) such that∑
λ∈Λ

1

λ
< +∞. (IV.19)

We shall denote byR a remainder function associated to Λ (see Definition A.6.19). We will also assume the following
gap condition

|λ− µ| ≥ ρ, ∀λ 6= µ ∈ Λ. (IV.20)

The theorems we need are the following (their proofs are postponed to Section IV.1.2).

Theorem IV.1.8 (Biorthogonal families of exponential functions in infinite horizon)
Let Λ satisfying (IV.19) and (IV.20).
There exists a family (qλ,∞)λ∈Λ in L2(0,+∞) satisfying

(qλ,∞, e[µ])L2(0,+∞) = δλ,µ, ∀λ, µ ∈ Λ,

as well as the estimate
‖qλ,∞‖L2(0,+∞) ≤ eε(λ)λ, ∀λ ∈ Λ,

where ε : R→ R is a function such that lims→+∞ ε(s) = 0 that only depends on ρ and R.

Theorem IV.1.9 (Biorthogonal families of exponential functions in finite horizon)
Let Λ satisfying (IV.19) and (IV.20).
For any time T > 0, there exists a family (qλ,T )λ∈Λ in L2(0, T ) satisfying

(qλ,T , e[µ])L2(0,T ) = δλ,µ, ∀λ, µ ∈ Λ,

and the estimate
‖qλ,T ‖L2(0,T ) ≤ Keε(λ)λ, ∀λ ∈ Λ,

where ε : R → R is a function such that lims→+∞ ε(s) = 0 that only depends on ρ and R, and K > 0 is
a constant depending only on T , ρ and R.
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Those results can be made more precise if one has a sharper asymptotic behavior of the family Λ.

Theorem IV.1.10

Let N̄ > 0 and α ∈ (0, 1).

• If the counting function of Λ satisfies an a priori bound

N(r) ≤ N̄rα, ∀r > 0, (IV.21)

then, in Theorems IV.1.8 and IV.1.9, we can take

ε(r) =
C + log r

r1−α ,

where C depends only on α and N̄

• If the counting function of Λ satisfies an even more precise estimate

|N(r)− N̄rα| ≤ Ñrα′ , ∀r > 0, (IV.22)

with Ñ > 0 and 0 ≤ α′ < α, then, in Theorems IV.1.8 and IV.1.9, we can take

ε(r) =
C

r1−α ,

where C depends only on α, α′, N̄ , Ñ .

Using those results we can deduce the following two null-controllability results as follows.

Theorem IV.1.11 (Boundary null-controllability in 1D)

Assume that d = 1, Ω = (0, 1). Let Γ0 = {1} for instance. For any y0 ∈ L2(Ω), and T > 0, there exists a
control v ∈ L2(0, T ) such that the solution of (IV.9) satisfies y(T ) = 0.

Proof :
Let T > 0 be given. For any v ∈ L2(0, T ), the solution y of (IV.9) satisfies

〈y(T ), φλ〉H−1,H1
0
− 〈y0, e

−λTφλ〉H−1,H1
0

=

∫ T

0
v(t)e−(T−t)λ∂rφλ dt, ∀λ ∈ Λ.

Hence, v is a null-control for our system if and only if the function u(t)
def
= v(T − t) satisfies

−〈y0, e
−λTφλ〉L2 =

∫ T

0
u(t)e−λt∂rφλ dt, ∀λ ∈ Λ,

where we used here that y0 ∈ L2(Ω). We are thus led to find a function u ∈ L2(0, T ) that satisfies the following
moment problem ∫ T

0
u(t)e−λt dt =

−〈y0, φλ〉L2e−λT

∂rφλ
, ∀λ ∈ Λ.

From the properties of the eigenvalues Λ given in Theorem IV.1.3 and Theorem IV.1.9, we know that there exists
a biorthogonal family (qλ,T )λ∈Λ to the exponentials made upon the family Λ. It follows that, as we did in the finite
dimensional setting, we may formally solve the moment problem above by defining

u(t)
def
=
∑
µ∈Λ

uµ(t), with uµ(t)
def
=
−〈y0, φµ〉L2e−µT

∂rφµ
qµ,T (t), ∀µ ∈ Λ.
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Indeed, if this series makes sense (and if the following computation can be justified) we have for any λ ∈ Λ,∫ T

0
u(t)e−λt dt =

∑
µ∈Λ

−〈y0, φµ〉L2e−µT

∂rφµ

∫ T

0
qµ,T (t)e−λt dt︸ ︷︷ ︸

=δλ,µ

=
−〈y0, φλ〉L2e−λT

∂rφλ
,

and the claim will be proved. It remains to show the convergence of the series in L2(0, T ). To this end, we will show
that it is normally convergent. Indeed we have

‖uµ‖L2(0,T ) ≤
‖y0‖L2e−µT

|∂rφµ|
‖qµ,T ‖L2(0,T ), (IV.23)

and by the estimate given in Theorem IV.1.9, we deduce that

‖uµ‖L2(0,T ) ≤ K
‖y0‖L2

|∂rφµ|
e−µT eε(µ)µ

≤ CT,Λ,y0

1

|∂rφµ|
e−µ(T−ε(µ)).

Since lim+∞ ε = 0 we deduce that for, for some µ0 > 0, we have

‖uµ‖L2(0,T ) ≤ CT,Λ,y0

1

|∂rφµ|
e−µT/2, ∀µ ∈ Λ, µ > µ0.

Finally, we use the bound from below for |∂rφµ| given in Theorem IV.1.3, to deduce that

‖uµ‖L2(0,T ) ≤ C
e−µT/2√

µ
, ∀µ ∈ Λ, µ > µ0,

which proves, thanks to (A.15), that
∑
µ∈Λ

‖uµ‖L2(0,T ) < +∞ and concludes the proof.

We can use the same kind of proof in the case of the distributed control problem.

Theorem IV.1.12 (Distributed null-controllability in 1D)

Assume that d = 1, Ω = (0, 1). Let ω be any non empty open subset of Ω. For any y0 ∈ L2(Ω), and T > 0,
there exists a control v ∈ L2((0, T )× ω) such that the solution of (IV.8) satisfies y(T ) = 0.

Proof :
We start with the same formulation as before, for any function v ∈ L2((0, T )× ω)

〈y(T ), φλ〉L2 − 〈y0, e
−λTφλ〉L2 =

∫ T

0

∫
ω
v(t, x)e−(T−t)λφλ(x) dx dt, ∀λ ∈ Λ.

The solution vanishes at time T , if and only if the function u(t, x)
def
= v(T − t, x) satisfies the following space-time

moment problem ∫ T

0

∫
ω
u(t, x)e−λtφλ(x) dx dt = −〈y0, φλ〉L2e−λT , ∀λ ∈ Λ.

To solve this problem, we look for a biorthogonal family (q̃λ,T )λ∈Λ in L2((0, T ) × ω) to the family of functions{
(t, x) ∈ (0, T )× ω 7→ φλ(x)e−λt

}
. We propose the following family

q̃λ,T (t, x)
def
=

φλ(x)

‖φλ‖2L2(ω)

qλ,T (t), ∀(t, x) ∈ (0, T )× Ω, ∀λ ∈ Λ,
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and we indeed check, by the Fubini theorem, that for any λ, µ ∈ Λ, we have∫ T

0

∫
ω
q̃λ,T (t, x)φµ(x)e−µt dt =

1

‖φλ‖2L2(ω)

(∫
ω
φλφµ dx

)(∫ T

0
qλ,T (t)e−µt dt

)
︸ ︷︷ ︸

=δλ,µ

= δλ,µ.

Finally, we can define a formal null-control u by the series

u
def
=
∑
µ∈Λ

uµ, with uµ(t, x)
def
= −〈y0, φµ〉L2e−µT q̃µ,T (t, x).

It remains to check the convergence of this series by computing

‖uµ‖L2((0,T )×ω) ≤ ‖y0‖L2e−µT ‖q̃µ,T ‖L2((0,T )×Ω) ≤ ‖y0‖L2e−µT
‖qµ,T ‖L2(0,T )

‖φµ‖L2(ω)
,

so that, for some µ0 > 0,

‖uµ‖L2((0,T )×ω) ≤ Ky0,T,Λ
1

‖φµ‖L2(ω)
e−µT/2, ∀µ ∈ Λ, µ > µ0.

Using the bound from below for ‖φµ‖L2(ω) in Theorem IV.1.3 and (A.15), we conclude the convergence inL2((0, T )×
ω) of the series that defines u and the claim is proved.

IV.1.2 Biorthogonal family of exponentials

The main goal of this section is to prove Theorems IV.1.8 and IV.1.9. Let us consider a given family of positive
numbers Λ that satisfies, for the moment, the summability condition (IV.19).

IV.1.2.1 Blaschke products

Let us define C+ to be the complex half-plane

C+ def
= {z ∈ C,Re z > 0}.

Proposition and Definition IV.1.13
Under assumption (IV.19), for any L ⊂ Λ, the following product

WL(z)
def
=
∏
µ∈L

µ− z
µ+ z

, ∀z ∈ C+,

is well-defined and holomorphic on C+. Its zeros are exactly the points in L.
Moreover, we have the lower bound

|WL(z)| ≥ |WL(Re z)|, ∀z ∈ C+. (IV.24)

Proof :
In the case where L is finite, the existence and holomorphy are straightforward. Assume now that L is infinite and

let us fix M > 0. We write
WL(z) = W−L (z).W+

L (z),

with
W−L (z) =

∏
µ∈L
µ≤4M

µ− z
µ+ z

,
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W+
L (z) =

∏
µ∈L
µ>4M

µ− z
µ+ z

.

Since L ∩ [0, 4M ] is finite, the well-posedness and the properties of W−L are clear. Let us study the other factor W+
L

on the open half-disk DM
def
= C+ ∩D(0,M).

For any µ > 4M , and z ∈ DM , we have∣∣∣∣1− µ− z
µ+ z

∣∣∣∣ =

∣∣∣∣ 2z

µ+ z

∣∣∣∣ ≤ 2|z|
µ

<
2M

4M
= 1/2,

and thus, using that, for any w ∈ C such that |w| < 1/2, we have

| log(1 + w)| ≤ |w|
1− |w| ≤ 2|w|,

we obtain that ∣∣∣∣log

(
µ− z
µ+ z

)∣∣∣∣ ≤ 4|z|
µ
≤ 4M

µ
.

By using (IV.19) we get that the infinite product W+
L is uniformly convergent in DM and has no zeros in DM . The

claim is proved.
Finally, to each µ ∈ L and z ∈ C+, since µ > 0 andRe z > 0, we have∣∣∣∣µ− zµ+ z

∣∣∣∣2 =
(µ−Re z)2 + (Imz)2

(µ+Re z)2 + (Imz)2
≥ (µ−Re z)2

(µ+Re z)2
,

which implies the last claim.
In addition to the summability property (IV.19), we assume now that a weak gap condition is satisfied: there exists

an integer p ≥ 1 and a ρ > 0 such that

#
(
Λ ∩ [µ, µ+ ρ)

)
≤ p, ∀µ > 0. (IV.25)

For p = 1, this is nothing but the usual gap condition (IV.20). The weaker assumption (IV.25) will be useful when we
will tackle the boundary null-controllability issue for coupled parabolic systems in Section V.4.2.

With those assumptions, we can prove the following estimates on the Blaschke product WL.

Proposition IV.1.14
Let ρ > 0 and p ≥ 1 an integer, we assume the weak gap condition (IV.25) and the summability condition
(IV.19). Let R be a remainder function for Λ.
There exists a decreasing function r 7→ ε(r) such that limr→+∞ ε(r) = 0, depending only on ρ, p and R
such that, for any L ⊂ Λ, we have∣∣∣∣ 1

WL(x)

∣∣∣∣ ≤ eε(x)x, ∀x > 0, such that d(x, L) > ρ/2.

In particular, for any λ ∈ Λ, we have ∣∣∣∣ 1

WΛ\{λ}(λ)

∣∣∣∣ ≤ eε(λ)λ.

Proof :
We fix x > 0 such that d(x, L) ≥ ρ/2. Our goal is to bound the quantity

1

WL(x)
=
∏
σ∈L

∣∣∣∣1 + x
σ

1− x
σ

∣∣∣∣ .
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We introduce the following convergent products

Q(x)
def
=
∏
σ∈L

(
1 +

x

σ

)
,

D(x)
def
=
∏
σ∈L

∣∣∣1− x

σ

∣∣∣ ,
and we study separately those two expressions.

1. Bound from above for Q.
Let us fix some value of 0 < x0 < x that will be determined later and we write Q as the product of Q1 and Q2

defined by
Q1(x)

def
=
∏
σ∈L
σ<x0

(
1 +

x

σ

)
, and Q2(x)

def
=
∏
σ∈L
σ≥x0

(
1 +

x

σ

)
.

• In Q1 we have σ < x0 < x so that 1 + x
σ ≤ 2x

σ and it follows from Proposition A.6.18 that

logQ1(x) ≤
∑
σ∈L
σ<x0

log

(
2x

σ

)

≤N(x0) log

(
2x

inf Λ

)
≤N(x0) log (2R(0)x)

≤R(0)x0 log (2R(0)x)

where we have used (A.13) to get N(x0)/x0 ≤ R(0) and (A.14).
• In Q2 we use the bound 1 + x

σ ≤ ex/σ to obtain

logQ2(x) ≤
∑
σ∈L
σ≥x0

x

σ
≤

∑
σ∈Λ

σ>x0/2

x

σ
≤ xR(x0/2).

Finally, we have proved that

logQ(x) ≤ R(0)x0 log (2R(0)x) + xR(x0/2).

Choosing x0 = x/(log x)2, we eventually get

logQ(x) ≤ x
[
R(0)

log(2R(0)x)

(log x)2
+R

(
x

2(log x)2

)]
. (IV.26)

2. Bound from below for D.
We write D as a product of four terms

D1(x)
def
=

∏
σ∈L
σ<x/2

∣∣∣1− x

σ

∣∣∣ ,
D2(x)

def
=

∏
σ∈L

x/2≤σ<x

∣∣∣1− x

σ

∣∣∣ ,
D3(x)

def
=

∏
σ∈L

x≤σ<2x

∣∣∣1− x

σ

∣∣∣ ,
D4(x)

def
=
∏
σ∈L
2x≤σ

∣∣∣1− x

σ

∣∣∣ .
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• All the factors in D1 are larger than 1 so that D1(x) ≥ 1.

• In the term D2 we notice that we necessarily have σ < x − ρ/2 since d(x, L) > ρ/2. Therefore, we can
write

logD2(x) =
∑
σ∈L

x/2≤σ<x−ρ/2

log

(
x− σ
σ

)
,

≥
∑
σ∈L

x/2≤σ<x−ρ/2

log

(
x− σ
x

)
,

= log(ρ/2x)NL(x− ρ/2)− log(1/2)NL(x/2) +

∫ x−ρ/2

x/2

1

x− tNL(t) dt

= log(ρ/x)NL(x− ρ)− log(2)NL(x− ρ/2) + log(2)N(x/2) +

∫ x/2

ρ/2

1

u
NL(x− u) dt

=(log 2)
[
NL(x/2)−NL(x− ρ/2)

]
−
∫ x/2

ρ/2

NL(x− ρ/2)−NL(x− u)

u
du.

Let us remark that, since L ⊂ Λ, we have for any s < r

NL(r)−NL(s) = #
(
L ∩ (s, r]

)
≤ #

(
Λ ∩ (s, r]

)
= NΛ(r)−NΛ(s).

(IV.27)

We can then use the following two estimates on N = NΛ for u ∈ [ρ/2, x/2].

– The first one comes from Proposition A.6.20

|N(x− u)−N(x− ρ/2)| ≤ (x− ρ/2)R(x− u) ≤ xR(x/2).

– The second one comes from the weak gap assumption (IV.25) that gives

|N(x− u)−N(x− ρ/2)| ≤ #
(
Λ ∩ [x− u, x− ρ/2]

)
≤ p

(
u− ρ/2

ρ
+ 1

)
≤ p

(
u

ρ
+

1

2

)
≤ 2p

ρ
u.

Indeed, [x− u, x− ρ/2] can be split into b(u− ρ/2)/ρc+ 1 disjoint intervals of length less than ρ,
each of them containing at most p elements of Λ.

Let us now combine the previous two estimates as follows

|N(x− u)−N(x− ρ/2)| ≤
√

2p

ρ
R(x/2)

√
u
√
x,

so that ∫ x/2

ρ/2

N(x− ρ/2)−N(x− u)

u
du ≤

√
2p

ρ
R(x/2)

√
x

∫ x/2

ρ/2

1√
u
du

≤2

√
2p

ρ
R(x/2)

√
x
√
x/2

≤Cp,ρx
√
R(x/2).
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As a conclusion, we have proved that

logD2(x) ≥ −(log 2)xR(x/2)− Cp,ρx
√
R(x/2).

• The term D3 is treated in a similar way as D2:

logD3(x) =
∑
σ∈L

x+ρ/2≤σ<2x

log

(
σ − x
σ

)
,

≥
∑
σ∈L

x+ρ/2≤σ<2x

log

(
σ − x

2x

)
,

= log(1/2)NL(2x)− log(ρ/2x)NL(x+ ρ/2)−
∫ 2x

x+ρ/2

1

t− xNL(t) dt

=− log 2(NL(2x)−NL(x+ ρ/2))−
∫ x

ρ/2

NL(x+ u)−NL(x+ ρ/2)

u
du,

we conclude by using (IV.27) and by combining the following two inequalities

|N(x+ u)−N(x+ ρ/2)| ≤ 2xR(x+ ρ/2) ≤ 2xR(x),

|N(x+ u)−N(x+ ρ/2)| ≤ 2p

ρ
u,

as we did for D2.

• For the term D4 we use that
1− u ≥ e−2u, ∀u ∈ [0, 1/2],

so that
logD4(x) ≥ −2x

∑
σ∈L
2x≤σ

1

σ
≥ −2x

∑
σ∈Λ
2x≤σ

1

σ
≥ −2xR(2x).

All in all we have obtained

log
1

W (x)
≤ logQ(x)− logD(x)

≤Cp,ρ
[
R(0)

log(2R(0)x)

(log x)2
+R

(
x

2(log x)2

)
+R(x/2) +

√
R(x/2)

]
x,

which is the expected estimate if we define ε(x) to be factor in front of x in the right-hand side. By the properties of
R we have indeed that this ε is non increasing and that limx→∞ ε(x) = 0.

Remark IV.1.15
Note that the estimates on the terms D2 and D3 really need the gap condition. For instance, the following
basic estimate

logD2(x) ≥
∑
σ∈L

x/2≤σ<x−ρ/2

log

(
x− σ
x

)
,

≥ −(N(x)−N(x/2)) log(2x/ρ)

≥ −xR(x/2) log(2x/ρ),

is not sufficient since it may happen that x 7→ R(x/2) log(x) does not tend to 0 at infinity.
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Corollary IV.1.16
Let ρ > 0 and p ≥ 1 an integer, we assume the weak gap condition (IV.25) and the summability condition
(IV.19). Let R be a remainder function for Λ.
For any k ≥ 0, there exists a decreasing function r 7→ ε(r) such that limr→+∞ ε(r) = 0, depending only
on k, ρ, p and R such that, for any L ⊂ Λ, such that we have∣∣∣∣∣

(
1

WL

)(k)

(x)

∣∣∣∣∣ ≤ eε(x)x, ∀x > 0, such that d(x, L) > 3ρ/4.

Proof :
Let x > 0 such that d(x, L) > 3ρ/4. We also assume that x > ρ/4 (if not the result is straightforward). Let Γx

be the circle in the complex plane centered at x and of radius ρ/4. By the Cauchy formula we have(
1

WL

)(k)

(x) =
k!

2iπ

∫
Γx

(1/WL)(z)

(z − x)k+1
dz,

so that ∣∣∣∣∣
(

1

WL

)(k)

(x)

∣∣∣∣∣ ≤ Ck
ρk+1

sup
z∈Γx

∣∣∣∣ 1

WL(z)

∣∣∣∣ .
We can use (IV.24) to deduce ∣∣∣∣∣

(
1

WL

)(k)

(x)

∣∣∣∣∣ ≤ Ck
ρk+1

sup
y∈[x−ρ/4,x+ρ/4]

∣∣∣∣ 1

WL(y)

∣∣∣∣ .
Since any y ∈ [x− ρ/4, x+ ρ/4] satisfies d(y, L) ≥ ρ/2, we can use Proposition IV.1.14 to obtain∣∣∣∣∣

(
1

WL

)(k)

(x)

∣∣∣∣∣ ≤ Ck
ρk+1

eε(y)y ≤ Ck
ρk+1

eε(x−ρ/4)(x+ρ/4),

which concludes the proof of the claim, by changing the definition of the function ε.

IV.1.2.2 Biorthogonal functions in L2(0,+∞). Proof of Theorem IV.1.8

In this subsection we assume that Λ satisfies (IV.19) and (IV.20).
We start by observing that for any λ, µ ∈ Λ we have

(e[λ], e[µ])L2(0,+∞) =
1

λ+ µ
. (IV.28)

For any subset L of Λ, we introduce the family EL def
= {e[µ], µ ∈ L} in L2(0,+∞). As defined in Section A.4, we

introduce πEL the orthogonal projection in L2(0,+∞) onto Span EL.
For any finite subset L of Λ, we see by (IV.28) that the Gram matrix GL of the family EL in L2(0,+∞) is just the

Cauchy matrix

GL
def
=

(
1

λ+ µ

)
λ∈L
µ∈L

,

whose determinant is explicitly computable (see Proposition A.4.14) as follows

∆L =

(∏
λ∈L

1

2λ

) ∏
λ,µ∈L
λ<µ

(
λ− µ
λ+ µ

)2

.
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By usual results on Gram determinants (see Proposition A.4.9) we have that for any σ ∈ Λ and any finite L ⊂ Λ with
σ 6∈ L,

δ(e[σ], EL)2 =
∆σ∪L
∆L

,

and we finally obtain the explicit formula

δ(e[σ], EL)2 =
1

2σ

∏
µ∈L

(
σ − µ
σ + µ

)2

,

that can be written as follows using the Blaschke product WL, introduced in the Definition and Proposition IV.1.13,

δ(e[σ], EL) =
1√
2σ
|WL(σ)| . (IV.29)

A priori, this formula is only valid for a finite subset L of Λ. However, by Lemma A.4.7 we know that

δ(σ, EΛ\{σ}) = lim
n→∞

δ(σ, EΛn\{σ}),

where, for instance, we have chosen Λn
def
= Λ∩ [0, n]. By (IV.29) and the uniform convergence property of the infinite

product we get

δ(σ, EΛ\{σ}) =
1√
2σ

lim
n→∞

∣∣WΛn\{σ}(σ)
∣∣ =

1

2σ

∣∣WΛ\{σ}(σ)
∣∣ > 0.

Since this is true for any σ ∈ Λ, we deduce by Proposition A.4.12 that there exists a family (qσ,∞)σ∈Λ in L2(0,+∞)
which is biorthogonal to EΛ, and it satisfies

‖qσ,∞‖L2(0,+∞) =
1

δ(σ, EΛ\{σ})
=
√

2σ

∣∣∣∣ 1

WΛ\{σ}(σ)

∣∣∣∣ .
The proof of Theorem IV.1.8 is thus complete thanks to the estimate given in Proposition IV.1.14, with p = 1 in the
present case.

IV.1.2.3 Biorthogonal family on (0, T ). Proof of Theorem IV.1.9

Let us introduce the linear space spanned by all the exponential functions corresponding to Λ

EΛ
def
= Span(EΛ),

and the closures of this space in L2(0,∞) and L2(0, T ), T > 0, respectively

FΛ,∞
def
= EΛ

L2(0,∞) , FΛ,T
def
= EΛ

L2(0,T ) , ∀T > 0.

Restriction operator. For a given T > 0 we define ΓΛ,T to be the restriction operator

ΓΛ,T : f ∈ FΛ,∞ 7→ f|[0,T ] ∈ FΛ,T ,

which is of course linear, continuous and onto. We shall now prove that this operator is invertible. More precisely we
have:

Proposition IV.1.17
Assume that Λ satisfies (IV.19) and (IV.20) and let R be a remainder function for Λ.
For any T > 0, there exists a CR,ρ,T > 0, depending only on T , R and ρ, such that

‖f‖L2(0,+∞) ≤ CR,ρ,T ‖ΓΛ,T f‖L2(0,T ), ∀f ∈ FΛ,∞. (IV.30)
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Proof :
By density, is is enough to prove (IV.30) for f ∈ EΛ. We will use a contradiction argument.
Let us fix a T > 0 and assume that this inequality is false: then there exists a sequence (Λn)n of subsets of

(0,+∞) each of them satisfying the summability condition (IV.19) with remainder function R, the gap condition
(IV.20), and a sequence of functions fn ∈ EΛn such that

‖fn‖L2(0,+∞) = 1, and ‖ΓΛn,T fn‖L2(0,T ) ≤ 1/n.

Each fn can be written
fn(t) =

∑
λ∈Λn

anλet[λ], (IV.31)

where anλ 6= 0 only for finitely many values of λ. From Theorem IV.1.8, we know that, for each n there exists a
biorthogonal family (qnλ,∞)λ∈Λn to EΛn in L2(0,∞) that satisfies

‖qnλ,∞‖L2(0,+∞) ≤ eε(λ)λ, ∀λ ∈ Λn,

where ε is a non increasing function tending to 0 at infinity which does depend on n since all the Λn share the same
gap ρ and the same remainder function R.

Taking the inner product of (IV.31) by some qλ,∞ and using the biorthogonality property, we have, for any n and
any λ ∈ Λn

anλ = (fn, q
n
λ,∞)L2(0,∞).

From the Cauchy-Schwarz inequality and the bounds above, we deduce that

|anλ| ≤ eε(λ)λ, ∀λ ∈ Λn, ∀n ≥ 1.

Let us now introduce the holomorphic extension of fn

fn(z)
def
=
∑
λ∈Λn

anλez[λ], ∀z ∈ C.

By the estimate of anλ above, we deduce

|fn(z)| ≤
∑
λ∈Λn

eε(λ)λe−λRe z =
∑
λ∈Λn

e−λ(Re z−ε(λ)). (IV.32)

Using (A.15), we get that the sequence (fn)n is bounded on every half-plane C+
η = {z ∈ C,Re z > η}, with η > 0.

By Montel’s theorem, we deduce that (fn)n converges locally uniformly in C+ towards an holomorphic function f .
By construction of (fn)n we also have ‖ΓΛn,T fn‖L2(0,T ) → 0 when n→∞ which implies that f = 0 on (0, T ).

Since f is holomophic in C+, we deduce by the isolated zeros principle that f = 0 everywhere in C+.
As a consequence, for any S > T , we have∫ S

0
|fn(t)|2 dt −−−→

n→∞

∫ S

0
|f(t)|2 dt = 0.

We choose now

S
def
= 2ε

(
1

R(0)

)
.

By (A.14) and since ε is non increasing, we have

ε(λ) ≤ S

2
, ∀λ ∈ Λn,∀n ≥ 1.

Therefore, with this choice of S, we deduce from (IV.32) that, for any t > S and any n ≥ 1,

|fn(t)| ≤
∑
λ∈Λn

e−λt/2,
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and thus, using (A.15), we get ∫ +∞

S
|fn(t)| dt ≤

∑
λ∈Λn

2

λ
e−λS/2

≤ 2R(0)
∑
λ∈Λn

e−λS/2

≤ 4(R(0))2

S
.

It follows that ∫ +∞

S
|fn(t)| dt −−−−→

S→∞
0,

uniformly in n. Since (fn)n is uniformly bounded on [S,+∞[ this implies∫ +∞

S
|fn(t)|2 dt ≤ C

∫ +∞

S
|fn(t)| dt −−−−→

S→∞
0,

uniformly in n. All in all, we have finally proved that ‖fn‖L2(0,+∞) → 0 which is a contradiction with the initial
assumption that ‖fn‖L2(0,+∞) = 1. The claim is proved.

Conclusion. For any λ ∈ Λ, we set
qλ,T

def
= (Γ−1

Λ,T )∗qλ,∞, (IV.33)

where (qλ,∞)λ∈Λ is the biorthogonal family to EΛ in L2(0,+∞) given by Theorem IV.1.8. Notice that, by construc-
tion, we have qλ,∞ ∈ FΛ,∞, so that formula (IV.33) makes sense.

We can now check that this family (qλ,T )λ∈Λ satisfies the required properties

• For any λ, µ ∈ Λ, we have

(qλ,T , e[µ])L2(0,T ) = ((Γ−1
Λ,T )∗qλ,∞,ΓΛ,T e[µ])L2(0,T ) = (qλ,∞, (ΓΛ,T )−1ΓΛ,T e[µ])L2(0,+∞) = δλ,µ.

• For any λ ∈ Λ, we can use Proposition IV.1.18 to get

‖qλ,T ‖L2(0,T ) ≤ ‖(Γ−1
Λ,T )∗‖‖qλ,∞‖L2(0,+∞) = ‖Γ−1

Λ,T ‖‖qλ,∞‖L2(0,+∞) ≤ CR,ρ,T ‖qλ,∞‖L2(0,+∞),

and thus, the bounds on (qλ,∞)λ∈Λ are transferred to (qλ,T )λ∈Λ with the additional constant CR,ρ,T in front of
the exponential. The claim is proved.

IV.1.2.4 Sharper estimates of the biorthogonal family on (0, T ).

In the case where we assume a suitable asymptotic behavior on the counting function of Λ, we can obtain an explicit
estimate of the norm of the restriction operator RT,Λ as a function of T and then an explicit estimate of the norm of
the biorthogonal family with respect to T and λ. In section IV.1.2.5 we will give, as an application, an estimate of the
control cost for our parabolic PDE as a function of the control time.

More precisely, let us assume that, in addition to the gap condition (IV.20), the counting function N associated
with Λ satisfies (IV.21) for some N̄ and some α ∈ (0, 1). This implies, of course the condition (IV.19). All the
constants Ci in the statements and proofs of this section will only depend on the parameters N̄ and α.

The remainder of this section will be devoted to the proof of the following result which is a refinement of Propo-
sition IV.1.17.

Theorem IV.1.18
Under the above assumptions, there exists C1 > 0 such that

‖f‖L2(0,+∞) ≤ C1e
C1T

− α
1−α ‖ΓΛ,T f‖L2(0,T ), ∀f ∈ FΛ,∞.
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The proof makes use of real and complex analysis tools. Our first goal will be to construct an entire function
satisfying the following properties.

Proposition IV.1.19
For any τ > 0, there exists an entire function GΛ,τ satisfying:

1. GΛ,T is of exponential type τ ,

2. GΛ,T (0) = 1,

3. GΛ,T (iλ) = 0 for any λ ∈ Λ,

4. GΛ,T is square integrable on the real axis and satisfies

‖GΛ,T ‖L2(R) ≤ C2e
C2τ

− α
1−α

.

Proof :
This function will be found as the product of two functions:

- an entire function FΛ, depending only on Λ, that cancels on iΛ but which does not satisfy the expected estimates.

- a mutiplier function Mτ depending only on τ, α and N̄ () that will let us produce a suitable bound on GΛ,T .

• Step 1: An infinite product cancelling on iΛ.

Let us define

FΛ(z)
def
=
∏
λ∈Λ

(
1 +

iz

λ

)
, z ∈ C,

which is well-defined and holomorphic on C since the series
∑ 1

λ is convergent.

Lemma IV.1.20
The following estimate holds

|FΛ(z)| ≤ eC3|z|α ,

with
C3

def
= N̄

∫ ∞
0

dr

(1 + r)r1−α .

Proof :
We will estimate the logarithm of |FΛ(z)| as follows

log |FΛ(z)| ≤
∑
λ∈Λ

log

(
1 +
|z|
λ

)
.

Using the summability formulas in Proposition A.6.18, we get

log |FΛ(z)| ≤
∫ +∞

0

|z|
r(|z|+ r)

N(r) dr

=

∫ +∞

0

1

r(1 + r)
N(r|z|) dr

≤ N̄ |z|α
∫ +∞

0

rα

r(1 + r)
dr

cbna F. BOYER - FEBRUARY 7, 2020



IV.1. Further spectral properties and applications 63

• Step 2 : A suitable multiplier.

The function FΛ constructed above is clearly not square integrable on the real line. We will thus now construct
a multiplier function Mτ , depending only on τ and of the parameters α, N̄ of the counting function N , whose
role is to make the product FΛMτ square integrable on the real line, still controlling its exponential type.

To this end, we set
C4

def
= 4αC3,

and we consider a τ > 0 such that

τ <
C

1
α
4

1− α. (IV.34)

Let L ⊂ (0,+∞) be the following family

L
def
=

{
r0 +

(
n

C4

) 1
α

, n ≥ 1

}
,

with

r0
def
=

(
(1− α)τ

C4

)− 1
1−α
− C−

1
α

4 .

The assumption (IV.34) implies that r0 > 0 and that

inf L =

(
(1− α)τ

C4

)− 1
1−α

. (IV.35)

It is very easy to prove that the counting function NL associated with L satisfies

C4(r − r0)α − 1 ≤ NL(r) ≤ C4r
α, ∀r ≥ 0,

and of course
NL(r) = 0, r ≤ inf L.

Lemma IV.1.21
We have the property ∑

l∈L

1

l
≤ τ.

Proof :

We apply the summation formulas of Proposition A.6.18∑
l∈L

1

l
=

∫ ∞
0

1

r2
NL(r) dr

=

∫ ∞
inf L

1

r2
NL(r) dr

≤ C4

∫ ∞
inf L

1

r2−α dr

=
C4

1− α(inf L)α−1

= τ.
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We can now introduce the following multiplier

Mτ (z)
def
=
∏
l∈L

sin(z/l)

z/l
.

Lemma IV.1.22

– There exists C5 > 0 such that
|Mτ (z)| ≤ C5e

τ |z|, ∀z ∈ C.

– There exists C6 > 0 such that

|Mτ (x)| ≤ e−
C4
2α
|x|α+C6τ

− α
1−α

, ∀x ∈ R.

Proof :

– We note that, for any complex number z, we have∣∣∣∣sin zz
∣∣∣∣ =

∣∣∣∣∣∣
∑
k≥0

(−1)k
z2k

(2k + 1)!

∣∣∣∣∣∣ ≤
∑
k≥0

|z|2k
(2k + 1)!

≤
∑
k≥0

|z|2k
(2k)!

≤ e|z|.

Thus, we clearly have
|Mτ (z)| ≤ e(

∑
l∈L

1
l )|z| ≤ eτ |z|,

by Lemma IV.1.21.
– We simply write for any x ≥ 0

|Mτ (x)| ≤
∏
l∈L

∣∣∣∣sin(x/l)

x/l

∣∣∣∣ ,
and we use that the sinc function is less than 1 to obtain

|Mτ (x)| ≤
∏
l∈L
l≥x

l

x
.

Taking the logarithm, it follows

log |Mτ (x)| ≤
∑
l∈L
l≥x

log

(
l

x

)

= −
∫ x

0

NL(r)

r
dr

= −
∫ x

inf L

NL(r)

r
dr

≤
∫ x

inf L

1− C4(r − r0)α

r
dr

= log(x/ inf L)− C4

∫ x

inf L

(
1

(r − r0)1−α −
r0

r(r − r0)1−α

)
dr

≤ log(x/ inf L)− C4

α

(
(x− r0)α − (inf L− r0)α

)
+ C4

∫ ∞
r0

r0

r(r − r0)1−α dr

≤ log(x/ inf L)− C4

α

(
(x− r0)α − (inf L− r0)α

)
+ C4r

α
0

∫ ∞
1

1

r(r − 1)1−α dr.
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Using that (inf L− r0)α = 1
C4

, the sublinearity of the function r 7→ rα and (IV.35), we deduce that

log |Mτ (x)| ≤ log x− C4

α
xα +

1

1− α

(
log

1− α
C4

+ log τ

)
+

1

α
+
C4

α
rα0 + C4r

α
0

∫ ∞
1

1

r(r − 1)1−α dr.

Since r0 ≤ inf L and using (IV.35), we obtain that for some C7 > 0 (depending only on α, and N̄ ), we
have

log |Mτ (x)| ≤ log x− C4

α
xα +

log τ

1− α + C7

(
1 + τ−

α
1−α
)
.

The claim comes the comparison between the logarithm and the power functions x 7→ xα and τ 7→ τ
α

1−α .

• Step 3 : The final construction.

We can now consider the product function

GΛ,τ (z)
def
= FΛ(z)Mτ (z), ∀z ∈ C.

Using the above estimates on FΛ andMτ , we know thatGΛ,τ is entire, of exponential type τ , and that it cancels
at each z = iλ, λ ∈ Λ and finally satisfies GΛ,τ (0) = 1.

Moreover, for any x ∈ R, we have

|GΛ,τ (x)| ≤ e−C3|x|α+C6τ
− α

1−α
,

so that, for some C2 > 0 we have and so ‖GΛ,τ‖L2 ≤ C2e
C2τ

− α
1−α

.

Estimates on sums of real exponentials and on generalized Müntz polynomials.

Proposition IV.1.23
There exists C8 > 0, such that for any τ > 0 and any function f in EΛ∪{0} = Span(e[0], e[λ], λ ∈ Λ) that
we write

f = a0 +
∑
λ∈Λ

aλe[λ],

we have the estimate
lim

t→+∞
|f(t)| = |a0| ≤ C8e

C8τ
− α

1−α ‖a‖L2(0,2τ).

Proof :
Applying the Paley-Wiener theorem to the function GΛ,T built in Proposition IV.1.19, we get the existence of a

function gΛ,τ ∈ L2(R) such that

GΛ,τ (z) =

∫ τ

−τ
gΛ,τ (t)eitz dt,

and

‖gΛ,τ‖L2(R) = ‖GΛ,τ‖L2(R) ≤ C2e
C2τ

− α
1−α

.
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We compute the following integral∫ τ

−τ
f(t+ τ)gΛ,τ (t) dt = f0

∫ τ

−τ
gΛ,τ (t) dt+

∑
λ∈Λ

fλe
−λτ

∫ τ

−τ
e−λtgΛ,τ (t) dt

= f0GΛ,τ (0) +
∑
λ∈Λ

fλe
−λτGΛ,τ (iλ)

= f0,

by using the properties of GΛ,τ . The conclusion follows from the Cauchy-Schwarz inequality and the estimate of
‖gΛ,τ‖L2(R).

We recall from Appendix A.7 that the set of Müntz polynomial functions M(Λ ∪ {0}) is the set of functions
defined as

p(x) = p0 +
∑
λ∈Λ

pλx
λ, x ∈ [0,+∞),

where only a finite number of coefficients pλ are non zero.

Proposition IV.1.24
There exists C9 > 0 such that for any τ satisfying (IV.34) and τ < 1 we have

|p(0)| ≤ C9e
C9τ

− α
1−α ‖p‖L∞(1−τ,1), ∀p ∈M(Λ ∪ {0}).

Proof :
We set

f(t)
def
= p(e−t), ∀t > 0.

By construction, we have f ∈ EΛ∪{0} so that we can apply Proposition IV.1.23. Since p(0) = p0 we get

|p(0)| ≤ C8e
C8τ

− α
1−α ‖f‖L2(0,2τ).

Since τ < 1, we can bound the L2 norm by the L∞ norm

|p(0)| ≤ C8e
C8τ

− α
1−α ‖f‖L∞(0,2τ)

≤ C8e
C8τ

− α
1−α ‖p‖L∞(e−2τ ,1).

Since e−2τ ≥ 1− 2τ , we finally get

|p(0)| ≤ C8e
C8τ

− α
1−α ‖p‖L∞(1−2τ,1),

and the claim is proved by changing τ in τ/2 and adapting the constant accordingly.

Theorem IV.1.25
Let s > 0 and A be a closed subset of [0, 1] whose Lebesgue measure is at least s. Under the same
assumptions as above, we have

‖p‖L∞(0,inf A) ≤ C9e
C9s
− α

1−α ‖p‖L∞(A), ∀p ∈M(Λ ∪ {0}).

Proof :
Let L0 ⊂ Λ ∪ {0} be the finite subset corresponding to the non zero coefficients of p in the basis of M(Λ). We

define the interval Is = [1− s, 1].
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Let TL0,Is be the generalized Tchebychev polynomial corresponding to L0 and to the set Is as defined in Appendix
A.7.

We use Theorem A.7.31 with I = Is (since |A| ≥ s = |Is| and supA ≤ 1 = sup Is) and we deduce that

‖p‖L∞(0,inf A) ≤ |TL0,Is(0)| ‖p‖L∞(A).

Applying Proposition IV.1.24 to TL0,Is (and τ replaced by s) we get

|TL0,Is(0)| ≤ C9e
C9s
− α

1−α
,

and the claim is proved.
We can now move to a similar L2 estimate.

Theorem IV.1.26
There exists C10 > 0 such that for any 0 < s < 1, we have

‖p‖L2(0,1) ≤ C10e
C10s

− α
1−α ‖p‖L2(1−s,1), ∀p ∈M(Λ ∪ {0}).

Proof :
For any s > 0 and p ∈M(Λ ∪ {0}), we introduce the compact set

As =

{
x ∈ [1− s, 1], |p(x)| ≤

√
2

s
‖p‖L2(1−s,1)

}
,

and
Bs = [1− s, 1] \As.

Integrating |p|2 on Bs we get

‖p‖2L2(1−s,1) ≥
∫
Bs

|p|2 ≥ 2

s
‖p‖2L2(1−s,1)|Bs|,

from which we deduce that
|Bs| ≤ s/2,

and consequently
|As| ≥ s/2.

We apply Theorem IV.1.25 to this set As to get

‖p‖L∞(0,1−s) ≤ C9e
C9s
− α

1−α ‖p‖L∞(As) ≤ C9e
CC9s

− α
1−α

√
2

s
‖p‖L2(1−s,1),

and consequently

‖p‖L2(0,1−s) ≤ C9e
C9s
− α

1−α

√
2

s
‖p‖L2(1−s,1),

and finally

‖p‖2L2(0,1) ≤ C9

(
1 + e2C9s

− α
1−α 2

s

)
‖p‖2L2(1−s,1).

The claim is proved.
We can now come back to our original problem and prove the expected result.

Proof (of Theorem IV.1.18):
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We set λ0
def
= min

(
1

R(0)
, 1

)
. Let f =

∑
λ∈Λ aλe[λ] ∈ EΛ and let 0 ≤ t̃ ≤ +∞. By using straighforward

changes of variable we get ∫ t̃

0
|f(t)|2 dt =

∫ t̃

0

∣∣∣∣∣∑
λ∈Λ

aλe
−λt

∣∣∣∣∣
2

dt

=

∫ t̃

0

∣∣∣∣∣∑
λ∈Λ

aλe
−(λ−λ0/2)t

∣∣∣∣∣
2

e−λ0t dt

=
1

λ0

∫ λ0 t̃

0

∣∣∣∣∣∑
λ∈Λ

aλe
−λ−λ0/2

λ0
t

∣∣∣∣∣
2

e−t dt

=

∫ 1

e−λ0 t̃

∣∣∣∣∣∑
λ∈Λ

aλx
λ−λ0/2
λ0

∣∣∣∣∣
2

dx.

(IV.36)

Let us define a new family Λ̃ as follows

Λ̃
def
=

{
λ− λ0/2

λ0
, λ ∈ Λ

}
⊂ (0,+∞).

By (A.14), we see that inf Λ ≥ λ0, and thus we have

inf Λ̃ =
(inf Λ)− λ0/2

λ0
≥ 1

2
.

In particular, the counting function Ñ of this new family satisfies

Ñ(r) = 0, ∀r < 1

2
,

and, moreover

Ñ(r) = N(λ0/2 + λ0r) ≤ N(2λ0r) ≤ N(2r) ≤ N̄2αrα, ∀r ≥ 1

2
,

since λ0 ≤ 1. Therefore, Ñ satisfies the same assumption as (IV.21) with N̄ changed into N̄2α.

We then apply Theorem IV.1.26 to q(x)
def
=
∑

λ∈Λ pλx

(
λ
λ0
− 1

2

)
∈ M(Λ̃), that we reformulate by using formula

(IV.36) with t̃ = +∞ and t̃ = − log(1− s)/λ0. It follows

∫ +∞

0
|f(t)|2 dt ≤ C10e

C10s
− α

1−α
∫ − log(1−s)

λ0

0
|f(t)|2 dt.

Since − log(1− s) ≤ 2s for any s ∈ (0, 1/2), we deduce that

∫ +∞

0
|f(t)|2 dt ≤ C10e

C10s
− α

1−α
∫ 2s

λ0

0
|f(t)|2 dt,

from which, for any T < 1
λ0

, we can set s = Tλ0/2 and obtain

∫ +∞

0
|f(t)|2 dt ≤ C10e

C10

(
Tλ0

2

)− α
1−α

∫ T

0
|f(t)|2 dt,

and the proof is complete for T ≤ 1
λ0

. For T > 1
λ0

, the result is a straightforward consequence of the previous case.
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IV.1.2.5 Control cost estimate.

By using the material of the previous section, we can now obtain an estimate of the control cost for the heat equation
(both in the distributed and boundary control cases).

Theorem IV.1.27
The null-control v obtained in Theorem IV.1.11 (resp. in IV.1.12) satisfies the estimate

‖v‖L2(0,T ) ≤ Ce
C
T ‖y0‖L2(Ω),(

resp. ‖v‖L2((0,T )×ω) ≤ Ce
C
T ‖y0‖L2(Ω)

)
,

where C does not depend on T and y0.

Proof :
We use here the precised Weyl’s law for the elliptic operatorA defined in (IV.1) that says that the counting function

associated with Λ = Sp(A) satisfies

|N(r)− N̄√r| ≤ Ñ ,

where N̄ depends only on the coefficients appearing in the operator A.
With this information at hand and the sharp estimates given by Theorems IV.1.10 and by Theorem IV.1.18, we

can conclude that the biorthogonal family (qλ,T )λ∈Λ associated to the spectrum of A satisfy the estimate

‖qλ,T ‖L2(0,T ) ≤ Ce
C
T eC

√
λ, ∀λ ∈ Λ,

where C does not depend on T .
Coming back, for instance, to the proof of Theorem IV.1.11, we find that for any µ ∈ Λ, the estimate (IV.23) now

leads to

‖uµ‖L2(0,T ) ≤ C
‖y0‖√
µ
e
C
T e−µT eC

√
µ.

Young’s inequality gives

C
√
µ ≤ µT

2
+
C2

2T
,

so that we finally obtain

‖uµ‖L2(0,T ) ≤ C ′
‖y0‖√
µ
e
C′
T e−µT/2,

for a constant C ′ that does not depend on T . The end of the proof is now the same and the cost of the control is
obtained by summing all those estimates that makes appear the expected exponential term depending on T .

The argument is exactly the same in the case of the distributed control.

IV.1.3 The multi-D case

This will be the opportunity to encounter our first Carleman estimate. Those are weighted a priori estimate on
solutions of PDEs that imply many important qualitative properties for those PDEs such as unique continuation,
spectral estimates, and so on. We refer for instance to the references [LRL11] and [Cor07].
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We first state the following two estimates without proof. We shall actually give the proof of a slightly more general
estimate in Section IV.3.

Theorem IV.1.28 (Boundary Carleman estimate)

Let Γ be a non empty open subset of ∂Ω. There exists a function ϕ ∈ C2(Ω), a C > 0 and s0 > 0 such
that, for any u ∈ H2(Ω) ∩H1

0 (Ω) and any s ≥ s0, we have

s3‖esϕu‖2L2(Ω) + s‖esϕ∇u‖2L2(Ω) ≤ C
(
‖esϕ∆u‖2L2(Ω) + s‖esϕ∂nu‖2L2(Γ)

)
. (IV.37)

Theorem IV.1.29 (Interior Carleman estimate)

Let ω be a non empty open subset of Ω. There exists a function ϕ ∈ C2(Ω), a C > 0 and a s0 > 0 such
that, for any u ∈ H2(Ω) ∩H1

0 (Ω) and any s ≥ s0, we have

s3‖esϕu‖2L2(Ω) + s‖esϕ∇u‖2L2(Ω) ≤ C
(
‖esϕ∆u‖2L2(Ω) + s3‖esϕu‖2L2(ω)

)
. (IV.38)

Proposition IV.1.30
Let ω ⊂ Ω and Γ ⊂ ∂Ω as before, then the eigenfunctions of A satisfy

‖φ‖L2(ω) 6= 0, and ‖∂nφ‖L2(Γ) 6= 0, ∀φ ∈ Ker (A− λ) \ {0}, ∀λ ∈ Λ.

Proof :
We start from the equation satisfied by φ under the following form

−γ(∆φ)− 2∇φ · ∇γ − (∆γ)φ+ αφ = λφ,

which gives

∆φ =
α− λ
γ

φ− 2
∇φ · ∇γ

γ
− ∆γ

γ
φ.

We deduce the pointwise inequality

|∆φ| ≤ Cα,γ(1 + |λ|)|φ|+ Cγ |∇φ|.

• Assume first that φ = 0 on ω. We can apply (IV.38) in which the observation term cancels and we get

s3‖esϕφ‖2L2(Ω) + s‖esϕ∇φ‖2L2(Ω) ≤ C(1 + λ2)‖esϕφ‖2L2(Ω) + C‖esϕ∇φ‖2L2(Ω).

Taking s large enough (depending on k) we can conclude that

s3‖esϕφ‖2L2(Ω) + s‖esϕ∇φ‖2L2(Ω) ≤ 0,

which implies φ = 0 and thus a contradiction.

• If we assume that ∂nφ = 0 on Γ, we apply the same reasoning with the other Carleman estimate.
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Remark IV.1.31

The reasoning above shows that for s = C1λ
2/3 we have

s3‖esϕφ‖2L2(Ω) + s‖esϕ∇φ‖2L2(Ω) ≤ Cs3‖esϕφ‖2L2(ω),

and thus
C3

1s
3e2s inf ϕ‖φ‖2L2(Ω) ≤ Cs3e2s supϕ‖φ‖2L2(ω).

Since ‖φ‖L2(Ω) = 1, we deduce

‖φ‖2L2(ω) ≥ Ce−C3s = Ce−C4λ2/3
.

Similarly, we can show
‖∂nφ‖2L2(Γ) ≥ Ce−Cλ

2/3
.

However, with the above elements, we have proved the approximate controllability properties for the heat equa-
tion. Indeed, using the Fattorini-Hautus theorem (Theorem III.3.7), we see that the claim of Proposition IV.1.30
exactly gives the following result.

Theorem IV.1.32
Under the above assumptions, both problems (IV.8) and (IV.9) are approximately controllable from any
initial data y0 ∈ L2(Ω) and at any time T > 0.

IV.2 The method of Lebeau and Robbiano

In order to deal with the null-controllability problem in dimension greater than 1, we will need a much stronger
spectral property for the eigenfunctions of A.

More precisely, we will prove the following spectral inequality (taken from [LRL11], see also [LR95]) that will
be crucial in our analysis.

Theorem IV.2.33 (Lebeau-Robbiano spectral inequality)
Let Ω as before and ω a non empty open subset of Ω. There exists a C > 0 depending only on α, γ, ω such
that: for any µ > 0 we have

‖φ‖L2(Ω) ≤ CeC
√
µ ‖φ‖L2(ω) , ∀φ ∈ Eµ,

where Eµ is defined in (IV.6).

Remark IV.2.34
The above spectral inequality (as well as the proof below of the controllability result) does not hold for the
boundary control problem. This is very easy to see, even in 1D for instance, that for any two eigenvalues
λ 6= µ, we can find a non trivial linear combination φ = aλφλ + aµφµ such that ∂xφ|x=0 = 0.

The above spectral inequality can be proved by means of another kind of global elliptic Carleman estimate that
will be proved in Section IV.3. We only give here the simplified version of this Carleman estimate that we need at that
point and proceed to the proof of the spectral inequality.
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Proposition IV.2.35
Let Ω and ω as before. Let T ∗ > 0 be given and we set Q = (0, T ∗)× Ω. There exists a positive function
ϕ ∈ C2(Q) such that∇xϕ(T ∗, .) = 0 and C, s0 > 0 such that:
For any s ≥ s0, and any function u ∈ C2(Q) satisfying u(0, .) = 0 and u = 0 on [0, T ]× ∂Ω, we have the
estimate

s3e2sϕ(T ∗)

∫
Ω
|u(T ∗, .)|2 ≤Cse2sϕ(T ∗)

∫
Ω
|∇xu(T ∗, .)|2 + Cs

∫
ω
|esϕ(0,.)∂τu(0, .)|2

+ 2‖esϕ(∂2
τu−Au)‖2L2(Q).

Proof (of Theorem IV.2.33):
Let us consider any element v ∈ Eµ, that we write

v =
∑
λ∈Λ
λ≤µ

vλ ∈ Eµ,

with vλ ∈ Ker (A− λ) for each λ. We define the function u : Q→ R as follows

u(τ, x) =
∑
λ∈Λ
λ≤µ

sinh(
√
λτ)√
λ

vλ(x).

This function is the unique solution of the following Cauchy problem for the elliptic augmented operator ∂2
τ − A,

indeed we have
u(0, .) = 0, ∂τu(0, .) = v, (∂2

τ −A)(u) = 0.

We can apply the above Carleman estimate to this particular function u and find

s3e2sϕ(T )

∫
Ω
|u(T ∗, .)|2 ≤ Cs

∫
ω
|esϕ(0,.)v|2 + Cse2sϕ(T )

∫
Ω
|∇xu(T ∗, .)|2. (IV.39)

Let us compute the norms at time T ∗:

• Since the vλ are pairwise orthogonal in L2(Ω), we simply have∫
Ω
|u(T ∗, .)|2 =

∑
λ∈Λ
λ≤µ

‖vλ‖2L2

λ
| sinh(

√
λT ∗)|2 ≥ 1

µ

∑
λ∈Λ
λ≤µ

‖vλ‖2L2 | sinh(
√
λT ∗)|2. (IV.40)

• For the gradient term, we first observe that∫
Ω
|∇xu(T ∗, .)|2 ≤ C

∫
Ω
γ|∇xu(T ∗, .)|2 = C〈Au(T, ∗), u(T ∗, .)〉L2(Ω) − C

∫
Ω
α|u(T ∗, .)|2

≤ C〈Au(T, ∗), u(T ∗, .)〉L2(Ω) + C

∫
Ω
|u(T ∗, .)|2.

Then we use that, for any λ, λ′, we have

〈Avλ, vλ′〉L2 = λ‖vλ‖2L2δλ,λ′ ,

to write
〈Au(T ∗, .), u(T ∗, .)〉 =

∑
λ∈Λ
λ≤µ

‖vλ‖2L2 | sinh(
√
λT ∗)|2.

Using (IV.40), we have finally proved that∫
Ω
|∇xu(T ∗, .)|2 ≤ C(1 + µ)

∫
Ω
|u(T ∗, .)|2. (IV.41)
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Using (IV.41) in (IV.39), we have finally obtained

s3e2sϕ(T )

∫
Ω
|u(T ∗, .)|2 ≤ Cs

∫
ω
|esϕ(0,.)v|2 + Cse2sϕ(T )(1 + µ)

∫
Ω
|u(T ∗, .)|2.

Since this inequality holds for any value of s, large enough, we see that we can choose s = C̃
√
µ for some C̃ in order

to absorb the last term by the left-hand side term of the inequality. It remains, for this particular value of s

µ3/2eC
√
µϕ(T )

∫
Ω
|u(T ∗, .)|2 ≤ C√µ

∫
ω
|eC
√
µϕ(0,.)v|2,

and then, changing the values of the constants if necessary, we get∫
Ω
|u(T ∗, .)|2 ≤ C

µ
eC
√
µ‖v‖2L2(ω).

To conclude, we use the inequality | sinh(t)/t| ≥ 1 for any t ∈ R, to write

∫
Ω
|u(T ∗, .)|2 =

∑
λ∈Λ
λ≤µ

‖vλ‖2L2

∣∣∣∣∣sinh(
√
λT ∗)√
λ

∣∣∣∣∣
2

≥ CT ∗
∑
λ∈Λ
λ≤µ

‖vλ‖2L2 = CT ∗‖v‖2L2 .

With this inequality at hand we can prove a partial observability inequality and a related partial distributed con-
trollability result. We recall that we assume that all the eigenvalues of A are positive.

Proposition IV.2.36
There exists a C > 0 such that for any time τ > 0 and any µ > 0, we have the following inequality

‖e−τAqT ‖2E ≤
CeC

√
µ

τ

∫ τ

0
‖e−(τ−s)AqT ‖2L2(ω) ds, ∀qT ∈ Eµ.

Note that the operator A is self-adjoint and thus the adjoint operator that we should have put in this inequality is
nothing but A∗ = A. Moreover, we also have B = B∗ = 1ω which explains the form of the right hand side.
Proof :

Since the space Eµ is stable by the operator A (it is built upon its eigenfunctions), we know that e−(τ−s)AqT
belongs toEµ as soon as qT ∈ Eµ. Therefore, we can apply the Lebeau-Robbiano spectral inequality to this particular
element of Eµ

‖e−(τ−s)AqT ‖2L2(Ω) ≤ CeC
√
µ‖e−(τ−s)AqT ‖2L2(ω).

By the dissipation estimate (IV.5), we find that

‖e−τAqT ‖2L2(Ω) ≤ CeC
√
µ‖e−(τ−s)AqT ‖2L2(ω),

(with λ1 possibly negative). We can now integrate this inequality with respect to s on (0, τ) to find

τ‖e−τAqT ‖2L2(Ω) ≤ CeC
√
µ

∫ τ

0
‖e−(τ−s)AqT ‖2L2(ω),

which gives the result.
For any µ > 0, and τ > 0, we consider the following finite dimensional control problem{

∂ty +Ay = Pµ(1ωv(t, x))

y(0) = y0,µ ∈ Eµ,
(IV.42)
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with v ∈ L2(0, τ ;Eµ). Since Eµ is stable by A, this problem can be recast in the ODE form

y′(t) +Aµy = Bµv,

by setting Aµ = A|Eµ and Bµ = Pµ(1ω.). The state space is E = Eµ and the control space is also U = Eµ with their
natural inner product.

We observe that
A∗µ = Aµ, and B∗µ = Bµ.

Corollary IV.2.37
For any µ > 0, τ > 0 and y0,µ ∈ Eµ, the partial control System (IV.42) is null-controllable at time τ and
more precisely, there exists control vµ ∈ L2(0, τ, Eµ) such that the solution satisfies y(τ) = 0 and such
that

‖vµ‖L2(0,τ ;Eµ) ≤ C
eC
√
µ

√
τ
‖y0,µ‖Eµ .

Proof :
We simply use the results we proved in the finite dimensional framework and in particular the second point of

Theorem II.7.25.

Proposition IV.2.38

For any µ > 0, τ > 0 and y0 ∈ E, there exists a control vµ ∈ L2(0, τ, L2(Ω)) for our original system
(IV.8) such that

Pµy(τ) = 0,

and

‖vµ‖L2(0,τ ;E) ≤ C
eC
√
µ

√
τ
‖y0‖E ,

‖y(τ)‖E ≤ C2e
C2
√
µ‖y0‖E .

Proof :
We take vµ to be the control for the partial control system obtained in Corollary IV.2.37 with the initial data

y0,µ = Pµy0. Let y be the solution of the full system associated with this control

∂ty +Ay = 1ωvµ, y(0) = y0.

We apply the projector Pµ (which commutes with A) to get

∂t(Pµy) +A(Pµy) = Pµ(1ωvµ), (Pµy)(0) = Pµy0.

This proves that Pµy is the (unique) solution of (IV.42), and by construction we have Pµy(τ) = 0. Moreover, since
Pµ is an orthogonal projection in E, we have

‖vµ‖L2(0,τ ;E) ≤ CeC
√
µ‖Pµy0‖E ≤ CeC

√
µ‖y0‖E .

Finally, we write the Duhamel formula

y(τ) = y0 +

∫ τ

0
e−(τ−s)ABvµ(s) ds,

and take the norm in E
‖y(τ)‖E ≤ ‖y0‖E +

∫ τ

0
‖e−(τ−s)ABvµ(s)‖E ds.
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We use now the dissipation estimate for A (IV.5) (with λ1 > 0 here) and the fact that B = 1ω is bounded with norm
1. It follows

‖y(τ)‖E ≤ ‖y0‖E + C

∫ τ

0
‖vµ(s)‖E ds ≤ ‖y0‖E + C

√
τ‖vµ‖L2(0,τ ;E),

and the conclusion follows by the estimate we got on the norm of vµ.

Corollary IV.2.39

For any µ > 0, 0 < τ < T and y0 ∈ E, there exists a control vµ ∈ L2(0, τ, L2(Ω)) such that

‖vµ‖L2(0,τ ;E) ≤ C
eC
√
µ

√
τ
‖y0‖E ,

‖y(τ)‖E ≤ C2e
C2
√
µ− τµ

2 ‖y0‖E .

Proof :
The idea is to use the previous proposition on the time interval (0, τ/2). This gives us a controlwµ ∈ L2(0, τ/2;E)

such that Pµy(τ/2) = 0 and

‖wµ‖L2(0,τ/2;E) ≤ C
eC
√
µ

√
τ
‖y0‖E ,

‖y(τ/2)‖E ≤ C2e
C2
√
µ‖y0‖E .

Now, on the second half of the time interval we do nothing in order to take advantage of the natural dissipation of the
system and to the fact that all frequencies less than µ have been killed at time τ/2. It means that the control we finally
consider is

vµ(t) =

{
wµ(t), for t ∈ (0, τ/2),

0, for t ∈ (τ/2, τ).

It is clear that vµ and wµ have the same L2-norm. Moreover, since vµ = 0 on (τ/2, τ), we have

y(τ) = e−
τ
2
Ay(τ/2),

and thus, since Pµy(τ/2) = 0, it follows by (IV.7)

‖y(τ)‖E ≤ e−
τ
2
µ‖y(τ/2)‖E ≤ C2e

C2
√
µ− τµ

2 ‖y0‖E .

Theorem IV.2.40 (Lebeau-Robbiano null-controllability theorem [LR95])
For any T > 0, the heat-like equation (IV.2), is null-controllable at time T .

Proof :
The idea is to split the time interval (0, T ) into small subintervals of size τj , j ≥ 1 with∑

j≥1

τj = T,

and to apply successively a partial control as in the previous corollary with a cut frequency µj that tends to infinity
when j →∞.

More precisely, we set

τj =
T

2j
, and µj = β(2j)2,

with β > 0 to be determined later.
Let Tj =

∑j
k=1 τk, for j ≥ 1.
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t

‖y(t)‖L2(Ω)

0

‖y0‖L2(Ω)•

T
•

Do
noth-
ing

τ2
2

and so
on ...

Control
low
freq.
≤ µ2

τ2
2

Do nothing

τ1
2

Control low
frequencies
≤ µ1

τ1
2

Figure IV.1: The Lebeau-Robbiano method

• During the time interval (0, τ1) = (0, T1), we apply a control v1 as given by Corollary IV.2.39 with µ = µ1, in
such a way that

‖v1‖L2(0,T1,E) ≤ C
eC
√
µ1

√
τ1
‖y0‖E ,

‖y(T1)‖E ≤ C2e
C2
√
µ1− τ1µ1

2 ‖y0‖E .

• During the time interval (τ1, τ1 + τ2) we apply a control v2 as given by Corollary IV.2.39 with µ = µ2, in such
a way that

‖v2‖L2(T1,T2;E) ≤ C
eC
√
µ2

√
τ2
‖y(T1)‖E ,

‖y(T2)‖E ≤ C2
2e
C2(
√
µ1+
√
µ2)− τ1µ1

2
− τ2µ2

2 ‖y0‖E .

• And so on, by induction we build a control vj on the time interval (Tj−1, TJ) such that

‖vj‖L2(Tj−1,Tj ;E) ≤ C
eC
√
µj

√
τj
‖y(Tj−1)‖E ,

‖y(Tj)‖E ≤ Cj2eC2
∑j
k=1

√
µk− 1

2

∑j
k=1 τkµk‖y0‖E .

• By construction, we have

C2

j∑
k=1

√
µk −

1

2

j∑
k=1

τkµk = C2

√
β

j∑
k=1

2k − β

2
T

j∑
k=1

2k

= (C2

√
β − β

2T )(2j+1 − 1)

We are thus led to choose β large enough so that

β̃
def
=
β

2
T − C2

√
β > 0,

and we have obtained that for any j,

‖y(Tj)‖E ≤ C3C
j
2e
−β̃2j+1‖y0‖E .

• Going back to the estimate of the norm of vj , we have

‖vj‖L2(Tj−1,Tj ;E) ≤ C
eC
√
µj

√
τj
‖y(Tj−1)‖E

≤ CC3√
T

2j/2Cj−1
2 eC

√
β2j−β̃2j‖y0‖E .
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Wee that we can choose β even larger to ensure that

β̄
def
= β̃ − C

√
β > 0.

We finally got the estimate

‖vj‖L2(Tj−1,Tj ;E) ≤
CC3√
T

2j/2Cj−1
2 e−β̄2j‖y0‖E .

• All the previous estimates show that

∑
j≥1

‖vj‖2L2(Tj−1,Tj ;E) < +∞,

and in particular the function v that is obtained by gluing all together the (vj)j is an element of L2(0, T ;E).
The associated solution y of the PDE is continuous in time on [0, T ] with values in E and satisfies

‖y(Tj)‖ ≤ C3C
j
2e
−β̃2j+1‖y0‖E −−−→

j→∞
0.

This implies y(T ) = 0, since Tj → T as j →∞.

The claim is proved.

Remark IV.2.41
A careful inspection of the proof shows that one can take β of the form

β =
α

T 2
,

with α > 0 large enough independent of T . It follows that β̃ and β̄ will be proportional to 1/T and therefore
we can obtain the following estimate on the control cost

‖v‖L2(0,T ;E) ≤ Ce
C
T ‖y0‖E .

This exponential behavior of the cost in the limit T → 0 is actually optimal.

IV.3 Global elliptic Carleman estimates and applications

As we have seen below, the Carleman inequalities aim at giving global weighted estimates of a solution of a PDE
(here we shall specifically consider elliptic PDEs) as a function of source terms and of some partial information on
the solution itself either on a part of the boundary, or on a part of the domain. For a more complete discussion about
those kind of estimates (including some insights on the profound reasons why they are true) we refer for instance to
[LRL11, Erv17].
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IV.3.1 The basic computation

Let Ω be a Lipschitz domain of Rd and ϕ ∈ C2(Ω,R) be a smooth function to be determined later.

Proposition IV.3.42

For any u ∈ C2(Ω,R), and any s ≥ 0, we set v = esϕu. The following inequality holds

s3

∫
Ω

(
2(D2ϕ)(∇ϕ,∇ϕ)−∆ϕ|∇ϕ|2

)
|v|2 + s

∫
Ω

[
2(D2ϕ)(∇v,∇v) + ∆ϕ|∇v|2

]
− s3

∫
∂Ω
|∇ϕ|2∂nϕ|v|2 − s

∫
∂Ω
∂nϕ|∂nv|2

≤− 2s

∫
Ω
v∇v · ∇∆ϕ+ s2

∫
Ω
|∆ϕ|2|v|2

− s
∫
∂Ω
∂nϕ|∇‖v|2 − 2s

∫
∂Ω
∂nv(∇‖v · ∇‖ϕ) + 2s

∫
∂Ω

∆ϕv∂nv

+ ‖esϕ(∆u)‖2L2(Ω).

Proof :
We first write the following derivation formulas

∇esϕ = (s∇ϕ)esϕ,

∆esϕ = s2|∇ϕ|2esϕ + s(∆ϕ)esϕ.

Then we set f = ∆u and we compute

∇v = esϕ(∇u) + (∇esϕ)u = esϕ(∇u) + s∇ϕ(esϕu) = esϕ(∇u) + s(∇ϕ)v,

∆v = ∆(esϕu) = (∆esϕ)u+ 2(∇esϕ) · (∇u) + esϕ(∆u),

which gives

∆v = s2|∇ϕ|2v + s(∆ϕ)v + 2s(∇ϕ) · (∇v − sv(∇ϕ)) + esϕf,

and finally

∆v = −s2|∇ϕ|2v + s(∆ϕ)v + 2s∇ϕ · ∇v + esϕf. (IV.43)

We write this formula in the following form(
∆v + s2|∇ϕ|2v

)
︸ ︷︷ ︸

=M1v

+

(
− 2s∇ϕ · ∇v − 2s∆ϕv

)
︸ ︷︷ ︸

=M2v

= esϕf − s(∆ϕ)v.

We write

2(M1v,M2v)L2 ≤ ‖M1v‖2L2 + 2(M1v,M2v)L2 + ‖M2v‖2L2 = ‖M1v +M2v‖2L2(Ω)

= ‖esϕf − s(∆ϕ)v‖2L2 ≤ 2‖esϕf‖2L2 + 2s2‖(∆ϕ)v‖2L2 .

The two right-hand side terms are the ones we expect in the inequality. Let us now compute the inner product
(M1v,M2v)L2 . We denote by Iij the inner product of the term number i of M1v with the term number j of M2v.
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• Term I11 : We perform two integration by parts

I11 = −2s

∫
Ω

(∇ϕ · ∇v)∆v = −2s
∑
i

∫
Ω
∂iϕ∂iv∆v

= 2s
∑
i

∫
Ω
∂i∇ϕ · ∇v∂iv + 2s

∑
i

∫
Ω
∂iϕ∇∂iv · ∇v − 2s

∫
∂Ω

(∇ϕ · ∇v)∂nv

= 2s

∫
Ω
D2ϕ(∇v,∇v) + s

∑
i

∫
Ω
∂iϕ∂i

(
|∇v|2

)
− 2s

∫
∂Ω

(∇ϕ · ∇v)∂nv

= 2s

∫
Ω
D2ϕ(∇v,∇v)− s

∫
Ω

∆ϕ|∇v|2 + s

∫
∂Ω
∂nϕ|∇v|2 − 2s

∫
∂Ω

(∇ϕ · ∇v)∂nv.

• Term I12: We perform one integration by parts

I12 = −2s

∫
Ω

∆ϕ∆vv

= 2s

∫
Ω

(∆ϕ)|∇v|2 + 2s

∫
Ω

(∇∆ϕ · ∇v)v − 2s

∫
∂Ω

∆ϕv∂nv.

• Term I21 : We perform one integration by parts

I21 = −2s3

∫
Ω
|∇ϕ|2(∇ϕ · ∇v)v

= −s3

∫
Ω
|∇ϕ|2(∇ϕ · ∇)|v|2

= −s3

∫
Ω
|∇ϕ|2

(
div(|v|2∇ϕ)−∆ϕ|v|2

)
= s3

∫
Ω
∇
(
|∇ϕ|2

)
· ∇ϕ|v|2 − s3

∫
∂Ω
∂nϕ|∇ϕ|2|v|2 + s3

∫
Ω

(∆ϕ)|∇ϕ|2|v|2

= s3

∫
Ω

(
2D2ϕ.(∇ϕ,∇ϕ) + ∆ϕ|∇ϕ|2

)
|v|2 − s3

∫
∂Ω
∂nϕ|∇ϕ|2|v|2

• The term I22 is left unchanged

I22 = −2s3

∫
Ω

(∆ϕ)|∇ϕ|2|v|2.

Adding all the above terms and gathering all of them lead to the expected inequality. For the boundary terms, we
make use of the following formulas

|∇f |2 = |∂nf |2 + |∇‖f |2,
(∇f · ∇g) = ∂nf∂ng +∇‖f · ∇‖g.

If one wants to get some interesting information from the above huge inequality, we see that first two (volumic)
terms in the left-hand side needs to have the good sign, at least on some large enough part of the domain and/or the
boundary. More precisely, we would like that, for some β > 0 and some subsets K ⊂ Ω and Σ ⊂ ∂Ω, we have

2D2ϕ+ ∆ϕ is uniformly β-coercive on K, (IV.44)

2D2ϕ(∇ϕ,∇ϕ)−∆ϕ|∇ϕ|2 ≥ β|∇ϕ|2, on K, (IV.45)

|∇ϕ| ≥ β, on K, (IV.46)

∂nϕ ≤ −β, on Σ. (IV.47)

Let us point out that we cannot expect those assumptions to be valid all together with K = Ω and Σ = ∂Ω:
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• Imagine that assumption (IV.46) holds with K = Ω, then we know that ϕ has to achieve its maximum on the
boundary ∂Ω which proves that (IV.47) cannot hold for Σ = ∂Ω.

• Imagine that (IV.44) holds for K = Ω, then by taking the trace we deduce that

(d+ 2)∆ϕ ≥ dβ, in Ω,

and thus, by the Stokes formula, ∫
∂Ω
∂nϕ =

∫
Ω

∆ϕ ≥ d

d+ 2
β|Ω| > 0,

which prevents (IV.47) to be true with Σ = ∂Ω.

Therefore, we will need to relax our requirements on K and Σ and that will lead to the observation terms in the
final Carleman estimate.

More precisely, it is possible to build suitable weight functions as stated in the following result whose proof is
postponed to Section IV.3.4.

Lemma IV.3.43

1. Boundary observation : Let Γ ⊂ ∂Ω. There exists a β > 0 and a function ϕ satisfying (IV.44),
(IV.45) and (IV.46) with K = Ω and (IV.47) with Σ = ∂Ω \ Γ.

Moreover, we can choose ϕ that satisfies

∇‖ϕ = 0, on ∂Ω.

2. Interior observation : Let ω ⊂ Ω a non empty open subset of Ω. There exists a β > 0 and a function
ϕ satisfying (IV.44), (IV.45) and (IV.46) with K = Ω \ ω, and (IV.47) with Σ = ∂Ω.

Moreover, we can choose ϕ that satisfies

∇‖ϕ = 0, on ∂Ω.

IV.3.2 Proof of the boundary Carleman estimate

We may now prove Theorem IV.1.28. For the moment we shall not use the fact that v satisfies any boundary condition
in order to identify the precise point where this property will be used.

We take a function ϕ associated with Γ, as in the first point of Lemma IV.3.43.
We apply the inequality of Proposition IV.3.42 with this particular function ϕ using its properties to get

s3β3

∫
Ω
|v|2 + sβ

∫
Ω
|∇v|2 + s3β3

∫
∂Ω\Γ

|v|2 + sβ

∫
∂Ω\Γ

|∂nv|2

≤ ‖∇ϕ‖3∞s3

∫
Γ
|v|2 + s‖∇ϕ‖∞

∫
Γ
|∂nv|2 + s‖∇ϕ‖∞

∫
∂Ω
|∇‖v|2 + 2s‖∆ϕ‖L∞

∫
∂Ω
|v||∂nv|

+ 2‖esϕ(∆u)‖2L2(Ω) − 2s

∫
Ω
v∇v · ∇∆ϕ+ 2s2

∫
Ω
|∆ϕ|2|v|2.

Adding the terms s3β3
∫

Γ |v|2 and sβ
∫

Γ |∂nv|2 on both sides of the inequality gives

s3β3

∫
Ω
|v|2 + sβ

∫
Ω
|∇v|2 + s3β3

∫
∂Ω
|v|2 + sβ

∫
∂Ω
|∂nv|2

≤ 2‖∇ϕ‖3∞s3

∫
Γ
|v|2 + 2s‖∇ϕ‖∞

∫
Γ
|∂nv|2 + s‖∇ϕ‖∞

∫
∂Ω
|∇‖v|2 + 2s‖∆ϕ‖L∞

∫
∂Ω
|v||∂nv|

+ 2‖esϕ(∆u)‖2L2(Ω) − 2s

∫
Ω
v∇v · ∇∆ϕ+ 2s2

∫
Ω
|∆ϕ|2|v|2.
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We see that the left-hand side terms give global information on v and ∇v in Ω and on v and ∂nv on ∂Ω.
The last two terms can be bounded as follows

−2s

∫
Ω
v∇v · ∇∆ϕ+ 2s2

∫
Ω
|∆ϕ|2|v|2 ≤ Cϕs‖v‖L2‖∇v‖L2 + Cϕs

2‖v‖L2

≤ Cϕs2‖v‖2L2 + Cϕ‖∇v‖2L2 .

We observe that the powers of s in those terms are less than the powers of s on similar terms in the left-hand side of
the inequality. Therefore, there exists a s0 > 0 depending only on ϕ, such that those terms can be absorbed in the
inequality. We get

s3β3

∫
Ω
|v|2 + sβ

∫
Ω
|∇v|2 + s3β3

∫
∂Ω
|v|2 + sβ

∫
∂Ω
|∂nv|2

≤ Cϕs3

∫
Γ
|v|2 + Cϕs

∫
Γ
|∂nv|2 + Cϕs

∫
∂Ω
|∇‖v|2 + Cϕs

∫
∂Ω
|v||∂nv|+ 2‖esϕ(∆u)‖2L2(Ω).

The fourth term in the right-hand side can be estimated by using the Cauchy-Schwarz and Young inequalities as
follows

Cϕs

∫
∂Ω
|v||∂nv| ≤ C̃ϕs2

∫
∂Ω
|v|2 + C̃ϕ

∫
∂Ω
|∂nv|2.

It follows (thanks to the low powers in s of those terms) that, for s large enough, we can absorb those contributions
by the left-hand side terms in our inequality.

It remains the following inequality

s3β3

∫
Ω
|v|2 + sβ

∫
Ω
|∇v|2 + s3β3

∫
∂Ω
|v|2 + sβ

∫
∂Ω
|∂nv|2

≤ Cϕs3

∫
Γ
|v|2 + Cϕs

∫
Γ
|∂nv|2 + Cϕs

∫
∂Ω
|∇‖v|2 + 2‖esϕ(∆u)‖2L2(Ω),

which is valid for any function u without any assumption on the boundary conditions.
The only term which is not an observation term is the third one in the right-hand side. At that point, we need to

consider the boundary condition for u. Indeed, if we assume that u = 0 (or equivalently v = 0) on ∂Ω \Γ, we deduce
that∇‖v = 0 on ∂Ω \ Γ and thus we have

s3β3

∫
Ω
|v|2 + sβ

∫
Ω
|∇v|2 + sβ

∫
∂Ω
|∂nv|2

≤ Cϕs3

∫
Γ
|v|2 + Cϕs

∫
Γ
|∂nv|2 + Cϕs

∫
Γ
|∇‖v|2 + 2‖esϕ(∆u)‖2L2(Ω),

which is a first suitable Carleman estimate with observation on Γ.
The announced estimate is a particular case of the above inequality in the case where v = 0 on the whole boundary

∂Ω (and thus∇‖v = 0)

s3β3

∫
Ω
|v|2 + sβ

∫
Ω
|∇v|2 + sβ

∫
∂Ω
|∂nv|2 ≤ Cϕs

∫
Γ
|∂nv|2 + 2‖esϕ(∆u)‖2L2(Ω).

We just finally need to go back to the function u. We first note that

|v| = esϕ|u|,
and

∇v = esϕ(∇u) + (∇esϕ)u = esϕ(∇u) + s(∇ϕ) esϕu︸︷︷︸
=v

,

so that we have
s|esϕ∇u|2 ≤ s|∇v|2 + s3|∇ϕ|2|v|2.

Moreover,
∂nv = esϕ(∂nu) + u(∂ne

sϕ) = esϕ(∂nu),

since u = 0 on the boundary. The claim is proved.

cbna F. BOYER - FEBRUARY 7, 2020



82 Chapter IV. The heat equation

IV.3.3 Proof of the distributed Carleman estimate

We may now prove Theorem IV.1.29. We take a function ϕ associated with ω, as in the second point of Lemma
IV.3.43.

We apply the inequality of Proposition IV.3.42 with this particular function ϕ using its properties to get, for any
function v that vanishes on the boundary

β3s3

∫
Ω\ω
|v|2 + sβ

∫
Ω\ω
|∇v|2 + sβ

∫
∂Ω
|∂nv|2 ≤Cϕs3

∫
ω
|v|2 + Cϕs

∫
ω
|∇v|2 + 2‖esϕ(∆u)‖2L2(Ω)

+ 2s2

∫
Ω
|∆ϕ|2|v|2 − 2s

∫
Ω
v∇v · ∇∆ϕ

Adding the terms s3β3

∫
ω
|v|2 and sβ

∫
ω
|∇v|2 on both sides of the inequality gives (with another value of the constant

Cϕ)

β3s3

∫
Ω
|v|2 + sβ

∫
Ω
|∇v|2 + sβ

∫
∂Ω
|∂nv|2 ≤Cϕs3

∫
ω
|v|2 + Cϕs

∫
ω
|∇v|2 + 2‖esϕ(∆u)‖2L2(Ω)

+ 2s2

∫
Ω
|∆ϕ|2|v|2 − 2s

∫
Ω
v∇v · ∇∆ϕ,

and we can now absorb the last two terms as we did previously, by assuming that s ≥ s0 for some s0 depending only
on the weight function ϕ. We finally get

β3s3

∫
Ω
|v|2 + sβ

∫
Ω
|∇v|2 + sβ

∫
∂Ω
|∂nv|2 ≤ Cϕs3

∫
ω
|v|2 + Cϕs

∫
ω
|∇v|2 + 2‖esϕ(∆u)‖2L2(Ω)

This is actually a Carleman estimate with observation terms in ω but we would like a little bit more, namely to obtain
a similar estimate without observation terms containing derivatives of v. Let us show how to obtain such an estimate.

To begin with we consider a small non-empty observation domain ω0 such that ω0 ⊂ ω and we apply the above
Carleman estimate to this new observation domain (this imply to use a weight function ϕ adapted to this new obser-
vation domain). It follows that

β3s3

∫
Ω
|v|2 + sβ

∫
Ω
|∇v|2 + sβ

∫
∂Ω
|∂nv|2 ≤ Cs3

∫
ω0

|v|2 + Cs

∫
ω0

|∇v|2 + 2‖esϕ(∆u)‖2L2(Ω),

and we will now show how to get rid of the term
∫
ω0
|∇v|2. Let η be a non-negative smooth function compactly

supported in ω and such that η = 1 in ω0. We write by an integration by parts

s

∫
ω0

|∇v|2 ≤ s
∫
ω
η|∇v|2 = −s

∫
ω
v∇v · ∇η − s

∫
ω
ηv(∆v).

Then we use the equation satisfied by v (see (IV.43)) that we recall here

∆v = esϕ(∆u) + s(∆ϕ)v − s2|∇ϕ|2v + 2s∇ϕ · ∇v,

to obtain

s

∫
ω0

|∇v|2 ≤ Cϕ
(
s

∫
ω
|v||∇v|+ s

∫
ω
|v|esϕ|∆u|+ s2

∫
ω
|v|2 + s3

∫
ω
|v|2 + s2

∫
ω
|v||∇v|

)
.

Since s ≥ s0, we deduce

s

∫
ω0

|∇v|2 ≤ Cϕ
(
s2

∫
ω
|v||∇v|+ s

∫
ω
|v|esϕ|∆u|+ s3

∫
ω
|v|2
)
.
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The last term is the observation term we would like to keep at the end. The second term can be bounded by the
Cauchy-Schwarz and Young inequalities

s

∫
ω
|v|esϕ|∆u| ≤ 2s2

∫
ω
|v|2 + 2

∫
ω
|esϕ(∆u)|2 ≤ 2s2

∫
ω
|v|2 + 2‖esϕ(∆u)‖2L2(Ω).

Finally, we also use the Cauchy-Schwarz inequality and the refined Young inequality to bound the first term as follows

s2

∫
ω
|v||∇v| =

∫
ω
s3/2|v|s1/2|∇v| ≤ ε

2
s

∫
ω
|∇v|2 +

1

2ε
s3

∫
ω
|v|2 ≤ ε

2
s

∫
Ω
|∇v|2 +

1

2ε
s3

∫
ω
|v|2,

so that we can take ε small enough (depending only on ϕ) such that the term in ∇v is absorbed by the corresponding
term in the left-hand side of the inequality. The proof is complete.

IV.3.4 Construction of the weight functions

Our goal is to prove Lemma IV.3.43. We begin by constructing a first function with particular properties.

Lemma IV.3.44

Let U be a bounded domain of Rd of class C2 and V ⊂ U a non empty open subset of U .
There exists a function ψ ∈ C2(U) such that:

• ψ = d(., ∂U) in a neighborhood of ∂U . In particular ψ = 0 and ∂nψ = −1 on ∂U .

• ψ > 0 in U .

• ∇ψ 6= 0 in the compact K def
= U \ V . In particular, there exists α > 0 such that

|∇ψ| ≥ α, in K.

Proof :
Using the Morse lemma, we can find a function ψ̃ that satisfies the first two properties and which has a finite

number of critical points in U , let say x1, ..., xn, see for instance [TW09]. Then we choose n distinct points y1, ..., yn
in V . There exists a diffeomorphism G from U into itself such that G(yi) = xi and such that G(y) = y in a
neighborhood of ∂U . This can be done by considering the flow of a suitable compactly supported vector field. We
easily check that ψ = ψ̃ ◦G satisfies all the required properties.

We may now prove the second point of Lemma IV.3.43. We apply the previous lemma with U = Ω and V = ω.
We set ϕ = eλψ for λ ≥ 0. and perform the following computations

∇ϕ = λ(∇ψ)ϕ,

D2ϕ = λ(D2ψ)ϕ+ λ2(∇ψ)⊗ (∇ψ)ϕ,

∆ϕ = λ(∆ψ)ϕ+ λ2|∇ψ|2ϕ.

• We first compute

2D2ϕ+ ∆ϕ = λ
(
2(D2ψ) + (∆ψ)

)
ϕ+ λ2

(
2(∇ψ)⊗ (∇ψ) + |∇ψ|2)ϕ,

and we see that for any ξ ∈ Rd

1

ϕ
(2D2ϕ+ ∆ϕ).(ξ, ξ) ≥ λ2(2|∇ψ · ξ|2 + |∇ψ|2|ξ|2)− λCψ|ξ|2

≥ (λ2|∇ψ|2 − λCψ)|ξ|2.
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Therefore, since∇ψ does not vanish in K, we can choose λ large enough so that

1

ϕ
(2D2ϕ+ ∆ϕ).(ξ, ξ) ≥ Cλ2|∇ψ|2|ξ|2, in K,

and since ϕ ≥ 1, we get
2D2ϕ+ ∆ϕ ≥ Cλ2|∇ψ|2, in K.

• We compute now

2D2ϕ.(∇ϕ,∇ϕ)−∆ϕ|∇ϕ|2 = λ2ϕ2
(
2D2ϕ.(∇ψ,∇ψ)−∆ϕ|∇ψ|2

)
= λ2ϕ2

(
λ2|∇ψ|4ϕ+ 2λD2ψ.(∇ψ,∇ψ)ϕ− λ(∆ψ)|∇ψ|2ϕ

)
≥ φ3(λ4α4 − Cψλ3), in K.

Here also, for λ large enough we deduce that

2D2ϕ.(∇ϕ,∇ϕ)−∆ϕ|∇ϕ|2 ≥ λ4α4, in K.

Let us now prove the first point of Lemma IV.3.43. To this end, we consider a bounded open set U that contains
Ω and such that ∂Ω ∩ U ⊂ Γ. Then we choose some non empty open subset V such that V ∩ Ω = ∅.

We build a function ϕ related with this choice of U and V , and we easily see that its restriction to Ω satisfies all
the required properties since

∂Ω \ Γ ⊂ ∂U.

IV.3.5 A Carleman estimate for augmented elliptic operators with special boundary conditions

For T ∗ > 0, we set Q = (0, T ∗) × Ω be a time-space domain (even though the time variable here has nothing to do
with the physical time of the initial problem). We consider the augmented elliptic operator

∆τ,x
def
= ∂2

τ + ∆,

where the operator ∆ (as well as∇) only concerns the space variables. The complete gradient operator will be denoted
by

∇τ,x def
= (∂τ ,∇).

Note that all the analysis below still apply with ∆ replaced by the general elliptic operator−A, with suitable regularity
assumptions on γ.

Lemma IV.3.45

Let ω ⊂ Ω be a non-empty open subset of Ω. There exists a weight function ϕ ∈ C2(Q) that satisfies the
assumptions (IV.44), (IV.45) and (IV.46) on the time-space domain Q and moreover

∂nϕ < 0, on (0, T ∗)× ∂Ω,

(−∂τϕ) ≤ −β, on {0} × (Ω \ ω),

∂τϕ ≤ −β, on {T ∗} × Ω,

∇xϕ(T ∗, .) = 0, in Ω.

We use this function ϕ in Proposition IV.3.42 on the domain Q for any function u that satisfies{
u(0, .) = 0, in Ω,

u(τ, .) = 0, on ∂Ω for any τ ∈ (0, T ∗).
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Observe that u does not vanish for τ = T ∗ so that u does not satisfy homogeneous boundary condition on ∂Q. This
is why the Carleman estimate we will prove is different from the one developed above.

We obtain

s3β3

∫
Q
|v|2 + sβ

∫
Q
|∇τ,xv|2+s3β3

∫
Ω
|v(T ∗, .)|2 + βs

∫
Ω
|∂τv(T ∗, .)|2 + βs

∫
Ω\ω
|∂τv(0, .)|2

≤− s
∫

Ω
∂τϕ(T ∗, .)|∇xv(T ∗, .)|2 + 2‖esϕ(∆τ,xu)‖2L2(Q)

− 2s

∫
Q
v∇τ,xv · ∇τ,x∆τ,xϕ+ 2s2

∫
Q
|∆τ,xϕ|2|v|2.

The last two terms can be asborbed for s ≥ s0 as before, and we can add the observation term at time τ = 0 on ω on
both sides of the inequality to obtain

s3β3

∫
Q
|v|2 + sβ

∫
Q
|∇τ,xv|2 + s3β3

∫
Ω
|v(T ∗, .)|2 + βs

∫
Ω
|∂τv(T ∗, .)|2 + βs

∫
Ω
|∂τv(0, .)|2

≤ Cs
∫
ω
|∂τv(0, .)|2 + Cs

∫
Ω
|∇xv(T ∗, .)|2 + C‖esϕ(∆τ,xu)‖2L2(Q).

Coming back to the function u, and using that ϕ does not depend on x at τ = T ∗, we have finally obtained the
following Carleman estimate.

Proposition IV.3.46

For any s ≥ s1, any u ∈ C2(Q) such that u(0, .) = 0 and u(t, .) = 0 on ∂Ω for any t ∈ (0, T ∗), we have

s3

∫
Q
|esϕu|2 + s

∫
Q
|esϕ∇τ,xu|2 + s

∫
Ω
|esϕ(0,.)∂τu(0, .)|2

+ s3e2sϕ(T ∗)

∫
Ω
|u(T ∗, .)|2 + se2sϕ(T ∗)

∫
Ω
|∂τu(T ∗, .)|2

≤ Cs
∫
ω
|esϕ(0,.)∂τu(0, .)|2 + Cse2sϕ(T ∗)

∫
Ω
|∇xu(T ∗, .)|2 + C‖esϕ(∆τ,xu)‖2L2(Q).

Remark IV.3.47
All the above elliptic Carleman estimates can be adapted to more general differential operators, like
−div (γ∇·) for a smooth enough diffusion coefficient γ (and even for in some non-smooth cases).

IV.4 The Fursikov-Imanuvilov approach

Contrary to the Lebeau-Robbiano strategy that amounts to build, step by step, a null-control for our problem, the
method proposed by Fursikov and Imanuvilov in [FI96] consists in directly proving the observability inequality on
the adjoint problem.

IV.4.1 Global parabolic Carleman estimates

We shall derive and use now a new kind of Carleman estimates. Those inequalities will directly concern the solutions
of the parabolic operator under study.

The control time T > 0 is fixed and we set θ(t) = 1
t(T−t) . We give the following result without proof (see [FI96],

[Cor07] or [TW09]) since it follows very similar lines as the ones of the proof of the elliptic Carleman estimate (but
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with more technicalities).

Theorem IV.4.48

Let ω be a non empty open subset of Ω. There exists a function ϕ ∈ C2(Ω) such that

sup
Ω
ϕ < 0, and inf

Ω\ω
|∇ϕ| > 0,

and for which we have the following property: for any d ∈ R, there exists s0 > 0 and C > 0 such that the
following estimate holds for any s ≥ s0 and any u ∈ C2([0, T ]× Ω) such that u = 0 on (0, T )× ∂Ω∫ T

0

∫
Ω

(sθ)d
∣∣∣esθϕu∣∣∣2 +

∫ T

0

∫
Ω

(sθ)d−2
∣∣∣esθϕ∇u∣∣∣2

≤ C
(∫ T

0

∫
ω
(sθ)d

∣∣∣esθϕu∣∣∣2 +

∫ T

0

∫
Ω

(sθ)d−3
∣∣∣esθϕ(∂tu±∆u)

∣∣∣2) .
The sign± in the parabolic operator just means that the estimate holds true for both operators ∂t−∆ and
∂t + ∆.

As usual we can extend, by density, this estimate to less regular functions u as soon as all the terms in the inequality
make sense.

Remark IV.4.49
A careful inspection of the proof shows that the same estimate holds with the following additional terms in
the left-hand side ∫ T

0

∫
Ω

(sθ)d−4
∣∣∣esθϕ∂tu∣∣∣2 +

∫ T

0

∫
Ω

(sθ)d−4
∣∣∣esθϕ∆u

∣∣∣2 .

Notice that, since ϕ is negative and θ(t) → ∞ when t → 0 or t → T , all the weights in this estimate are
exponentially small near t = 0 and t = T . This explains why the estimate holds without any assumption on the values
of u at time t = 0 or t = T .

IV.4.2 Another proof of the null-controllability of the heat equation

With the above estimate at hand, we can directly prove the observability inequality we need.

Theorem IV.4.50
With the same assumption as before, there exists C > 0 such that, for any solution q of the adjoint problem

−∂tq −∆q = 0,

with q(T ) ∈ L2(Ω), then we have

‖q(0)‖2L2(Ω) ≤ C2

∫ T

0

∫
ω
|q(t, x)|2 dt dx.

As a consequence, we have proved the null-controllability of the heat equation for any time T > 0.

Proof :
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We choose d = 0 and take some s ≥ s0; then we apply the Carleman estimate above to the function q. Only
keeping the first term in the left-hand side, we get∫ T

0

∫
Ω

∣∣∣esθϕq∣∣∣2 ≤ C ∫ T

0

∫
ω

∣∣∣esθϕq∣∣∣2 .
Since ϕ < 0 and θ > 0, we easily see that esθϕ ≤ 1. Moreover, we restrict the left-hand side integral to the time
interval (T/4, 3T/4) to get ∫ 3T

4

T
4

∫
Ω

∣∣∣esθϕq∣∣∣2 ≤ C ∫ T

0

∫
ω
|q|2 .

On the interval (T/4, 3T/4) we have θ(t) ≤ 16/3T 2. We deduce that

e2sϕ ≥ e32/3T 2 inf ϕ, on (T/4, 3T/4)× Ω.

We have thus obtained for another value of C∫ 3T
4

T
4

∫
Ω
|q|2 ≤ C

∫ T

0

∫
ω
|q|2 .

We use now the dissipation property of the (backward) heat equation which gives

‖q(0)‖2L2 ≤ ‖q(s)‖2L2(Ω), ∀s ∈ (0, T ).

By integration on (T/4, 3T/4) we get

‖q(0)‖2L2 ≤
2

T

∫ 3T
4

T
4

‖q(s)‖2L2(Ω),

and the claim is proved by combining the last two inequalities.
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Chapter V

Coupled parabolic equations

In this chapter, we would like to investigate controllability properties for coupled systems like (III.3) and (III.4). A
particular attention will be paid to the case where rankB < n, that is when there are less controls than components in
the system. We refer to the survey paper [AKBGBT11] even though many results were published on this topic after
this survey.

V.1 Systems with as many controls as components

Let us first discuss the case where rankB = n (which implies that m ≥ n). We can remove some (useless)
columns to B and assume that m = n and that B is invertible.

Theorem V.1.1
Let ω be a non empty open subset of Ω and T > 0 and assume that B is a square invertible n× n matrix.
Then, System (III.3) is null-controllable at time T .

Notice that we do not make any structure assumption on the coupling matrix C(t, x), we only assume that C ∈
L∞((0, T )× Ω).
Proof :

We propose a proof based on the global parabolic Carleman estimate. The adjoint system associated with (III.3)
reads

−∂tq −∆q + C∗(t, x)q = 0,

which can be also written, component-by-component for any i ∈ {1, ..., n}, as follows

−∂tqi −∆qi = −
∑
j

cji(t, x)qj .

We apply to each qi the Carleman estimate given in Theorem IV.4.48, with d = 0, the same value of s ≥ s0 and,
of course, the same weight function ϕ. It follows that∫ T

0

∫
Ω

∣∣∣esθϕqi∣∣∣2 ≤ C ∫ T

0

∫
ω

∣∣∣esθϕqi∣∣∣2 + C
∑
j

∫ T

0

∫
Ω

(sθ)−3|esθϕqj |2.

We sum over i all those inequalities and we observe that on (0, T ), the function θ−3 is bounded to deduce that, for all
s ≥ s0 ∑

i

∫ T

0

∫
Ω

∣∣∣esθϕqi∣∣∣2 ≤ C∑
i

∫ T

0

∫
ω

∣∣∣esθϕqi∣∣∣2 +
C

s3

∑
j

∫ T

0

∫
Ω
|esθϕqj |2.
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We see that, for s large enough (depending only on the data !), the last term is absorbed by the left-hand side term.
We deduce that ∑

i

∫ T

0

∫
Ω

∣∣∣esθϕqi∣∣∣2 ≤ C∑
i

∫ T

0

∫
ω

∣∣∣esθϕqi∣∣∣2 .
Using the same arguments as in Theorem IV.4.50, we arrive at

∑
i

∫ 3T
4

T
4

∫
Ω
|qi|2 ≤ C

∑
i

∫ T

0

∫
ω
|qi|2 .

Still denoting by |.| the Euclidean norm in Rn, this reads

∫ 3T
4

T
4

∫
Ω
|q|2 ≤ C

∫ T

0

∫
ω
|q|2.

We use now the fact that B is an invertible matrix to deduce that for some other constant C, we have

∫ 3T
4

T
4

∫
Ω
|q|2 ≤ C

∫ T

0

∫
ω
|B∗q|2. (V.1)

We would like now to use the dissipation argument. Because of the coupling terms we cannot simply use the
estimate (IV.5) for the heat equation. Instead we will prove an energy estimate for the backward equation which
implies that ‖q(0)‖L2(Ω) can be bounded, up to a multiplicative constant, by ‖q(s)‖L2(Ω) for any s ≥ 0.

To this end we multiply the adjoint equation (in the sense of the Euclidean inner product of Rn) by q(t, x) and we
integrate over Ω. It follows that

−
∫

Ω
(∂tq) · q dx−

∫
Ω

∆q · q dx = −
∫

Ω
(C∗q) · q dx.

Integrating by parts the second term it follows that

−1

2

d

dt

∫
Ω
|q|2 dx+

∫
Ω
|∇q|2 dx = −

∫
Ω

(C∗q) · q dx ≤ ‖C‖L∞
∫

Ω
|q|2 dx,

in particular we have

− d

dt
‖q(t)‖2L2(Ω) ≤ 2‖C‖L∞‖q(t)‖2L2(Ω).

Using the Gronwall inequality we deduce that

‖q(t)‖L2(Ω) ≤ e(s−t)‖C‖L∞‖q(s)‖L2(Ω), ∀0 ≤ t < s ≤ T,

and in particular

‖q(0)‖L2(Ω) ≤ eT‖C‖L∞‖q(s)‖L2(Ω), ∀0 ≤ s ≤ T.

Combining this inequality with (V.1) we obtain

‖q(0)‖2L2(Ω) ≤ C
∫ T

0

∫
ω
|B∗q|2,

and the observability inequality is proved as well as the null-controllability by duality.
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V.2 Boundary versus distributed controllability

We first notice that, for the scalar problems we have studied before, the boundary and distributed controllability
problems are in fact equivalent in some sense.

• Distributed controllability⇒ Boundary controllability:

Imagine that you are able to prove the null-controllability for our system for any choice of Ω and ω, then we
can prove the boundary controllability by considering an extended domain Ω̃ that contains Ω and which is built
in such a way that Ω ∩ Ω̃ ⊂ Γ0 (see Figure V.1). Then we choose a region ω ⊂ Ω̃ \ Ω.

We then extend our initial data y0 to the whole domain Ω̃ and apply the controllability result with control sup-
ported in ω on the new extended problem, let ỹ ∈ C0([0, T ], L2(Ω̃)) be the corresponding controlled solution.
Since ω ∩Ω = ∅, we see that the restriction ofỹ on Ω, y = ỹ|Ω satisfies the heat equation (without source term)
in Ω. Moreover, since ỹ vanishes on ∂Ω̃ we see in particular that y vanishes on ∂Ω \ Γ0 by construction of the
extended domain Ω̃.

It remains to set v = ỹ|Γ0
in the trace sense, which is an element of L2(0, T ;H

1
2 (Γ0)) which is an admissible

boundary control for the original problem.

ωΩ Γ0

Figure V.1: Distributed controllability implies boundary controllability

• Boundary controllability⇒ Distributed controllability:

A similar reasoning shows that the converse implication is true, see Figure V.2.

Γ0

ω
Ω

Figure V.2: Boundary controllability implies distributed controllability

The same arguments show that boundary and distributed controllability are equivalent problems in the case where
m = rankB = n.

However, in the sequel of this chapter we shall consider coupled parabolic systems with less controls than com-
ponents in the system m < n. One can easily see that, in this case, the above reasoning does not hold anymore and in
fact we will see that the boundary and distributed controllability systems may really present different behaviors.

V.3 Distributed control problems

V.3.1 Constant coefficient systems with less controls than equations

In this section we assume that C(t, x) is a constant matrix C, that m = rankB < n.

Proposition V.3.2
A necessary condition for the null- or approximate- controllability for (III.3) is that the pair (C,B) is
controllable.
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Proof :
Let y be any solution of (III.3) and φλ an eigenfunction of the Laplace operator associated with the eigenvalue λ.

We deduce that the quantity
z(t)

def
= 〈y(t), φλ〉L2 ∈ Rn,

solves the following equation
d

dt
z + λz + Cz = Bvλ(t), (V.2)

where vλ(t) = 〈v(t, .), 1ωφλ〉L2 ∈ Rm. Then, the controllability of (III.3) implies the one of (V.2), which itself
implies that the pair (C + λId, B) is controllable and so is the pair (C,B).

Theorem V.3.3
Under the above assumptions and if we assume that the pair (C,B) is controllable, then the system (III.3)
is approximately controllable for any time T > 0.

Proof :
The adjoint system reads

−∂tq −∆q + C∗q = 0.

Each eigenvalue of −∆ + C∗ is of the form λ = σ + µ where σ ∈ Sp(−∆) and µ ∈ Sp(C∗) and any element in
Ker ((−∆ + C∗)− λ) can be written

Φλ =
∑

σ∈Sp(−∆)
µ∈Sp(C∗)
λ=σ+µ

nσ∑
i=1

vσ,i(x)Φµ,i,

where (vσ,i)1≤i≤nσ is an orthonormal family of Ker (−∆− σ) and (Φµ,i)1≤i≤nσ ⊂ Ker (C∗ − µ).
When we apply the observation operator B∗ = 1ωB

∗, we obtain

B∗Φλ =
∑

σ∈Sp(−∆)
µ∈Sp(C∗)
λ=σ+µ

nσ∑
i=1

(1ωvσ,i)(x)B∗Φµ,i.

Assume now that B∗Φλ = 0. This implies, by the Lebeau-Robbiano spectral inequality (Theorem IV.2.33), that
we actually have

0 =
∑

σ∈Sp(−∆)
µ∈Sp(C∗)
λ=σ+µ

nσ∑
i=1

vσ,i(x)B∗Φµ,i, ∀x ∈ Ω.

Since all the functions (vσ,i)σ,i are orthonormal, we can take the L2(Ω) norm and obtain

0 =
∑

σ∈Sp(−∆)
µ∈Sp(C∗)
λ=σ+µ

nσ∑
i=1

‖B∗Φµ,i‖2 .

This implies that B∗Φµ,i = 0 for any µ and any i. Since the pair (B,C) is controllable and Φµ,i ∈ Ker (C∗ − µ), the
finite-dimensional Fattorini-Hautus test leads to Φµ,i = 0 for any µ and any i and finally, we find that Φλ = 0.

It follows that our adjoint system satisfies the (infinite dimensional) Fattorini-Hautus test from which we deduce
the approximate controllability of the system.
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Actually, a stronger result can be obtained by using Carleman estimates.

Theorem V.3.4
Under the above assumptions the system (III.3) is null-controllable for any time T > 0.

Proof :
To simplify a little bit the proof we assume that n = 2 and m = 1; however the same proof easily extends to the

general case.
Let us introduce the Kalman matrix K = (B,CB) and we perform the change of variable y = Kz to obtain

K∂tz −K∆z + CKz = 1ωBv,

Since K is invertible and KC = C̃Z and B = KB̃, with

C̃ =

(
0 c12

1 c22

)
, B̃ =

(
1
0

)
,

the system is transformed into a cascade system

∂tz −∆z + C̃z = 1ωB̃v,

that we write {
∂tz1 −∆z1 + c12z2 = 1ωv,

∂tz2 −∆z2 + z1 + c22z2 = 0.

The corresponding adjoint system is{
− ∂tq1 −∆q1 + q2 = 0,

− ∂tq2 −∆q2 + c12q1 + c22q2 = 0,

and the observation operator if B∗ = 1ωB
∗ = 1ω

(
1 0

)
, which is nothing but the operator that takes the restriction

on ω to the first component of the adjoint state.
We notice that the approximate observability is clear from the elliptic Carleman estimate.
In other words, the observability inequality we need to prove for this adjoint system is

‖q1(0)‖2L2(Ω) + ‖q2(0)‖2L2(Ω) = ‖q(0)‖2L2 ≤ C
∫ T

0

∫
ω
|q1|2.

As we have seen before, we already know how to prove the same inequality but with an other observation term
on ω involving the term q2 but here we do not want this term in the inequality. The only way to get rid of this term is
to express q2 as a function of q1 by using the first equation q2 = ∂tq1 + ∆q1. However, this will make appear high
derivatives of q1 that are not allowed.

We thus need to come back at the Carleman estimate level. To simplify the computations, we define the quantities

J(d, f, U)
def
=

∫ T

0

∫
U

(sθ)d
∣∣∣esθϕf ∣∣∣2 .

With those notation, we write the parabolic Carleman estimate for q1 with d = d1 and for q2 with another value
d = d2. Moreover, we will take into account some of the terms allowed by Remark IV.4.49. For q1 we get

J(d1, q1,Ω) + J(d1 − 2,∇q1,Ω) ≤ CJ(d1, q1, ω) + CJ(d1 − 3, ∂tq1 + ∆q1,Ω),

and for q2

J(d2, q2,Ω) + J(d2 − 2,∇q2,Ω) + J(d2 − 4, ∂tq2,Ω) + J(d2 − 4,∆q2,Ω)

≤ CJ(d2, q2, ω) + CJ(d2 − 3, ∂tq2 + ∆q2,Ω),
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We use now the equations satisfied by q1 and q2, to get

J(d1, q1,Ω) + J(d1 − 2,∇q1,Ω) ≤ CJ(d1, q1, ω) + CJ(d1 − 3, q2,Ω), (V.3)

J(d2, q2,Ω) + J(d2 − 2,∇q2,Ω) + J(d2 − 4, ∂tq2,Ω) + J(d2 − 4,∆q2,Ω)

≤ CJ(d2, q2, ω) + CJ(d2 − 3, q1,Ω) + CJ(d2 − 3, q2,Ω), (V.4)

In order to perform the following computations we choose now d1 = 7 and d2 = 4 and we add (V.3) that we multiply
by some ε > 0 and (V.4). We obtain

εJ(7, q1,Ω) + εJ(5,∇q1,Ω) + J(4, q2,Ω) + J(2,∇q2,Ω) + J(0, ∂tq2,Ω) + J(0,∆q2,Ω)

≤ CεJ(7, q1, ω) + CεJ(4, q2,Ω) + CJ(4, q2, ω) + CJ(1, q1,Ω) + CJ(1, q2,Ω).

By chosing ε > 0 small enough (depending only on the data) we can absorb the second term in the right-hand side
by the third one of the left-hand side. This value of ε being now fixed, we will not make it appear in the sequel.
Moreover, we use that

(sθ)1 = (sθ)4(sθ)−3 ≤ C

s3
(sθ)4,

(sθ)1 = (sθ)7(sθ)−6 ≤ C

s6
(sθ)7,

to say that, for a well chosen s1 (depending only on the data), and any s ≥ s1, we can absorb the last two terms in the
right-hand side by the first and third of the left-hand side.

To sum up, we have now the following estimate

J(7, q1,Ω) + J(5,∇q1,Ω) + J(4, q2,Ω) + J(2,∇q2,Ω) + J(0, ∂tq2,Ω) + J(0,∆q2,Ω)

≤ CJ(7, q1, ω) + CJ(4, q2, ω).

We still have two observation terms and we would like to get rid of the one in q2. It seems that we do not have make
great progresses compared to the estimate obtained in Section V.1. However, the additional term in the left-hand side,
as well as the different powers of (sθ) in both terms is a real progress.

First of all we replace the observation set ω in the above estimate by a smaller one ω0 (such that ω0 ⊂ ω). This
requires of course to consider a slightly different weight function but we do not change the notation. We consider now
a function η compactly supported in ω and such that 0 ≤ η ≤ 1 and η = 1 in ω0. It follows, by using the first equation
of the system that

J(4, q2, ω0) =

∫ T

0

∫
ω0

(sθ)4
∣∣∣esθϕq2

∣∣∣2
≤
∫ T

0

∫
ω
η(sθ)4

∣∣∣esθϕq2

∣∣∣2
=

∫ T

0

∫
ω
η(sθ)4e2sθϕq2(∂tq1 + ∆q1).

We evaluate now the term (referred to as I1) in ∂tq1 and the one (referred to as I2) in ∆q1 independently.

• In the term I1, we perform an integration by parts in time (observing that there is no boundary term since the
weight e2sθϕ is exponentially flat in 0 and T .

I1 = −
∫ T

0

∫
ω
η(sθ)4e2sθϕ(∂tq2)q1 −

∫ T

0

∫
ω
ηs4θ3(4θ′ + 2sθθ′ϕ)e2sθϕq2q1.
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Using that θ′ ≤ Cθ2, and the Cauchy-Schwarz inequality (with a suitable repartition of the weights (sθ)• in
both terms), we get (for s ≥ 1)

I1 ≤
∫ T

0

∫
ω
η(sθ)4e2sθϕ|q1∂tq2|+ C

∫ T

0

∫
ω
η(sθ)6e2sθϕ|q2q1|

≤CJ(0, ∂tq2,Ω)
1
2J(8, q1, ω)

1
2 + CJ(4, q2,Ω)

1
2J(8, q1, ω)

1
2 .

Observe that we have mentioned Ω instead of ω in the terms concerning q2 since we actually don’t care that
there are supported in ω (we will absorb them by left-hand side terms of the estimate). However, it is crucial
that the terms in q1 are localised in ω; those will contribute to the observation term at the end.

• In the term I2 we perform three successive integrations by parts in space (without boundary terms since η is
compactly supported), in order to make all the derivatives apply on q2 instead of q1. It follows

I2 =−
∫ T

0

∫
ω
η(sθ)4e2sθϕ∇q2 · ∇q1 −

∫ T

0

∫
ω
(sθ)4e2sθϕq2(∇η + 2sθ∇ϕ) · ∇q1

=

∫ T

0

∫
ω
η(sθ)4e2sθϕ(∆q2)q1 +

∫ T

0

∫
ω
(sθ)4e2sθϕq1(∇η + 2sθ∇ϕ) · ∇q2

+

∫ T

0

∫
ω
(sθ)4e2sθϕ∇q2 · (∇η + 2sθ∇ϕ)q1

+

∫ T

0

∫
ω
(sθ)4e2sθϕ(∆η + 2sθ∆ϕ+ 2sθ∇ϕ · ∇η + 4s2θ2|∇ϕ|2)q2q1

≤C
∫ T

0

∫
ω
(sθ)4e2sθϕ|∆q2||q1|+ C

∫ T

0

∫
ω
(sθ)5e2sθϕ|q1||∇q2|+ C

∫ T

0

∫
ω
(sθ)6e2sθϕ|q1||q2|

≤CJ(0,∆q2,Ω)
1
2J(8, q1, ω)

1
2 + CJ(2,∇q2,Ω)

1
2J(8, q1, ω)

1
2 + CJ(4, q2,Ω)

1
2J(8, q1, ω)

1
2 .

We gather the bound on I1 and the one on I2 and we use Young’s inequality to obtain

J(7, q1,Ω) + J(5,∇q1,Ω) + J(4, q2,Ω) + J(2,∇q2,Ω) + J(0, ∂tq2,Ω) + J(0,∆q2,Ω)

≤ CJ(7, q1, ω) + CJ(8, q1, ω).

We finally obtained an estimate with a unique local observation term in q1

J(7, q1,Ω) + J(5,∇q1,Ω) + J(4, q2,Ω) + J(2,∇q2,Ω) + J(0, ∂tq2,Ω) + J(0,∆q2,Ω) ≤ CJ(8, q1, ω).

We retain from this inequality only the terms in q1 and q2

J(7, q1,Ω) + J(4, q2,Ω) ≤ CJ(8, q1, ω),

from which the observability inequality can proved the same way as before, by using dissipation estimates on q.

V.3.2 Variable coefficient cascade systems - The good case

In the case where the coupling coefficients in the system depend on x, we will see that the controllability properties
of the system may be quite different.

If we assume that the significant coupling coefficients (i.e. the ones that are responsible for the indirect action
of one controlled component of the system on the non-controlled components) do not identically vanish inside the
control domain ω, the analysis is simpler. More precisely, as an example, we consider the following 2× 2 system{

∂tz1 −∆z1 + c11(x)z1 + c12(x)z2 = 1ωv,

∂tz2 −∆z2 + c21(x)z1 + c22(x)z2 = 0,
(V.5)
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and we assume that c21 does not identically vanish in ω, and more precisely : there exists a non-empty ω0 ⊂ ω such
that

∃ω0 ⊂ ω, s.t. inf
ω0

|c21| > 0. (V.6)

Using similar techniques as in the scalar case, based on elliptic Carleman estimates, we can prove the following
result.

Proposition V.3.5
Under the assumption (V.6), the system (V.5) is approximately controllable for any time T > 0.

Proof :
We will use the Fattorini-Hautus criterion. Let q be a (complex) eigenfunction of the adjoint elliptic operator

associated with the (complex) eigenvalue λ. We assume that B∗q = 1ωq1 = 0 and we would like to prove that q = 0.
The equation satisfied by q are {

−∆q1 + c11(x)q1 + c21(x)q2 = λq1,

−∆q2 + c12(x)q1 + c22(x)q2 = λq2.

By assumption, we have q1 = 0 in ω0 and infω0 |c21| > 0 so that the first equation leads to q2 = 0 in ω0. We apply
now the global elliptic Carleman estimate given in Theorem IV.1.29 (for the observation domain ω0) to q1 and q2 and
we sum the two inequalities to obtain for any s ≥ s0,

s3‖esϕq1‖2L2(Ω) + s3‖esϕq2‖2L2(Ω) ≤ C
(
‖esϕ∆q1‖2L2(Ω) + ‖esϕ∆q2‖2L2(Ω) + s3‖esϕq1‖2L2(ω0) + s3‖esϕq2‖2L2(ω0)

)
.

Since q1 = q2 = 0 in ω0 and using the equations to express ∆q1 and ∆q2, we get

s3‖esϕq1‖2L2(Ω) + s3‖esϕq2‖2L2(Ω) ≤ C
(

max
i,j
‖cij‖2L∞ + |λ|2

)(
‖esϕq1‖2L2(Ω) + ‖esϕq2‖2L2(Ω)

)
.

Taking s large enough gives
s3‖esϕq1‖2L2(Ω) + s3‖esϕq2‖2L2(Ω) ≤ 0,

and the claim is proved.
In fact the following, much stronger, result holds.

Proposition V.3.6
Under the same assumption (V.6), the system (V.5) is null-controllable at any time T > 0 (even if we allow
the coefficients cij to depend on time).

Proof :
The strategy we used in Section V.1 can be applied exactly in the same way for such variable coefficients cascade

systems. The only point is to be able to express q2 as a function of q1 in ω0 by writing

q2 =
1

c21

(
∂tq1 + ∆q1 − c11q1

)
.

Details are left to the reader.

V.3.3 Variable coefficient cascade systems - The not so good case

In this section we will consider particular cascade systems in which the support of the coupling terms do not intersect
the control region. {

∂ty +Ay + C(x)y = 1ωBv, in Ω

y = 0, on ∂Ω,
(V.7)
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with

B =


1
0
...
0

 , and C(x) = 0, in ω.

It is clear that the strategies relying on Carleman estimates are not usable in such a case since we will not be able to
remove the unwanted observation term at the end as we did in Section V.1.

The general analysis of such systems (in particular in higher dimensions) remains an open problem at that time.
We will concentrate here on the case of the 2 × 2 systems in the cascade form, that is we assume that the coupling
matrix reads

C(x) =

(
0 0

c21(x) 0

)
. (V.8)

Most of the analysis will rely on a precise knowledge of the eigenelements of the operator

L∗ = A+ C(x)∗.

V.3.3.1 Description of the spectrum of L∗

A very simple analysis, using the Fredholm alternative, gives us the structure of the spectrum of L∗.

Proposition V.3.7 (Spectrum of L∗)
We have Sp(L∗) = Sp(A). For any λ ∈ Sp(A), let nλ = dim Ker (A − λ) and (φλ,i)i∈J1,nλK be an
orthonormal family of eigenfunctions of A associated with λ. For each i ∈ J1, nλK we define

Iλ,i(c21)
def
=

∫
Ω
c21|φλ,i|2 dx.

1. For each i ∈ J1, nλK, the vector-valued function

Φλ,i =

(
φλ,i
0

)
,

is an eigenfunction of L∗.

2. For each i ∈ J1, nλK such that Iλ,i(c21) = 0, there exists an eigenfunction of L∗ of the form

Φ̃λ,i =

(
φ̃λ,i
φλ,i

)
,

where φ̃λ,i is a solution of (A− λ)φ̃λ,i = −c21φλ,i.

3. For each i ∈ J1, nλK such that Iλ,i(c21) 6= 0, there exists a generalised eigenfunction of L∗ satisfying
(L∗ − λ)(Ψλ,i) = Φλ,i of the form

Φ̃λ,i =
1

Iλ,i(c21)

(
φ̃λ,i
φλ,i

)
,

where φ̃λ,i is any solution of (A− λ)φ̃λ,i = −
(
c21 − Iλ,i(c21)

)
φλ,i.

Finally, the family {Φλ,i, Φ̃λ,i, λ ∈ Λ, i ∈ J1, nλK} is linearly independent and complete in (L2(Ω))2.
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V.3.3.2 Approximate controllability in any dimension

By using the Fattorini-Hautus test, we known that the study of the approximate controllability of our system amounts
at determining whether or not the eigenfunctions of L∗ belong to the kernel of B∗ = 1ωB

∗.
In any dimension, we have a sufficient approximate controllability condition which is the following.

Theorem V.3.8
Assume that c21 is continuous not identically zero and that c21 ≥ 0, then the 2 × 2 system (V.7) with C
given by (V.8) is approximately controllable at any time T > 0.

Proof :
By assumption on c21, we know that for any λ ∈ Λ and any i ∈ J1, nλK the number Iλ,i(c21) cannot vanish since

it is the integral of a non-negative function which is not identically zero. Indeed, by Proposition IV.1.30, we know
that any eigenfunction of A cannot identically vanish on the non-empty open subset {x ∈ Ω, c21(x) > 0}.

Therefore, we know from Proposition V.3.7 that every eigenfunction Φ ∈ Ker (L∗ − λ) can be written

Φ =

nλ∑
i=1

aλ,iΦλ,i.

By definition of the observation operator B∗ we thus have

B∗Φ = 1ω

(
nλ∑
i=1

aλ,iφλ,i

)
.

Therefore, if B∗Φ = 0 we deduce that aλ,i = 0 for every i thanks to Proposition IV.1.30 and thus Φ = 0.
From the Fattorini-Hautus test (Theorem III.3.7), the claim is proved.

V.3.3.3 Approximate controllability in 1D

In the 1D case (see [BO14]), we can give a more precise result which is a necessary and sufficient approximate
controllability condition. Since, in that case, each eigenvalue of A is simple we can use Proposition V.3.7 with
nλ = 1 for any λ. As a consequence, we will drop the index i in the notation. To get a complete analysis we will need
to introduce a function ψλ linearly independent from φλ and that solves the ODE

Aψλ = λψλ.

Note that ψλ does not satisfy the Dirichlet boundary conditions.

Definition V.3.9
For any λ ∈ Sp(A), any interval [a, b] ⊂ [0, 1], and any integrable function f , we define the following
element of R2

Mλ(f, [a, b])
def
=



(∫ b
a fφλ∫ b
a fψλ

)
, if [a, b] ∩ ∂Ω = ∅,(∫ b

a fφλ
0

)
, if [a, b] ∩ ∂Ω 6= ∅.
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Theorem V.3.10
Assume that c21 identically vanishes in the control region ω.
Then the 2× 2 cascade system (V.7) is approximately controllable if and only if, for any λ ∈ Sp(A), there
exists a connected component [a, b] of Ω \ ω such that

Mλ(c21φλ, [a, b]) 6= 0.

Remark V.3.11
If c21 does not identically vanish in ω, we already know by Theorem V.3.8 that the system is approximately
controllable, in any dimension.

Proof :

• Let us show that the condition is sufficient. To this end, we assume that the system is not approximately con-
trollable. By the Fattorini-Hautus test (see Theorem III.3.7) we know that it necessarily exists an eigenfunction
Φ of L∗ associated with the eigenvalue λ such that B∗Φ = 0.

– If Iλ(c21) 6= 0, then we know that Φ is necessarily a multiple of Φλ =

(
φλ
0

)
and therefore B∗Φ is a

multiple of 1ωφλ which cannot be identically zero.

– We thus conclude that Iλ(c21) = 0, and thus up to a multiplicative factor Φ is necessarily of the form

Φ =

(
φ̃λ
φλ

)
,

where φ̃λ satisfies, along with the Dirichlet boundary conditions, the equation

(A− λ)φ̃λ = −c21φλ.

By assumption we have B∗Φ = 0 which implies that φ̃λ = 0 on ω.

– Let [a, b] be a connected component of Ω \ ω, and let us compute by integration by parts∫ b

a
c21|φλ|2 dx = −

∫ b

a
((A− λ)φ̃λ)φλ dx

= [γφ̃′λφλ]ba − [γφ̃λφ
′
λ]ba.

Let us show that all the terms in this last formula vanish.

∗ If a ∈ Ω, we have a ∈ ∂ω, and since we have assumed that φ̃λ = 0 in ω, we obtain φ̃λ(a) = φ̃′λ(a) =
0 and thus

(γφ′λφ̃λ)(a) = (γφ̃′λφλ)(a) = 0.

∗ If a ∈ ∂Ω then φλ(a) = φ̃λ(a) = 0 thanks to the boundary conditions and thus we also have

(γφ′λφ̃λ)(a) = (γφ̃′λφλ)(a) = 0.

∗ A similar reasoning holds for the point b.

It follows that we necessarily have ∫ b

a
c21|φλ|2 dx = 0.
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– If, in addition, [a, b] does not touch the boundary of Ω we can compute similarly∫ b

a
c21φλψλ dx = −

∫ b

a
((A− λ)φ̃λ)ψλ dx

= [γφ̃′λψλ]ba − [γφ̃λψ
′
λ]ba

= 0,

by the same argument as before.

– All in all, we have eventually shown that

Mλ(c21φλ, [a, b]) = 0,

and the claim is proved.

• Let us now show that the proposed condition is necessary. Let us assume that for a given eigenvalue λ, we have
Mλ(c21φλ, [a, b]) = 0 for any connected component [a, b] of Ω \ ω.

This implies, in particular that for any such [a, b] we have∫ b

a
c21|φλ|2 dx = 0,

and since c21 = 0 in ω, we eventually find by summation that∫
Ω
c21|φλ|2 dx = 0.

This exactly means that Iλ(c21) = 0.

By Proposition V.3.7 we conclude that there any function of the form

Φ = Φ̃λ + βΦλ,

with β ∈ R, is an eigenfunction of L∗. In particular we have

B∗Φ = 1ω(φ̃λ + βφλ).

We set ζ = φ̃λ + βφλ and we will determine β is such a way that ζ identically vanish in ω.

– We will first find a value of β and a point x0 ∈ ω such that ζ(x0) = ζ ′(x0) = 0.

∗ If ω ∩ ∂Ω 6= ∅, then we take any x0 ∈ ω ∩ ∂Ω. We immediately have ζ(x0) = 0 and ζ ′(x0) =
φ̃′λ(x0) + βφ′λ(x0). Since φ′λ(x0) 6= 0 we see that one can choose β such that ζ ′(x0) = 0.
∗ If ω ∩ ∂Ω = ∅, we consider [0, b] the connected component of Ω \ ω that contains 0. By assumption,

we have ∫ b

0
c21|φλ|2 = 0.

We can find a δ > 0 small enough such that ]b, b+ δ[⊂ ω and φλ(b+ δ) 6= 0. We can then choose β
such that

0 = φ̃λ(b+ δ) + βφλ(b+ δ) = ζ(b+ δ).

Since c21 = 0 in ω, we deduce that

0 =

∫ b+δ

0
c21|φλ|2 dx

= −
∫ b+δ

0
(Aζ − λζ)φλ dx

= −(γζ ′φλ)(b+ δ),
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where we have used that ζ(0) = φλ(0) = ζ(b+ δ) = 0.
Since γ(b+ δ)φλ(b+ δ) 6= 0, we necessarily have ζ ′(b+ δ) = 0 and therefore the point x0 = b+ δ
fulfills our requirements.

– Let us show now that ζ(x1) = 0 for any point x1 ∈ ω. Assume for instance that x1 > x0. Since
[x0, x1] ∩ Ω \ ω is an union of connected components of Ω \ ω we have, by assumption∫ x1

x0

c21|φλ|2 dx =

∫ x1

x0

c21φλψλ dx = 0.

Using again an integration by parts, the equations satisfied by ζ, φλ and ψλ, and the fact that ζ(x0) =
ζ ′(x0) = 0, we obtain the two equations{

0 = −ζ ′(x1)φλ(x1) + ζ(x1)φ′λ(x1),

0 = −ζ ′(x1)ψλ(x1) + ζ(x1)ψ′λ(x1).

Since φλ and ψλ are two linearly independent solutions of the same second order linear ODE, we know
that the Wronskian determinant satisfies ∣∣∣∣φλ(x1) ψλ(x1)

φ′λ(x1) ψ′λ(x1)

∣∣∣∣ 6= 0,

and thus we conclude that
ζ(x1) = ζ ′(x1) = 0.

The claim is proved.

We have thus found an eigenfunction Φ =

(
ζ
φλ

)
of L∗ such that B∗Φ = 1ωζ = 0 and thus (V.7) is not

approximately controllable, thanks to the Fattorini-Hautus test.

Some examples. Let us analyze some particular examples of such systems. We will see that many different situa-
tions can occur.

• We consider the set O = (1/4, 3/4) and we take for some a ∈ R

c21(x) = (x− a)1O(x).

– Subcase 1 : Assume that ω ⊂ (3/4, 1). The only connected component of Ω \ ω that touches the coupling
support O contains (0, 3/4). In that case we know that the system is approximately controllable if and
only if ∫

O
c21|φλ|2 dx 6= 0.

A simple computation thus shows that

the system is approximately controllable⇐⇒ a 6∈ {aλ}λ∈Λ,

where

aλ =

∫
O
x|φλ|2∫
O
|φλ|2

, ∀λ ∈ Λ.
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– Subcase 2 : Assume now that ω ∩ (3/4, 1) 6= ∅ and ω ∩ (0, 1/4) 6= ∅. If a 6∈ {aλ}λ∈Λ, then it is clear
that the system is approximately controllable from the previous analysis. However, since the concerned
connected component of Ω \ ω does not touch the boundary of Ω, we have to check whether or not we
have ∫

O
c21φλψλ = 0.

This condition is not explicit in general but we can discuss a particular case where A = −∂2
x. In this case

we have Λ = {k2π2, k ≥ 1} and φλ(x) = sin(
√
λx) and ψλ(x) = cos(

√
λx) and we can check that

aλ = 1/2 for any λ ∈ Λ.
It remains to compute, for a = aλ = 1/2,

∫
O
c21φλψλ =

∫ 3/4

1/4
(x− 1/2) sin(

√
λx) cos(

√
λx) =

{
−1

8
√
λ

(−1)k/2, if λ = k2π2 with k even,
−1
4λ (−1)(k−1)/2, if λ = k2π2 with k odd.

Since those quantities never vanish, we deduce that our system, for this choice of ω, is always approxi-
mately controllable.

V.3.3.4 Null controllability in 1D

The main result in this direction proved in [KBGBdT16] is, in a simplified version, the following

Theorem V.3.12
Assume that ω in an interval that touches the boundary of Ω and that c21 = 0 in the control domain ω.
Then there exists a time T0(c21) ∈ [0,+∞] such that

• For T > T0(c21), the system (V.7) with (V.8) is null-controllable.

• For T < T0(c21), the system (V.7) with (V.8) is not null-controllable.

Moreover, for any T ∗ ∈ [0,∞], there exists a coupling function c21 such that T0(c21) = T ∗.

Note that in the above reference a more or less explicit formula for T0(c21) is given.
The proof strategy is the following

• Compute the eigenelements of the operator L∗. We find that the eigenfunctions are the(
φλ
0

)
,

with the associated generalized eigenfunctions given by(
ψλ
φλ

)
,

for some explicit function ψλ.

• Case T > T0(c12) : the positive controllability result is proved by using the moments method.

• Case T < T0(c12) : the negative controllability result is proved by showing that the observability inequality does
not hold for some well-chosen final data qT built as a combination of the above two (generalized) eigenfunctions
of L∗.
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V.4 Boundary controllability results for some 1D systems

We will only consider here the following constant coefficient system in the 1D interval Ω = (0, 1){
∂ty +Ay + Cy = 0, in Ω = (0, 1)

y = 1{0}Bv, on ∂Ω.
(V.9)

We will point out the main differences with the distributed control problem for the same system.

V.4.1 Approximate controllability
Proposition V.4.13

A necessary condition for the null- or approximate- controllability for (V.9) is that the pair (C,B) is
controllable.

Proof :
Let y be any solution of (V.9) and φλ an eigenfunction ofA associated with an eigenvalue λ. Then, we obtain that

the quantity z(t) = 〈y(t), φλ〉L2 ∈ Rn, solves the following ordinary differential equation

d

dt
z + λz + Cz = ±φ′λ(0)Bv(t). (V.10)

Then the null-controllability (resp. approximate controllability) of (V.9), implies the null-controllability (resp. ap-
proximate controllability) of the reduced system (V.10). It implies that the pair (C+λId, φ′λ(0)B) is controllable and
since φ′λ(0) 6= 0, this gives in turn that (C,B) satisfies the Kalman criterion.

Theorem V.4.14
Assume that m = 1 = RankB (the general case can be studied similarly).
System (V.9) is approximately controllable at time T > 0 if and only if the pair (C,B) is controllable and
the following condition holds

σ + µ = σ′ + µ′ =⇒ σ = σ′, (V.11)

for any σ, σ′ ∈ Sp(A) and µ, µ′ ∈ Sp(C∗).

Proof :
Each eigenvalue of L∗ = A+ C∗ is of the form λ = σ + µ where σ ∈ Sp(A) and µ ∈ Sp(C∗) and any element

in Ker (L∗ − λ) can be written
Φλ =

∑
σ∈Sp(A)
µ∈Sp(C∗)
λ=σ+µ

φσ(x)Vµ,

where each Vµ belongs to Ker (C∗ − µ).
When applying the observation operator B∗ = B∗ ∂∂x |x=0

we obtain

B∗Φλ = −
∑

σ∈Sp(A)
µ∈Sp(C∗)
λ=σ+µ

φ′σ(0)B∗Vµ.

• Assume that Condition (V.11) holds. It implies that there is only one term in the sum above. It follows that

B∗Φλ = −φ′σ(0)B∗Vµ,

for a given σ and a given µ. Since we have assumed that (C,B) is controllable the finite dimensional Fattorini-
Hautus test proves that B∗Vµ 6= 0, and since φ′σ(0) 6= 0 we deduce that B∗Φλ 6= 0.

This proves the Fattorini-Hautus condition.
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• Assume that (V.11) does not hold. Then there exist σ, σ′ ∈ Sp(A) with σ 6= σ′ and µ, µ′ ∈ Sp(C∗) such that
σ + µ = σ′ + µ′.

We pick Vµ, Vµ′ two eigenvectors of C∗ associated with µ and µ′ respectively. Then, the function

Φ(x) =
φ′σ′(0)

B∗Vµ
φσ(x)Vµ −

φ′σ(0)

B∗Vµ′
φσ′(x)Vµ′ ,

which is well-defined since, by the Fattorini-Hautus test applied to the pair (C,B), we have B∗Vµ 6= 0 and
B∗Vµ′ 6= 0. By construction, Φ is an eigenfunction of our adjoint operator L∗. Moreover we have

B∗Φ = −φ
′
σ′(0)

B∗Vµ
φ′σ(0)B∗Vµ +

φ′σ(0)

B∗Vµ′
φ′σ′(0)B∗Vµ′ = 0.

This shows that the Fattorini-Hautus test is not fulfilled by our system and thus it is not approximately control-
lable.

Remark V.4.15
Observe that Condition (V.11) automatically holds when C∗ has only one eigenvalue, which is the case for
instance when C is a Jordan block, that is to say when our parabolic system has a cascade structure.

V.4.2 Null-controllability

Let us now study the null-controllability of (V.9). The usual Kalman matrix change of variable let us put the system
in cascade form (observe that it is crucial here that the same diffusion operator appears in each equation.

To simplify the presentation we assume n = 2 and m = 1 and thus we consider the following cascade system


∂ty1 +Ay1 = 0, in (0, 1)

∂ty2 +Ay2 + y1 = 0, in (0, 1)

y(t, x = 1) =

(
0
0

)
, and y(t, x = 0) =

(
1
0

)
v(t).

(V.12)

The proof will rely on the moments method for which we need a generalized version of the results given in Section
IV.1.2 and that we will present now.

V.4.2.1 More about biorthogonal families of real exponential type functions

We first generalize the definitions introduced in Section IV.1.1.3, following the formalism of generalized divided
differences that we recall in Appendix, Section A.3

e[λ(j+1)]
def
=

(
t 7→ (−t)j

j!
e−λt

)
∈ L2(0,∞).

We can then formulate the suitable generalization of Theorem IV.1.9 for taking into account the multiplicity of
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the eigenvalues in our control problem. Its proof is postponed to Section V.4.2.3.

Theorem V.4.16 (Generalized biorthogonal families in finite horizon)
Let Λ be a family in (0,+∞) satisfying (IV.19)-(IV.20) and let m ∈ N∗.
Then, for any T > 0, there exists a family (qlλ,T ) λ∈Λ

l∈J0,mK
in L2(0, T ) satisfying

(qlλ,T , e[µ
(j+1)])L2(0,T ) = δλ,µδl,j , ∀λ, µ ∈ Λ, l, j ∈ J0,mK,

and the estimate
‖qlλ,T ‖L2(0,T ) ≤ Keε(λ)λ, ∀λ ∈ Λ,∀l ∈ J0,mK,

where ε : R → R is a function such that lims→+∞ ε(s) = 0 that only depends on m, ρ and the remainder
function R, and K > 0 is a constant depending only on T , m, ρ and R.
Moreover, if the counting function of Λ satisfies (IV.21) or (IV.22) then ε can be chosen as in IV.1.10.

V.4.2.2 Application to the null-controllability of (V.12)

Theorem V.4.17

For any initial data y0 ∈ (L2(Ω))2, and any T > 0, there exists a control v ∈ L2(0, T ) such that the
solution of (V.12) satisfies y(T ) = 0. Moreover, we have the estimate

‖v‖L2(0,T ) ≤ Ce
C
T ‖y0‖L2 ,

where C > 0 does not depend on T .

We first give the proof of the controllability result. The control cost estimate will be discussed in Section V.4.2.4.
Proof (Existence of the control):

The spectrum of the adjoint operator L∗ = A +

(
0 1
0 0

)
is described in Proposition V.3.7 (with c21 = 1 here).

Since, in the current setting we have nλ = 1 and Iλ(c21) = Iλ(1) 6= 0 for any λ, we deduce that for each λ ∈ Λ, there
is, up to a constant, a single eigenfunction

Φλ =

(
φλ
0

)
,

and an associated generalized eigenvector

Φ̃λ =

(
0
φλ

)
,

and we observe that
B∗Φλ = φ′λ(0), B∗Φ̃λ = 0. (V.13)

We can immediately compute {
e−tL

∗
Φλ = e−tλΦλ,

e−tL
∗
Φ̃λ = e−tλ(Φ̃λ − tΦλ).

In that case it is cleat that the family {Φλ, Φ̃λ, λ ∈ Λ} is an Hilbert basis of (L2(Ω))2 (we actually only need that
it is complete) and therefore a function v ∈ L2(0, T ) is a null-control for our problem if and only if it satisfies the
following moments equations

e−Tλ〈y0,Φλ〉E =

∫ T

0
v(s)e−λ(T−s)B∗Φλ ds

e−Tλ〈y0, Φ̃λ − TΦλ〉E =

∫ T

0
v(s)e−λ(T−s)B∗(Φ̃λ − (T − s)Φλ)ds.
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Those equations can be simplified using the definitions of Φλ, Φ̃λ and (V.13) as follows
e−Tλ

φ′λ(0)
〈y0,1, φλ〉L2 =

∫ T

0
v(s)e−λ(T−s) ds,

e−Tλ

φ′λ(0)

(
〈y0,1, φλ〉L2 − T 〈y0,2, φλ〉L2

)
=

∫ T

0
v(s)[−(T − s)]e−λ(T−s)ds

Setting u(t) := v(T − t), we are now looking for a function u that solves the following moment problem
∫ T

0
u(t)et[λ] dt = ω0

λ,T,y0
,∫ T

0
u(t)et[λ

(2)]dt = ω1
λ,T,y0

,

where

ω0
λ,T,y0

def
=

e−Tλ

φ′λ(0)
〈y0,1, φλ〉L2 , and ω1

λ,T,y0

def
=

e−Tλ

φ′λ(0)

(
〈y0,2, φλ〉L2 − T 〈y0,1, φλ〉L2

)
.

This moment problem can now be solved by using the generalized biorthogonal family given by Theorem V.4.16 (with
m = 1 in the present case) as follows

u(t) =
∑
λ∈Λ

(
ω0
λ,T,y0

q0
λ,T (t) + ω1

λ,T,y0
q1
λ,T (t)

)
.

Indeed, by the estimates given in the Theorem and the definition of the terms ω• we find the convergence of the series
in L2(0, T ), exactly as we did in the proof of Theorem IV.1.11. Moreover, it clearly satisfies the required moment
problem by construction of the biorthogonal family.

V.4.2.3 Proof of Theorem V.4.16

As we did in Section IV.1.2, we will start by proving the result with T = +∞, then we will present the restruction
argument to justify the construction in the case T < +∞.

Infinite time horizon. Assume that Λ satisfies (IV.20) and (IV.19) and let λ ∈ Λ. For any h > 0 we introduce the
new family

Λh
def
=

m⋃
j=0

(Λ + jh),

and the subset

Lh
def
=

m⋃
j=0

(Λ \ {λ}+ jh).

Lemma V.4.18
Assume that h < ρ

2m , then the family Λh satisfies the weak gap condition (IV.25) with the gap ρ/2 and
p = m+ 1.
Moreover, Λh has a remainder function R̃ which only depends on R and m.

Proof :

cbna F. BOYER - FEBRUARY 7, 2020



V.4. Boundary controllability results for some 1D systems 107

• Assume that (IV.25) does not hold for Λh with the given parameters. Then, for some µ > 0 we have

#
(
Λ ∩ [µ, µ+ ρ/2)

)
> m+ 1.

In particular there are two elements in [µ, µ + ρ) that are of the form λ + ih and λ′ + jh with λ 6= λ′ and
i, j ∈ J0,mK. In particular we have

|(λ+ ih)− (λ′ + jh)| < ρ/2,

and thus
|λ− λ′| < ρ/2 + |i− j|h ≤ ρ/2 +mh < ρ.

This is a contradiction with (IV.20).

• Let r > 0, we have ∑
σ∈Λh
σ>r

1

σ
=

m∑
i=0

∑
λ∈Λ

λ+ih>r

1

λ+ ih

=
m∑
i=0

∑
λ∈Λ
λ>r

1

λ+ ih
+

m∑
i=0

∑
λ∈Λ

r≥λ+ih>r

1

λ+ ih

≤
m∑
i=0

∑
λ∈Λ
λ>r

1

λ
+

m∑
i=0

∑
λ∈Λ

r≥λ>r−ih

1

λ+ ih

≤ (m+ 1)R(r) +
m∑
i=0

∑
λ∈Λ

r≥λ>r−ih

1

λ+ ih
.

– If r < 1
R(0) then in particular (A.14) we have r < inf Λ, so that the second term above is 0.

– If r ≥ 1
R(0) then we can simply bound the second term by

∑m
i=0

i
r .

All in all, we got that the function

R̃(r)
def
= (m+ 1)R(r) +

m2

2
min

(
R(0),

1

r

)
,

if a remainder function for Λh, which proves the claim.

For any σ ∈ (0,+∞) with σ 6∈ Lh, we define now

ph[σ]
def
= e[σ]− πLhe[σ],

and we set

Pλ,h
def
=

{
ph[λ], ph[λ, λ+ h], . . . , ph[λ, ..., λ+mh]

}
.

Proposition V.4.19

The minimal biorthogonal family in L2(0,+∞) to the family Pλ,h, denoted by (qlλ,h)l∈J0,mK, satisfies

‖qlλ,h‖L2(0,+∞) ≤ Cλm+ 1
2 eε(λ−mρ)λ, ∀h < h0(λ), (V.14)

for some h0(λ) depending only on λ, C > 0 depending only on m and ε a decreasing function such that
limr→+∞ ε(r) = 0 depending only on R, ρ and m.
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Proof :
Let us introduce the functions

fh[σ]
def
=

ph[σ]

WLh(σ)
.

Using Propositions A.4.13 and A.4.14 we obtain that for any σ, σ′ 6∈ Lh, we have

(ph[σ], ph[σ′])L2(0,+∞) =
WLh(σ)WLh(σ′)

σ + σ′
,

and thus
(fh[σ], fh[σ′])L2(0,+∞) =

1

σ + σ′
.

In particular, it appears that
(fh[σ], fh[σ′])L2(0,+∞) = (e[σ], e[σ′])L2(0,∞). (V.15)

We consider the (linearly independent) family

Fλ,h
def
=

{
(2λ)1/2fh[λ], (2λ)1+1/2fh[λ, λ+ h], . . . , (2λ)m+1/2fh[λ, ..., λ+mh]

}
,

that spans the same space as Pλ,h.
By using (V.15) we get for any k, l ∈ J0,mK that(

(2λ)k+1/2fh[λ, ..., λ+ kh],(2λ)l+1/2fh[λ, ..., λ+ lh]

)
L2(0,+∞)

= (2λ)k+l+1 (e[λ, ..., λ+ kh], e[λ, ..., λ+ lh])L2(0,+∞)

−−−→
h→0

(2λ)k+l+1
(
e[λ(k+1)], e[λ(l+1)]

)
L2(0,+∞)

= (2λ)k+l+1

∫ +∞

0

(−t)k
k!

e−λt
(−t)l
l!

e−λt dt

=

∫ +∞

0

(−t)k+l

k!l!
e−t dt.

It follows that the Gram matrix of Fλ,h converges, when h→ 0 towards a matrix which is independent of λ and which
is, in fact, nothing but the Gram matrix of the family t 7→ (−t)k/k! in the weighted space L2(0,+∞, e−t dt).

Therefore, by Propositions A.4.10 and A.4.9, there exists h0(λ) > 0, such that for any h < h0, the minimal
biorthogonal family of Fλ,h, denoted by (gλ,h,i)i∈J0,mK satisfies the uniform bound

‖gλ,h,i‖L2(0,+∞) ≤ C, (V.16)

where C > 0 depends only on m.
We set now

qlλ,h
def
=

m∑
j=l

(
1

WLh

)
[λ+ lh, ..., λ+ jh](2λ)j+1/2gλ,h,j .

It is clear that qlλ,h ∈ Span(Pλ,h) and we compute the following inner product

(ph[λ, ..., λ+ kh],qlλ,h)L2(0,+∞)

=

k∑
i=0

WLh [λ+ ih, ..., λ+ kh]
(
fh[λ, ..., λ+ ih], qlλ,h

)
L2(0,+∞)

=
k∑
i=0

m∑
j=l

WLh [λ+ ih, ..., λ+ kh]

(
1

WLh

)
[λ+ lh, ..., λ+ jh]

× (2λ)j−i
(
(2λ)i+1/2fh[λ, ..., λ+ ih], gλ,h,j

)
L2(0,+∞)︸ ︷︷ ︸

=δi,j

.
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In the case where k < l, the sum above is zero since it is not possible that i = j. Assume now that k ≥ l, thanks to
the Leibniz formula (Proposition A.3.4), the sum reduces to

(ph[λ, ..., λ+ kh], qlλ,h)L2(0,+∞) =
k∑
i=l

WLh [λ+ ih, ..., λ+ kh]

(
1

WLh

)
[λ+ lh, ..., λ+ ih]

=

(
1

WLh

WLh

)
[λ+ lh, ..., λ+ kh]

= 1[λ+ lh, ..., λ+ kh]

= δk,l.

This proves that (qlλ,h)l∈J0,mK is indeed the minimal biorthogonal family to Pλ,h.
Moreover, thanks to (V.16) , we have the explicit bound

‖qlλ,h‖L2(0,+∞) ≤ Cλm+ 1
2 max
j∈Jl,mK

∣∣∣∣( 1

WLh

)
[λ+ lh, ..., λ+ jh]

∣∣∣∣ .
Thanks to the Lagrange theorem (Proposition A.3.3) and to the estimates given in Corollary IV.1.16, we finally get
the uniform bound (V.14). Here we have used that Lh satisfies the assumptions (IV.25) and (IV.19) uniformly with
respect to h, thanks to Lemma V.4.18.

The proof is complete.
We can now terminate the proof. Let µ ∈ Λ.

• If µ 6= λ, then µ+ ih ∈ Lh for any i ∈ J0,mK, and thus by construction we have

(qlλ,h, e[µ+ ih])L2(0,+∞) = 0,

which gives, by linear combinations,

(qlλ,h, e[µ, ..., µ+ kh])L2(0,+∞) = 0, ∀k ∈ J0,mK.

• If µ = λ, still by construction, we have

(qlλ,h, e[λ, ..., λ+ kh])L2(0,+∞) = (qlλ,h, e[λ, ..., λ+ kh]− πLhe[λ, ..., λ+ kh])L2(0,+∞)

= (qlλ,h, p[λ, ..., λ+ kh])L2(0,+∞)

= δk,l.

We have thus proved that

(qlλ,h, e[µ, ..., µ+ kh])L2(0,+∞) = δλ,µδk,l, ∀µ ∈ Λ,∀k, l ∈ J0,mK. (V.17)

Moreover, by Propositions A.3.3 and A.3.6 and the Lebesgue theorem, we easily see that for any µ > 0 and any
integer k, we have

e[µ, ..., µ+ kh] −−−→
h→0

e[µ(k+1)], strongly in L2(0,+∞).

By (V.14) we see that, up to a subsequence, we can find a qlλ ∈ L2(0,+∞) such that

qlλ,h −−−⇀
h→0

qlλ, weakly in L2(0,∞),

and that satisfies the same bound as in (V.14).
The claim is finally proved by performing a weak-strong limit in (V.17).
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Restriction argument on (0, T ). The estimate of the restriction operator obtained in Proposition IV.1.17 can be
easily extended to the present case by replacing EΛ by

EmΛ
def
=
{
e[λ(k+1)], λ ∈ Λ, k ∈ J0,mK

}
,

and EΛ (resp. FΛ,T and FΛ,∞) by EmΛ (resp. FmΛ,T and EmΛ,∞) accordingly.

V.4.2.4 Control cost estimate.

Refined estimate. Assuming that the counting function of Λ satisfies (IV.21) (in addition to the gap assumption
(IV.20)) we can also extend Theorem IV.1.18 to obtain a sharp estimate of the restriction operator as a function of
time.

Theorem V.4.20

There exists C11 > 0 (depending only on α, N̄ and on m) such that

‖P‖L2(0,+∞) ≤ C11e
C11T

− α
1−α ‖P‖L2(0,T ), ∀P ∈ EmΛ .

Proof :
Let P ∈ EmΛ that we write

P =
m∑
j=0

∑
λ∈Λ

ajλe[λ
(j+1)],

where only a finite number of coefficients (ajλ)j,λ are non zero. For h > 0 we define

Ph =

m∑
j=0

∑
λ∈Λ

ajλe[λ, ..., λ+ jh] ∈ EΛh .

It is straightforward to see that the counting function Nh of Λh satisfies

Nh(r) ≤ mN(r), ∀r > 0,

and thus
Nh(r) ≤ mN̄rα, ∀r > 0.

This estimate being uniform in h we can apply Theorem IV.1.18 to Ph so that for a C > 0, independent of h, we have

‖Ph‖L2(0,+∞) ≤ CeCT
− α

1−α ‖Ph‖L2(0,T ). (V.18)

The conclusion follows by passing to the limit as h→ 0 in this estimate since, as we have already seen, we have

Ph −−−→
h→0

P, in L2(0,∞).

Using the same arguments as in Section IV.1.2.5 based on Theorems V.4.16 and V.4.20, the control cost estimate
given in Theorem V.4.17 is now straightforward.
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Appendix A

Appendices

A.1 Non-autonomous linear ODEs. Resolvant

We consider a linear, non autonomous and homogeneous ODE of dimension n as follows{
y′(t) +A(t)y(t) = f(t),

y(0) = y0,
(A.1)

It can be proved that there exists a unique map (t, s) ∈ R× R 7→ R(t, s) ∈Mn(R) called the resolvant that satisfies
d

dt
R(t, t0) +A(t)R(t, t0) = 0,

R(t0, t0) = Id.

This maps satisfies the group property

R(t1, t2)R(t2, t3) = R(t1, t3), ∀t1, t2, t3 ∈ R.

With this definition, the unique solution to the problem (A.1), is given by the Duhamel formula

y(t) = R(t, 0)y0 +

∫ t

0
R(t, s)f(s) ds.

Example A.1.1 (Autonomous case)
When A(t) = A does not depend on time, we can check that

R(t, s) = e−(t−s)A,

and the above formula becomes

y(t) = e−tAy0 +

∫ t

0
e−(t−s)Af(s) ds.

A.2 Linear ODEs with integrable data

Consider the following system of ODEs, with A ∈Mn(R) independent of time and f ∈ L1(0, T,Rn),{
y′(t) +Ay(t) = f(t),

y(0) = y0,
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The usual Cauchy theorem applies (with minor adaptation related to the fact that, because of the non regularity of f ,
the solution y may not be of class C1) and gives a unique solution y.

Let us prove that the linear solution map

Φ : (y0, f) ∈ Rn × L1(0, T,Rn) 7→ y ∈ C0([0, T ],Rn),

is continuous. The Duhamel formula gives

y(t) = e−tAy0 +

∫ t

0
e−(t−s)Af(s) ds,

and by taking the norm, for a given t ∈ [0, T ], we get

‖y(t)‖ ≤ et‖A‖‖y0‖+

∫ t

0
e(t−s)‖A‖‖f(s)‖ dt ≤ CT (‖y0‖+

∫ T

0
‖f(s)‖ ds).

Which proves that
‖y‖C0([0,T ],Rn) ≤ CT (‖y0‖+ ‖f‖L1(0,T,Rn)).

A.3 Divided differences

A.3.1 Definition and basic properties

Let V be a real vector space, n ∈ N and x1, . . . , xn ∈ R. Assume that x1, . . . , xn are pairwise distinct (see Sec-
tion A.3.2 for a generalization). Let f1, . . . , fn ∈ V be given.

Definition A.3.2
The divided differences are defined by

f [xi]
def
= fi, ∀i ∈ J1, nK,

and then recursively for any k ∈ J2, nK, for any pairwise distinct i1, . . . , ik ∈ J1, nK, by

f [xi1 , . . . , xik ]
def
=
f [xi1 , . . . , xik−1

]− f [xi2 , . . . , xik ]

xi1 − xik
.

If f : R → V is a given function it will be implicitely assumed that fi = f [xi] = f(xi). It can be proved that the
divided differences are symmetric functions of their arguments.

Proposition A.3.3 (Lagrange theorem)

Assume that V = R and that f ∈ Cn−1 (Conv{x1, . . . , xn}). For any k ∈ J1, nK, for any pairwise distinct
i1, . . . , ik ∈ J1, nK, there exists a z ∈ Conv{xi1 , . . . , xik} such that

f [xi1 , . . . , xik ] =
f (k−1)(z)

(k − 1)!
.

We recall a simple way to compute divided differences of a product which is known as the Leibniz rule.

Proposition A.3.4

Let g : R→ R and (gf)[x]
def
= g(x)f [x]. For any k ∈ J1, nK, for any pairwise distinct i1, . . . , ik ∈ J1, nK,

(gf)[xi1 , . . . , xik ] =

k∑
j=1

g[xi1 , . . . , xij ]f [xij , . . . , xik ].
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A.3.2 Generalized divided differences

Assume that V is a normed vector space. Let x = (x1, . . . , xn) ∈ Rn be pairwise distinct real numbers and let α ∈ Nn
a multi-index such that α > 0. To such a multi-index we associate elements of V that we gather in a fα ∈ V |α| and
that are indexed as follows

f lj , j ∈ J1, nK, l ∈ J0, αj − 1K.

Definition A.3.5

For any µ ∈ Nn such that µ ≤ α, we can define f [x
(µ1)
1 , . . . , x

(µn)
n ] ∈ V by using the following rules

f [x
(µ1)
1 , . . . , x(µn)

n ] = f
µj−1
j , if µj′ = 0 for all j′ 6= j, (A.2)

and for all j1 6= j2 and µj1 > 0, µj2 > 0

f [x
(µ1)
1 , . . . , x(µn)

n ] =
f [. . . , x

(µj1−1)

j1
, . . . , x

(µj2 )

j2
, . . . ]− f [. . . , x

(µj1 )

j1
, . . . , x

(µj2−1)

j2
, . . . ]

xj1 − xj2
. (A.3)

The above definition does not depend on the order in which we apply the second rule (A.3), moreover it is consistent
with the standard divided differences definition in the following sense:

Proposition A.3.6
If f : R→ V is a smooth function, and if we set

f lj =
f (l)(xj)

l!
, ∀j ∈ J1, nK, ∀l ∈ J0, αj − 1K,

then for any µ ∈ Nd, µ ≤ α, the associated generalized divided difference satisfies

f [x
(µ1)
1 , . . . , x(µn)

n ] = lim
h→0

f [yh1 , ..., y
h
|µ|],

where:

• for each p ∈ J1, |µ|K, limh→0 y
h
p exists and belongs to {x1, ..., xn},

• for each j ∈ J1, nK, there is exactly µj values of p such that limh→0 y
h
p = xj .

A.4 Biorthogonal families in a Hilbert space

A.4.1 Notation and basic result

Let A be any subset of H . We denote by πA the orthogonal projection onto Span(A) and we introduce the quantity

δ(x,A)
def
= d(x, Span(A)) = d(x,Span(A)) = ‖x− πAx‖H , ∀x ∈ H. (A.4)

We will see below a systematic way, based on linear algebra, to compute δ(x,A) when A is finite. The following
elementary result gives us a way to compute δ(x,A) when A is countable by approaching A by a sequence of finite
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sets An.

Lemma A.4.7
Let A be any subset of H and (An)n an increasing sequence of subsets such that

A =
⋃
n≥1

An. (A.5)

For any x ∈ H , we have
πAnx

n→∞−−−→ πAx,

and in particular
δ(x,An)

n→∞−−−→ δ(x,A).

Proof :
Let us define the operators Tn

def
= πAn − πA.

We have the standard estimate ‖Tn‖ ≤ 2 from the properties of orthogonal projections. Moreover, thanks to (A.5)
we know that for any x ∈ Span(A) there exists a n0 such that x ∈ Span(An) for any n ≥ n0 so that

Tnx = 0, ∀n ≥ n0,

and in particular
lim
n→∞

Tnx = 0, ∀x ∈ Span(A), (A.6)

For any x ∈ H , and y ∈ Span(A) we can write

‖Tnx‖H ≤ ‖Tn(x− y)‖H + ‖Tny‖H ≤ 2‖x− y‖H + ‖Tny‖H ,

and thus by (A.6), we get
lim sup
n→∞

‖Tnx‖H ≤ 2‖x− y‖H .

By density of Span(A) into Span(A), we deduce that

lim
n→∞

Tnx = 0, ∀x ∈ Span(A).

Moreover, by construction, for any x ∈ Span(A)⊥ we have

πAnx = πAx = 0,

and thus Tnx = 0 for any n. The claim is proved since

H = Span(A)⊕ Span(A)⊥.

A.4.2 Gram matrices. Gram determinants

For any finite subset E = {e1, ..., en} ⊂ H , the Gram matrix of E is defined by

GE
def
=

(
(ei, ej)H

)
i,j∈J1,nK

,
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and the associated (Gram) determinant is denotes by ∆E
def
= detGE . Note that GE depends on the numbering of the

elements of E but not ∆E .

Lemma A.4.8 (Linear independence characterization)
We have the following two properties.

1. The family E is linearly independent if and only if

δ(ei, E \ {ei}) > 0, ∀i ∈ J1, nK.

2. The family E is linearly independent if and only if ∆E 6= 0.

Proof :

1. Since E is finite, Span(E \ {ei}) is closed and it follows that

δ(ei, E \ {ei}) > 0⇐⇒ ei 6∈ Span(E \ {ei}),

which proves the claim.

2. Let X =t
(
x1, . . . , xn

)
∈ Rn and x =

n∑
i=1

xiei ∈ H . By definition we have

(X,GEX) =

n∑
i,j=1

xixj(ei, ej)H = ‖x‖2H .

It follows that GE is a positive symmetric matrix and that detGE = 0 if and only if 0 is an eigenvalue of GE .
Moreover, with the above notation, we have GEX = 0 if and only if x = 0 and the claim is proved.

Proposition A.4.9
With the notation above, for any x ∈ H \ E, we have

δ(x,E)2 =
∆E∪{x}

∆E
.

Note that for x ∈ E we have δ(x,E) = 0.

Proof :
We observe, by elementary operations on rows and columns, that ∆E∪{x} = ∆E∪{x−πEx}. Moreover, since

x− πEx is orthogonal to all the vectors (ei)i, this last Gram matrix has the following block-by-block form

GE∪{x−πEx} =

(
GE 0
0 ‖x− πEx‖2H

)
,

and therefore we have

∆E∪{x−πEx} = ‖x− πEx‖2H∆E ,
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which is the claimed formula.

Proposition A.4.10 (Bi-orthogonal family. Finite case)
Let E = {e1, ..., en} ⊂ H be a finite family in H .
The following two properties are equivalent.

1. The family E is linearly independent.

2. There exists a finite family F = {f1, ..., fn} of cardinal n such that

(ei, fj)H = δi,j , ∀i, j ∈ J1, nK. (A.7)

We say that F is a biorthogonal family of E.

If those two properties hold then there exists a unique such biorthogonal family such that F ⊂ SpanE. It
satisfies moreover the matrix equality

GEGF = Id,

and in particular we have

‖fi‖H =
1

δ(ei, E \ {ei})
, ∀i ∈ J1, nK. (A.8)

Remark A.4.11

If F̃ is any biorthogonal family of E in H , then the orthogonal projections fi = πE f̃i still satisfy (A.7) and
belong to Span(E). Therefore it is the unique family F given in the proposition.
It follows that F is the minimal biorthogonal family to E in the sense that

‖fi‖H ≤ ‖f̃i‖H , ∀i ∈ J1, nK.

Proof :

• Assume that F is a biorthogonal family of E and let (αi)i∈J1,nK ⊂ R such that

0 =
n∑
i=1

αiei.

For any j ∈ J1, nK we take the inner product of this equality with fj and we get

0 =
n∑
i=1

αi(ei, fj)H = αj .

This proves that E is linearly independent.

• Assume now that E is linearly independent. We will look for a family F in the following form

fj =
n∑
k=1

ajkek,

where the matrix A = (ajk)j,k ∈Mn(R) has to be determined.

The equations (A.7) can be written for any i, j ∈ J1, nK,

δij =

n∑
k=1

ajk(ek, ei)H

=(AGE)ji.
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This reduces to the matrix equationAGE = Id. Since E is linearly independent, we know thatGE is invertible
and thus that there exists an unique matrix A (which appears to be symmetric) that satisfies our requirements.
This proves existence and uniqueness of the biorthogonal family F . We can then compute

(fi, fj)H =
∑
k,l

aikajl(ek, el)H

= (AGEA)ij ,

and since AGE = Id, we deduce that GF = A.

Since GF = G−1
E we can express GF thanks to the cofactor matrix of GE and in particular, for the diagonal

coefficient ‖fi‖2H of GF , using that the associated cofactor of GE is nothing but the Gram determinant ∆E\{ei}
we obtain

‖fi‖2H =
∆E\{ei}

∆E
,

and thus (A.8) by Proposition A.4.9.

When E is an infinite family, the existence of a biorthogonal family is no more equivalent to the linear indepen-
dence of E, and we need a slightly stronger assumption.

Proposition A.4.12 (Bi-orthogonal family. Infinite case)
Let E be any family of elements of H .
The following two propositions are equivalent.

1. There exists a family F = (fe)e∈E ⊂ H such that

(ẽ, fe)H = δe,ẽ, ∀e, ẽ ∈ E.

Such a family is called a biorthogonal family to E.

2. We have
δ(e, E \ {e}) > 0, ∀e ∈ E. (A.9)

If those properties hold, there is a unique such family F such that F ⊂ Span(E) and it satisfies

‖fe‖H =
1

δ(e, E \ {e}) , ∀e ∈ E.

Proof :

• Assume that there exists a biorthogonal family F then for any y ∈ Span(E \ {e}) we have

1 = (e, fe)H = (e− y, fe)H ≤ ‖e− y‖H‖fe‖H .

Taking the infimum with respect to y, we get

1 ≤ δ(e, E \ {e})‖fe‖H .

• Conversely, assume (A.9) and define

fe =
1

δ(e, E \ {e})2
(e− πE\{e}e).
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By construction, if ẽ ∈ E \ {e} we have

(fe, ẽ)H =
1

δ(e, E \ {e})2
(e− πE\{e}e, ẽ)H = 0,

and

(fe, e)H =
1

δ(e, E \ {e})2
(e− πE\{e}e, e)H =

1

δ(e, E \ {e})2
(e− πE\{e}e, e− πE\{e}e)H = 1.

The claim is proved.

A.4.3 Generalized Gram determinants

Let E = {e1, ..., en} and F = {f1, ..., fn} two finite families of elements of H . We introduce the generalized Gram
matrix

GE,F
def
=

(
(ei, fj)H

)
i,j∈J1,nK

,

and the associated Gram determinant is denoted ∆E,F = detGE,F .
With this definition we can find a useful generalization of Proposition A.4.9.

Proposition A.4.13
Let E = (ei)1≤i≤n be a linearly independent family in H .
For any x, y ∈ H \ E we have

(x− πEx, y − πEy)H =
∆E∪{x},E∪{y}

∆E
.

Proof :
The proof is very similar to the one of Proposition A.4.9. We first use elementary operations on the columns of

GE∪{x},E∪{y} to prove that
∆E∪{x},E∪{y} = ∆E∪{x},E∪{y−πEy},

then we use elementary operations on the rows of this matrix to get

∆E∪{x},E∪{y} = ∆E∪{x−πEx},E∪{y−πEy}.

Since x− πEx and y − πEy are orthogonal to E, this generalized Gram matrix is block diagonal

GE∪{x−πEx},E∪{y−πEy} =

(
GE 0
0 (x− πEx, y − πEy)H

)
.

The claim is proved by computing the determinant.

A.4.4 Cauchy determinants

As an example of Gram determinant we will need to compute the Cauchy determinant, which is by definition the
determinant of the Cauchy matrix

CA
def
=
(

1
ai+aj

)
i,j∈J1,nK

,

for any family A = {a1, ..., an} of n positive real numbers.
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We will actually need to introduce a generalized version of that by considering two families A = {a1, ..., an} and
B = {b1, ..., bn} of n positive real numbers and the associated Cauchy matrix

CA,B
def
=
(

1
ai+bj

)
i,j∈J1,nK

.

Let us recall the following explicit formula for this determinant.

Proposition A.4.14
For any n and any families A,B we have

detCA,B =

(
n∏
i=1

1

ai + bi

)
×

∏
i,j∈J1,nK
i<j

(ai − aj)(bi − bj)
(ai + bj)(aj + bi)

.

Proof :
Let us perform the proof by induction. For n = 1, the result is clear. Let us now assume n ≥ 2 and we write

A = Ã ∪ {an}, with Ã = {a1, ..., an−1},

B = B̃ ∪ {bn}, with B̃ = {b1, ..., bn−1}.

In the definition of detCA,B we perform row manipulations to cancel all the upper diagonal entries in the last
column. We obtain that

detCA,B
def
= det

(
M 0
? 1

an+bn

)
i,j∈J1,nK

,

where M is a (n− 1)× (n− 1) matrix whose entries are

mij =
an − ai
bn + ai

bn − bj
an + bj

1

ai + bj
, ∀i, j ∈ J1, n− 1K.

In other words we have

M = DA,B,1CÃ,B̃DA,B,2,

where DA,B,1 (resp. DA,B,2) is a (n − 1) × (n − 1) diagonal matrices whose entries are an−ai
bn+ai

(resp. bn−bj
an+bj

).
Computing the determinant, it follows that

detM = (detCÃ,B̃)
n−1∏
i=1

(an − ai)(bn − bi)
(an + bi)(bn + ai)

,

and finally

detCA,B = (detCÃ,B̃)× 1

an + bn

n−1∏
i=1

(an − ai)(bn − bi)
(an + bi)(bn + ai)

.

The claim follows by using the induction hypothesis.
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A.5 Sturm comparison theorem

Theorem A.5.15

Let I be an interval of R, γ ∈ C1(I), with γ > 0 and q1, q2 ∈ C0(I). Let u1 and u2 be non trivial solutions
to the differential equations

−∂x(γ(x)∂xu1) + q1(x)u1 = 0, on I,

−∂x(γ(x)∂xu2) + q2(x)u2 = 0, on I.

We assume that q1 ≥ q2 in I . Then for any distinct zeros α < β of u1 one the two following proposition
holds

• Either, there exists one zero of u2 in the open interval (α, β).

• Or, u1 and u2 are proportional in [α, β], which implies in particular that q1 = q2 on [α, β].

Proof :
The main needed ingredient is the Wronskian of u1, u2 defined as follows

W (x) = (γ∂xu1)u2 − u1(γ∂xu2),

whose derivative has the following expression, using the two equations satisfied by u1 and u2

W ′(x) = (q1 − q2)u1u2. (A.10)

Let α < β be two zeros of u1 in I and assume that there is no zero of u2 in (α, β). Without loss of generality we
can assume that α and β are consecutive zeros of u1. This means that we can change the sign of u1 and u2 in such a
way that

u1 > 0 and u2 > 0, in (α, β).

And since u1(α) = u1(β) = 0, we necessarily have ∂xu1(α) > 0 and ∂xu1(β) < 0.

We can now collect the following facts:

• We have W (α) = (γ∂xu1(α))u2(α) ≥ 0 and W (α) = 0 if and only if u2(α) = 0.

• We have W (β) = (γ∂xu1(β))u2(β) ≤ 0 and W (β) = 0 if and only if u2(β) = 0.

• Since q1 ≥ q2, and u1, u2 are positive in (α, β), we deduce from (A.10) that W ′ ≥ 0 in (α, β) and in particular
that W is non decreasing in [α, β].

The above three properties are only possible if W is identically zero in (α, β), and in particular u2(α) = u2(β) = 0.
It follows that we necessarily have W ′ = 0 in (α, β) which implies, from (A.10), that q1 = q2 on [α, β].

Therefore, u1 and u2 are solutions to the same equation on [α, β] and both vanish at α. It follows that u1 and
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v = u2
u′1(α)
u′2(α)

solve the same linear Cauchy problem in [α, β] and thus are equal. The claim is proved.

Corollary A.5.16

Let I be an interval of R, γ ∈ C2(I), with γ > 0, q ∈ C0(I) and λ > 0. Let u be a non trivial solutions to
the differential equation

−∂x(γ(x)∂xu) + q(x)u = λu, on I.

Let a < b two points in I . Then, if

λ ≥ ‖q‖∞ +

(
4π

b− a

)2

‖γ‖∞ +
1

2
‖γ′′‖∞, (A.11)

there exists two distinct zeros of u in [a, b] denoted by α, β such that

|α− β| ≥ |a− b|/2.

Proof :
Let us introduce the function

w(x) = sin

(
(x− a)

4π

b− a

)
,

which satisfies the equation

−w′′ =
(

4π

b− a

)2

w,

and that have the following two explicit zeros

w(a) = 0, w

(
a+

b− a
4

)
= 0.

Let us set v =
√
γw and observe that v has the same zeros as w. Moreover, a straightforward computation shows that

v solves the equation

−∂x(γ∂xv) + q̃v = 0,

where we have defined

q̃(x) =

[
−
(

4π

b− a

)2

γ − γ′′

2
+

1

4

(γ′)2

γ

]
.

By the assumption (A.11) on λ, we have for any x ∈ [a, b]

q̃(x) ≥ −
(

4π

b− a

)2

‖γ‖∞ −
1

2
‖γ′′‖∞

≥ ‖q‖∞ − λ
≥ q(x)− λ.

Therefore, we can apply the comparison principle (Theorem A.5.15) to u and w and deduce that between any two
zeros of w there is a zero of u. In particular, there exists a zero of u, in the interval

[
a, a+ b−a

4

]
, that we call α.

By the exact same reasoning we find a zero of u in the interval
[
b− b−a

4 , b
]

that we call β and it is straightforward
to check that |α− β| ≥ |a− b|/2.
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A.6 Counting function and summation formulas

Let Λ ⊂ (0,+∞) be a locally finite family of positive numbers.

Definition A.6.17 (Counting function)
The counting function associated with the family Λ is defined by

NΛ(r)
def
= #

(
Λ ∩ (−∞, r]

)
.

If there is no ambiguity we shall simply call it N .

We will make use of the following summation formulas.

Proposition A.6.18

Let f : (0,+∞)→ R be a C1 function. For any 0 ≤ s < r we have the following formulas∑
λ∈Λ
λ≤r

f(λ) = f(r)N(r)−
∫ r

0
f ′(t)N(t) dt,

∑
λ∈Λ
s<λ≤r

f(λ) = f(r)N(r)− f(s)N(s)−
∫ r

s
f ′(t)N(t) dt,

and ∑
λ∈Λ
λ>r

f(λ) = −f(r)N(r)−
∫ +∞

r
f ′(t)N(t) dt,

provided that the sum or the integral converges.

We assume now that

∑
λ∈Λ

1

λ
< +∞, (A.12)

and we define the following notion.

Definition A.6.19 (Remainder function)
A function R : R→ [0,+∞) is called a remainder function for the family Λ, if it satisfies

lim
r→∞

R(r) = 0,

and ∑
λ∈Λ
λ>r

1

λ
≤ R(r), ∀r ∈ R.
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Proposition A.6.20
Assume (A.12) and let R be a remainder function for Λ.

1. For any s < r we have
N(r)−N(s) ≤ rR(s). (A.13)

In particular, we have

inf Λ ≥ 1

R(0)
, (A.14)

N(r)/r −−−→
r→∞

0.

2. For any t > 0 we have ∑
λ∈Λ

e−λt ≤ R(0)

t
. (A.15)

Proof :

1. The following quantity ∑
s<λ≤r

1

λ
,

can bound from below by 1/r multiplied by the number of terms which is exactly N(r) − N(s) and can be
bounded from above by R(s). This proves the first claim.

Taking s = 0 and r = inf Λ in (A.13), we get

1 ≤ (inf Λ)R(0),

since N(0) = 0 and N(inf Λ) ≥ 1.

Now for any given s, the inequality (A.13) gives

N(r)

r
≤ R(s) +

N(s)

r
, ∀r > s.

Taking the superior limit when r →∞, it follows

lim sup
r→∞

N(r)

r
≤ R(s).

This being true for any s, we can take the limit as s→∞ to get the claim

lim sup
r→∞

N(r)

r
≤ 0.

2. We use Proposition A.6.18 and (A.13) to get the estimate∑
λ∈Λ

e−λt =

∫ +∞

0
te−trN(r) dr

=
1

t

∫ +∞

0
tre−tr

N(r)

r
t dr

≤ R(0)

t

∫ +∞

0
e−rr dr

=
R(0)

t
.

The claim is proved.
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Proposition A.6.21

Assume that, for some 0 < α < 1, and some N̄ > 0 we have

N(r) ≤ N̄rα, ∀r > 0.

Then, we have the following bound from below

inf Λ ≥ N̄− 1
α , (A.16)

and the function

R(r) =


N̄

1− αr
α−1, ∀r > N̄−

1
α ,

N̄
1
α

1− α, ∀r ≤ N̄
− 1
α .

is a remainder function for Λ.

Proof :
Let us now prove (A.16). Since inf Λ ∈ Λ, we obviously have

N(inf Λ) ≥ 1,

and therefore, with the assumption on N , we deduce

1 ≤ N̄(inf Λ)α,

and the claim follows.
Note now that the assumption on N implies that (IV.19) holds necessarily. We apply the summation results of

Proposition A.6.18 with f(r) = 1
r to obtain, for r > N̄−

1
α ,∑

λ∈Λ
λ>r

1

λ
= −N(r)

r
+

∫ ∞
r

1

t2
N(t) dt

≤ N̄
∫ ∞
r

tα−2 dt

≤ N̄

1− αr
α−1.

A.7 Generalized Tchebychev polynomials

Most of the material in this section is taken and adapted from [BE95, BE97]. We will only give here the results
we need and we let the interested reader have a look at those references for a much more complete study of those
properties.

Our main objective is to establish a Remez-type inequality

‖p‖L∞(0,inf A) ≤ C‖p‖L∞(A),

for any generalized polynomial

p(x) =
N−1∑
k=0

pkx
λk ,
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with λk ∈ (0,+∞), and any compact set A in (0,+∞). More precisely, we will identify the best constant C in this
inequality and how it depends on A and on the set {0, λ1, ..., λN−1}. The precise result will be given in Theorem
A.7.31.

A.7.1 Interpolation in Müntz spaces

Let L ⊂ [0,+∞) be a finite subset of non negative numbers. In all this section we assume that

0 ∈ L,

and we set N def
= #L. If N ≥ 2 we define

µL
def
= inf (L \ {0}) ,

to be the firt non zero element in L.
Let us define the following subset of C0([0,+∞),R) called, Müntz space,

M(L)
def
= Span{x 7→ xλ, λ ∈ L}.

We plot in Figure A.1 an example of such set

Figure A.1: Muntz space associated to the family L = {0, 1, 1.2, 1.5, 2, 2.5}.

Proposition A.7.22 (Interpolation properties)
The following properties hold

1. 0 is the only element of M(L) that has at least N distinct zeros in [0,+∞).

2. If f ∈ M(L) has exactly N − 1 distinct zeros in [0,+∞), then the sign of f changes in the neigh-
borhood of each of its zeros.

3. For any distinct points x1 < ... < xN in [0,+∞), and any values y1, ..., yN ∈ R, there exists a
unique f ∈M(L) such that

f(xi) = yi, ∀i ∈ J1, NK.

We say that the set M(L) is a Tchebychev system on [0,+∞).

Proof :
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1. We prove the result by induction on N .

• Let assume that N = 1, that is L = {0}. In that case, the functions in M(L) are simply constants, and
the claim is clear.

• Assume that the result holds at rank N and let us consider a set L of cardinal N + 1.
We assume that there exists a function f ∈M(L) that vanish at N + 1 distinct points x1 < ... < xN+1 in
[0,+∞).
We observe that (x 7→ xf ′(x)) ∈ M(L \ {0}) and that by the Rolle Theorem, f ′ has at least N distinct
zeros in [0,∞). Thus, the function x 7→ g(x)

def
= (xf ′(x))/xµL belongs to M(L \ {0} − µL) and has

at leat N distinct zeros. Since L \ {0} − µL contains 0 and has a cardinal N , the induction assumption
shows that g = 0, which implies f ′ = 0 and thus f = 0.

2. We apply again the Rolle theorem that proves that f ′ has at least N − 2 zeros in (0,+∞) that are distinct from
the zeros of f .

We set g(x)
def
= (xf ′(x))/xλ2 and we observe that g is not identically 0, that it belongs to M(L \ {0}−λ2) and

has at least N − 2 zeros in (0,+∞) that are distinct from the zeros of f . Therefore, g cannot have any other
zero and in particular g cannot vanish at the zeros of f . This implies the f ′ cannot vanish at the zeros of f . In
particular, f changes of sign in the neighborhood of each of its zero.

3. The linear map
Φ : f ∈M(L) 7−→ (f(xi))i ∈ RN ,

is injective thanks to the first point and maps a space of dimension N into another space of dimension N .
Therefore, Φ is a bijection, and the claim is proved.

Proposition A.7.23
Let L = {λ1, ..., λN} with 0 = λ1 < ... < λN .

1. For any 0 ≤ x1 < ... < xN we have

VL(x1, ..., xN )
def
= det

(
x
λj
i

)
1≤i,j≤N

> 0. (A.17)

If the points x1, ..., xN are not ordered, the sign of the determinant is the signature of the corre-
sponding ordering permutation.

2. For any k ≤ N − 1 and any points 0 < w1 < ... < wk < +∞, there exists a p ∈M(L) such that{
p(wi) = 0, ∀i ∈ J1, kK,
(−1)ip(w) > 0, ∀w ∈ (wi, wi+1), ∀i ∈ J0, kK,

where, for convenience, we have set w0
def
= 0 and wk+1

def
= +∞.

Proof :

1. Les 0 ≤ y1 < ... < yN be another ordered set of points. For any t ∈ [0, 1] we have VL(tx1+(1−t)y1, ..., txN+
(1 − t)yN ) 6= 0 by the previous proposition. By continuity, we deduce that VL(x1, ..., xN ) and VL(y1, ..., yN )
have the same sign. We fix the first N − 1 points and we let xN go to +∞. By developing the determinant
along the last column, we see that

VL(x1, ..., xN ) ∼xN→∞ VL′(x1, ..., xN−1)x
(maxL)
N ,
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with L′ = L \ {maxL}. This implies that VL(x1, ..., xN ) has the same sign as VL′(x1, ..., xN−1) and we
conclude by induction.

2. We first remark that it is enough to consider the case k = N − 1. Indeed, if k < N − 1, we replace L by any
subset L′ ⊂ L of cardinal k + 1 and containing 0, for which M(L′) ⊂M(L).

That being said, for a given sign s ∈ {−1, 1} to be determined later, we define the function p as the following
determinant

p(w)
def
= s VL(w,w1, ..., wN−1), ∀w ∈ [0,+∞).

By developing the determinant along the first column we get that p ∈ M(L) and moreover it is clear that
p(wi) = 0 for any 1 ≤ i ≤ N − 1.

The sign properties come from (A.17) and the choice of s.

Proposition A.7.24 (Elementary Lagrange interpolants)
For any set X = {x1 < ... < xN} ⊂ (0,+∞) of N distinct points there exists a unique family
(ΦL,X,k)k∈J1,NK ⊂M(L) such that

ΦL,X,k(xj) = δj,k, ∀j, k ∈ J1, NK.

Moreover, if we set x0 = 0 and xN+1 = +∞, the sign of ΦL,X,k is as follows

• ΦL,X,k > 0 on (xk−1, xk+1).

• (−1)j+k+1 ΦL,X,k > 0 on (xj , xj+1) for j ∈ J0, k − 1K.

• (−1)j+k ΦL,X,k > 0 on (xj , xj+1) for j ∈ Jk,NK.

Finally, we have
(−1)k+1ΦL,X,k(0) > 0.

Let us show an example of such elementary Lagrange interpolants in Figure A.2

Figure A.2: Muntz space associated to the family L = {0, 1, 1.2, 1.5, 2, 2.5} and the points X =
{0.2, 0.5, 0.8, 1, 1.4, 1.8}.

Proof :
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The existence and uniqueness of such a family of functions is just a consequence of the third point of Proposition
A.7.22. It cannot have another zero in [0,+∞) since in that case we would have ΦL,X,k = 0 everywhere by the first
point of the same proposition.

From the second point of Proposition A.7.22, we know that ΦL,X,k has a constant sign between two consecutive
zeros and it changes of sign at each of those points. It is then straightforward to compute its sign by induction on each
given interval starting from the fact that ΦL,X,k(xk) = 1 > 0.

We have seen above that ΦL,X,k(0) 6= 0 and therefore it has the same sign as ΦL,X,k on (0, x1), which is (−1)k+1.

Proposition A.7.25 (Comparison principle)

Let X = {x1 < ... < xN}, X̃ = {x̃1 < ... < x̃N} be two subsets of (0,+∞) made of N distinct points.
Let k ∈ J1, NK and assume that {

xk ≤ x̃k,
|xj − xk| ≥ |x̃j − x̃k|, ∀j ∈ J1, NK,

then
|ΦL,X,k(0)| ≤ |ΦL,X̃,k(0)|,

with equality if and only if X = βX̃ for some 0 < β ≤ 1.

Proof :

• Let us first define β = xk
x̃k

, which is less than or equal to 1 by assumption. We define the set X̂ = βX̃ . By
construction, we have x̂k = xk and

|xj − xk| ≥ |x̂j − x̂k|, ∀j ∈ J1, NK. (A.18)

Let us set g(x)
def
= ΦL,X̂,k(βx), for all x ∈ [0,+∞). By homogeneity we have that g ∈M(L) and satisfies

g(x̃i) = ΦL,X̂,k(βx̃i) = ΦL,X̂,k(x̂i) = δik.

Therefore g = ΦL,X̃,k. In particular, we have

ΦL,X̃,k(0) = ΦL,X̂,k(0).

The problem is thus reduced to proving that

|ΦL,X,k(0)| ≤ |ΦL,X̂,k(0)|,

with equality if and only if X = X̂ . This will take several steps.

• We define the following sets:

– For i = J0, kK, we set Xi def
= {x1, ..., xi, x̂i+1, ..., x̂N}.

Note that X0 = X̂ and that for i ∈ J1, kK, we have xi ≤ xk and x̂i ≤ x̂k = xk so that (A.18) gives

xi ≤ x̂i,

which implies
xi < x̂i+1.

Therefore the points in Xi are distinct and well ordered.
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– For i = Jk,NK, we set Xi def
= {x1, ..., xk−1, x̂k, ..., x̂N+k−i, xN+k−i+1, ..., xN}.

Note that XN = X and that for i ∈ Jk,N − 1K we have xN+k−i ≥ xk and x̂N+k−i ≥ x̂k = xk so that
(A.18) gives

xN+k−i ≥ x̂N+k−i,

so that
x̂N+k−i < xN+k−i+1,

and here also the points in Xi are distinct and well ordered.

Observe finally that both definition coincide for i = k since xk = x̂k and that Xk = Xk−1. Moreover, by
construction, for any i, Xi and Xi+1 differ at most by one single point.

It thus remains to show that

|ΦL,Xi+1,k(0)| ≤ |ΦL,Xi,k(0)|, ∀i ∈ J0, N − 1K,

with equality if and only if Xi = Xi+1.

• Assume that Xi 6= Xi+1 for some i. We set g def
= ΦL,Xi,k − ΦL,Xi+1,k, which is a function in M(L), and we

see that g cancels at the N − 1 distinct points that are common to Xi and Xi+1. Let us analyse the sign of g at
0.

– The function g cannot have any other zero. Indeed, in that case it would have N distinct zeros, and thus it
would identically vanish. This would imply that Xi = Xi+1, a contradiction.
This gives the equality case in our claim since ΦL,Xi,k(0) and ΦL,Xi+1,k(0) have the same sign, which is
(−1)k+1 (see Proposition A.7.24).

– By the second point of Proposition A.7.22 we know that g changes it sign at the neighborhood of each of
its zeros. We are going to prove that

(−1)k+1g(0) > 0. (A.19)

We separate the analysis into two cases depending on the position of i with respect to k−1 (we recall that
i = k − 1 is not possible since in that case we would have Xi = Xi+1).

∗ Case 1 : i ∈ J0, k − 1K:
We compute

g(xi+1) = ΦL,Xi,k(xi+1)− ΦL,Xi+1,k(xi+1) = ΦL,Xi,k(xi+1), (A.20)

since xi+1 is a zero of ΦL,Xi+1,k.
By assumption on i we have xi+1 < xk and x̂i+1 < x̂k = xk, and we know that xi+1 6= x̂i+1, so that
(A.18) gives

xi+1 < x̂i+1,

and thus xi+1 ∈ (xi, x̂i+1). By (A.20), and Proposition A.7.24, we know that the sign of g(xi+1) is
such that

(−1)i+k+1g(xi+1) > 0.

Using that g changes it sign in the neighborhood of each of its zeros, we know that it changes it sign
exactly i times in [0, xi+1] and we get (A.19).
∗ Case 2 : i ∈ Jk − 1, NK:

We compute

g(x̂N+k−i) = ΦL,Xi,k(x̂N+k−i)− ΦL,Xi+1,k(x̂N+k−i) = −ΦL,Xi+1,k(x̂N+k−i), (A.21)

since x̂N+k−i is a zero of ΦL,Xi,k.
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By assumption on i, we have xN+k−i > xk and x̂N+k−i > x̂k = xk, and we know that xN+k−i 6=
x̂N+k−i so that (A.18) gives

x̂N+k−i < xN+k−i,

and thus x̂N+k−i ∈ (x̂N+k−i−1, xN+k−i). By (A.21), and Proposition A.7.24, we know that the sign
of g(x̂N+k−i) is such that

(−1)N−ig(x̂N+k−i) > 0.

Using that g changes it sign in the neighborhood of each of its zeros, we know that it changes it sign
exactly N + k − i− 1 times in [0, x̂N+k−i] and we also get (A.19).

To conclude the proof, we write

|lL,Xi

k (0)| − |lL,Xi+1

k (0)| = (−1)k+1(lL,X
i

k (0)− lL,Xi+1

k (0)) = (−1)k+1g(0) > 0.

A.7.2 Best uniform approximation in Müntz spaces
Theorem A.7.26 (Best uniform approximation in Müntz spaces)

Let A be a (possibly infinite) compact subset of [0,+∞[. We assume that #A ≥ N + 1.
For any function f ∈ C0(A), there is a unique p ∈M(L) such that

‖f − p‖L∞(A) = inf
q∈M(L)

‖f − q‖L∞(A). (A.22)

Moreover, p is the unique element in M(L) such that f − p equi-oscillates in at least N + 1 points of A.
This means that there exists x1 < ... < xN+1, xi ∈ A, and a sign s = ±1, such that

f(xi)− p(xi) = s(−1)i‖f − p‖L∞(A), ∀i ∈ J1, N + 1K. (A.23)

Remark A.7.27
In the case where #A ≤ N , then by the interpolation property (Proposition A.7.22) shows that there exists
p ∈ M(L) such that f = p. Therefore, the best uniform approximation property is straightforward in that
case.

Proof :

• Existence of at least one such best approximation is just a compactness argument related to the fact that, M(L)
is finite dimensional.

• Let us first show that any such best approximation p satisfies the claimed equi-oscillation property. We set
g

def
= f − p and we assume that there exists a maximal equi-oscillating sequence for g in A of length k < N + 1

denoted by x1 < ... < xk and we will obtain a contradiction.

For any i ∈ J1, kK we introduce Ci
def
= {x ∈ A, xi−1 ≤ x ≤ xi+1, g(x) = g(xi)}, where we have convention-

ally set x0 = −∞ and xk+1 = +∞. Since g is continuous on A, Ci is a closed subset of the compact set A,
and in particular it’s a compact set itself.

We define the convex hull of Ci to be

Di
def
= convCi = [x−i , x

+
i ].

We observe, by compacity, that x−i , x
+
i ∈ Ci.
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– We claim that the intervals Di are disjoint. We are thus going to show that

x+
i < x−i+1, ∀i ∈ J1, k − 1K.

By construction we know that xi ∈ Ci and xi+1 ∈ Ci+1 thus, we clearly get that

x+
i , x

−
i+1 ∈ [xi, xi+1],

and that
g(x+

i ) = g(xi), g(x−i+1) = g(xi+1),

that have two different signs. Hence, we deduce that x+
i 6= x−i−1.

Assume that for some i, we have x−i+1 < x+
i . It would imply that the sequence

x1 < ... < xi < x−i+1 < x+
i < xi+1 < ... < xk,

is an equi-oscillating sequence of length k + 2, which is a contradiction with the maximality assumption
for the original sequence. The claim is proved.

– We have thus built compact disjoint intervals Di = [x−i , x
+
i ] surrounding each xi such that

‖g‖L∞(A) ≥ s(−1)ig(x) > −‖g‖L∞(A), ∀x ∈ A ∩Di.

By continuity of g, we can find δ, η1 > 0 small enough such that

‖g‖L∞(A) ≥ s(−1)ig(x) > −(1− η1)‖g‖L∞(A), ∀x ∈ A ∩Di,δ,

where Di,δ =]x−i − δ, x+
i + δ[ is the open δ-neighborhood of Di.

– Introducing D =
k⋃
i=1

Di,δ, we observe that, by construction, D contains all the points x ∈ A, where

|g(x)| = ‖g‖L∞(A). Therefore, for some η2 > 0 small enough, we have

|g(x)| ≤ (1− η2)‖g‖L∞(A), ∀x ∈ A \D,

since g is continuous on the compact set A \D.

– We will now obtain a contradiction with the fact that p solves the best uniform approximation property
(A.22).

For i ∈ J1, k − 1K we set wi =
x+
i +x−i+1

2 . By Proposition A.7.23, since k ≤ N , there exists an element
π ∈ M(L) such that π(wi) = 0 for any i, and such that s(−1)iπ > 0 on each Di,δ and ‖π‖L∞(A) ≤
‖g‖L∞(A).
We set q = p+ ηπ with η > 0 chosen such that η < min(η1, η2) and we will show that ‖f − q‖L∞(A) <
‖g‖L∞(A).
Let x ∈ A.

∗ If x ∈ A ∩Di,δ for some i, then we write

s(−1)i(f − q)(x) = s(−1)i(g(x)− ηπ(x)) = s(−1)ig(x)− ηs(−1)iπ(x),

and by the sign property of π on Di,δ we get

−(1− η1)‖g‖L∞(A) − η‖g‖L∞(A) ≤ s(−1)i(f − q)(x) < s(−1)ig(x),

so that we have the strict inequalities

−‖g‖L∞(A) < s(−1)i(f − q)(x) < ‖g‖L∞(A),

and consequently
|(f − q)(x)| < ‖g‖L∞(A).
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∗ If x ∈ A \D we just write

|(f − q)(x)| = |g(x)− ηπ(x)| ≤ |g(x)|+ η|π(x)| ≤ (1− η2)‖g‖L∞(A) + η‖g‖L∞(A) < ‖g‖L∞(A).

We have thus proved that ‖f − q‖L∞(A) < ‖f − p‖L∞(A) which contradicts (A.22).

• We can now prove the uniqueness of the best uniform approximation in A.

Let us define d def
= infq∈M(L) ‖f−q‖L∞(A) and we assume that p1, p2 ∈M(L) are such that ‖f−pi‖L∞(A) = d.

Then, by the triangle inequality, p = p1+p2

2 also satisfies ‖f − p‖L∞(A) = d. Thanks to the equi-oscillation
property, there exists N + 1 distinct points x1 < ... < xN+1 where

d = |f(xi)− p(xi)| =
1

2
|(f(xi)− p1(xi)) + (f(xi)− p2(xi))|,

and since |f(xi)− p1(xi)|, |f(xi)− p2(xi)| are both less than d, we obtain that necessarily f(xi)− p1(xi) =
f(xi) − p2(xi). We deduce that p1(xi) = p2(xi) for any i ∈ J1, N + 1K. By the uniqueness property of the
Tchebychev system, we conclude that p1 = p2.

• Finally we prove that any p ∈M(L) such that f − p has the equi-oscillation property on A (we call x1 < ... <
xN+1 the associated family of points) is indeed a best uniform approximation of f on A. To prove that claim,
we assume that there exists q ∈M(L) such that

‖f − q‖L∞ < ‖f − p‖L∞ .

This implies in particular that

|(f(xi)− p(xi)) + (p(xi)− q(xi))| < ‖f − p‖L∞(A) = |f(xi)− p(xi)|,

and since f(xi)− p(xi) has the sign s(−1)i, we deduce that the sign of (p− q)(xi) is s(−1)i+1 (and of course
this quantity cannot be zero). Hence, p− q changes its sign at least N + 1 times, and by the intermediate value
theorem p− q has at least N distinct zeros in (0,+∞). By point 1 of Proposition A.7.22, this implies p = q.

Proposition and Definition A.7.28 (Generalized Tchebychev polynomials)
Let A be a compact subset of [0,+∞) such that #A ≥ N + 1. There exists a unique (up to a multiplicative
factor) element in M(L) that equi-oscillates in A at exactly N points.
We denote by TL,A the unique such function that, in addition, satisfies the normalisation properties

‖TL,A‖L∞(A) = 1,

TL,A(maxA) > 0.

Moreover,

• TL,A has exactly N − 1 zeros in [0,+∞). They are all located in the open interval (inf A, supA).

• The map
x 7→ |TL,A(x)|

is decreasing on [0, inf A].

The function TL,A is called the generalized Tchebychev polynomial on the set A with respect to the family
L.
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Figure A.3: The Tchebychev polynomial TL,A for L = {0, 1, 1.2, 1.5, 2, 2.5} and A = [0.2, 2].

We illustrate this definition in Figure A.3.
Proof :

If L = {0}, the result is straightforward (and TL,A = 1).
Assume that N > 1 and let L̃ = L \ µL. We consider π ∈ M(L̃) the unique uniform best approximation of

x 7→ xµL onA inM(L′) given by Theorem A.7.26. We know that the function T̃ (x)
def
= xµL−π(x) belongs toM(L)

and equi-oscillates at least #L′ + 1 = N times. Moreover, T̃ cannot equi-oscillate N + 1 times because if it were
the case T̃ would be the unique best uniform approximation of 0 on A in M(L), and it will immediately imply that
T̃ = 0 on A which is not possible.

Note that the equi-oscillation property implies that T̃ has at leastN−1 zeros in the open interval I = (inf A, supA).
It is clear that T̃ cannot vanish on [supA,+∞) since in that case, the function would have N distinct zeros and thus
will be identically equal to 0. Therefore, the normalisation conditions we consider are uniquely solvable.

Observe that, if inf A > 0 we also have that T̃ cannot vanish on [0, inf A]. Finally, if inf A = 0, we also have
T̃ (0) 6= 0. Indeed, if we assume that T̃ (0) = 0 and since we have 0 ∈ L, we can easily see that T̃ actually belongs to
M(L \ {0}). However, the only function in M(L \ {0}) that has at least N zeros in (0,+∞) is the function 0, which
is a contradiction.

Finally, using Rolle’s theorem, we know that T ′L,A has at least N − 2 zeros in (minA,maxA). Moreover,
(TL,A)′ ∈ M(L \ {0}) thus it cannot have another zero. In particular (TL,A)′ has a constant sign on [0, inf A) and
TL,A does not vanish in this interval. The claim is proved.

Proposition A.7.29 (Maximality property of TL,A)

Assume that inf A > 0 and let y ∈ [0, inf A). Then for any p ∈M(L), such that ‖p‖L∞(A) ≤ 1 we have

|p(y)| ≤ |TL,A(y)|.

Equivalently, we have
|p(y)| ≤ |TL,A(y)| ‖p‖L∞(A), ∀p ∈M(L).

Proof :
The map Ψ : p ∈M(L) 7→ |p(y)| is clearly continuous, thus it attains it maximum on the compact set K = {p ∈

M(L), ‖p‖L∞(A) ≤ 1}.
It is clear that this maximum is achieved on a p ∈M(L) such that ‖p‖L∞(A) = 1.
Assume that p equi-oscillates exactly k times with k < N . As in the proof of A.7.26 we can build disjoint
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(ordered) open intervals Di,δ, i = 1, ..., k such that

1 ≥ s(−1)ip(x) > −(1− η1), ∀x ∈ A ∩Di,δ,

for D = ∪iDi,δ,
|p(x)| ≤ 1− η2, ∀x ∈ A \D.

For each i ∈ J1, k−1K, we pick a set of point wi+1/2 between Di,δ and Di+1,δ and we consider a π ∈M(L) such
that {

π(wi+1/2) = 0, ∀i ∈ J1, k − 1K,

π(y) = 0,

and
s(−1)iπ > 0, on Di,δ.

This is possible since k < N . We normalize π in such a way that

‖π‖∞L (A) = 1.

For η > 0 small enough, we see that q̃ = p+ ηπ ∈M(L) satisfies

q̃(y) = p(y),

and
‖q̃‖L∞(A) < 1.

Therefore the element q = q̃/‖q̃‖L∞(A) is in K and satisfies

Ψ(q) = |q(y)| > |p(y)| = Ψ(p),

which is a contradiction.

Proposition A.7.30 (Monotonicity of the generalised Tchebychev polynomial with respect to A)
Let A be any compact subset and I any compact interval of (0,+∞) such that

|A| ≤ |I|, and supA ≤ sup I.

Then we have

sup
p∈M(L)

|p(0)|
‖p‖L∞(A)

≤ |TL,I(0)|.

In particular, we have
|TL,A(0)| ≤ |TL,I(0)|.

Proof :

• Let X̃ = {x̃1, ..., x̃N} be the equi-oscillations points in I of TL,I . In particular we have

TL,I(x̃i) = (−1)N−i, ∀i ∈ J1, NK. (A.24)

Introducing the elementary interpolants ΦL,X̃,• we can write

TL,I =
N∑
i=1

(−1)N−iΦL,X̃,i.
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• Let φ : s ∈ [0,+∞[7→ |A∩ [s,+∞)|. This function is continuous, non-increasing, maps [0,+∞[ onto [0, |A|],
and φ(s) = 0 for s ≥ supA. In particular, since |I| ≤ |A|, there exists 0 ≤ s1 ≤ ... ≤ sN < +∞ such that

φ(si) = |I ∩ [x̃i,+∞)|.

We then define

xi = inf

(
A ∩ [si,+∞)

)
.

By compactness of A, we have that xi ∈ A. From now on we set X def
= {x1, ..., xN} ⊂ A.

• Let us now compare X̃ and X .

By definition of φ we have φ(xi) = φ(si) since [si, xi) ∩A = ∅. This means that

|A ∩ [xi,+∞)| = |I ∩ [x̃i,+∞)|.

Note that those quantities are positive and in particular we have xi < supA ≤ sup I .

Take now any j, k ∈ J1, NK, j ≤ k, we have

|xk − xj | = |[xj , xk)|
≥ |A ∩ [xj , xk)|
= |A ∩ [xj ,+∞)| − |A ∩ [xk,+∞)|
= |I ∩ [x̃j ,+∞)| − |I ∩ [x̃j ,+∞)|
= |I ∩ [x̃j , x̃k)|
= |x̃k − x̃j |,

since I is an interval that contains x̃k and x̃j .

Similarly we have for any k

|xk −maxA| ≥ |A ∩ [xk,+∞)|
= |I ∩ [x̃k,+∞)|
= |x̃k −max I|,

and since max I ≥ maxA, we deduce that xk ≤ x̃k.

• Due to the previous properties, we can apply Proposition A.7.25 to X and X̃ and conclude that, for any k ∈
J1, NK, we have

|ΦL,X,k(0)| ≤ |ΦL,X̃,k(0)|. (A.25)

Take now any p ∈M(L) and let us decompose it in the Lagrange basis (ΦL,X,k)k

p(x) =
N∑
k=1

p(xk)ΦL,X,k(x), ∀x ∈ [0,+∞).

We evaluate this formula at x = 0 and we apply the triangle inequality

|p(0)| ≤
(

N∑
k=1

|ΦL,X,k(0)|
)
‖p‖L∞(A),

where we have used that all the (xk)k belong to the set A, by construction.
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Applying (A.25), we get

|p(0)| ≤
(

N∑
k=1

|ΦL,X̃,k(0)|
)
‖p‖L∞(A),

but the sign of ΦL,X̃,k(0) is (−1)k+1 and thus by (A.24),

N∑
k=1

|ΦL,X̃,k(0)| =
∣∣∣∣∣
N∑
k=1

(−1)k+1ΦL,X̃,k(0)

∣∣∣∣∣ =

∣∣∣∣∣
N∑
k=1

TL,I(x̃k)ΦL,X̃,k(0)

∣∣∣∣∣ = |TL,I(0)|.

The proof is complete.

It is clear that we can apply the above result to p = TL,A since, by definition, ‖TL,A‖L∞(A) = 1.
Combining the previous results we finally obtain the following result that was actually the main aim of this

appendix.

Theorem A.7.31 (A Remez inequality)
Let A be a compact subset of (0,+∞), I a compact interval of (0,+∞) such that

|A| ≤ |I|, and supA ≤ sup I.

Then for any p ∈M(L) we have

‖p‖L∞(0,inf A) ≤ |TL,I(0)| ‖p‖L∞(A).

Proof :
We take any p ∈M(L) and any y ∈ (0, inf A) and we apply Proposition A.7.29 to get

|p(y)| ≤ |TL,A(y)|‖p‖L∞(A).

Then we use the monotonicity of TL,A on [0, inf A) and the fact that y < inf A to obtain

|p(y)| ≤ |TL,A(0)|‖p‖L∞(A).

The conclusion comes from the inequality |TL,A(0)| ≤ |TL,I(0)| that we established in Proposition A.7.30.
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