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APPROXIMATE HEDGING PROBLEM WITH TRANSACTION COSTS
IN STOCHASTIC VOLATILITY MARKETS
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This paper studies the problem of option replication in general stochastic volatility
markets with transaction costs, using a new specification for the volatility adjustment
in Leland’s algorithm. We prove several limit theorems for the normalized replication
error of Leland’s strategy, as well as that of the strategy suggested by Lépinette. The
asymptotic results obtained not only generalize the existing results, but also enable
us to fix the underhedging property pointed out by Kabanov and Safarian. We also
discuss possible methods to improve the convergence rate and to reduce the option
price inclusive of transaction costs.
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1. INTRODUCTION

Leland (1985) suggests a simple method for pricing standard European options in markets
with proportional transaction costs. He argues that transaction costs can be accounted
for in the option price by increasing the volatility parameter in the classical Black–Scholes
model (Black and Scholes 1973). Leland then claims, without giving a mathematically
rigorous proof, that the replicating portfolio of the corresponding discrete delta strategy
converges to the option payoff as the number of revisions n goes to infinity, if the
transaction cost rate is a constant independent of n, or decreases to zero at the rate n−1/2.
The latter statement is proved by Lott (1993) in his PhD thesis. In fact, this property still
holds if the transaction cost coefficient converges to zero at any power rate (Kabanov
and Safarian 1997).

However, a careful analysis shows that the replicating portfolio does not converge to the
option payoff when the cost rate is a constant independent of n. Kabanov and Safarian
(1997) find an explicit limit for the hedging error, which is negative, showing that the
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replication problem is not completely solved in Leland’s framework. Pergamenshchikov
(2003) obtains a weak convergence for the normalized hedging error and points out
that for the case of constant transaction cost, the rate of convergence in Kabanov–
Safarian’s result is n1/4. This limit theorem is of practical importance because it provides
the asymptotic distribution of the hedging error. Note that the rate of convergence can
be improved using nonuniform revisions (Darses and Lépinette 2014; Lépinette 2012).
In these papers, the authors suggest a modification to Leland’s strategy to solve the
discrepancy identified by Kabanov and Safarian. A short review on recent results is given
in Section 2. For detailed discussions, we refer the reader to Kabanov and Safarian (1997,
2009), Granditz and Schachinger (2001), Pergamenshchikov (2003), Lépinette (2008),
Lépinette and Kabanov (2010), Gamys and Kabanov (2009), Darses and Lépinette
(2014), and Lépinette (2012).

In this study, we examine the problem of approximate hedging of European style
options in stochastic volatility (SV) markets with constant transaction costs (the reader
is referred to, e.g., Fouque, Papanicolaou, and Sircar 2000 and the references therein for
motivations and detailed discussions related to SV models). In particular, we establish a
weak convergence for the normalized hedging error of Leland’s strategy using a simple
volatility adjustment in a general SV setting. The results obtained not only generalize
the existing results, but also provide a method for improving the rate of convergence.
Furthermore, it turns out that superhedging can be attained by controlling a model
parameter.

Let us emphasize that the classic form for adjusted volatility proposed in Leland (1985)
and applied in Kabanov and Safarian (1997, 2009) and Lépinette (2008, 2009, 2012)
may not be applicable in SV models. The reason is that option pricing and hedging are
intrinsically different in SV markets than in the classical Black–Scholes framework. In
particular, the option price now depends on future realizations of the volatility process.
In general, this information may not be statistically available for all investors. To treat
this issue, we suggest a new specification for adjusted volatility in Leland’s algorithm.
Although we employ an artificially modified volatility, simpler than the well-known
version used in the previous literature, the same asymptotic results are obtained for
SV contexts. In addition, the rate of convergence can be improved by controlling a
model parameter. Note that, in the above-mentioned papers, approximation procedures
are mainly based on moment estimates. This essential technique no longer works in
general SV models, unless some intrinsic conditions are imposed on the model parameters
(Andersen and Piterbarge 2007; Lions and Musiela 2007). It is useful to remember
that our goal is to establish a weak convergence for the normalized replicating error
which only requires convergence in probability of the approximation terms. Thus, in the
approximation procedure, the integrability issue can be avoided in order to keep our
model setting as general as possible.

As discussed in Pergamenshchikov (2003), the option price (inclusive of transaction
costs) in Leland’s algorithm may be high (it, in fact, approaches the buy-and-hold price),
even for small values of the revision number. Another practical advantage of our method
is that the option price can be reduced as long as the option seller is willing to take a
risk in option replication. This approach is inspired by the theory of quantile hedging
(Föllmer and Leukart 1999).

The remainder of the paper is organized as follows. In Section 2, we give a brief review
of Leland’s approach. Section 3 is devoted to formulating the problem and presenting
our main results. Section 4 presents some direct applications to pricing and hedging.
Section 5 discusses common SV models that fulfill our condition on the volatility
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function. A numerical result for Hull–White’s model is also provided for illustration.
Section 6 connects our results to high-frequency markets with proportional transaction
costs. The proofs of our main results are reported in Section 7. Auxiliary lemmas can be
found in the Appendix.

2. APPROXIMATE HEDGING WITH TRANSACTION COSTS:
A REVIEW OF LELAND’S APPROACH

In a complete no-arbitrage model (i.e., there exists a unique equivalent martingale mea-
sure under which the stock price is a martingale), options can be completely replicated
by a self-financing trading strategy. The option price, defined as the replication cost,
is the initial capital that the investor must invest to obtain a complete hedge. In fact,
the option price can be computed as the expectation of the discounted claim under the
unique equivalent martingale measure. This principle plays a central role in the well-
known Black–Scholes model. For simplicity, let us consider a continuous time model of
a two-asset financial market on the time interval [0, 1], where the bond price is equal to
1 at all times. The stock price dynamics follow the stochastic differential equation

dSt = σ0StdW t , S0 given,(2.1)

where S0 and σ0 are positive constants and (Wt)0≤t≤1 is a standard Wiener process.
As usual, let Ft = σ {Wu , 0 ≤ u ≤ t}. We recall that a financial strategy (βt, γt)0≤t≤1 is
an admissible self-financing strategy if it is bounded from below, (Ft), adapted with∫ t

0 (|βt| + γ 2
t ) dt < ∞ a.s., and the portfolio value satisfies

Vt = βt + γt St = V0 +
∫ t

0
γudSu, t ∈ [0, 1].

The classic hedging problem is to find an admissible self-financing strategy (βt, γt) whose
terminal portfolio value exceeds the payoff h(S1) = max(S1 − K, 0), or

V1 = V0 +
∫ 1

0
γudSu ≥ h(S1) a.s.,

where K is the strike price. The standard pricing principle shows that the option price
C(t, St) is given by the well-known formula (Black and Scholes 1973)

C(t, x) = C(t, x, σ0) = x�(̃v(t, x)) − K�(̃v(t, x) − σ0

√
1 − t) ,(2.2)

where

ṽ(t, x) = v(σ 2
0 (1 − t), x) and v(λ, x) = ln(x/K)√

λ
+

√
λ

2
.(2.3)

Here, � is the standard normal distribution function. In the following, we denote by ϕ

the N (0, 1) density: ϕ(z) = �′(z). One can check directly that

Cx(t, x) = �(̃v(t, x)) and Cxx(t, x) = ϕ (̃v(t, x))

xσ0
√

1 − t
.(2.4)

By assuming that continuous portfolio adjustments are possible with zero transaction
costs, Black and Scholes (1973) argue that the option payoff can be dynamically replicated
using the delta strategy (i.e., the partial derivative of the option price with respect to the
stock price).
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It is clear that the assumption of continuous portfolio revision is not realistic. More-
over, continuous trading would be ruinously expensive in the case of nonzero constant
proportional transaction costs because the delta strategy has infinite variation. This sim-
ple intuition contradicts the argument of Black and Scholes that if trading takes places
reasonably frequently, then hedging errors are relatively small. Therefore, option pricing
and replication with nonzero trading costs are intrinsically different from those in the
Black–Scholes setting. Note that it may be very costly to assure a given degree of accuracy
in replication with transaction costs. In what follows, we show that Leland’s increasing
volatility principle (Leland 1985) is practically helpful in such contexts.

2.1. Constant Volatility Case

Leland’s (1985) approach provides an efficient technique to deal with transaction costs.
This method is simply based on the intuition that transaction costs can be accounted for
in the option price as a reasonable extra fee, necessary for the option seller to cover the
option return. It means that in the presence of transaction costs, the option becomes more
expensive than in the classic Black–Scholes framework. This is intuitively equivalent to
an increase in the volatility parameter in the Black–Scholes formula.

Let us briefly describe Leland’s approach (Leland 1985; Kabanov and Safarian 1997).
Suppose that for each trading activity, the investor has to pay a fee directly proportional
to the trading volume, measured in dollar value. Assume that the transaction cost rate
is given by the law κ∗n−α, where n is the number of revisions. Here, 0 ≤ α ≤ 1/2 and
κ∗ > 0 are two fixed parameters. The basic idea of Leland’s method is to replace the true
volatility parameter in the Black–Scholes model by σ̂ , artificially modified as

σ̂ 2 = σ 2
0 + 
 n1/2−α with 
 = κ∗σ0

√
8/π .(2.5)

In this case, the option price is given by Ĉ(t, x) = C(t, x, σ̂ ), the Black–Scholes formula.
For the problem of option replication, Leland suggests the following discrete strategy,
known as Leland’s strategy,

γ n
t =

n∑
i=1

Ĉx(ti−1, Sti−1 )1(ti−1,ti ](t), ti = i
n
, i ∈ {1, 2, .., n}.(2.6)

Here, the number of shares held in the interval (ti−1, ti ] is the delta strategy calculated
at the left bound of this interval. Then, the replicating portfolio value takes the form

Vn
1 = Vn

0 +
∫ 1

0
γ n

u dSu − κ∗n−α Jn ,(2.7)

where the total trading volume is

Jn =
n∑

i=1

Sti |γ n
ti − γ n

ti−1
|

(measured in dollar value). Recall that the option price Ĉ(t, x) is the solution of the
Black–Scholes PDE with the adjusted volatility σ̂

Ĉt(t, x) + 1
2
σ̂ 2x2Ĉxx(t, x) = 0 , 0 ≤ t < 1; Ĉ(1, x) = h(x) .(2.8)
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Using Itô’s formula, we can represent the tracking error, Vn
1 − h(S1), as∫ 1

0

(
γ n

t − Ĉx(t, St)
)

dSt + 1
2

(σ̂ 2 − σ 2
0 )
∫ 1

0
S2

t Ĉxx(t, St)dt − κ∗n−α Jn .(2.9)

REMARK 2.1 (Leland). The specific form (2.5) results from the following intuition: the
Lebesgue integral in (2.9) is clearly well approximated by the Riemann sum of the terms
σ0S2

ti−1
Ĉxx(ti−1, Sti−1 )�t, while Sti |γ n

ti − γ n
ti−1

| can be replaced by

≈ σ0S2
ti−1

Ĉxx(ti−1, Sti−1 )|�Wti | ≈ σ0

√
2/(nπ ) S2

ti−1
Ĉxx(ti−1, Sti−1 ),

because E|�Wti | = √2/π
√
�t = √2/(πn). Hence, it is reasonable to expect that the

modified volatility defined in (2.5) will give an appropriate approximation to compensate
transaction costs.

Leland (1985) conjectures that the replication error converges in probability to zero
as n →∞ for the case of constant proportional transaction cost (i.e., α = 0). He also
suggests, without giving a rigorous proof, that this property is also true for the case
α = 1/2. In fact, Leland’s second conjecture for α = 1/2 is correct and is proved by Lott
(1993) in his PhD thesis.

THEOREM 2.2 (Leland 1985–Lott 1993). For α = 1/2, strategy (2.6) defines an approx-
imately replicating portfolio as the number of revision intervals n tends to infinity

P − lim
n→∞ Vn

1 = h(S1) .

This result is then extended by Ahn et al. (1998) to general diffusion models. Kabanov
and Safarian (1997) observe that the Leland–Lott theorem remains true as long as the
cost rate converges to zero as n →∞.

THEOREM 2.3 (Kabanov and Safarian 1997). For any 0 < α ≤ 1/2, P − limn→∞ Vn
1 =

h(S1) .

In Lépinette and Kabanov (2010) and Kabanov and Safarian (2009), the authors study
the Leland–Lott approximation in the sense of L2 convergence for the case α = 1/2.1

THEOREM 2.4 (Lépinette and Kabanov 2010). Let α = 1/2. The mean-square approxi-
mation error of Leland’s strategy, with 
 defined in (2.5), satisfies the following asymptotic
equality:

E (Vn
1 − h(S1))2 = An−1 + o(n−1) as n →∞,

where A is some positive function.

Theorem 2.4 suggests that the normalized replication error converges in law as n →∞.

THEOREM 2.5 (Lépinette and Kabanov 2010). For α = 1/2, the processes Yn =
n1/2(Vn − h(S1)) converge weakly in the Skorokhod space D[0, 1] to the distribution of
the process Y• = ∫ •

0 B(St)dZt, where Z is an independent Wiener process.

1Seemingly, mean-square replication may not contain much useful information because gains and losses
have different meaning in practice. Clearly, if α = 1/2, the modified volatility is independent of n.
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REMARK 2.6. An interesting connection between this case and the problem of hedg-
ing under proportional transaction costs in high-frequency markets is discussed in
Section 6.

It is important to note that Leland’s approximation in Remark 2.1 is not mathemati-
cally correct, and thus, his first conjecture is not valid for the case of constant transaction
costs. In fact, as n →∞, the trading volume Jn can be approximated by the following
sum (which converges in probability to J(S1, 
) defined in (2.11)):

−
n∑

i=1

λ
−1/2
i−1 Sti−1 ϕ̃ (λi−1, Sti−1 )|σ0


−1 Zi + q(λi−1, Sti−1 )|�λi ,

where λi = λti = σ̂ 2(1 − ti ), Zi = �Wti /
√
�ti , and

ϕ̃(λ, x) = ϕ(v(λ, x)), q(λ, x) = ln(x/K)
2λ

− 1
4
.(2.10)

A careful study confirms that there is a nontrivial discrepancy between the limit of the
replicating portfolio and the payoff for the case α = 0.

THEOREM 2.7 (Kabanov and Safarian 1997). For α = 0, Vn
1 converges to h(S1) +

min(S1, K) − κ∗ J(S1, 
) in probability, where

J(x, 
) = x
∫ +∞

0
λ−1/2ϕ̃(λ, x) E |̃
Z + q(λ, x)| dλ ,(2.11)

with 
̃ = σ0

−1 and Z ∼ N (0, 1) independent of S1.

Underhedging: It is important to observe that the problem of option replication is
not completely solved in the case of constant transaction costs. Indeed, considering that
E|̃
Z| = 1/(2κ∗) and the identity

x

∞∫
0

λ−1/2 ϕ̃ (λ, x) dλ = 2 min (x, K) ,(2.12)

we obtain (for the parameter 
 given in (2.5)) that min(x, K) − κ∗ J(x, 
) = xκ∗ equals∫ +∞
0 λ−1/2ϕ̃(λ, x) (E|̃
Z| − E|̃
Z + q(λ, x)|)dλ. Now, Anderson’s inequality (see, for ex-

ample, Ibragimov and Hasminskii 1981, page 155) implies directly that for any q ∈ R,
E|̃
Z + q| ≥ E|̃
Z|. Therefore, P − limn→∞ (Vn

1 − h(S1)) ≤ 0; thus, the option is asymp-
totically underhedged in this case, see Figure 2.1.

In approximation procedures, one should also pay attention to the fact that Ĉ and
its derivatives depend on the number of revisions when 0 ≤ α < 1/2. In addition, the
coefficient 
 appearing in (2.5) can be chosen in an arbitrary way.

Pergamenshchikov (2003) shows that the rate of convergence in Kabanov–Safarian’s
theorem is n1/4 and provides a weak convergence for the normalized replication error.

THEOREM 2.8 (Pergamenshchikov 2003). Consider Leland’s strategy (2.6) with α = 0,
and let 
 in (2.5) be some fixed positive constant. Then, the sequence of random variables

n1/4(Vn
1 − h(S1) − min(S1, K) + κ∗ J(S1, 
))(2.13)

weakly converges to a centered mixed Gaussian variable as n →∞.
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FIGURE 2.1. min(S1, K) − κ∗ J(S1) on the left and J(S1) on the right with K = 5. [Color
figure can be viewed at wileyonlinelibrary.com]

Theorem 2.8 is of practical importance because it not only gives the asymptotic infor-
mation about the hedging error, but also provides a reasonable way to fix the underhedg-
ing issue (see Section 4).

Darses and Lépinette (2014) modify Leland’s strategy in order to improve the conver-
gence rate in Theorem 2.8 by applying a nonuniform revision policy (ti )1≤i≤n , defined by

ti = g (i/n) , g(t) = 1 − (1 − t)μ for some μ ≥ 1.(2.14)

The adjusted volatility is then taken as σ̂ 2
t = σ 2

0 + κ∗σ0
√

8/π
√

n f ′(t), where f is the
inverse function of g. Furthermore, the discrepancy in Theorems 2.7 and 2.8 can be
removed by employing the following modified strategy, known as Lépinette’s strategy:

γ̄ n
t =

n∑
i=1

(
Ĉx(ti−1, Sti−1 ) −

∫ ti−1

0
Ĉxt(u, Su)du

)
1(ti−1,ti ](t) .(2.15)

THEOREM 2.9. Let Vn
1 be the terminal value of the strategy (2.15) with α = 0. Then,

for any 1 ≤ μ < μmax, the sequence nβ (Vn
1 − h(S1)) weakly converges to a centered mixed

Gaussian variable as n →∞, where

β = μ

2(μ + 1)
and μmax = 3 + √

57
8

.(2.16)



APPROXIMATE HEDGING PROBLEM WITH TRANSACTION COSTS IN STOCHASTIC VOLATILITY 839

2.2. Time-Dependent Volatility Case

Assume now that σ is a positive nonrandom function and the payoff H is a continuous
function with continuous derivatives, except at a finite number of points. Under the
nonuniform rebalancing plan (2.14), the enlarged volatility should take the form

σ̂ 2
t = σ 2(t) + κ∗σ (t)n1/2−α

√
f ′(t)8/π.(2.17)

THEOREM 2.10 (Lépinette 2008). Let σ be a strictly positive Lipschitz and bounded
function. Moreover, suppose that H(·) is a piecewise twice differentiable function and there
exist x∗ ≥ 0 and δ ≥ 3/2, such that supx≥x∗ xδ|H′′

(x)| < ∞. Then, for any 1/2 ≥ α > 0,
the replicating portfolio of Leland’s strategy converges in probability to the payoff H(S1)
as n →∞. Moreover, for α = 0,

P − lim
n→∞ Vn

1 = H(S1) + H1(S1) − κ∗ H2(S1),

where H1(·) and H2(·) are positive functions that depend on the payoff H.

REMARK 2.11. Theorem 2.9 still holds in the context of Theorem 2.10 (see Lépinette
2012).

2.3. Discussion

From Remark 2.1, the modified volatility defined by (2.5) would seem to give an
appropriate approximation that accounts for transaction costs. However, this is not
always the case because the option price inclusive of transaction costs now depends
on the rebalancing number. In more general models, this specific choice may generate
technical issues. For example, in local volatility models (Lépinette 2008), proving the
existence of the solution to (2.8) requires patience and effort, because σ̂ depends on the
stock price. On the other hand, it is interesting to observe that the true volatility plays no
role in the approximation procedure from a mathematical point of view. In fact, all the
results for the case α = 0 can be obtained by using the form σ̂ 2

t = κ∗σ (t)n1/2
√

f ′(t)8/π ,
where the first term σ 2(t) has been removed. More generally, we can take the following
form:

σ̂ 2
t = 


√
nf ′(t),(2.18)

for some positive constant 
, which will be specified later. Of course, the limiting value
of transaction costs will change slightly.

Let us emphasize that using the simple form (2.18) is important for two reasons. First,
it allows us to carry out a far simpler approximation than is used in the existing literature.
Second, Leland’s strategy with σ̂ defined in (2.5) may no longer work in SV markets.
Indeed, in those markets, option prices depend on future volatility realizations, which
are not statistically available. We show in the remainder of the paper that the simple form
(2.18) (a deterministic function of t) is helpful for approximate hedging in a very general
SV setting. It should be noted that the approximation methodology developed here still
works well for the classical form (2.5), if the volatility risk premium depends only on the
current value of the volatility process (Pham and Touzi 1996; Renault and Touzi 1996).

We conclude the section by mentioning that Leland’s algorithm is of practical impor-
tance due to its ease of implementation. The case of constant transaction costs α = 0
should be investigated in more general situations, for instance, where volatility depends
on external random factors, or jumps in stock prices are considered.
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3. MODEL AND MAIN RESULTS

Let (�,F1, (Ft)0≤t≤1,P) be a standard filtered probability space with two standard inde-
pendent (Ft)0≤t≤1 adapted Wiener processes (W(1)

t ) and (W(2)
t ), taking their values in R.

Our financial market consists of one risky asset governed by the following equations on
the time interval [0 , 1]

dSt =σ (yt)StdW (1)
t ; dyt = F1(t, yt)dt+F2(t, yt)(rdW (1)

t +
√

1 − r2dW (2)
t ),(3.1)

where −1 ≤ r ≤ 1 is the correlation coefficient. It is well known in the literature of SDEs
that if F1(t, y) and F2(t, y) are measurable in (t, y) ∈ [0, T] × R, linearly bounded, and
locally Lipschitz, there exists a unique solution y to the last equation of system (3.1). For
this fundamental result, see Theorem 5.1 and Friedman (1975) and Liptser and Shiryaev
(2001). For simplicity, assume that the interest rate equals zero. Thus, the nonrisky asset
is chosen as the numéraire.

In this section, we consider the problem of approximate hedging with constant pro-
portional costs using the principle of increasing volatility for model (3.1). As discussed
in Subsection 2.3, the adjusted volatility is chosen as

σ̂ 2
t = 


√
nf ′ (t) = μ−1/2


√
n(1 − t)

1−μ

2μ , 1 ≤ μ < 2.(3.2)

The replicating portfolio is revised at (ti ), as defined by (2.14). The parameter 
 > 0
plays an important role in controlling the rate of convergence and is specified later. As
shown below, the limiting value of the total trading volume is essentially related to the
dependence of 
 on the number of revisions.

REMARK 3.1. Intuitively, using an independent adjusted volatility seems unnatural
because it fails to account for market information. However, the techniques developed in
this note are well adapted to the case where the adjusted volatility depends on a volatility
process driven by an independent Brownian motion. In such a context, if the volatility
risk premium depends only on the current volatility process, then the no-arbitrage option
price (without transaction costs) is the average of the Black–Scholes prices over the future
paths of the volatility process (Pham and Touzi 1996; Renault and Touzi 1996).

Recall that Ĉ(t, x) is the solution of the Cauchy problem (2.8) with two first derivatives,
as described in (2.4): Ĉx(t, x) = �(v(λt, x)) and Ĉxx(t, x) = x−1λt

−1/2 ϕ̃(λt, x), where

λt =
∫ 1

t
σ̂ 2

s ds = μ̃ 

√

n(1 − t)
1

4β and μ̃ = 2
√
μ/(μ + 1) .(3.3)

REMARK 3.2. Section 4 will show that the underhedging situation pointed out in
Kabanov and Safarian (1997) can be fixed by controlling the parameter 
.

We make use of the following condition on the volatility function.
(C1) Assume that σ is a C2 function and there exists σmin such that

0 < σmin ≤ σ (y) for all y ∈ R and sup
0≤t≤1

E[σ 2(yt) + |σ ′(yt)|] < ∞.

Assumption (C1) is not restrictive and is fulfilled in many popular SV models (see Section
5 and Pham 2002).
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3.1. Asymptotic Results for Leland’s Strategy

Let us study the replication error for Leland’s strategy γ n
t defined in (2.6).

The replicating portfolio Vn
1 is defined by (2.7). Now, by Itô’s formula,

h(S1) = Ĉ(1, S1) = Ĉ(0, S0) +
∫ 1

0
Ĉx(t, St)dSt − 1

2
I1,n ,(3.4)

where I1,n = ∫ 1
0 (σ̂ 2

t − σ 2(yt)) S2
t Ĉxx(t, St)dt. Setting V0 = Ĉ(0, S0), we can represent the

replication error as

Vn
1 − h(S1) = 1

2
I1,n + I2,n − κ∗ Jn ,(3.5)

where I2,n = ∫ 1
0 (γ n

t − Ĉx(t, St))dSt and Jn is defined as in (2.7).
Let us first emphasize that complete replication in SV models is far from obvious. In

our setting, I2,n converges to zero faster than nβ , with β defined as in (2.16). The gamma
error I1,n approaches 2 min(S1, K) at the same rate. On the other hand, the total trading
volume Jn converges in probability to the random variable J(S1, y1, 
), defined by

J(x, y, 
) = x
∫ +∞

0
λ−1/2ϕ̃(λ, x) E

∣∣σ (y)
−1 Z + q(λ, x)
∣∣ dλ ,(3.6)

where Z ∼ N (0, 1) independent of S1 and y1. Our goal is to study the convergence of the
normalized replication error corrected by these explicit limiting values, by applying the
theory of limit theorems for martingales (Hall 1980). To do so, we search for the martin-
gale part in the approximation of the above terms by developing a special discretization
procedure in Section 7.

THEOREM 3.3. Suppose that condition (C1) holds and 
 > 0 is a fixed positive constant.
Then,

nβ (Vn
1 − h(S1) − min(S1, K) + κ∗ J(S1, y1, 
))

weakly converges to a centered mixed Gaussian variable as n →∞.

REMARK 3.4. This theorem is a generalization that includes an improved convergence
rate of the results in Kabanov and Safarian (1997) and Pergamenshchikov (2003), where
the uniform revision is taken and the volatility is assumed to be a constant.

REMARK 3.5. Note that h(x) + min(x, K) = x, where h(x) = (x − K)+ is the payoff
of a classical European call option. Then, from Theorem 3.3, the wealth process Vn

1
approaches S1 − κ∗ J(S1, y1, 
) as n →∞. This can be explained by the fact that the
option is now sold at a higher price because C(0, S0, σ̂ ) → S0 as σ̂ → ∞. In other words,
Leland’s strategy now converges to the well-known buy-and-hold strategy (Karatzas and
Shreve 1998): buy a stock share at time t = 0 for price S0 and keep it until expiry.

We now present a method for improving the rate of convergence in Theorem 3.3. To
this end, by letting 
 → ∞, we observe that

lim

→∞ J(x, y, 
) = x

∫ +∞

0
λ−1/2ϕ̃(λ, x)|q(λ, x)|dλ : = J∗(x),(3.7)
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which is independent of y. This suggests that the rate of convergence in Theorem 3.3
can be improved if 
 is taken as a function of n. Our next result is established under the
following condition on 
.

(C2) The parameter 
 = 
(n) is a function of n such that

lim
n→∞ 
(n) = ∞ and lim

n→∞ 
 n− μ

2(μ+2) = 0 .

THEOREM 3.6. Under conditions (C1) − (C2),

θn(Vn
1 − h(S1) − min(S1, K) + κ∗ J∗(S1)), with θn = nβ
2β,

weakly converges to a centered mixed Gaussian variable as n →∞.

REMARK 3.7. The asymptotic distributions in Theorems 3.3 and 3.6 are explicitly
determined in the proofs in Section 7.

3.2. Asymptotic Result for Lépinette’s Strategy

Let us study the replication error of Lépinette’s strategy γ n
t , as defined in (2.15). As

before, the replicating portfolio is V
n
1 = V

n
0 + ∫ 1

0 γ n
t dSt − κ∗ Jn, where

Jn =
n∑

i=1

Sti |γ n
ti − γ n

ti−1
| .(3.8)

Now, by Itô’s formula, the tracking error is

V
n
1 − h(S1) = 1

2
I1,n + I2,n − κ∗ Jn ,(3.9)

where I2,n = I2,n +∑i≥1(Sti − Sti−1 )
∫ ti−1

0 Ĉxt(u, Su)du. Then, we have the following
strengthening of Theorem 2.9.

THEOREM 3.8. Suppose that (C1) is fulfilled. Then, for any 
 > 0, the sequence

nβ (V
n
1 − h(S1) − η min(S1, K)), with η = 1 − κ∗σ (y1)
−1

√
8/π,

weakly converges to a centered mixed Gaussian variable as n →∞.

REMARK 3.9. Theorem 2.9 can be established from Theorem 3.8 with 
 = κ∗σ
√

8/π
when the volatility is a constant. In addition, in our model, the parameter μ takes its
values in the interval [1 , 2), which is slightly more general than the condition imposed
in Theorem 2.9. Moreover, if the classical form of adjusted volatility is applied for
Lépinette’s strategy, then complete replication can be reached by taking 
 = κ∗

√
8/π ,

and we again have the result established in Darses and Lépinette (2014).

COROLLARY 3.10. Under conditions (C1) − (C2), the wealth sequence V
n
1 converges in

probability to h(S1) + min(S1, K) = S1.

Note that we do not obtain an improved convergence version of Theorem 3.8 because
κ∗ Jn converges to zero at the order of 
.
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4. APPLICATION TO THE PRICING PROBLEM

In this section, we present an application to the problem of option pricing with transaction
costs. We first emphasize that it is impossible to obtain a nontrivial perfect hedge in the
presence of transaction costs, even in constant volatility models. In fact, the seller can
take the buy-and-hold strategy, but this leads to a high option price. We show below
that the price can be reduced in certain ways so that the payoff is covered with a given
probability.

4.1. Superhedging with Transaction Costs

To be on the safe side, the investor searches for strategies with terminal values greater
than the payoff. Such strategies are solutions to dynamic optimization problems. More
precisely, let H be a general contingent claim and let A(x) and Vπ,x

T be the set of all admis-
sible strategies π with initial capital x and the terminal value of strategy π , respectively.
Then, the superreplication cost for H is determined as

U0 = inf
{

x ∈ R : ∃π ∈ A(x), Vπ,x
T ≥ H a.s.

}
(4.1)

(see Karatzas and Shreve 1998 and the references therein for more details). In the presence
of transaction costs, Cvitanić and Karatzas (1996) show that the buy-and-hold strategy
is the unique choice for superreplication, and then S0 is the superreplication price. In
this section, we show that this property still holds for approximate superhedging. The
following observation is a direct consequence of Theorem 3.6 when 
 is a function of n.

PROPOSITION 4.1. Under conditions (C1) − (C2), P − limn→∞ Vn
1 ≥ h(S1). The same

property holds for Lépinette’s strategy.

Proof. First, note that J∗(x) ≤ min(x, K), for all x > 0. Hence, by Theorem 3.6,

P − lim
n→∞(Vn

1 − h(S1)) ≥ (1 − κ∗) min(S1, K).(4.2)

The left-hand side is obviously nonnegative as κ∗ < 1. The conclusion follows from
Theorem 3.8. �

4.2. Asymptotic Quantile Pricing

As seen earlier, superhedging in the presence of transaction costs leads to a high option
price. Practically, one can ask by how much the initial capital can be reduced in exchange
for a shortfall probability at the terminal moment. More precisely, for a given significance
level 0 ≤ ε ≤ 1, the seller may look for hedges with a minimal initial cost

inf
{

x ∈ R, ∃π ∈ A(x) : P
(
Vπ,x

T ≥ H
) ≥ 1 − ε

}
.

This construction is motivated by quantile hedging theory, which goes back to Föllmer
and Leukart (1999) and Novikov (1997). For related discussions, we refer to Föllmer and
Leukart (1999), Novikov (1997), Pergamenshchikov (2003), Baran (2003), Bratyk and
Mishura (2008), and Barski (2011). Here, we adapt this idea to the hedging problem.
Recall that the superhedging price of Leland’s algorithm is S0. On the seller’s side, we
propose a price δS0 < S0 for the option, for a properly chosen 0 < δ < 1. We then follow
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Leland’s strategy for replication. To be safe at the terminal moment, we need to choose 


such that the probability of the terminal portfolio exceeding the sum of the real objective
(i.e., the payoff) and the additional amount (1 − δ)S0 is greater than 1 − ε. Here, ε is
a significance level predetermined by the seller. By Proposition 4.1, this goal can be
achieved for sufficiently large 
. To determine the option price, it now remains to choose
the smallest value of δ. Motivated by (4.2), we define this by

δε = inf {a > 0 : ϒ(a) ≥ 1 − ε} , ϒ(a) = P ((1 − κ∗) min(S1, K) > (1 − a)S0) .(4.3)

Thus, the reduction in the option price is given by (1 − δε)S0. Clearly, smaller values of
δε yield cheaper options.

Next, we show that the option price is significantly reduced, compared with powers of
the parameter ε.

PROPOSITION 4.2. Assume that σmax = supy∈R
σ (y) < ∞ . Then, for any r > 0 and δε

defined by (4.3),

lim
ε→0

(1 − δε)ε−r = + ∞ .(4.4)

Proof. We first observe that 0 < δε ≤ 1 and δε tends to 1 as ε → 0. Set b = 1 − κ∗.
Then, for sufficiently small ε such that δε > a > 1 − bK/S0, one has

1 − ε > P(b min(S1, K) > (1 − a)S0) = 1 − P(S1/S0 ≤ (1 − a)/b).

Therefore,

ε < P (S1/S0 ≤ (1 − a)/b) ≤ P (X1 ≤ −za) ,(4.5)

where Xt = ∫ t
0 σ (yt)dW (1)

t and za = ln(b/(1 − a)) − σ 2
max/2. To estimate this probability,

we note that for any integer m ≥ 1, E(X1)2m ≤ σ 2m
max(2m − 1)!! (see Liptser and Shiryaev

2001, lemma 4.11, p. 130). Set R(υ) = 2υσ 2
max. For any 0 < υ < 1/2σ 2

max,

E eυX2
1 =

∞∑
m=0

υm

m!
E (X1)2m ≤

∞∑
m=0

υm

m!
σ 2m

max(2m − 1)!! ≤ 1
1 − R(υ)

.

Therefore, for sufficiently small ε > 0, we have

ε ≤ P(X1 ≤ −za) = P(−X1 ≥ za) ≤ e−υz2
a E eυX2

1 ≤ e−υz2
a

1 − R(υ)
.

Then, 1 − a ≥ be−ιε(υ), where ιε(υ) = √| ln ε(1 − R(υ))|/υ + σ 2
max/2. Letting a → δε, we

get 1 − δε ≥ be−ιε(υ), which implies (4.4). �

The boundedness of the volatility function is essential for the above comparison
result. If we wish to relax this assumption, the price reduction will be smaller than that
in Proposition 4.2.

PROPOSITION 4.3. Suppose that E exp{α ∫ 1
0 σ 2(ys)ds} < ∞, for some constant α > 1/2.

Then, for rα = (2
√

2α + 1)/2α,

lim inf
ε→0

ε−rα (1 − δε) > 0 .(4.6)
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Proof. For any positive constant L, we set

τ = τL = inf
{

t > 0 :
∫ t

0
σ 2(ys)ds ≥ L

}
∧ 1,(4.7)

which is understood to be the first time that the log-price’s variance passes level L. Then,
from (4.5),

ε ≤ P
(
E−1

1 (σ ) ≥ ua,

∫ 1

0
σ 2(ys)ds ≤ L

)
+ P

(∫ 1

0
σ 2(ys)ds ≥ L

)
,(4.8)

where Et(σ ) = e
∫ t

0 σ (ys )dW(1)
s − 1

2

∫ t
0 σ 2(ys )ds , ua = (1 − κ∗)/(1 − a), and δε > a > 1 − bK/S0.

Note that for any p > 0, the stopped processχt = Eτ∧t(−pσ ) is a martingale and Eχt = 1.
Therefore, the first probability on the right side of (4.8) can be estimated as

(ua)−p E E−p
τ (σ ) = (ua)−p Eχ1 e p̌

∫ τ

0 σ 2(ys )ds ≤ (ua)−p e p̌L ,

where p̌ = (p2 + p)/2.
By the hypothesis and Chebysev’s inequality, we have

P
(∫ 1

0
σ 2(ys)ds ≥ L

)
≤ Cαe−αL, with Cα = E exp

{
α

∫ 1

0
σ 2(ys)ds

}
.

Hence, ε ≤ (ua)−p e p̌L + Cαe−αL. By choosing L = α−1 ln(2C/ε) and letting a → δε, one
deduces that for any p > 0 and for some positive constant C̃α,

1 − δε ≥ C̃α εγ
∗(p), where γ ∗(p) = (p + 1)/(2α) + p−1 .

Note that rα = minp>0 γ
∗(p) = γ ∗(

√
2α). Then, including in the last inequality p = √

2α,
we obtain property (4.6). �

REMARK 4.4. It is clear that rα < 1 for α > 3/2 + √
2. The condition used in Proposi-

tion 4.3 holds for suchα, whenσ is linearly bounded and yt follows an Orstein–Uhlenbeck
process (see Appendix C). The same quantile pricing result can be established for the
Lépinette strategy.

5. EXAMPLES AND NUMERICAL RESULTS

In this section, we list some well-known SV models for which condition (C1) is fulfilled.
To this end, we need some moment estimates for solutions to general SDEs:

dyt = F1(t, yt)dt + F2(t, yt)dZt, y(0) = y0,(5.1)

where Z is a standard Wiener process and F1, F2 are two smooth functions. We first recall
the well-known result in SDE theory (see, for example, Friedman 1975, theorem 2.4,
p. 107).

THEOREM 5.1. Suppose that F1(t, y) and F2(t, y) are measurable in (t, y) ∈ [0, T] × R,
linearly bounded and locally Lipschitz. If E |y0|2m < ∞ for some integer m ≥ 1, then there
exists a unique solution (yt) to (5.1) and

E |yt|2m < (1 + E |y0|2m)eαt, E sup
0≤s≤t

|ys |2m < M(1 + E |y0|2m),

where α, M are positive constants dependent on t,m.
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In the context of Theorem 5.1, condition (C1) holds if the volatility function and its
derivative have polynomial growth |σ (y)| ≤ C(1 + |y|m), for some positive constant C
and m ≥ 1.

Hull–White models: Assume that yt follows a geometric Brownian motion

dSt = (yt + σmin)StdWt and dyt = yt(adt + bdZt),(5.2)

where σmin > 0, a and b are some constants, and Z is a standard Brownian motion
correlated with Wt. Put y∗ = sup0≤t≤1 |yt|. Then, by Theorem 5.1, we have

E (y∗)2m ≤ C(1 + E|y0|2m) < ∞, m ≥ 1,

as long as E|y0|2m < ∞. Therefore, condition (C1) is fulfilled in (5.2).
Uniform elliptic volatility models: Suppose that volatility is driven by a mean-reverting

Orstein–Uhlenbeck process

dSt = (y2
t + σmin)StdWt and dyt = (a − byt)dt + dZ.(5.3)

In this case, σ (y) = y2 + σmin. Thus, condition (C1) is verified throughout Theorem 5.1.
Stein–Stein models: Assume that

dSt =
√

y2
t + σmin StdWt and dyt = (a − byt)dt + dZt.(5.4)

We have σ (y) =
√

y2 + σmin and condition (C1) is also verified by Theorem 5.1.
Heston models: Heston (1993) proposes an SV model where volatility is driven by a

Cox-Ingersoll-Ross process, which is also known as a square root process. This model
can be used in our context. Indeed, assume now that the price dynamics are given by the
following:

dSt = √
yt + σmin StdWt and dyt = (a − byt)dt + √

yt dZt, y0 ≥ 0.(5.5)

For any a and b > 0, the last equation admits a unique strong solution yt > 0. Note
that the Lipschitz condition in Theorem 5.1 is violated, but by using the stopping times
technique, we can directly show that Ey∗ < ∞. Hence, this implies that condition (C1) is
satisfied for model (5.5).

Similarly, we can check that (C1) also holds for Ball–Roma models (Ball and Roma
1994) or, more generally, for a class of processes with bounded diffusion satisfying the
following condition.

(A) There exist positive constants a, b, and M such that

yF1(t, y) ≤ a − by2 and |F2(t, y)| ≤ M, for all t > 0, y ∈ R.

PROPOSITION 5.2. Under condition (A), there exists α > 0 such that Eeαy∗2
< ∞.

Proof. The proof uses the same method as in proposition 1.1.2 in Kabanov and
Pergamenshchikov (2003). �

Scott models: Suppose that volatility follows an Orstein–Uhlenbeck, as in Stein–Stein
models, and the function σ takes the exponential form

dSt = (eδyt + σmin)StdW (1)
t and dyt = (a − byt)dt + dZt,(5.6)
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TABLE 5.1
Convergence for Lépinette’s Strategy with κ∗ = 0.01, 
 = 2

Corrected Lower Upper
n Gain/loss error bound bound Price Strategy

10 0.1523845 −0.2225988 −0.2363122 −0.2088854 0.7914033 0.9013901
50 0.2966983 −0.0596194 −0.0670452 −0.0521936 0.9399330 0.9706068
100 0.3086120 −0.0288526 −0.0350141 −0.0226911 0.9746527 0.9875094
500 0.2955755 0.0032387 −0.0005821 0.0070594 0.9991733 0.9995891
1,000 0.2851002 0.0012409 −0.0021596 0.0046415 0.9999300 0.9999652

TABLE 5.2
Convergence for Lépinette’s Strategy with κ∗ = 0.001, 
 = 4

Corrected Lower Upper
n Gain/loss error bound bound Price Strategy

10 0.2859197 −0.0744180 −0.0813544 −0.0674816 0.9246420 0.9659700
50 0.3172523 −0.0069238 −0.0115426 −0.0023049 0.9921661 0.9962377
100 0.3033519 0.0007474 −0.0030916 0.0045864 0.9984346 0.9992385
500 0.3618707 0.0001296 −0.0024741 0.0027333 0.9999977 0.9999989
1,000 0.3334375 0.0003996 −0.0020559 0.0028550 1 1

where a, b, and σmin > 0 are constants. Here, δ > 0 is chosen such that 2δ ≤ α, defined
as in Proposition 5.2. Clearly, σ (y) = eδy + σmin and condition (C1) is fulfilled because

E sup
0≤t≤1

|σ (y)|2 ≤ 2σ 2
min + 2E (e2δ1{|yt |≤1} + e2δ|y|21 1{|yt |>1}) < ∞.

Numerical result for the Hull–White model: We provide a numerical example for the
approximation result of Lépinette’s strategy in the Hull–White model (5.2). By Theo-
rem 3.8, the corrected replication error is given by Vn

1 − max(S1 − K, 0) − η min(S1, K),
where η = 1 − κ∗σ (y1)
−1

√
8/π .

The difference Vn
1 − max(S1 − K, 0) can be seen as the gain/loss of strategy γ̄ n . For a

numerical evaluation, we simulate N = 500 trajectories in a crude Monte-Carlo method,
where the correlation coefficient of the two Brownian motions is 0.05 and the other
initial values are S0 = K = 1, y0 = 2, σmin = 2, a = −2, and b = 1. For each value of
n, we estimate the average value of the corrected error and give the corresponding 95%
intervals defined by lower and upper bounds. Initial numbers of shares held are given
in the last column of Tables 5.1 and 5.2. It turns out that strategy γ̄ n

t converges to the
buy-and-hold strategy and the option prices approach the superhedging price S0. We also
see that the convergence of the corrected replication error to zero is somehow slow. In
fact, increasing values of 
 can provide a faster convergence, but this unexpectedly leads
to superreplication more rapidly.
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FIGURE 5.1. (a) Reduction factor 1 − δε and powers of ε and (b) reduction amount
and ε. [Color figure can be viewed at wileyonlinelibrary.com]

We now provide a numerical illustration for the quantile hedging result of Proposition
4.2. For simplicity, suppose that σ (y) = sin2(y) + 0.1 and that y follows a geometric
Brownian motion as above. To compare the reduction factor 1 − δε with powers of
significance level ε, we compute (1 − δε)ε−r for 0.001 ≤ ε ≤ 0.1 and 0 ≤ r ≤ 0.1, with
κ∗ = 0.001. Then, (4.4) is confirmed by the simulation result (see Figure 5.1a). The
simulation also shows that the option price inclusive of transaction costs is 1 − 0.385 =
0.615, which is cheaper than the superhedging price S0 = 1, for a shortfall probability
less than 0.1%. Of course, it is reasonable to replace S0 by the option price inclusive of
transaction costs Ĉ(0, S0). The simulated reduction in the option price (1 − δε)Ĉ(0, S0)
is then given in Figure 5.1(b).

6. HIGH-FREQUENCY MARKETS

We now assume that purchases of the risky asset are carried out at a higher ask price
St + εt, whereas sales earn a lower bid price St − εt. Here, the midprice St is given as in
model (3.1) and εt is the halfwidth of the bid-ask spread. Then, for any trading strategy
of finite variation ψt, the wealth process can be determined by

Vt = V0 +
∫ t

0
ψsdSs −

∫ t

0
εsd|ψ |s,(6.1)

where |ψ | is the total variation of ψt. Observe that the first two terms are the classic
components in frictionless frameworks, and, respectively, describe the initial capital and
gains from trading. The last integral in (6.1) accounts for transaction costs incurred from
the trading activities by weighting the total variation2 of the strategy with the halfwidth
of the spread.

For optimal investment and consumption with small transaction costs Kallsen and
Muhle-Karbe (2017), the additional terms should be added in the formulation of Vt.
In such cases, approximate solutions are usually determined through an asymptotic

2It is important to know that the classical Black–Scholes strategy is not finite variation.
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expansion around zero of the halfwidth spread ε, where the leading corrections are
obtained by collecting the inputs from the frictionless problem.

In this section, we are only interested in replication using discrete strategies in Leland’s
spirit. Assume that for replication, the option seller applies a discrete hedging strategy
ψ

n,ε
t , revised at n dates defined by ti = g(i/n) as in Section 3. The corresponding wealth

process is now given by

Vn,ε
t = Vn,ε

0 +
∫ t

0
ψn,ε

s dSs −
n∑

i=1

εti |ψn,ε
ti − ψn,ε

ti−1
|.(6.2)

To treat the risk of transaction costs, we again apply the increasing volatility principle.
Note that in high-frequency markets, the bid-ask spread is, in general, of the same order
of magnitude as price jumps.3 Hence, εt should be of the form κ∗n−1/2St, for some positive
constant κ∗. Then, this case corresponds to the Leland–Lott framework with α = 1/2.

In our context, the method in Section 3 is still helpful when ψ
n,ε
t is replaced by Leland’s

or Lépinette’s strategy.

PROPOSITION 6.1. Let εt = κ∗n−1/2St, and assume that the adjusted volatility is of the
form σ̂ 2 = 


√
n f ′(t) as in (3.2). For both Leland’s and Lépinette’s strategies, the sequence

of replicating portfolio values Vn,ε
1 converges in probability to h(S1) + min(S1, K) = S1. In

particular, nβ (Vn,ε
1 − S1) converges to a mixed Gaussian variable as n →∞.

Proof. The proof is a direct consequence of Theorem 3.3, because the total transaction
cost now converges to zero. �

Note that the case α = 0 studied in Section 3 corresponds to the assumption εt = κ∗St,
for some constant κ∗. This specific form means that the market is more illiquid and the bid-
ask spread is now proportional to the spot price in every trade. Therefore, approximate
hedging results for this case are the same as those in Section 3.

We conclude the section by supposing that the stock spreads remain constant at all
times, regardless of the current stock price. In other words, εt = κ∗ for some positive
constant κ∗. Intuitively, transaction costs are now based on the volume of traded shares,
instead of the traded amount of money as in the literature and Section 3. It is interesting
to see that our methodology still works in this case. The following result is just an analog
of Theorem 3.3, with a small modification to the limiting value of transaction costs,
defined by

J0(x, y, 
) =
∫ +∞

0
λ−1/2ϕ̃(λ, x) E

∣∣∣∣σ (y)
−1 Z + ln(x/K)
2λ

− 1
4

∣∣∣∣ dλ ,(6.3)

where Z ∼ N (0, 1) independent of S1, y1

PROPOSITION 6.2. Suppose that εt = κ∗ > 0 and σ̂ 2 = 

√

n f ′(t). For Leland’s strategy
under condition (C1), the sequence nβ (Vn,ε

1 − h(S1) − min(S1, K) + κ∗ J0(S1, y1
)) weakly
converges to a centered mixed Gaussian variable as n →∞. Furthermore, for Lépinette’s
strategy, nβ (V

n,ε
1 − h(S1) − (1 − η0) min(S1, K)) weakly converges to a centered mixed

Gaussian variable, where η0 = σ (y1)
−1S−1
1

√
8/π .

Proof. The proof is similar to that of Theorem 3.3 (see Section 7). �
REMARK 6.3. When 
 → ∞ under condition (C2), one obtains an improved-rate

version of Proposition 6.2, as in Theorem 3.6.
3We thank an anonymous referee for pointing out the correspondence of the case α = 1/2 to this setting.
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7. PROOFS

Our main results are proved in the following generic procedure.

Step 1: Determine the principal term of the hedging error. In particular, we will show
that the gamma term I1,n converges to 2 min(S1, K), while the cumulative
transaction cost approaches J defined in (3.6). Both convergences are at rate
θn = nβ
2β .

Step 2: Represent the residual terms as discrete martingales. To this end, stochastic
integrals will be discretized by following a special procedure setup in Subsection
7.2.

Step 3: Determine the limit distribution of the normalized replication error by applying
Theorem 7.3. This result is the key tool, but we need in fact special versions
adapted to our context. These will be explicitly constructed in Subsection 7.3.

7.1. Preliminary

Note first that Ĉ(t, x) and its derivatives can be represented as functions of λt and x,
where

λt = λ0(1 − t)
1

4β : = λ0ν(t) and λ0 = μ̃

√

n.(7.1)

Moreover, the function ϕ̃(λ, x), which appears in all kth (k ≥ 2) degree derivatives of
Ĉ with respect to x and derivatives in time via the relation (2.8), is exponentially de-
creasing to zero when λ tends to zero or infinity. This property motives our analysis in
terms of variable λ. In particular, let us fix two functions l∗, l∗ and let 1 ≤ m1 < m2 ≤ n
be two integers such that l∗ = λ0ν(g(m2/n)) and l∗ = λ0ν(g(m1/n)). Then, all terms
corresponding to index j /∈ [m1,m2] can be ignored at a certain order which depends on
the choice of l∗ and l∗.

For our purpose, the desired order is θn ∼ λ
2β
0 . Therefore, we take, for example, l∗ =

1/ ln3 n, l∗ = ln3 n and define

m1 = n −
[
n (l∗/λ0)2/(μ+1)

]
+ 1 and m2 = n −

[
n (l∗/λ0)2/(μ+1)

]
,(7.2)

where the notation [x] stands for the integer part of a real number x. Below, we focus on
the subsequence (tj ) of trading times and the corresponding sequence (λ j ), defined as

tj = 1 − (1 − j/n)μ and λ j = λ0(1 − tj )
1

4β , m1 ≤ j ≤ m2.(7.3)

Note that (tj ) is an increasing sequence taking values in [t∗, t∗], where t∗ = 1 − (l∗/λ0)4β

and t∗ = 1 − (l∗/λ0)4β , whereas (λ j ) is decreasing in [l∗, l∗], see Figure 7.1. Therefore,
we use the notations �tj = tj − tj−1 and �λ j = λ j−1 − λ j , for m1 ≤ j ≤ m2, to avoid
recopying the negative sign in discrete sums.

Below, Itô stochastic integrals will be discretized through the following sequences of
independent normal random variables

Z1, j = W(1)
tj

− W(1)
tj−1√

tj − tj−1
and Z2, j = W(2)

tj
− W(2)

tj−1√
tj − tj−1

.(7.4)
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FIGURE 7.1. The sequences (λ j ) and (tj ) defined by (7.3). [Color figure can be viewed
at wileyonlinelibrary.com]

We set

p(λ, x, y) = 


σ (y)

(
ln(x/K)

2λ
− 1

4

)
(7.5)

and write for short p j−1 = p(λ j−1, Stj−1 , ytj−1 ). This style of reduced notation is abusively
applied for functions appearing in the approximation procedure. Define⎧⎨⎩ Z3, j = |Z1, j + p j−1| − E

(|Z1, j + p j−1| |F j−1
)
,

Z4, j = |Z1, j | − E
(|Z1, j | |F j−1

) = |Z1, j | −√2/π.
(7.6)

The sequences (Z3, j ) and (Z4, j ) will help to find the Dood decomposition of our
approximation terms. In order to represent the limit of transaction costs, we introduce{

G(a) = E (|Z + a|) = 2ϕ(a) + a (2�(a) − 1) ,
�(a) = E (|Z + a| − E |Z + a|)2 = 1 + a2 − G2(a),

(7.7)

for a ∈ R and Z ∼ N (0, 1). We also write o(a−r
n ) for generic sequences of random vari-

ables (Xn) satisfying P − limn→∞ ar
n Xn = 0.

7.2. Approximation for Stochastic Integrals

For any L > 0, we consider the stopping time

τ ∗ = τ ∗
L = inf

{
t ≥ 0 : σ (yt) + |σ ′(yt)| > L

}
,(7.8)

and denote by S∗
t = Sτ ∗∧t and y∗

t = yτ ∗∧t the corresponding stopped processes. We provide
an approximation procedure for Itô stochastic integrals through the sequences (Z1, j ) and
(Z2, j ). The discrete approximation concerns the class of functions satisfying the technical
condition,
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(H) A : R+ × R+ × R → R is a continuously differentiable function satisfying the fol-
lowing: there exist γ > 0 and a positive function U such that for any x ≥ 0, y ∈ R,

sup
λ>0

min(λγ , 1)|A(λ, x, y)| ≤ U(x, y) and sup
0≤t≤1

E (S∗
t )mU2r (S∗

t , y∗
t ) < ∞,

for any −∞ < m < + ∞, r ≥ 0 and L > 0.

REMARK 7.1. We can check directly that for k ≥ 2, ∂k
xĈ(λ, x) =

xk−1λ−k/2ϕ̃(λ, x)P(ln(x/K)), where P is some polynomial. Therefore, all func-
tions A0 appearing in the approximation below are of the form λ−k/2xmσ̄ (y)P(ln(x/K)),
where σ̄ can be a power of σ or of its two first derivatives σ ′, σ ′′. In bounded volatility
settings, it can be shown with some computational effort (see, e.g., Darses and Lépinette
2014; Lépinette 2008, 2012) that

sup
0≤t≤1

ESm
t ln2r St < ∞, for any m ∈ R, r ≥ 0.(7.9)

The latter property is, however, not always fulfilled for SV models with unbounded
volatility. In fact, it has been demonstrated in Andersen and Piterbarge (2007) and Lions
and Musiela (2007) that the stock price does not admit integrable moments in general SV
markets, unless some natural conditions are imposed on the correlation and the volatility
dynamics coefficients. Thus, asymptotic analysis using L2 estimates as in the existing
works may be impossible in general SV frameworks. Nevertheless, note that (7.9) is true
for processes stopped by τ ∗. Below, the approximation analysis will be established in the
sense of convergence in probability, in order to avoid this integrability issue.

For simplicity, we use the notation Š = (S, y). The following technique is frequently
applied in our asymptotic analysis.

PROPOSITION 7.2. Let A(λ, x, y) = A0(λ, x, y)̃ϕ(λ, x), where A0 = A0(λ, x, y) is a func-
tion satisfying (H). Then, for i = 1, 2,∫ 1

0
σ̂ 2

t

(∫ 1

t
A(λt, Šu)dW (i )

u

)
dt = 
−1

m2∑
j=m1

Aj−1 Zi , j�λ j + o(θ−1
n ),(7.10)

where θn = nβ
2β , Aj = A(λ j , Štj ) and A(λ, x, y) = ∫∞
λ

A(z, x, y) dz.

Proof. By making use of the stochastic Fubini theorem, we get

În =
∫ 1

0
σ̂ 2

t

(∫ 1

t
A(λt, Šu)dW (i )

u

)
dt =

∫ 1

0

(∫ u

0
σ̂ 2

t A(λt, Šu)dt
)

dW (i )
u .

Then, changing the variables v = λt for the inner integral yields∫ u

0
σ̂ 2

t A(λt, Šu)dt =
∫ λ0

λu

A(v, Šu)dv = A(λu, Šu) − A(λ0, Šu).

In other words, În = Î1,n − Î2,n , where Î1,n = ∫ 1
0 Ǎu dW (i )

u , Ǎu = A(λu, Šu), and Î2,n =∫ 1
0 A(λ0, Šu) dW (i )

u . Moreover, we have

Î1,n =
∫ t∗

0
ǍudW (i )

u +
∫ t∗

t∗
ǍudW (i )

u +
∫ 1

t∗
ǍudW (i )

u : = R1,n + R2,n + R3,n .(7.11)
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Let ε > 0 and b > 0. One observes that P(θn| Î2,n| > ε) is bounded by P(τ ∗
L < 1) +

P(θn| Î2,n| > ε, τ ∗
L = 1). By condition (C1), we have

lim sup
L→∞

P(τ ∗
L < 1) = 0 .(7.12)

In view of (H), one deduces A(λ0, x, y)| ≤ C
√

KŨ(x, y)e−λ0/8, where Ũ(x, y) =
x−1/2U(x, y). Now, putting Ǎ∗

u = Ǎu∧τ ∗ and Î∗
2,n = ∫ 1

0 Ǎ∗
u dW (i )

u , one has P(θn| Î2,n| >
ε, τ ∗

L = 1) = P(θn| Î∗
2,n| > ε) . Using the Chebychev inequality, we obtain

P(θn| Î∗
2,n| > ε) ≤ ε−2θ2

n E ( Î∗
2,n)2 ≤ Cε−2θ2

n e−λ0/8 sup
0≤t≤1

E Ũ2(Š∗
t ).

Hence, due to condition (H), Î2,n = o(θ−1
n ) as n →∞. Similarly, taking into account that

l∗ ≤ λu ≤ λ0 for 0 ≤ u ≤ t∗, we get R1,n = o(θ−1
n ).

Next, let us show the same behavior for the last term in (7.11). Indeed, for some fixed
η > 0 and L > 0, one has

P (θn|R3,n| > ε) ≤ P
(
θn|R3,n| > ε, �1,η,L

)+ P
(
�c

1,η,L

)
,(7.13)

where �1,η,L = {inf t∗≤u≤1 | ln(Su/K)| > η, τ ∗
L = 1}. Then, by taking into account Lemma

A.3 and the integrability condition (C1), one gets

limη→0limn→∞limL→∞P(�c
1,η,L) = 0.

On �1,η,L, we have Ǎ = Ǎ∗ and

|Ǎ∗
u | ≤ U(Š∗

u)
∫ ∞

λu

(1 + z−γ )̃ϕ(z, S∗
u )dz ≤ Ũ(Š∗

u) f̌ ∗
u,

where f̌ ∗
u = √K/(2π )

∫∞
λu

(1 + z−γ )e−η2/(2z)−z/8dz. Set �3, j = {|Ǎu | ≤ Ũ(Š∗
u) f̌ ∗

u},Â∗
u =

Ǎ∗
u1�3, j , and R̂3,n = ∫ 1

t∗
Â∗

udW (i )
u . By Chebychev’s inequality, we obtain

P
(
θn|R3,n| > ε,�1,η,L

) ≤ θ2
n ε

−2
∫ 1

t∗
E(Â∗

u)2du ≤ θ2
n ε

−2 sup
0≤u≤1

E Ũ2(Š∗
u)
∫ 1

t∗
( f̌ ∗

u)2du,

which converges to zero as
∫ 1

t∗
( f̌ ∗

u)2du ≤ Cλ
−4β
0 l∗. Hence, R3,n = o(θ−1

n ). It remains to
discretize the integral term R2,n via the sequence (Zi , j ). The key steps for this aim are the
following. First, we represent R2,n = ∫ t∗

t∗ ǍudW (i )
u =∑m2

j=m1

∫ tj

tj−1
ǍudW (i )

u and replace the

Itô integral in the last sum with Aj−1 Zi , j
√
�tj .

Next, Lemma A.1 enables us to substitute
√
�tj = 
−1�λ j into the last sum to

obtain the martingale Mm2 defined by Mk = 
−1∑k
j=m1

Aj−1 Zi , j�λ j . We need to
show that |R2,n − Mm2 | = o(θ−1

n ) or equivalently,
∑m2

j=m1
Bj ,n = o(θ−1

n ), where Bj ,n =∫ tj

tj−1
Ãu, j dW (i )

u and Ãu, j = Ā(λu, Šu) − Ā(λ j−1, Štj−1 ). For this aim, we introduce the set

�2,b =
{

sup
t∗≤u≤1

sup
z∈R

(
|A(z, Šu)| +

∣∣∣∂x Ā(z, Šu)
∣∣∣+ ∣∣∣∂y Ā(z, Šu)

∣∣∣) ≤ b

}
.
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Then, for any ε > 0, P(θn|
∑m2

j=m1
Bj ,n| > ε) is bounded by P(�c

2,b) + P(τ ∗ < 1) + �n,

where �n = P(θn|
∑m2

j=m1
Bj ,n| > ε, �2,b, τ ∗ = 1). Let B̂ j ,n = ∫ tj

tj−1
Âu, j dW (i )

u , where

Âu, j = Ãu, j 1{|Ãu, j |≤b(|λu−λ j−1|+|S∗
u −S∗

t j−1
|+|y∗

u −y∗
t j−1

|)}.

Then, �n = P(θn|
∑m2

j=m1
B̂ j ,n| > ε), which is smaller than ε−2θ2

n
∑m2

j=m1
E B̂2

j ,n by Cheby-
chev’s inequality. Clearly, E B̂2

j ,n is bounded by

3b2

(∫ tj

tj−1

((λu − λ j−1)2 + E(S∗
u − S∗

tj−1
)2 + E(y∗

u − y∗
tj−1

)2)du

)
≤ (�λ j )3 + (�tj )2

up to a multiple constant. Consequently, θ2
n
∑m2

j=m1
E B̂2

j ,n ≤ Cθ2
n
∑m2

j=m1
(�λ j )3 + (�tj )2,

which converges to 0 by Lemma A.1 and condition (C2). On the other hand, by Lemma
A.4, we get lim→∞ limn→∞P(�c

2,b) = 0. The proof is complete.

7.3. Limit Theorem for Approximations

We first recall the following result in Hall (1980), which is useful for studying asymptotic
distributions of discrete martingales.

THEOREM 7.3. [Theorem 3.2 and Corollary 3.1, p. 58 in Hall (1980)] Let Mn =∑n
i=1 Xi be a zero-mean, square integrable martingale, and ς be an a.s. finite random

variable. Assume that the following convergences are satisfied in probability:

n∑
i=1

E
(
X2

i 1{|Xi |>δ}|Fi−1
) −→ 0 for any δ > 0 and

n∑
i=1

E
(
X2

i |Fi−1
) −→ ς2.

Then, (Mn) converges in law to X whose characteristic function is E exp(− 1
2ς

2t2), i.e., X
has a Gaussian mixture distribution.

In this subsection, we establish special versions of Theorem 7.3. In fact, our aim is to
study the asymptotic distribution of discrete martingales resulting from approximation
(7.10) in Proposition 7.2. First, we define

Mk =
k∑

j=m1

υ j , m1 ≤ k ≤ m2,(7.14)

where υ j =∑3
i=1 Ai , j−1 Zi , j�λ j , Ai , j = Ai (λ j , Štj ), and Zi , j defined as in (7.4) and (7.6).

To describe the asymptotic variance of (M), we introduce the following function:

L(λ, x, y) = A2
1(λ, x, y) + 2A1(λ, x, y)A3(λ, x, y)(2�(p) − 1)

+A2
3(λ, x, y)�(p) + A2

2(λ, x, y) ,(7.15)

where p is defined in (7.5). Set

μ̌ = 1
2

(μ + 1)μ̃
2

μ+1 and μ̂ = (μ − 1)/(μ + 1).(7.16)



APPROXIMATE HEDGING PROBLEM WITH TRANSACTION COSTS IN STOCHASTIC VOLATILITY 855

PROPOSITION 7.4. Let A0
i = A0

i (λ, x, y), i = 1, 2, 3 be functions having property (H)
and Ai (λ, x, y) = A0

i (λ, x, y)̃ϕ(λ, x). Then, for any fixed 
 > 0, the sequence (nβMm2 )n≥1

weakly converges to a mixed Gaussian variable with mean zero and variance ς2 defined as
ς2 = ς2(Š1) = μ̌


2
μ+1
∫ +∞

0 λμ̂L(λ, Š1)dλ. The same property still holds if some (or all) of
the functions Ai are of the form

∫∞
λ

A0
i (z, x, y)̃ϕ(z, x)dz.

Proof. Note that the square integrability property is not guaranteed for (υ j ). To
overcome this issue, we consider the “stopped version” (υ∗

j ), which is obtained by substi-
tuting Štj−1 by Š∗

tj−1
in Ai , i.e., υ∗

j =∑3
i=1 Ai (λ j , Š∗

tj
) Zi , j�λ j . Let M∗

k =∑k
j=m1

υ∗
j , the

corresponding stopped martingale. First, we show, throughout Theorem 7.3, that for any
L > 0, this martingale weakly converges to a mixed Gaussian variable with mean zero
and variance ς∗2(L) = ς2(Š∗

1). To this end, setting �1,η = {inf t∗≤u≤1 | ln(S∗
u/K)| > η} and

a∗
j = E (υ∗2

j 1{|υ∗
j |>δ}|F j−1), we obtain

P

⎛⎝n2β |
m2∑

j=m1

a∗
j | > ε

⎞⎠ ≤ P

⎛⎝n2β |
m2∑

j=m1

a∗
j | > ε, �1,η

⎞⎠+ P(�c
1,η).(7.17)

It suffices to show that the first probability on the right side of (7.17) converges to zero.
Indeed, from the proof of Proposition 7.2, one observes that on the set �1,η,

max
i=1,2,3

∣∣∣Ai (λu, Š∗
u)
∣∣∣ ≤ Ũ(Š∗

u)(1 + λ−γ
u ), t∗ ≤ u ≤ t∗,(7.18)

for some γ > 0 and Ũ(Š) = S−1/2U(Š). Set υ̂∗
j = υ∗

j 1�3, j and â∗
j = E (υ̂∗2

j 1{|υ̂∗
j |>δ}|F j−1),

where

�3, j =
{

max
1≤i≤3

∣∣∣Ai (λu, Š∗
u)
∣∣∣ ≤ Ũ(Š∗

u)(1 + λ−γ
u )
}
.

We have

P

⎛⎝n2β |
m2∑

j=m1

a∗
j | > ε, �1,η,L

⎞⎠ = P

⎛⎝n2β |
m2∑

j=m1

â∗
j | > ε

⎞⎠ ≤ ε−1n2β
m2∑

j=m1

E â∗
j ,

by Markov’s inequality. By using Chebychev’s inequality and then again Markov’s in-
equality, we observe that

E â∗
j ≤

√
E υ̂∗4

j

√
P(|υ̂∗

j | > δ) ≤ δ−2E υ̂∗4
j ≤ 9δ−2(1 + λ−γ

u )4(�λ j )4E Ũ4(Š∗
u)

3∑
i=1

Z4
i , j .

Note that Zi , j has bounded moments. Then, by using (7.18), we obtain
ε−1 n2β ∑m2

j=m1
E â∗

j is bounded by 9ε−1δ−2n2β ∑m2
j=m1

(1 + λ
−γ
u )4(�λ j )4, which converges

to zero by Lemma A.1.
We now verify the limit of the sum of conditional variances E(υ∗2

j |F j−1). Set υ∗
i , j =

A∗
i , j−1 Zi , j �λ j . As Z1, j and Z2, j are independent, E(υ∗

1, jυ
∗
3, j |F j−1) = E(υ∗

2, jυ
∗
3, j |F j−1) =

0. It follows that

E(υ∗2
j |F j−1) = E(υ∗2

1, j |F j−1) + E(υ∗2
2, j |F j−1) + E(υ∗2

3, j |F j−1) + 2E(υ∗
1, jυ

∗
2, j |F j−1).

Now, observe that for Z ∼ N(0, 1) and some constant a, E(Z|Z + a|) = 2�(a) − 1 and
E (Z + a)2 − (E|Z + a|)2 = �(a). On the other hand, �λ j = n−2β (1 + o(1))μ̌ 


2
μ+1 λ

μ̂

j−1
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by Lemma A.1. Therefore,

n2βE(υ∗2
j |F j−1) = (1 + o(1))μ̌ 


2
μ+1 λ

μ̂

j−1 L(λ j−1, Š∗
tj−1

)�λ j .

By Lemma A.5, n2β ∑m2
j=m1

E(υ∗2
j |F j−1) converges in probability to ς∗2(L).

Thus, nβM∗
m2

weakly converges to N (0, ς∗2(L)) by Theorem 7.3. Moreover, property
(7.12) implies that for any δ > 0,

lim
L→∞

lim
n→∞P(nβ |Mm2 − M∗

m2
| > δ) = 0 .

Therefore, by taking into account that ς∗2(L) converges a.s. to ς2 as L → ∞, we conclude
that nβMm2 converges in law to N (0, ς2). This completes the proof.

Next, we study the asymptotic property of the following martingale

Mk =
k∑

j=m1

(
A1, j−1 Z1, j + A2, j−1 Z2, j + A4, j−1 Z4, j

)
�λ j .(7.19)

The limiting variance will be defined throughout the function

L(λ, x, y) = A2
1(λ, x, y) + A2

2(λ, x, y) + (1 − 2/π )A2
4(λ, x, y).(7.20)

The following result is similar to Proposition 7.4.

PROPOSITION 7.5. Let A0
i = A0

i (λ, x, y), i = 1, 2, 4 be functions having property (H)
and Ai (λ, x, y) = A0

i (λ, x, y)̃ϕ(λ, x). Then, for any fixed 
 > 0, the sequence (nβ Mm2 )n≥1

weakly converges to a mixed Gaussian variable with mean zero and variance ς2 given by
ς2 = μ̌ 


2
μ+1
∫ +∞

0 λμ̂ L(λ, Š1)dλ. The same property still holds if some (or all) Ai are of
the form

∫∞
λ

A0
i (z, x, y)̃ϕ(z, x)dz.

Proof. The conclusion follows directly from the proof of Proposition 7.4 and the
observation that E Z2

4, j = E(|Z1, j | −√2/π)2 = 1 − 2/π, and E (Zi , j Z4, j ) = 0, for i =
1, 2 and m1 ≤ j ≤ m2. �

In the rest of the subsection, we establish a limit theorem for a martingale of the
following form:

M̌k =
k∑

j=m1

(
A1, j−1 Z1, j + A3, j−1 Z3, j

)
�λ j : =

k∑
j=m1

υ̌ j , m1 ≤ k ≤ m2,

where Ai (λ, x, y) = A0
i (λ, x, y)̃ϕ(λ, x) and A0

i , i = 1, 3 are functions having property
(H). The following result is helpful for the case when 
 diverges to infinity as in
Theorem 3.6.

PROPOSITION 7.6. Under condition (C2), the sequence (nβ 

−1
μ+1 M̌m2 ) weakly converges

to a mixed Gaussian variable with mean zero and variance ς̌2 = μ̌
∫ +∞

0 λμ̂ Ľ(λ, S1)dλ,
where Ľ(λ, x, y) = A2

1(λ, x, y) + 2A1(λ, x, y)A3(λ, x, y) + A2
3(λ, x, y). The same property

still holds if some (or all) Ai are of the form
∫∞
λ

A0
i (z, x, y)̃ϕ(z, x)dz.

Proof. We determine the limit of conditional variances of nβ 

−1
μ+1 M̌m2 . We first

observe that

n2β

−2
μ+1 E(υ̌2

j |F j−1) = μ̌(1 + o(1)) λμ̂

j−1 Q̌(λ j−1, Štj−1 )�λ j ,(7.21)
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where Q̌(λ, x, y) = A2
1(λ, x, y) + A2

3(λ, x, y)�(p) + 2A1(λ, x, y)A3(λ, x, y)(2�(|p|) −
1). Moreover, it can be checked directly that the function G(·) defined in (7.7) satisfies
the following inequalities: |a| ≤ G(a) ≤ |a| + 2ϕ(a) , for any a ∈ R. This implies that
|�(a) − 1| ≤ 4|a|ϕ(a) + ϕ2(a), hence, supa∈R

|�(a)| < ∞. Also, note that Q̌ → Ľ a.s. as
n →∞ because p(λ, x, y) → ∞ as 
 = 
(n) → ∞, for any x > 0 and λ �= 2 ln(x/K).
Using Lemma A.5, we claim that the sum of the terms on the right-hand side of (7.21)
converges in probability to ς̌2. The proof is completed by running again the argument
in the proof of Proposition 7.4. �

7.4. Proof of Theorem 3.3

We first observe that I1,n approaches 2 min(S1, K) at order θn . In particular, set-
ting Ī1,n = ∫ 1

0 λt
−1/2σ̂ 2

t (Stϕ̃(λt, St) − S1ϕ̃(λt, S1)) dt and changing variables v = ∫ 1
t σ̂ 2

s ds,
we can represent I1,n = S1

∫ λ0

0 v−1/2ϕ̃(v, S1) dv + Ī1,n + o(θ−1
n ) . The first integral in the

right side converges a.s. to 2 min(S1, K) by (2.12), while Ī1,n is approximated by∫ 1
0 σ̂ 2

t (
∫ 1

t σ (yu)Su H(λt, Su)dW (1)
u ) dt, where H = (2−1λ−1/2 − λ−3/2 ln(x/K))̃ϕ(λ, x). The

discretization technique of Proposition 7.2 can be applied to replace the latter double
integral by U1,m2 , defined by

U1,k = 
−1
k∑

j=m1

σ (ytj−1 )Stj−1 Ȟ j−1 Z1, j �λ j , m1 ≤ k ≤ m2,(7.22)

where Ȟ(λ, x) = ∫∞
λ

(z−1/2/2 − z−3/2 ln(x/K))̃ϕ(z, x)dz. We summarize the asymptotic
form of I1,n in the following.

PROPOSITION 7.7. If 
 either is constant or satisfies condition (C2), then

P − lim
n−→∞ θn

∣∣I1,n − 2 min(S1, K) − U1,m2

∣∣ = 0.

Next, we claim that I2,n = o(θ−1
n ).

PROPOSITION 7.8. If 
 either is a positive constant or satisfies condition (C2), then θn I2,n

converges to zero in probability as n →∞.

Proof. See Appendix A.3.

Let us study the trading volume Jn . First, it is easy to check that for any v >

0, 1 − �(v) ≤ v−1ϕ(v). Now, observe that |γ n
ti − γ n

ti−1
| ≤ |1 − γ n

ti | + |1 − γ n
ti−1

|, which al-
most surely converges to zero more rapidly than any power of n when inf1≤i≤n λi ≥
l∗ ⇐⇒ i ≤ m1. The same property can be deduced for the case supi λ ≤ l∗ ⇐⇒ i ≥ m2.
To see this, we note that for λu ≤ l∗, Su(ω) = S1−(λu/λ0)4β (ω) converges to S1(ω) as n →∞
uniformly in λu ∈ [0, l∗], for any ω outside the zero probability set {S1 = K}. Therefore,
one can truncate the sum and keep only the part corresponding to index m1 ≤ j ≤ m2.
In other words, Jn is approximated by J1,n =∑m2

j=m1
Stj |�� j |. Putting b j = |�� j | −

ϕ̃ j−1|�v j |, we can represent J1,n = J ′
1,n + ε1,n + ε2,n , where J ′

1,n =∑m2
j=m1

Stj−1 ϕ̃ j−1|�v j |,
ε1,n =∑m2

j=m1
�Stj−1 |� j�|, and ε2,n =∑m2

j=m1
Stj−1 b j .

In view of (A.1) and condition (C2), ε1,n = o(θ−1
n ) as n →∞. Furthermore, by using

the Taylor expansion, we obtain |ε2,n| ≤ Ssup
∑m2

j=m1
|�v j |2 up to a multiple constant,
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where Ssup = sup0≤t≤1 St. Now, by taking into account that

E
∣∣v j−1 − v j

∣∣2 ≤ 1
nλ j−1

+
(
λ

1/2
j−1 − λ

1/2
j

)2
+
(
λ

−1/2
j−1 − λ

−1/2
j

)2

up to a multiple constant and using condition (C2) together with (A.1), we get |ε2,n| =
o(θ−1

n ). Next, by using Itô’s Lemma and the substitution λ j = λ0(1 − tj )4β , we replace
J ′

1,n by

J2,n =
m2∑

j=m1

λ
−1/2
j−1 Stj−1 ϕ̃ j−1|κ j |�λ j : =

m2∑
j=m1

ζ j , κ j = 
−1σ (ytj−1 )Z1, j + q j−1,(7.23)

where q is defined in (2.10). We need to determine the limit of Jn throughout the Doob’s
decomposition of J2,n w.r.t. the filtration (F j )m1≤ j≤m2 . To this end, note that

E(ζ j |F j−1) = λ
−1/2
j−1 Stj−1 ϕ̃ j−1�λ j E(|κ j ||F j−1),

where E(|κ j ||F j−1) = 
−1σ (ytj−1 )G(p j−1) : = Dj−1 and G(p) defined in (7.7). Let

B(λ, x, y) = λ−1/2x̃ϕ(λ, x)D(λ, x, y) and J3,n =
m2∑

j=m1

Bj−1�λ j .(7.24)

We observe that J2,n = J3,n + U2,m2 , where

U2,k =
k∑

j=m1

λ
−1/2
j−1 Stj−1 ϕ̃ j−1κ j�λ j and κ j := ∣∣κ j

∣∣− Dj−1.(7.25)

By substituting Štj−1 by Š1 everywhere in J3,n , we write J3,n = J4,n + J5,n , where
J4,n =∑m2

j=m1
B(λ j−1, Š1)�λ j , J5,n =∑m2

j=m1
B∗

j−1�λ j , and B∗
j−1 = B(λ j−1, Štj−1 ) −

B(λ j−1, Š1). Then, by Lemma A.2, we can check that J4,n converges a.s. to J(S1, y1, 
)
at rate θn . Now, an application of Itô’s Lemma for B∗

j−1 yields stochastic integrals with
respect to the Wiener processes. Owing to Proposition 7.2, the sum of these integrals can
be approximated by U3,m2 , defined by

U3,k = 
−1
2∑

i=1

k∑
j=m1

Qi , j−1 Zi , j�λ j , m1 ≤ k ≤ m2,

where Q1 = ∫∞
λ

(xσ (y)∂x B + rF2(t(λ), y)∂y B)dz and Q2 = √
1 − r2 F2(t(λ), y)

∫∞
λ

∂y Bdz
and t(λ) = 1 − (λ/λ0)4β . The asymptotic form of Jn is summarized in the following.

PROPOSITION 7.9. For any fixed 
 > 0,

P − lim
n−→∞ θn

∣∣Jn − J(S1, y1, 
) − (U2,m2 + U3,m2 )
∣∣ = 0.

Now, the martingale part of the hedging error is given by Mm2 , defined by

Mk = 1
2
U1,k − κ∗(U2,k + U3,k) = 
−1

k∑
j=m1

3∑
i=1

Ai , j−1 Zi , j�λ j , m1 ≤ k ≤ m2,
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where A1 = −σ (y) xȞ/2, A2 = κ∗ Q2 and A3 = −κ∗σ (y)λ−1/2x̃ϕ(λ, x). It is easy to see
that the assumption of Proposition 7.4 is fulfilled for Ai , i = 1, 2, 3. Hence, the sequence
(nβMm2 )n≥1 converges in law to a mixed Gaussian variable by Proposition 7.4, which
proves Theorem 3.3. �

7.5. Proof of Theorem 3.6

When 
 → ∞ under condition (C2), the approximation for Jn is slightly different.
In particular, observe first that for any b ∈ R, E|aZ + b| can be approximated by
b(2�(b/a) − 1) as a → 0.

Therefore, we can replace J3,n in (7.24) by the sum Ĵ3,n =∑m2
j=m1

B̂ j−1�λ j , where
B̂(λ, x) = λ−1/2 x ϕ̃(λ, x)q(λ, x)�̃(
q(λ, x)), with �̃(q) = 2�(
 q) − 1 and q(λ, x) de-
fined in (2.10). Putting Ĵ4,n =∑m2

j=m1
B̂(λ j−1, S1)�λ j and B̂∗

j−1 = B̂(λ j−1, Stj−1 ) −
B̂(λ j−1, S1), we represent Ĵ5,n := Ĵ3,n−Ĵ4,n =∑m2

j=m1
B̂∗

j−1�λ j . Now, using Lemma A.2,
we can directly show that | Ĵ4,n − J∗(S1)| = o(θ−1

n ). Furthermore, owing to Itô’s formula,
we replace B̂∗

j−1 by
∫ 1

tj−1
∂x B̂(λ j−1, Su)dSu . Direct calculations yield that

∂x B̂ = λ−1/2 ϕ̃(λ, x)[−2q2(λ, x)�̃(λ, x) + 1
2λ

�̃(λ, x) + 


λ
ϕ(
 q(λ, x))].

Clearly, �̃(
q) → sign(q) and ϕ(
 q) → 0 as 
 → ∞. Now, using Proposition 7.2, we
can approximate Ĵ5,n by Û3,m2 , defined by Û3,k = 
−1∑k

j=m1
σ (ytj−1 )Stj−1 Nj−1 Z1, j�λ j ,

where N(λ, x) = ∫ +∞
λ

z−1/2ϕ̃(z, x)(−2q2(z, x) + 1/(2z))sign(q(z, x))dz. The asymptotic
representation of the trading volume is summarized in the following.

PROPOSITION 7.10. Under conditions (C1) − (C2),

P − lim
n−→∞ θn|Jn − J∗(S1) − (U2,m2 + Û3,m2 )| = 0.

Now, the martingale part 
−1M̌m2 of the hedging error is determined by

M̌k = 


2
U1,k − κ∗
(U2,k + Û3,k) =

k∑
j=m1

(Ǎ1, j−1 Z1, j + Ǎ3, j−1 Z3, j )�λ j ,

where Ǎi , i = 1, 2, are explicitly determined and satisfy the assumption of Proposition
7.6. Then, in view of θn


−1M̌m2 = nβ

− 1

μ+1 M̌m2 , Theorem 3.6 is proved throughout
Proposition 7.6.

7.6. Proof of Theorem 3.8

The key technique in Proposition 7.2 can be used to obtain a smart martingale ap-
proximation for the sum

∑
i≥1 �Sti

∫ ti−1

0 Ĉxt(u, Su)du.

PROPOSITION 7.11. If 
 either is a positive constant or satisfies condition (C2), then
|I2,n − U1,m2 | = o(θ−1

n ), where Y(λ, x) = ∫∞
λ

z−3/2 ln(x/K )̃ϕ(z, x)dz and

U1,k = 
−1
k∑

j=m1

σ (ytj−1 )Stj−1 Yj−1 Z1, j �λ j , m1 ≤ k ≤ m2.
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Proof. The proof follows from the substitution �Stj by 
−1σ (ytj−1 )Stj−1�λtj as in
Proposition 7.2.

�
Let us now study the trading volume Jn by following the procedure in the approxima-

tion of Jn . First, by Itô’s lemma,

γ ti − γ ti−1
=
∫ ti

ti−1

Ĉxx(u, Su)dSu + 1
2

∫ ti

ti−1

Ĉxxx(u, Su)σ 2(yu)S2
u du,

where the time correction, which involves the term q j−1 in the formula of κ j defined by
(7.23), has been removed. We now approximate Jn by

J1,n = 
−1
m2∑

j=m1

B j−1
∣∣Z1, j

∣∣�λ j and B(λ, x, y) = σ (y) xλ−1/2ϕ̃(λ, x).

As E|Z| = √2/π , for Z ∼ N (0, 1), the Dood’ decomposition of J1,n is given by J2,n +
Ū2,m2 , where J2,n = 
−1

√
2/π

∑m2
j=m1

B j−1�λ j and Ū2,m2 = 
−1∑m2
j=m1

B j−1 Z4, j�λ j .

Now, putting B
∗
j−1 = B(λ j−1, Štj−1 ) − B(λ j−1, Š1), we write J2,n = J4,n + J3,n , where

J4,n = 
−1
√

2/π
m2∑

j=m1

B j−1�λ j , J3,n = 
−1
√

2/π
m2∑

j=m1

B
∗
j−1�λ j .

Observe that J4,n converges a.s. to η min(S1, K) by Lemma A.2 and (2.12). We
now find the suitable martingale approximation for J3,n . By Itô’s formula, B

∗
j−1

can be replaced by
∑2

i=1

∫ 1
t Qi (λ j−1, Šu)dW (i )

u , where Q1 = σ (y)x∂x B + rF2(t(λ), y)∂y B
and Q2 = √

1 − r2 F2(t(λ), y)∂y B. Direct calculations show that ∂x B = σ (y)(2−1λ−1/2 −
λ−3/2 ln(X/K))̃ϕ(λ, x) and ∂y B = σ ′(y)λ−1/2x̃ϕ(λ, x). Now, Proposition 7.2 can be ap-
plied to approximate J3,n by the martingale U3,m2 , defined by

U3,k = 
−1
k∑

j=m1

(A1, j−1 Z1, j + A2, j−1 Z2, j )�λ j , m1 ≤ k ≤ m2,

for explicit functions Ai , i = 1, 2. The final asymptotic form of Jn is given below.

PROPOSITION 7.10. If 
 is a positive constant independent of n then,

P − lim
n→∞ θn|Jn − η min(S1, K) − (U2,m2 + U3,m2 )| = 0.

Hence, the martingale part of the hedging error for Lépinette’s strategy is determined by
Mm2 = U1,m2 + U1,m2 − κ∗(U2,m2 + U3,m2 ). The latter martingale sum can be represented
in the form

Mk = 
−1
k∑

j=m1

(A1, j−1 Z1, j + A4, j Z4, j−1 + A2, j−1 Z2, j )�λ j , m1 ≤ k ≤ m2,

for explicit functions Ai holding the assumption of Proposition 7.5. Then, (nβMm2 )n≥1

converges in law to a mixed Gaussian variable, which completes the proof. �
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8. CONCLUSION

We studied the problem of approximate option replication in SV settings using a new
specification for adjusted volatility. Although our model employed a simpler adjusted
volatility than in the previous literature, we obtain the same asymptotic results for
both Leland’ and Lépinette’s strategies in general SV markets. A possible connection to
high-frequency markets with proportional transaction costs was also discussed. As an
application, we showed that the option price inclusive of transaction costs can be reduced
by adapting the theory of quantile hedging. Note that our approach is still helpful for
more general settings, for example, when the friction rule admits a separate variable
representation (Nguyen 2013). This generalization includes the case where trading costs
are based on the physical number of traded shares. Lastly, in a companion paper (Nguyen
2014), we extended the method to multidimensional frameworks for European options
with general payoffs written on several assets.

APPENDIX A: AUXILIARY LEMMAS

LEMMA A.1. There exist two positive constants C1,C2 such that

C1 n−2β

2

μ+1 ν0(l∗) ≤ inf
m1≤ j≤m2

|�λ j | ≤ sup
m1≤ j≤m2

|�λ j | ≤ C2n−2β

2

μ+1 ν0(l∗),(A.1)

where ν0(x) = x(μ−1)/(μ+1). Moreover, for any m1 ≤ j ≤ m2,

�λ j = n−2β

2

μ+1 ν0(λ j−1)(1 + o(1)) and �λ j (�tj )−1/2 = 
(1 + o(1)).(A.2)

Proof. It follows directly from the relation (7.3). �

A technical condition (H0): A : R+ → R is a continuously differentiable function having
absolutely integrable derivative A′ and

lim
n→∞ θn

(∫ l∗

0
|A(λ)|dλ +

∫ +∞

l∗
|A(λ)|dλ

)
= 0, where θn = nβ
2β.

The following result is straightforward to check.

LEMMA A.2. Let 
 either be a positive constant or satisfy condition (C2). Then, for any
function A satisfying condition (H0),

lim
n→∞ θn

∣∣∣∣∣∣
m2∑

j=m1

1{λ j−1≥a} A(λ j−1)�λ j −
∫ ∞

a
A(λ)dλ

∣∣∣∣∣∣ = 0.(A.3)

In particular, limn→∞ θn|
∑m2

j=m1
A(λ j−1)�λ j − ∫∞

0 A(λ)dλ| = 0.

LEMMA A.3. For any K > 0, limε→0 lim supv→1 P(infv≤u≤1 | ln(Su/K)| ≤ ε) = 0.

Proof. It follows from the fact that conditioning on the σ -field generated by the
volatility process, the log-price process ln St has Gaussian distribution. �
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LEMMA A.4. Suppose that A0 and its derivatives ∂x A0, ∂y A0 verify condition (H). Set
A(λ, x, y) = A0(λ, x, y)̃ϕ(λ, x), Ā(λ, x, y) = ∫∞

λ
A(z, x, y)dz and define

rn = sup
(z,r ,d)∈[l∗,l∗]×B

(|∂λ Ā(z, r , d)| + |∂x Ā(z, r , d)| + |∂y A(z, r , d)|) ,
where B = [Smin, Smax] × [ymin, ymax] with Smin = inf t∗≤u≤t∗ Su, Smax = supt∗≤u≤t∗ Su and
ymin = inf t∗≤u≤t∗ yu, ymax = supt∗≤u≤t∗ yu . Then, limb→∞ limn→∞P(rn > b) = 0.

Proof. Let ε > 0. On the set �1,ε = {inf t∗≤u≤1 | ln(Su/K)| ≥ ε},

sup
Smin≤r≤Smax

ϕ̃(q, r ) ≤ (2π )−1/2
√

Kr−1 exp{−ε2/(2q) − q/8}.

By condition (H), there exists γ > 0 such that

|Āx(z, r , d)| ≤ C|Ũ(r , d)|
∫ ∞

z
(q−1/2 + qγ )e−ε2/(2q)−q/8dq ≤ CεŨ(r , d),

where Ũ is some function verifying sup0≤t≤1 E Ũ(Š∗
t ) < ∞. For any η > 0 and N > 0,

let

�2,η = { sup
(r ,d)∈B

|Ũ(r , d) − Ũ(Š1)| < η}
⋂

{|Ũ(Š1)| < N}.

It is clear that |Ũ(r , d)| < N + η on the set �2,η. Similarly, taking into account
∂λ Ā(z, r , d) = −A(z, r , d), ∂y Ā(z, r , d) = ∫∞

λ
∂y A0(z, x, y)̃ϕ(z, x)dz, we deduce that both

|∂λ Ā(z, r , d)| and |∂y Ā(z, r , d)| are bounded on �2,η by a constant CN,η independent of
b. Now, for b > N + η + 2CN,η, P(rn > b) is bounded by

P(�c
1,ε) + P( sup

(r ,d)∈B
|Ũ(r , d) − Ũ(Š∗

1)| ≥ η) + P(|Ũ(Š∗
1)| > N) + P(τ ∗ < 1).

By Lemma A.3, limε→0 limn→∞ P(�c
1,ε) → 0. Due to the continuity of the functions St and

yt, one gets limn→∞ P(sup(r ,d)∈B |Ũ(r , d) − Ũ(Š∗
1)| ≥ η) = 0. Moreover, the integrability

of Ũ(Š∗
1) implies that P(|Ũ(Š∗

1)| > N) converges to zero as N ⇒∞. By (7.12), P(τ ∗ < 1)
converges to 0 as L → ∞, which completes the proof. �

LEMMA A.5. Let A(λ, x, y) = ∫∞
λ

A0(z, x, y)̃ϕ(z, x)dz, Ã = A
2
, where A0 is a function

having property (H). Then, for any γ > 0,

P − lim
n→∞

∣∣∣∣∣∣
m2∑

j=m1

λ
γ

j−1 Ã(λ j−1, Štj−1 )�λ j −
∫ ∞

0
λγ Ã(λ, Š1)dλ

∣∣∣∣∣∣ = 0,

where Št = (St, yt). The same property still holds if A(λ, x, y) = A0(λ, x, y)̃ϕ(x, y) or is a
product of these above kinds.

Proof. We prove for the first case A(λ, x, y) = ∫∞
λ

A0(z, x, y)̃ϕ(z, x)dz, as the same
argument can be made for the other cases. First, we split the expression under the abso-
lute sign as

∑m2
j=m1

λ
γ

j−1 Ã(λ j−1, Š1)�λ j +∑m2
j=m1

� j ,n�λ j ,where� j ,n = Â(λ j−1, Štj−1 ) −
Â(λ j−1, Š1) and Â(λ, x, y) = λγ Ã(λ, x, y). It is clear that for any (x, y), the function
Â(·, x, y) satisfies condition (H0). Hence,

∑m2
j=m1

Â(λ j−1, Š1)�λ j converges a.s. to zero
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by Lemma A.2. It remains to show that P(|�n| > ε) → 0 for any given ε > 0, but it can
be done by the same way as in Lemma A.3. �

APPENDIX B: PROOF OF PROPOSITION 7.8

The singularity of Ĉ at the maturity T = 1 requires a separate treatment. Let
εn = n−2β
−4βl∗. We then represent I2,n = ∫ 1−εn

0 �n(t)dW (1)
t + ∫ 1

1−εn
�n(t)dW (1)

t , where
�n(t) = (γ n

t − Ĉx(t, St))σ (yt)St. Taking into account that |γ n
t − Ĉx(t, St)| ≤ 1, we obtain

limn→∞ θ2
n E

∫ 1
1−εn

� 2
n (t)dt = 0 . Now put t̂ j = min(tj , 1 − εn). It then remains to prove

that
∑n

j=1

∫ t̂ j

t̂ j−1
E(γ n

t − Ĉx(t, St))2dt = o(θ−2
n ).

Let us introduce the discrete sums w1(t) =∑n
j=1 λt

−1(xt − x̂t j−1 )2ξ j (t), w2(t) =∑n
j=1 x2

t (λ−1/2
t − λ

−1/2
t̂ j−1

)2 ξ j (t), and w3(t) =∑n
j=1(λ1/2

t − λ
1/2
t̂ j−1

)2 ξ j (t), where ξ j (t) =
1(̂t j−1 ,̂t j ](t) and xt = ln(St/K). Clearly, |γ n

t − Ĉx(t, St)|2 ≤ w1(t) + w2(t) + w3(t). By tak-
ing into account that

sup
n, 1≤ j≤n

n sup
0≤t≤1

E(xt − x̂t j−1 )2 ξ j (t) < ∞ and sup
0≤t≤1

E x2
t < ∞,

we have θ2
n E
∫ 1−εn

0 w1(t)dt ≤ Cn2β−3/2
4β−1, which converges to zero by (C2). Now, the
particular choice of ε ensures that θ2

n E
∫ 1−εn

0 w2(t)dt ≤ Cθ2
n n−2(εn)−(4β+1)/4βλ−1

0 , which
tends to zero. The convergence for w3(t) can be shown in the same way. �

APPENDIX C: MOMENTS OF ORSTEIN–UHLENBECK’S PROCESSES

LEMMA C.1. Suppose that σ (z) ≤ γ (1 + |z|) for all z ∈ R, for some constant γ > 0.
Let yt be an Orstein–Uhlenbeck process defined by dyt = (a − byt)dt + dZt with some
constants a and b > 0. Put Xα = exp{2αγ 2

∫ 1
0 y2

s ds} and α∗ = b2(2γ 2(2b + a2))
−1. Then,

EXα < ∞ for any 0 < α < α∗.

Proof. Remark that (a − by)y ≤ a2/(2b) − by2/2. Then, by adapting proposition 1.1.5
in Kabanov and Pergamenshchikov (2003, p. 24), we can show that E |yt|2m ≤ m!(2/b +
a2/b2)m for any integer m ≥ 1. It follows that for any 0 < α < α∗,

EXα ≤
∑
m=0

(α2γ 2)m(m!)−1E |yt|2m ≤
∑
m=0

(
2/b + a2/b2)m (α2γ 2)m < ∞.

If yt is mean-reverting, then b takes very large values. Hence, it is possible to choose
α > 3/2 + √

2 as discussed in Remark 4.4. �
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