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Epigenetic differences in monozygotic twins discordant for
major depressive disorder
K Malki1, E Koritskaya2, F Harris1, K Bryson2, M Herbster2 and MG Tosto1,3

Although monozygotic (MZ) twins share the majority of their genetic makeup, they can be phenotypically discordant on several
traits and diseases. DNA methylation is an epigenetic mechanism that can be influenced by genetic, environmental and stochastic
events and may have an important impact on individual variability. In this study we explored epigenetic differences in peripheral
blood samples in three MZ twin studies on major depressive disorder (MDD). Epigenetic data for twin pairs were collected as part of
a previous study using 8.1-K-CpG microarrays tagging DNA modification in white blood cells from MZ twins discordant for MDD.
Data originated from three geographical regions: UK, Australia and the Netherlands. Ninety-seven MZ pairs (194 individuals)
discordant for MDD were included. Different methods to address non independently-and-identically distributed (non-i.i.d.) data
were evaluated. Machine-learning methods with feature selection centered on support vector machine and random forest were
used to build a classifier to predict cases and controls based on epivariations. The most informative variants were mapped to genes
and carried forward for network analysis. A mixture approach using principal component analysis (PCA) and Bayes methods allowed
to combine the three studies and to leverage the increased predictive power provided by the larger sample. A machine-learning
algorithm with feature reduction classified affected from non-affected twins above chance levels in an independent training-testing
design. Network analysis revealed gene networks centered on the PPAR− γ (NR1C3) and C-MYC gene hubs interacting through the
AP-1 (c-Jun) transcription factor. PPAR− γ (NR1C3) is a drug target for pioglitazone, which has been shown to reduce depression
symptoms in patients with MDD. Using a data-driven approach we were able to overcome challenges of non-i.i.d. data when
combining epigenetic studies from MZ twins discordant for MDD. Individually, the studies yielded negative results but when
combined classification of the disease state from blood epigenome alone was possible. Network analysis revealed genes and gene
networks that support the inflammation hypothesis of MDD.
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INTRODUCTION
Major depressive disorder (MDD) is a pervasive psychiatric
disorder characterized by a number of clinical symptoms
including: persistent low mood, anhedonia, insomnia, low energy,
feelings of guilt and ideation of death or suicide.1,2 MDD is also
associated with a range of social impairments, including educa-
tional and occupational problems and with an increased risk of
developing systemic disease, such as cardiovascular disease and
Type 2 diabetes.3 Epidemiological studies have shown links
between MDD and increased levels of mortality due to either
suicide or resulting diseases.4,5

Behavioral genetic research into the etiology of depression
reports heritability estimates between 31 and 42% (refs 6–8) but
uncovering common sequence variants associated with the
pathology has been challenging. To date, there are no common
genetic variants of sufficiently high penetrance to account for the
pathology that have clinical significance, although variants
associated with the disease at the genome-wide level have been
recently announced.9 Environmental factors, such as early- and
late-life stressors, are also thought to increase the risk of
developing depression; however, the interaction between genetic
and environmental factors remains poorly understood.10

Studying depression from the epigenetic perspective sheds
light on its etiology by uncovering how environmental factors
modulate gene expression.11 Epigenetics is the study of cellular
modification and differentiation that is independent of alterations
in the DNA sequence. This can be defined simply as the variation
in phenotypic expression produced by the up- and down-
regulation of genes using DNA methylation and histone
modification, rather than changes in the DNA sequence. It has
been suggested that through these processes environmental
factors can cause lasting changes in gene expression.12 For
example, early-life stress leads to epigenetic changes in neural
tissue involved in the stress response in both animal and human
studies.13,14

Quantitative genetics research typically compares phenotypic
concordance rates between monozygotic (MZ) and dizygotic
twins. However, discordant MZ twins (who are assumed to share
100% of their genome) can also be used to identify epigenetic
factors, such as differing levels of DNA methylation at specific
loci that may contribute to explain part of their phenotypic
discordance.15

The genome (the DNA sequence) is consistent throughout all
cell types in the human body: hence, buccal epithelial cells are
largely used in genetic research because of their convenience.
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However, epigenetic changes are more tissue-specific. In the field
of psychiatry, this presents a problem as, although neural tissues
of interest can be obtained post-mortem, in live patients, only cells
in peripheral tissues can generally be obtained. A recent study by
Oh et al.16 successfully replicated multiple epigenetic features
of depression between brain and non-brain tissues, suggesting
that peripheral blood cells are adequate for investigating the
epigenetics of depression.16 Studies using peripheral blood cells
may also have an advantage in that they may show fewer changes
associated with disease-related external factors, including expo-
sures to stress and pharmacological treatments.17 On the other
hand, it is likely that disease-relevant epigenetic variations may be
considerably weaker in peripheral blood cells than in the neural
tissue of interest or even be undetectable.
The study by Oh et al.16 analyzed epigenetic variations across

different tissues in three data sets of discordant MZ twin pairs
from three centers in different countries in order to identify
epigenetic markers associated with depression.16 However, when
they combined the data sets collected from blood, they were not
able to discriminate affected siblings. This study used the same
three previously published peripheral blood data sets from MZ
twins discordant for MDD, aiming to address some of the
statistical challenges of this data set to produce a global
classification model. This required several data consolidation
issues to be addressed. First, batch effects may lead to the data
not being independently and identically distributed (non-i.i.d.);
this refers to error introduced by systemic differences in the ways
samples are taken and analyzed between different laboratories.
The second refers to population stratification and noise variance.
This study aims to explore methods to combine these data sets,
adjusting for sources of error and then use the increased power of
the combined data to classify affected and non-affected
individuals according to epigenetic markers from peripheral blood
samples of MZ twins discordant for MDD.

MATERIALS AND METHODS
Design
Merging raw data often violates independent-and-identically distributed (i.
i.d.) assumptions and thus leads to biased model parameter estimations,
higher generalization error and lower cross-validation model performance.
The study first used an atheoretical, data-driven approach to evaluated
methods for batch effect removal and non-i.i.d. data consolidation. In the
second part of the study, we used two different machine-learning
approaches (linear support vector machines (SVMs) and random forest
(RF)) in order to build a model that could classify affected siblings from
non-affected ones using the merged data set from the three, independent,
cross-country, epigenetic studies described below. Levels of methylation
were used as features and affected and non-affected status within each
discordant twin pair as outcome labels. Training and testing of the
algorithms was performed on independent samples (80:20% split). Feature
selection methods for each algorithm were chosen based on cross-
validation. Finally, several different thresholds for the number of selected
features were evaluated to extract epigenetics markers likely to contribute
to variation in the pathology. These features were then carried forward for
gene-network analysis.

Sample and variable description
The data used for this study have been obtained from a recently published
study by Oh et al., and are available from the Gene Expression Omnibus
(accession number GSE37579). Briefly, methylation profiles were obtained
using Illumina 8.1-K CpG island microarrays from white blood cells sampled
from MZ twins discordant for MDD. The samples originated from three
different regions: the United Kingdom (28 samples), Australia (80 samples)
and the Netherlands (86 samples). Levels of methylation were measured
for either coding or noncoding DNA regions common across the samples.
Following quality control procedures, a total of 8448 features with log-
normalized levels of methylation for each sample were obtained that were
consistent across the three studies. Depending on the source of
information, depressive symptoms were evaluated by structured clinical

interview. A diagnosis of MDD was determined by the results of these
questionnaires according to the Diagnostic and Statistical Manual of
Mental Disorders, 4th Edition criteria. Australian participants were drawn
from the Australian Twin Registry. Forty pairs were selected for this study,
including 31 female pairs. The average age of the twins was 41.2 years,
with a s.d. of 11.5 years. Dutch participants were drawn from the
Netherlands Twin Register. Forty-three twin pairs were selected for this
study, with an average age of 38.4 years and a s.d. of 12.7 years. UK
participants were drawn from the St Thomas's Hospital Twin Registry, the
Maudsley Hospital (London) Twin Register and from ongoing studies of
volunteer twins. Fourteen pairs including two males were selected for this
study. The average age of participants was 53.7 years, with a range from 21
to 65 years. This data set has been chosen for several key reasons. First, it is
based on MZ discordant twins, which are considered matched for:
genetics, age, sex, cohort effects, maternal influences and common
environments. By design, MZ studies have more power to detect disease-
related epigenetic differences than studies on unrelated individuals.
Second, the same Illumina array has been used across the three studies
avoiding potential confounds resulting from matching markers on
different arrays and artefacts injected by imputation methods. Lastly, Oh
et al. reported that, using all the twin samples (UK, Australian and Dutch),
they were unable to discriminate affected individuals from control subjects
from blood. Given their promising results from other tissue, there was
good reason to believe that important information could still be gained
from this published data set. Further information on the samples, ethical
statements and approval data collection and data pre-processing is
described elsewhere.16

Statistical analysis
Empirical non-i.i.d. data consolidation methods, including principal
component analysis (PCA) and non-parametric Bayes methods (ComBat),
have been evaluated in isolation and in combination to batch effect
removal, population stratification and other noise variance. Machine-
learning methods and feature selection using linear SVMs and RF were
used to build a classifier to predict cases and controls for MDD from
epigenetic markers and extract features with higher probability of
explaining variations in pathology.

Data normalization and evaluation metric
Two main approaches of batch effect removal were evaluated in isolation
and in combination. The PCA method relies on the idea that the direction
with higher variance might relate to noise or population stratification
rather than disease. The non-parametric ComBat approach is an empirical
Bayes method that aims to adjust for unknown, unmodeled or latent
sources of noise and systematic bias. MZ twin studies discordant on any
phenotype are intrinsically balanced by nature: in each twin pair, we have
an affected and non-affected twin. This balance was preserved in the
training and test data sets during the resampling procedure via randomly
sampling from twin pairs rather than from the whole data set. Although
receiver operating characteristic (ROC) returns generally higher values, in
this study accuracy was preferred as a more representative, conservative
and honest measure of model performance.

Data consolidation approaches
PCA, ComBat and mixture approaches were evaluated to address issues of
non-i.i.d. data and control for potential confounding effects. The PCA
method relies on the notion that eigenvectors with higher variance relate
to subgroup phenotypes as opposed to disease groups. This approach
removes unwanted variance by subtracting a matrix achieved via
eigenvector decomposition. Removal of unwanted variance could relate
to the removal of batch effect as described by the paper by Nielsen et al.,18

and to control for population stratification as described by Price et al.19

This study considered the approaches above, and unwanted variance was
removed from each data set before merging data into one larger set as
follows.
For each region i, data were adjusted as follows: Y�

i ¼ Yi -UiWk
i Vi

T ,
which represents the eigenvector decomposition of the data matrix.
Matrices U and V contain the top k eigenvectors corresponding to the top k
eigenvalues given in W. Y represents gene expression and Wi

k is a diagonal
matrix corresponding to the top k eigenvalues. For the purpose of
evaluation we subtracted the matrix related to the most informative
principal components ranked by eigenvalue. Therefore, PCA.1 subtracts the
matrix related to the first principal component where PCA.2, PCA.3, PCA.4
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and PCA.5 sequentially subtracted the matrix related to principle
components 2–5.
The second approach was based on the non-parametric ComBat

method implemented in the Surrogate Variable Analysis 'sva' R-package
available from Bioconductor.20 This is an empirical Bayes method aimed to
adjust for unknown, unmodeled or latent sources of noise. ComBat adjusts
for systematic batch bias common across genes, assuming that batch
effect factors often affect many genes in similar ways, similar to increased
expression or higher variability. The other benefit of adjusting for
systematic bias with ComBat is that it robustly adjusts batch bias for even
small batch sizes.21 ComBat is a three-step empirical Bayes method: (1)
standardization of the data is achieved using the formula:

Zijg ¼
Yijg - α̂g - Xβ̂g

σ̂g

where σ̂2g ¼ 1=N
P

ij Y ijg - α̂g - Xβ̂gγ̂ig
� �2

and α̂g, β̂g , γ̂ig are estimations of
parameters αg, βg, γig in a model

Yijg ¼ αg þ Xβg þ γig þ δigϵijg

where N is the total number of samples, m is number of batches, ni is
number of samples within a batch i for i=1,…,m, for genes g=1,…,G. Yijg
represents the expression value for gene g for sample j from batch i, αg is
the overall gene expression, X is a design matrix for sample conditions and
βg is the vector of regression coefficients corresponding to X. The error
terms, ϵijg , can be assumed to follow a Normal distribution with expected
value of zero and variance σ2g . The γig and δig represent the additive and
multiplicative batch effects of batch i for gene g, respectively.
(2) Batch effect parameters are estimate batch using empirical priors.

Assuming that standardized data Zijg~N(γig,σig) are normally distributed,
the non-parametric estimates are:

γ�ig ¼
P

g0wig0 γ̂ig0P
g0wig0

; δ2�ig ¼
P

g0wig0 δ̂
2
ig0P

g0wig0

where γ̂ig ¼ 1=ni
P

jZijg , δ̂
2
ig ¼ 1=ðni - 1Þ

P
jðZijg - γ̂igÞ2 and

wig0 ¼ L Zig γig0 ; δ̂ig
0�� ��

(3) The method adjusts the data for batch effects

Y�
ijg ¼

Yijg - α̂g - Xβ̂g - γ�ijg
δ̂g

þ α̂g þ Xβ̂g:

using estimated batch effects γ�ijg ¼ σ̂ig=δ̂
�
igðZijg - γ̂

�
igÞ þ α̂g þ Xβ̂g

Lastly, we evaluated mixture approaches by combining PCA with
empirical Bayes method: first, we removed unwanted variance from
irrelevant factors and then tried to identify remaining noise and systematic
bias using non-parametric Bayes method. Different classification algo-
rithms were subsequently used on the different combinations.

Feature reduction and filtering
Several filtering scores were compared in order to select the best-
performing method for each classification algorithm. Average classification
accuracy and its s.d. were obtained from 200 random, independent
resamplings. For each resampling step, the data set was split 80/20 into
training and test sets, respectively, and the features with the highest scores
on the training set were selected. The model was then built on the training
set and performance was evaluated on the test set. The following filtering
scores have been compared and the best-performing methods for support
vector machine and RF classification algorithms were carried forward for
the purposes of analysis:

● T-statistic: The absolute value of Welsh's t-test statistic value. In case of a
two-class classification problem, t-statistic is equivalent to the difference
between two means for each class adjusted for s.d. for both classes.

● Mean difference: The absolute value of the difference between average
values in each class.

● P-value for Welsh's t-test with degrees of freedom.
● Correlation: Absolute value of Pearson correlation between a variable

and the predicting factor.
● The package ‘gene-filter’ for R, available from Bioconductor, has been

used to apply the above filtering criteria.22

● P-value Limma: The P-value calculated for the single-variable regression
model using Limma. Bioconductor limma R package has been used for
computing this score.23

● RankProd: RankProd modifies and extends the rank product method
proposed by Breitling et al.24 to integrate multiple studies from different
laboratories and/or platforms. In case of pairwise ratios, for each gene it
calculates feature rank for each comparison and returns—in this case, a
log ratio of methylation levels in twins pair. Rank product is a geometric
mean of ranks under different comparisons. The method has been
implemented using the 'RankProd' R package.25

Statistical learning
Two machine-learning classification approaches differing in several key
aspects, namely linear SVMs and RF, were used to evaluate the
effectiveness of the methods chosen to remove batch and population
stratification effects and to classify affected from non-affected siblings
based on methylation variation.26,27 SVM and RF have parameters that
need to be tuned. The linear SVM was implemented using a soft margin
parameter C. RF has a number of variables randomly sampled as
candidates at each split and used as parameter. The tuning and selection
of parameters is required for both classifiers.
Linear SVM is a powerful method with an efficient computation time for

a large number of variables and a small number of samples. As many other
‘2 norm classification methods, SVM is sensitive to noise coming from all
variables used. Selecting relevant features and decreasing the number of
features aids noise reduction. The linear SVM model used has a soft margin
parameter C, which is responsible for misclassification penalties. Higher
values of parameter C forces the SVM to a higher penalty of
misclassification on a training set that could lead to a higher generalization
error if the final performance is only marginally above chance. Lower
values of C could lead to lower generalization error. A soft margin
parameter of C=0.05 was chosen following cross-validation.
RF has an embedded control for sensitivity to noise, but it is

computationally inefficient for a large number of variables. Feature
selection aids computation efficiency with additional noise reduction
achieved by removal of irrelevant features, and therefore it is particularly
important for large data sets using RF. RF has a tuning parameter, which is
effectively the ratio of the number of variables randomly sampled as
candidates at each split over the total number of variables. Control over
the number of variables at each split aims to avoid correlation between
trees in a forest. Prediction of a single tree is highly sensitive to noise in a
training set, whereas average prediction across many trees is less sensitive
if trees are not correlated. Different ratios for the RF model (with top 100
features selected by limma P-value) were evaluated and the ratio = 0.1 was
chosen as it returned higher average accuracy over 200 resampling.
Average classification accuracy as a measure of classification perfor-

mance and its s.d. was obtained from 200 random independent resamples.
At each resampling step, the data set was split into a training and a test set
using a 80/20 ratio; features with the highest scores on the training set
were selected. A model was built on the training set and performance
evaluated on the independent test set. Consolidated data set were
compared against the following unadjusted data sets:

● Australian, the Netherlands and UK—classification accuracy of the three
regions was evaluated independently.

● RAW data—raw data from each region were merged without applying
non-i.i.d. consolidation methods.

● NormMean—the mean normalized raw data before merging (for each
data set, the mean normalization subtracts average values for each
feature).

● NormScale—the mean and s.d. normalized raw data before merging (for
each data set, the mean and s.d. normalization subtract average values
for each feature and divide by s.d.).

The mean normalization and scaling aims to remove inequality between
data sets in cases where for each epigenetic marker relative values
between samples remain similar across different data sources, whereas the
absolute level could vary together with variance. The above methods
provide a baseline to evaluate the increase in performance following
correction methods for violation of non-i.i.d. assumptions.

Network analysis
In order to gain further biological insight into the most predictive features,
MetaCore (https://portal.genego.com/) was used to explore the intersec-
tion between the list of genes mapped to variants uncovered from this
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study and known pathway maps and networks. Features most likely to be
selected following feature reduction methods and that yielded the highest
classification accuracy were mapped to known genes using the UHN
Microarray Centre's CpG Island instrument (https://www.pmgenomics.ca/
cpg). MetaCore scores and prioritizes networks and pathway based on the
relevance of the genes uploaded. The gene list returned by the analysis
presented may point at genes that show potential interaction, differential
expression and may be involved in the pathology. The gene list could also
potentially point at possible targets for therapeutic drug discovery.
MetaCore evaluates the magnitude of the intersection between the
reference gene list and the set of genes corresponding to a network
module and returns different metrics including P-values and G-scores. P-
values are calculated based on hypergeometric distributions, and these are
used to establish whether saturation with the genes of interest is higher
than random. When exploring signaling cascades, it is possible to evaluate
whether a network contains any fragments of well-understood (canonical)
signaling pathways. The G-score is another metric used by the software,
which effectively modifies the Z-score based on the number of the linear
canonical pathway fragments contained within the network. A high G-score
therefore points at a network highly saturated with reference genes and
containing several canonical pathways. In this study we have explored the
top-ranking networks by P-value and by G-score.

Code availability
All code including R scripts used to generate this analysis are available
from the corresponding author on request or can be downloaded online
(http://www.adamlab.org/epigenetics-of-depression/).

RESULTS
Data resulting from high-throughput technologies tend to be
high-dimensional with many more variables than cases. Methods
that can inform on the most relevant features and reduce the
dimensionality of the data by identifying variants with larger effect
size are used to offer a more favorable signal/noise ratio and to
reduce model over-fitting. As each data set has unique structures
and substructures, we first empirically evaluated different
methods for feature selections for each of the two classification
methods used. The results of our evaluation showed that the t-test
statistics scoring metric was the filtering method that gave the
best performance when using an SVM while single-variable linear
model P-value yielded better-accuracy performance when using
RF. Other scores such as correlation, P-value and mean difference
showed comparatively worse performances (Figure 1). These two
methods were carried forward for classification analyses.

Analysis using SVM and RF in each of the three studies
independently (UK, Australia and the Netherlands), with and
without feature selection, returned overall poor classification
accuracy. It was not possible to classify cases above chance level
across any of the studies. The worse model performance was
obtained in the UK study likely because of the smaller sample size
compared with Dutch and Australian studies. The Dutch and
Australian studies performed better in comparison with the UK
study but were also underpowered and returned accuracy scores
around chance levels (Figure 2). We then repeated the analyses
using the three samples combined together. However, without
correction to overcome issues of non-i.i.d. and removal of
potential confounding effects, the combined sample produced a
classifier that still did not perform better than chance, even when
feature reduction was used (Figure 2). This is consistent with
results reported by Oh et al. Feature reduction was an important
step to improve the performance of the two algorithms but
only after various correction methods applied to control for the
non-i.i.d. nature of the data. With dimensionality reduction and
correction methods, accuracy improved with the highest-accuracy
performance achieved with a set of 100 features.
When evaluating different methods to control for confounding

effects, PCA.3 and mixture models using PCA3.ComBat showed a
steady improvement of performance over raw data set for both
linear SVM and RF models with different numbers of selected
features. Methods with one more or one less number of removed
principal components such as PCA.4 and PCA.2 with or without
ComBat methods returned better accuracy for some classifiers, but
were not steady across different numbers of selected features and
different models using independent training and testing sets
(Figure 2).
Mixture models using PCA.3 together with ComBat and PCA.4

together with ComBat were the best-performing methods when
using a SVM, whereas mixture methods using PCA2, ComBat and
PCA.2 returned the best performance using RF. The best overall
classification was achieved using SVM and either removing the
first three principle components or with a mixture approach using
PCA3 and ComBat in conjunction with feature elimination. A
classification of 58% was achieved from epigenetic variations in
blood with 100 features selected. The results are significantly
above chance level and remained above 57% even when the
number of features was reduced to 50. The top-ranking features
selected across the three different studies following resampling
are summarized in Table 1. The signal that can be detected from

Figure 1. Linear support vector machines and random forest performances with features selected using different filtering scores. t-statistics is
the feature reduction method that yielded higher classification accuracy for support vector machine (SVM), whereas Limma P-value showed
better performance using random forest (RF). The results are based on top 50 features.
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Figure 2. Summary of results for two classification methods (support vector machines and random forest) across different methods to control
for non-independent-and-identically distributed (non-i.i.d.) data and different depths of feature selection. The mean accuracy percentage
scores are reported on the x axis. It is not possible to classify cases and controls by analyzing each study individually, even after feature
selection. The UK sample, the smallest, performs considerably worse compared with the other two, which show around chance levels. By
leveraging the increased power offered by the combined samples and removing potential batch and noise variance it is possible to detect a
weak but stable and significant signal. The highest classification accuracy (58%) is achieved with 100 features.
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blood clearly comes from a very small subset of the total number
of features. However, this may be expected, given that the data
was obtained from a peripheral tissue as opposed to a more
disease-related one.
A network analysis using MetaCore was peformed in order to

gain additional insight into the potential relationship between the
feature-set uncovered from the above analysis. The top-ranking
genes that could be mapped to probes on the 8.1-K array with
higher probability of being selected across the different resam-
pling were uploaded as reference molecule to MetaCore's
database. We first explored the top two ranking networks

returned by P-value. The first ranking network (Po1.29 × 10− 21,
G-score = 48.28) was centered on the c-MYC gene hub (Figure 3a).
C-MYC is known as a proto-oncogene and is associated with cell
proliferation and as a pro-apoptotic molecule. The second
network by P-value (Po1.62 × 10− 21, G-score = 47.79) includes
10 reference genes and is centered on the PPARGC1A (human
accelerated region 20 (HAR20)) gene hub (Figure 2b). The gene is a
transcriptional coactivator involved in the regulation of energy
metabolism and in mitochondrial biogenesis. Importantly, the
gene has a role in the regulation of cAMP response element-
binding protein. The transcription factor cAMP response element-

Figure 3. Top ranking gene networks. (a) The first score (by P-value) network from the study. Reference genes are marked with red circles. The
network is centered on the c-Myc gene hub. C-myc is known as a proto-oncogene and is associated with cell proliferation and as a pro-
apoptotic molecule. (b) The second scoring (by P-value) network from the study. The network includes 10 reference genes that are marked
with red circles. The network is centered on the PPARG (human accelerated region 20 (HAR20)). Peroxisome proliferator-activated receptor-
gamma (PPAR-γ) is a transcriptional coactivator involved in the regulation of energy metabolism and in mitochondrial biogenesis. Importantly,
the gene has a role in the regulation of cAMP response element-binding protein (CREB). The transcription factor CREB has been implicated in
signaling pathways relevant for pathogenesis and therapy of depression, which includes the c-Jun N-terminal kinases (JNKs). (c) Merging of
the two top-ranking networks ranked by P-value reveal that the two central gene hubs (c-MYC and PPAR-γ) are linked by the activator protein
(AP)-1-binding hub. The AP-1 is associated with dimeric transcription factors composed of Jun and Fos subunit. The Ap-1 target is particularly
relevant for depression as it regulates gene expression in response to different stimuli including cytokines. Together with the nuclear factor
(NF)-kappaB, AP-1 controls T-cell activation, followed by binding of foreign antigens to the T-cell receptor leading to cytokine secretion. AP-1
therefore has a key role in the initiation inflammatory response by activating immune cells through expression and secretion of chemokines
and cytokines. Inflammation is an event that has been associated with increased risk of major depressive episodes. Higher levels of peripheral
inflammatory markers taken from blood samples have been found in depressed patients.
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binding protein has been implicated in signaling pathways
relevant for pathogenesis and is associated with the c-Jun
N-terminal kinases. The network points at potential mechanisms
involved in inflammation, which have been extensively associated
with MDD. The two networks were subsequently merged in order
to gain further insight into their potential relationship and
interactions (Figure 3c). Interestingly, the gene hubs are one
interaction away and modulated through a pathway centered on
the AP-1 hub (C-JUN). c-Jun, in combination with c-Fos, forms the
AP-1 early-response transcription factor. Activation is dependent
on double phosphorylation by the c-Jun N-terminal kinase
pathway, which has an important role in initiating inflammatory
cellular responses.28

Lastly, we explored the top-ranking network by G-score
(Figure 4). The network reveals a number of interesting genes
including c-Jun (AP-1), with interactions between c-Jun N-terminal
kinase (MAPK) and the X-box-binding protein 1 (XPB-1) gene. The
XBP1 gene encodes a key transcription factor in the unfolded
protein stress response and has been implicated in the
pathophysiology of MDD.29

DISCUSSION
Landscapes of DNA methylation can show great variation between
different tissues, but accessibility to brain tissues in human studies
is limited to post-mortem and surgical resection. Therefore,
peripheral tissues, including blood, can be an important source
of information for the identification of biomarkers and mechan-
isms associated with the pathology that are assumed to also be
manifested in the brain. However, disease-associated epivariations
in blood may be less pronounced, more sparsely distributed and
complicated to detect because of noise variance compared to
disease-affected brain tissues. In this study we combined three
non-i.i.d. data sets using a data-driven approach to uncover a
suitable method to control for both batch effect and noise
variance in order to build a global classifier that could classify
affected siblings in MZ pairs discordant for MDD from epivariation
in peripheral blood.

Of the range of methods evaluated for non-i.i.d. data
consolidation, PCA with the top three eigenvector methods and
mixture approaches using PCA and ComBat showed steady
positive results on our data sets. The resulting model could
classify the disease state above chance levels in an independent
testing set using differences in methylation levels. Out of several
methods considered for classification, the linear support vector
machine with the top 100 selected features returned the highest
classification accuracy. The accuracy prediction above chance level
can be considered important, given the complex molecular
architecture underpinning the pathology. Accuracy measures
were reported instead of receiver operating characteristic scores,
even if these can often be higher. Indeed, high sensitivity and
specificity can be achieved even in the absence of high accuracy.
Being prudent in quantifying the ability to discriminate discordant
twins for MDD from epigenetic markers in peripheral blood alone
was preferred to reporting higher ROC scores. This is particularly
important in the context of disease classification where it is likely
that accumulation of epigenetic changes may explain only a small
fraction of individual differences in the pathology. Enrichment
analysis of the top-ranking features points at an epigenetic
signature of MDD that can be detected in peripheral blood and
may be used to inform candidate gene selection in future
molecular studies of MDD.
The results of the analysis identified a number of key genes,

which have previously been shown to be involved in the
pathophysiology of MDD. These genes include PPAR-γ (peroxi-
some proliferator-activated receptor-gamma), AP-1, XPB-1 and NF-
κβ. One of the gene maps uncovered from this study focused
around PPAR-γ as the center gene hub (Figure 3b). Merging the
two top-ranking networks showed that AP-1 appears to be a
connection molecule mediating between the two gene hubs of
the two networks; these two top-ranking networks by P-value
appear to be one interaction away. It is possible that DNA
methylation may modulate a number of regulatory processes
affecting these networks. The precise mechanisms by which these
epigenetic changes may affect the pathophysiology of depression
or whether these can be used as potential biomarkers from
peripheral fluids needs further exploration.

AP-1 and NF-κβ
The results from this study support previous human and animal
studies on MDD that have uncovered genes centered around a
stress-response cascade involving the activator protein 1 (AP-1)
and nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κβ).30 AP-1 is a gene that codes for a transcription factor that
regulates gene expression in response to cytokines as well as
environmental stress and bacterial and viral infections. AP-1
downregulation has been implicated as part of the mechanism by
which administration of IFN-alpha therapy induces depression
symptoms.31 NF-κβ is a transcription regulator that has a role in
peripheral inflammation with both pro- and anti-inflammatory
effects.32,33

PPAR-γ
One of the loci uncovered by the network pathway analysis is the
PPAR-γ gene that codes for the glitazone receptor (NR1C3).
Activation of the PPAR-γ system in the central nervous system is
thought to decrease parainflammation, endoplasmic reticulum
(ER) stress, formation of reactive oxygen species and glutamate
toxicity while increasing neurogenesis and neuroplasticity.34 It has
been shown that activation of PPAR-γ leads to an increased
neurogenesis as well as antidepressant effects in rodent
models.35,36 While the mechanisms by which this leads to an
antidepressant effect are unclear, it has been shown that exposure
to stress is associated with decreased hippocampal neurogenesis.
Induction of neurogenesis has been shown to be a mechanism of

Figure 4. The highest-ranking network by G-score. The network
reveals a number of potential interaction that may be relevant to the
disease and have been previously associated with inflammation. The
bottom of the network shows a cluster of genes including c-Jun, Fos,
AP-1 (together forming the APP complex), JNK (MAPK) and NF-κβ. On
the upper part, the the network is clustered around the XPB-1 gene
hub, which is involved in modulation of the cellular response to
endoplasmic reticulum (ER) stress brought about by stressful stimuli.
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action of several antidepressant medications in animal
models.37–39

Interestingly, several clinical cross-over and randomized control
trials have evaluated the efficacy of the insulin-sensitizing PPAR-γ
agonists thiazolidinediones (troglitazone, pioglitazone and rosigli-
tazone) for the treatment of patients with concomitant MDD and
metabolic syndrome or diabetes, as adjunctive therapy in patients
with moderate-to-severe MDD in the absence of other metabolic
disorders and as monotherapy.40–43 In addition to their action as
insulin-sensitizing agents, these drugs also have anti-inflamma-
tory, neuroprotective and anti-excitotoxic properties.44 Activation
of PPAR-γ receptors by their natural (15d-PGJ2) or synthetic
ligands has been shown to support neuronal glucose and
glutamate metabolism following exposure to stress and to
increased levels of neurotropic factors.45,46 These processes are
believed to be dysregulated in MDD, thus making PPAR-γ
activation a drug target of interest.

XPB-1
The top-ranking network by G-score revealed a network with the
XPB-1 as a principal hub (Figure 4). XPB-1 is involved in the cellular
response to ER stress brought about by stressful stimuli. ER stress
occurs when demands on the ER to fold and process proteins are
increased beyond its capacity, leading to the production of
unfolded proteins.47 This initiates the ER-stress response, which
promotes protein folding and secretion, as well as unfolded
protein degradation. Failure of this response leads to calcium
ATPase (Ca2+) release from the ER, leading to cell apoptosis. XPB-1
activates unfolded protein degradation as well as production of
chaperones for protein secretion.34 A polymorphism leading to
decreased XPB-1 expression has also been implicated in bipolar
disorder.48 Sodium valproate, an anticonvulsant with mood-
stabilizing properties, affects the ER-stress response, reducing
the likelihood of cell apoptosis. One mechanism of action for this
is the activation of ATF6, the gene that activates XPB-1 in the
hippocampus and the cerebral cortex.49,50

Strengths and limitations
DNA methylation is known to exhibit tissue specificity, but human
studies are limited to either post-mortem, surgical resection or
often surrogate tissues, which include blood cells. The extent to
which epivariations in surrogate tissues resemble those in central
tissues of interest is unknown. Given the complexity of the
pathology, it is likely that many epigenetic variants involved in a
number of mechanisms underpinning MDD cannot be detected in
blood. On the other hand, blood cells may show fewer epigenetic
changes associated with factors associated with the disorder (such
as in response to pharmacological treatment) but not involved in
etiology. According to the peripheral inflammation hypothesis of
depression, it is systemic inflammation that could potentially
explain part of the molecular etiology of the disorder. Many of
the inflammatory molecules implicated by this hypothesis are
detectable in peripheral blood cells. The most predictive
epigenetic markers uncovered by this study were mapped to
genes and gene networks with mechanisms associated to
inflammation, which is reasonable to expect from blood. It is,
however, unclear whether peripheral inflammation is involved in
the etiology of depression or is purely driven in response to it.
This study was able to control for the non-i.i.d. nature of the

data, allowing the integration of three separate data sets, each
from a different center and country, overcoming one of the
limitations from a previous published study using the same three
data sets. In isolation, the studies were too underpowered to allow
classification of affected and non-affected siblings, but leveraging
the increased power of the larger sample allowed detection
of a clear signal. Independent testing and training and careful
optimization of parameters to avoid model over-fitting increased

the probability of true-positive findings. Although classification
was possible above chance levels from peripheral blood, classi-
fication accuracy remains generally low. On the other hand it is
likely that only a small portion of the phenotypic variance is
explained by epigenetic variations. However, this approach
allowed us to explore the etiology of MDD beyond gene +
environment and gene× environment etiological paradigms.
This method of modeling allows the identification of epigenetic

loci that account for a portion of the variance in phenotype
between MZ twin pairs discordant for depression. Whereas these
loci can be identified, this methodology does not give any
information as to their role. The construction of networks of
epigenetic loci identified from our analysis revealed which
epigenes are linked, suggesting pathways and relationships
between the proteins these genes code for. The genes implicated
by the model can then be corroborated with the literature,
shedding light on their role in MDD pathophysiology, although
this is inevitably subjected to bias. Furthermore, the majority of
the literature does not look at the role of specific genes from the
epigenetic perspective; therefore, there is potential for further
research involving genes both implicated in the pathophysiology
of depression, such as the peripheral inflammation hypothesis,
and the epigenetics of depression.
Many of the genes identified in the networks of this analysis are

yet to be included in any literature regarding the pathophysiology
of depression. C-Myc is a good example of this (Figure 3a). It is an
oncogene implicated in the pathophysiology of a number of
cancers, but it has not yet been researched extensively in the field
of psychiatry.
This study employs a cross-sectional design, meaning that it is

not possible to infer causality. Accessibility of peripheral blood
samples from the same MZ twin pairs over time could allow to
identify changes in DNA methylation in relation to time of onset of
depression and potentially identify a causal link.
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