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ON THE REDUCTIONS AND CLASSICAL SOLUTIONS OF
THE SCHLESINGER EQUATIONS.

B. DUBROVIN AND M. MAZZOCCO

To the memory of our friend Andrei Bolibruch

Abstract. The Schlesinger equations S(n,m) describe monodromy pre-
serving deformations of order m Fuchsian systems with n+1 poles. They

can be considered as a family of commuting time-dependent Hamilton-
ian systems on the direct product of n copies of m×m matrix algebras

equipped with the standard linear Poisson bracket. In this paper we ad-

dress the problem of reduction of particular solutions of “more compli-
cated” Schlesinger equations S(n,m) to “simpler” S(n′,m′) having n′ < n

or m′ < m.
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2 B. DUBROVIN AND M. MAZZOCCO

1. Introduction.

The Schlesinger equations S(n,m) [?] is the following system of nonlinear
differential equations

∂

∂uj
Ai =

[Ai, Aj ]
ui − uj

, i 6= j,

∂

∂ui
Ai = −

∑
j 6=i

[Ai, Aj ]
ui − uj

,(1.1)

for m × m matrix valued functions A1 = A1(u), . . . , An = An(u), where the
independent variables u = (u1, . . . , un) must be pairwise distinct. The first
non-trivial case S(3,2) of the Schlesinger equations corresponds to the famous
sixth Painlevé equation [?, ?, ?], the most general of all Painlevé equations. In
the case of any number n > 3 of 2× 2 matrices Aj , the Schlesinger equations
reduce to the Garnier systems Gn (see [?, ?, ?]).

The Schlesinger equations S(n,m) appeared in the theory of isomonodromic
deformations of Fuchsian systems. Namely, the monodromy matrices of the
Fuchsian system

(1.2)
dΦ
dz

=
n∑

k=1

Ak(u)
z − uk

Φ, z ∈ C\{u1, . . . , un}

do not depend on u = (u1, . . . , un) if the matrices Ai(u) satisfy (1.1). Con-
versely, under certain assumptions on the matrices A1, . . . , An and for the
matrix

(1.3) A∞ := − (A1 + · · ·+ An) ,

all isomonodromic deformations of the Fuchsian system are given by solutions
to the Schlesinger equations (see, e.g., [?])1.

The solutions to the Schlesinger equations can be parameterized by the
monodromy data of the Fuchsian system (1.2) (see precise definition below in
Section 2). To reconstruct the solution starting from given monodromy data
one is to solve the classical Riemann - Hilbert problem of reconstruction of
the Fuchsian system from its monodromy data. The main outcome of this
approach says that the solutions Ai(u) can be continued analytically to mero-
morphic functions on the universal covering of

{(u1, . . . , un) ∈ Cn |ui 6= uj for i 6= j}
[?, ?]. This is a generalization of the celebrated Painlevé property of absence
of movable critical singularities (see details in [?, ?]). In certain cases the
technique based on the theory of Riemann–Hilbert problem gives a possibility

1Bolibruch constructed non-Schlesinger isomonodromic deformations in [?]. These can
occur when the matrices Ai are resonant, i.e. admit pairs of eigenvalues with positive integer

differences. To avoid such non-Schlesinger isomonodromic deformations, we need to extend
the set of monodromy data (see Section 2 below).
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to compute the asymptotic behavior of the solutions to the Schlesinger equa-
tions near the critical locus ui = uj for some i 6= j, although, in general, the
problem of determining the asymptotic behaviuor near the critical points is
still open [?, ?, ?, ?].

It is the Painlevé property that was used by Painlevé and Gambier as the
basis for their classification scheme of nonlinear differential equations. Of the
list of some 50 second order nonlinear differential equations possessing Painlevé
property the six (nowadays known as Painlevé equations) are selected due to
the following crucial property: the general solutions to these six equations
cannot be expressed in terms of classical functions, i.e., elementary functions,
elliptic and other classical transcendental functions (see [?] for a modern ap-
proach to this theory based on a nonlinear version of the differential Galois
theory). In particular, according to these results the general solution to the
Schlesinger system S(3,2) corresponding to Painlevé-VI equation cannot be ex-
pressed in terms of classical functions.

A closely related question is the problem of construction and classification
of classical solutions to Painlevé equations and their generalizations. This
problem remains open even for the case of Painlevé-VI although there are
interesting results based on the theory of symmetries of Painlevé equations
[?, ?, ?] and on the geometric approach to studying the space of monodromy
data [?, ?, ?, ?].

The above methods do not give any clue to solution of the following general
problems: are solutions of S(n+1,m) or of S(n,m+1) more complicated than
those of S(n,m)? Which solutions to S(n+1,m) or S(n,m+1) can be expressed via
solutions to S(n,m)? Furthermore, which of them can ultimately be expressed
via classical functions?

In this paper we aim to suggest a general approach to the theory of re-
ductions and classical solutions of the general Schlesinger equations S(n,m) for
all n, m, based on the Riemann–Hilbert problem and on the group-theoretic
properties of the monodromy group of the linear system (1.2). Our approach
consists in determining the monodromy data of the Fuchsian system (1.2)
that guarantee to have a reduction to S(n−1,m) or S(n,m−1) and eventually a
classical solution.

We need a few definitions. Let us fix a solution to the Schlesinger equa-
tions S(n,m). Applying the algebraic operations and differentiations to the
matrix entries of this solution we obtain a field S(n,m) equipped with n pair-
wise commuting differentiations ∂/∂u1, . . . , ∂/∂un, to be short a differential
field. Define the rational closure K of a differential field S represented by
functions of n variables by taking rational functions with coefficients in S

K := S(u1, . . . , un).
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Taking the rational closure of the differential field S(n,m), we obtain the dif-
ferential field K(n,m). (Needless to say that the field K(n,m) depends on the
choice of the solution to the Schlesinger equations S(n,m).)

We now construct new differential fields obtained fromK(n1,m1), . . . , K(nk,mk)

by applying one or more of the following admissible elementary operations.
1. Tensor product. Given two differential fields K1 and K2 represented

by functions of n1 and n2 variables u1, . . . , un1 and v1, . . . , vn2 respectively,
produce new differential field K1⊗K2 taking the rational closure of the minimal
differential field of functions of n1 + n2 independent variables u1, . . . , un1 , v1,
. . . , vn2 containing both K1 and K2. A particular case of this operation is

2. Addition of an independent variable. Given a differential field K repre-
sented by functions of n variables u1, . . . , un define an extension K̃ ⊃ K by
taking rational functions of a new independent variable un+1 with coefficients
in K ,

K̃ = K ⊗ C(un+1).

3. Given two differential fields K1, K2 represented by functions of the
same number of variables n, define the composite K1K2 taking the minimal
differential field of functions of n variables containing both K1 and K2 and
applying the rational closure procedure.

4. A differential field extension K′ ⊃ K is said to be of the Picard–Vessiot
type if it is the minimal rationally closed differential field of functions of n
variables containing solutions of a Pfaffian linear system with coefficients in K
[?, ?].

Recall that a Pfaffian linear system of the order k with coefficients in a
differential field K represented by functions of n variables reads

∂Y

∂ui
= BiY, i = 1, . . . , n, Y = (y1, . . . , yk)T

where the n matrices

Bi ∈ Mat(k;K) for i = 1, . . . , n

must satisfy
∂Bi

∂uj
− ∂Bj

∂ui
+ [Bi, Bj ] = 0, for all i 6= j.

The linear space of solutions of the Pfaffian system is finite dimensional. The
differential field K′ is the minimal extension of K containing all components
y1, . . . , yk of any of these solutions.

We will also denote K(N) the differential field extension of K obtained by
N Picard–Vessiot type extensions of K

K ⊂ K′ ⊂ K′′ ⊂ · · · ⊂ K(N).
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Using the above admissible extensions we can describe in what circum-
stances a particular solution to the Schlesinger equations S(n,m) can be ex-
pressed via solutions to S(n′,m′) with smaller n′ or m′. Similar results were
obtained in [?] for the special case of m = 2.

Theorem 1.1. Consider a solution to S(n,m) such that the eigenvalues of the
matrix A∞ are pairwise distinct and the monodromy group of the associated
Fuchsian system (1.2) admits a k-dimensional invariant subspace, k > 0. Then
this solution belongs to a Picard–Vessiot type extension K(N) for some N of
the composite

K = K(n,k)K(n,m−k)

where K(n,k) and K(n,m−k) are two differential fields associated with certain
two solutions of the systems S(n,k) and S(n,m−k) respectively.

In particular,

Corollary 1.2. Given a solution to S(n,m) such that the monodromy group of
the associated Fuchsian system (1.2) is upper-triangular and the eigenvalues
of A∞ are pairwise distinct, it belongs to a Picard–Vessiot type extension K(N)

0

for some N of
K0 = C(u1, . . . , un).

The proof of this Theorem is based on the following two lemmata.

Lemma 1.3. Given a solution

(1.4) A(z;u) =
n∑

i=1

Ai(u)
z − ui

to the Schlesinger equations S(n,m) with diagonalizable matrix A∞ such that the
associated monodromy representation has a k-dimensional invariant subspace,
denote K(n,m) the corresponding differential field. Then there exists a matrix

G(z;u) ∈ K̄(n,m)[z], detG(z) ≡ 1

such that all matrices Bi(u), i = 1, . . . , n of the gauge equivalent Fuchsian
system with

(1.5) B(z;u) = G−1(z;u)A(z;u)G(z;u) + G−1(z;u)
dG(z;u)

dz
=

n∑
i=1

Bi(u)
z − ui

have a u-independent k-dimensional common invariant subspace. Here K̄(n,m)

is a Picard - Vessiot type extension of the field K(n,m). Moreover, the matrices
B1(u), . . . , Bn(u) satisfy Schlesinger equations.

This lemma, apart from polynomiality of the gauge transformation in z, is
the main result of the papers [?, ?] by S.Malek2. We give here a new short

2Actually, there is a stronger claim in the main result of [?], namely, it is said that the
coefficients of the reducing gauge transformation are rational functions in u1, . . . , un and

entries of A1(u), . . . , An(u). We were unable to reproduce this result.
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proof of this result (for the sake of technical simplicity we add the assumption
of diagonalizability of the matrix A∞) by presenting a reduction algorithm
consisting of a number of elementary and explicitly written transformations.

It is a one-line calculation that shows that the S(n,m) Schlesinger equations
for the matrices B1(u), . . . , Bn(u) of the form

Bi(u) =
(

B′
i(u) Ci(u)
0 B′′

i (u)

)
,

where B′
i(u) and B′′

i (u) are respectively k×k and (m−k)× (m−k) matrices,
reduces to the S(n,k) and S(n,m−k) Schlesinger systems for the matrices B′

i(u)
and B′′

i (u) and to the linear Pfaffian equations

∂jCi =
1

ui − uj

(
B′

iCj −B′
jCi + CiB

′′
j − CjB

′′
i

)
, j 6= i

∂iCi = −
∑
j 6=i

1
ui − uj

(
B′

iCj −B′
jCi + CiB

′′
j − CjB

′′
i

)
.

Therefore the Schlesinger deformation of the reduced system (1.5) belongs to
a Picard - Vessiot type extension of the composite Kn,kKn,m−k.

To complete the proof of Theorem 1.1 we need to invert the above gauge
transformation, i.e., to express the coefficients of the original Fuchsian system
(1.4) via the solution of the reduced system (1.5).

Lemma 1.4. (i) For a Fuchsian system (1.4) satisfying the assumptions of
the previous lemma, the monodromy data, in the sense of Definition 2.5 here
below,

Λ(1)(A), R(1)(A), . . . ,Λ(∞)(A), R(∞)(A), C1(A), . . . , Cn(A)

of the system (1.4) and

Λ(1)(B), R(1)(B), . . . ,Λ(∞)(B), R(∞)(B), C1(B), . . . , Cn(B)

of (1.5) are related by

Λ(i)(B) = P−1Λ(i)(A)P, i = 1, . . . , n

R(i)(B) = P−1R(i)(A)P, i = 1, . . . ,∞,(1.6)

C(i)(B) = P−1C(i)(A)P, i = 1, . . . , n

Λ(∞)(B) = P−1Λ(∞)(A)P + diag (N1, . . . , Nm), Ni ∈ Z.

Here P ∈ Sm is a permutation matrix.
(ii) Denote KA

n,m and KB
n,m the differential fields associated with the Schlesinger

deformations of two systems (1.4) and (1.5) respectively. If the monodromy
data of the systems are related as in (1.6) then there exists a matrix

G̃(z;u) ∈ K̄B
n,m[z], det G̃(z;u) ≡ 1
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such that

A(z) ≡ G̃−1(z;u)B(z;u)G̃(z;u) + G̃−1(z;u)
dG̃(z;u)

dz
.

Here, like in Lemma 1.3, K̄B
n,m is a suitable Picard - Vessiot type extension of

the field KB
n,m.

We obtain therefore two inclusions

(1.7) KB
n,m ⊂ K̄A

n,m, KA
n,m ⊂ K̄B

n,m.

The Theorem 1.1 easily follows from the above statements.

Let us proceed now to the second mechanism of reducing the Schlesinger
equations. Let us assume that l monodromy matrices Mi1 , . . . , Mil

of the
Fuchsian system of the form (1.2), are scalar matrices (i.e., they are propor-
tional to ). In that case we will call the solution A1(u), . . . An(u) is l-smaller.
We call l-erased the Fuchsian system Sn−l,m of the same size with the poles
z = ui1 , . . . , z = uil

erased.

Theorem 1.5. Let A1, . . . , An be a l–smaller solution of the Schlesinger equa-
tions. Then A1(u), . . . , An(u) belong to the differential field obtained by ad-
missible extensions from K(n−l,m), the rational closure of the differential field
Sn−l,m associated with a solution to the l-erased Fuchsian system S(n−l,m). In
particular, if l = n− 2 then A1, . . . , An belong to the differential field obtained
by admissible extensions from C(u1, . . . , un).

The proof of this Theorem consists first in observing that, due to the fact
that all matrices A1, . . . , An can be assumed to be traceless, any scalar matrix
Mk must have the form

Mk = e
2πip

m , p ∈ Z.

As a first step we assume Mk, say for k = n, to be the identity and we
construct a gauge transformation in a suitable Picard - Vessiot type extension
of the field KA

n,m defined by the l–solution A1, . . . , An, which maps An to zero
without changing the nature of the other singular points u1, . . . , un−1, nor
introducing new ones. In this way we obtain a new solution B1, . . . , Bn−1

of the Schlesinger equations Sn−1,m. We then prove that the original solution
A1, . . . , An can be constructed in terms of B1, . . . , Bn−1 by means of admissible
operations.

When Mk = e
2πip

m is not the identity, we need to map A1, . . . , An bi–
rationally to a new solution Ã1, . . . , Ãn of the Schlesinger equations with M̃k =
. To this end we apply the birational canonical transformations of Schlesinger

equations found in [?]3.

3An alternative way, as it was proposed by the referee, would be to replace our canonical

transformations by a combination of Schlesinger transformations of [?] with scalar shifts
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To present here this class of transformations let us briefly remind the canon-
ical Hamiltonian formulation of Schlesinger equations S(n,m) of [?].

Recall [?, ?] that Schlesinger equations can be written as Hamiltonian sys-
tems on the Lie algebra

g := ⊕n
i=1gl(m) 3 (A1, . . . , An)

with respect to the standard linear Lie - Poisson bracket on g with some
quadratic time-dependent Hamiltonians of the form

(1.8) Hk :=
∑
l 6=k

tr (AkAl)
uk − ul

.

Because of isomonodromicity they can be restricted onto the symplectic leaves

O1 × · · · × On ∈ g

obtained by fixation of the conjugacy classes O1,. . . , On of the matrices A1,
. . . , An. The matrix A∞ given in (1.3) is a common integral of the Schlesinger
equations. Applying the procedure of symplectic reduction [?] we obtain the
reduced symplectic space

{A1 ∈ O1, . . . , An ∈ On, A∞ = given diagonal matrix}
modulo simultaneous diagonal conjugations.(1.9)

The dimension of this reduced symplectic leaf in the generic situation is equal
to 2g where

g =
m(m− 1)(n− 1)

2
− (m− 1).

In [?] a new system of the so-called isomonodromic Darboux coordinates q1,
. . . , qg, p1, . . . , pg on generic symplectic manifolds (1.9) was constructed and
the new Hamiltonians were expressed in these coordinates. Let us explain this
construction.

The Fuchsian system (1.2) can be reduced to a scalar differential equation
of the form

(1.10) y(m) =
m−1∑
l=0

dl(z)y(l).

For example, one can eliminate last m−1 components of the vector function Φ
to obtain a m-th order equation for the first component y := Φ1. (Observe that
the reduction procedure depends on the choice of the component of Φ.) The
resulting Fuchsian equation will have regular singularities at the same points
z = u1, . . . , z = un, z = ∞. It will also have other singularities produced
by the reduction procedure. However, they will be apparent singularities, i.e.,
the solutions to (1.10) will be analytic in these points. Generically there will
be exactly g apparent singularities (cf. [?]; a more precise result about the

instead. However, the birationality of the proposed transformation need to be justified in

the resonant case.
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number of apparent singularities working also in the nongeneric situation was
obtained in [?]); they are the first part q1, . . . , qg of the canonical coordinates.
The conjugated momenta are defined by

pi = Resz=qi

(
dm−2(z) +

1
2
d2

m−1(z)
)

, i = 1, . . . , g.

Theorem 1.6. [?] Let the eigenvalues of the matrices A1, . . . , An, A∞ be
pairwise distinct. Then the map

(1.11)

 Fuchsian systems with given poles,
given eigenvalues of A1, . . . , An, A∞

modulo diagonal conjugations

→ (q1, . . . , qg, p1, . . . , pg)

gives a system of rational Darboux coordinates on the generic reduced sym-
plectic leaf (1.9). The Schlesinger equations S(n,m) in these coordinates are
written in the canonical Hamiltonian form

∂qi

∂uk
=

∂Hk

∂pi

∂pi

∂uk
= −∂Hk

∂qi

with the Hamiltonians

Hk = Hk(q, p;u) = −Resz=uk

(
dm−2(z) +

1
2
d2

m−1(z)
)

, k = 1, . . . , n.

Here rational Darboux coordinates means that the elementary symmetric
functions σ1(q), . . . , σg(q) and σ1(p), . . . , σg(p) are rational functions of the
coefficients of the system and of the poles u1, . . . , un. Moreover, there exists
a section of the map (1.11) given by rational functions

(1.12) Ai = Ai(q, p), i = 1, . . . , n,

symmetric in (q1, p1), . . . , (qg, pg) with coefficients depending on u1, . . . , un

and on the eigenvalues if the matrices Ai, i = 1, . . . , n,∞. All other Fuchsian
systems with the same poles u1, . . . , un, the same eigenvalues and the same
(p1, . . . , pg, q1, . . . , qg) are obtained by simultaneous diagonal conjugation

Ai(q, p) 7→ C−1Ai(q, p)C, i = 1, . . . , n, C = diag (c1, . . . , cm).

Theorem 1.7. [?] The Schlesinger equations S(n,m) written in the canonical
form of Theorem 1.3 admit a group of birational canonical transformations
〈S2, . . . , Sm, S∞〉

(1.13) Sk :


q̃i = u1 + uk − qi, i = 1, . . . , g,
p̃i = −pi, i = 1, . . . , g,
ũl = u1 + uk − ul, l = 1, . . . , n,

H̃l = −Hl, l = 1, . . . , n,
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(1.14) S∞ :



q̃i = 1
qi−u1

, i = 1, . . . , g,

p̃i = −piq
2
i − 2m2−1

m qi, i = 1, . . . , g,
ũl = 1

ul−u1
, l = 2, . . . , n,

u1 7→ ∞,
∞ 7→ u1,

H̃1 = H1,

H̃l = −Hl(ul − u1)2 + (ul − u1)(d0
m−1(ul − u1))2−

−(ul − u1)
(m−1)(m2−m−1)

m d0
m−1(ul − u1),

for l = 2, . . . , n

where

d0
m−1(uk) =

g∑
s=1

1
uk − qs

− m (m− 1)
2

∑
l 6=k

1
uk − ul

.

The transformation Sk acts on the monodromy matrices as follows

M̃1 = M−1
1 .....M−1

k−1MkMk−1....M1,

M̃j = Mj−1, j = 2, . . . , k,

M̃i = Mi, i = k + 1, . . . , n.

The transformation S∞ acts on the monodromy matrices as follows

M̃∞ = e−
2πi
m M1, M̃1 = e

2πi
m M∞,

M̃j = M−1
1 MjM1 for j = 2, . . . , n.

To conclude, Theorems 1.1 and 1.2 show that for certain very special mon-
odromy groups the Schlesinger equations S(n,m) reduce to solutions of S(n′,m′)

with n′ < n and/or m′ < m . We do not know any other general mechanism of
reducibility of Schlesinger equations. As generically the monodromy group of
the system (1.2) is not reducible nor smaller, we expect that generic solutions
of the Schlesinger equations S(n,m) do not belong to any admissible exten-
sion of composites of the differential fields of the form K(n′,m′) with n′ < n
and/or m′ < m. The proof of this fact, that is the proof of irreducibility of the
Schlesinger equations, is still a rather intriguing open problem.

2. Schlesinger equations as monodromy preserving deformations
of Fuchsian systems.

In this section we establish our notations, remind a few basic definitions
and prove some technical lemmata that will be useful throughout this paper.

The Schlesinger equations S(n,m) describe monodromy preserving deforma-
tions of Fuchsian systems (1.2) with n + 1 regular singularities at u1, . . . , un,
un+1 = ∞:

(2.1)
d
dz

Φ =
n∑

k=1

Ak

z − uk
Φ, z ∈ C\{u1, . . . , un}
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Ak being m × m matrices independent of z, and uk 6= ul for k 6= l, k, l =
1, . . . , n + 1. Let us explain the precise meaning of this claim.

2.1. Levelt basis near a logarithmic singularity and local monodromy
data. A system

(2.2)
dΦ
dz

=
A(z)
z − z0

Φ

is said to have a logarithmic, or Fuchsian singularity at z = z0 if the m ×m
matrix valued function A(z) is analytic in some neighborhood of z = z0. By
definition the local monodromy data of the system is the class of equivalence
of such systems w.r.t. local gauge transformations

(2.3) A(z) 7→ G−1(z)A(z) G(z) + (z − z0)G−1(z)∂zG(z)

analytic near z = z0 satisfying

detG(z0) 6= 0.

The local monodromy can be obtained by choosing a suitable fundamental
matrix solution of the system (2.2). The most general construction of such
a fundamental matrix was given by Levelt [?]. We will briefly recall this
construction in the form suggested in [?].

Without loss of generality one can assume that z0 = 0. Expanding the
system near z = 0 one obtains

(2.4)
dΦ
dz

=
(

A0

z
+ A1 + z A2 + . . .

)
Φ.

Let us now describe the structure of local monodromy data.
Two linear operators Λ, R acting in the complex m-dimensional space V

Λ, R : V → V

are said to form an admissible pair if the following conditions are fulfilled.
1. The operator Λ is semisimple and the operator R is nilpotent.
2. R commutes with e2πiΛ,

(2.5) e2πiΛR = R e2πiΛ.

Observe that, due to the last condition the operator R satisfies

(2.6) R(Vλ) ⊂ ⊕k∈ZVλ+k for any λ ∈ Spec Λ,

where Vλ ⊂ V is the subspace of all eigenvectors of Λ with the eigenvalue λ.
The last condition says that
3. The sum in the r.h.s. of (2.6) contains only non-negative values of k.

A decomposition

(2.7) R = R0 + R1 + R2 + . . .

is defined where

(2.8) Rk(Vλ) ⊂ Vλ+k for any λ ∈ Spec Λ.
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Clearly this decomposition contains only finite number of terms. Observe the
useful identity

(2.9) zΛR z−Λ = R0 + z R1 + z2R2 + . . . .

Theorem 2.1. For a system (2.4) with a logarithmic singularity at z = 0
there exists a fundamental matrix solution of the form

(2.10) Φ(z) = Ψ(z)zΛzR

where Ψ(z) is a matrix valued function analytic near z = 0 satisfying

det Ψ(0) 6= 0

and Λ, R is an admissible pair.

The formula (2.10) makes sense after fixing a branch of logarithm log z near
z = 0. Note that zR is a polynomial in log z due to nilpotency of R.

The proof can be found in [?] (cf. [?]). Clearly Λ is the semisimple part of
the matrix A0; R0 coincides with its nilpotent part. The remaining terms of
the expansion appear only in the resonant case, i.e., if the difference between
some eigenvalues of Λ is a positive integer. In the important particular case
of a diagonalizable matrix A0,

T−1A0T = Λ = diag (λ1, . . . , λm)

with some nondegenerate matrix T , the matrix function Ψ(z) in the funda-
mental matrix solution (2.10) can be obtained in the form

Ψ(z) = T
(

+ z Ψ1 + z2Ψ2 + . . .
)
.

The matrix coefficients Ψ1, Ψ2, . . . of the expansion as well as the components
R1, R2, . . . of the matrix R (see (2.7)) can be found recursively from the
equations

[Λ,Ψk]− k Ψk = −Bk + Rk +
k−1∑
i=1

Ψk−iRi −BiΨk−i, k ≥ 1.

Here
Bk := T−1AkT, k ≥ 1.

If kmax is the maximal integer among the differences λi − λj then

Rk = 0 for k > kmax.

Observe that vanishing of the logarithmic terms in the fundamental matrix
solution (2.10) is a constraint imposed only on the first kmax coefficients A1,
. . . , Akmax of the expansion (2.4).

Example 2.2. For the Fuchsian system (1.2) having diagonal the matrix

A∞ = −(A1 + · · ·+ An) = diag (λ1, . . . , λm)
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the fundamental matrix of Theorem 2.1 has the form

Φ =
(

1 +
Ψ1

z
+ O

(
1
z2

))
z−Λz−R,

where
Λ = A∞, R = R1 + R2 + . . . ,

(R1)i j =
{

(B1)i j , λi = λj + 1
0, otherwise

B1 = −
∑

k

Akuk

(Ψ1)i j =


− (B1)i j

λi−λj−1 , λi 6= λj + 1

arbitrary, otherwise

(2.11)

(R2)i j =
{

(B2 −Ψ1R1 + B1Ψ1)i j , λi = λj + 2
0, otherwise

B2 = −
∑

k

Aku2
k

(Ψ2)i j =


(−B2+Ψ1R1−B1Ψ1)i j

λi−λj−2 , λi 6= λj + 2

arbitrary, otherwise

etc.

It is not difficult to describe the ambiguity in the choice of the admissible
pair of matrices Λ, R describing the local monodromy data of the system
(2.4). Namely, the diagonal matrix Λ is defined up to permutations of diagonal
entries. Assuming the order fixed, the ambiguity in the choice of R can be
described as follows [?]. Denote C0(Λ) ⊂ GL(V ) the subgroup consisting of
invertible linear operators G : V → V satisfying

(2.12) zΛG z−Λ = G0 + z G1 + z2G2 + . . . .

The definition of the subgroup can be reformulated [?] in terms of invariance
of certain flag in V naturally associated with the semisimple operator Λ. The
matrix R̃ obtained from R by the conjugation of the form

(2.13) R̃ = G−1R G

will be called equivalent to R. Multiplying (2.10) on the right by G one obtains
another fundamental matrix solution to the same system of the same structure

Φ̃(z) := Ψ(z)zΛzRG = Ψ̃(z)zΛzR̃
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i.e., Ψ̃(z) is analytic at z = 0 with det Ψ̃(0) 6= 0.
The columns of the fundamental matrix (2.10) form a distinguished basis

in the space of solutions to (2.4).

Definition 2.3. The basis given by the columns of the matrix (2.10) is called
Levelt basis in the space of solutions to (2.4). The fundamental matrix (2.10)
is called Levelt fundamental matrix solution.

The monodromy transformation of the Levelt fundamental matrix solution
reads

(2.14) Φ
(
z e2πi

)
= Φ(z)M, M = e2πiΛe2πiR.

To conclude this Section let us denote C(Λ, R) the subgroup of invertible
transformations of the form

(2.15) C(Λ, R) = {G ∈ GL(V ) | zΛG z−Λ =
∑
k∈Z

Gkzk and [G, R] = 0}.

The subgroups C(Λ, R) and C(Λ, R̃) associated with equivalent matrices R

and R̃ are conjugated. It is easy to see that this subgroup coincides with the
centralizer of the monodromy matrix (2.14)

(2.16) G ∈ C(Λ, R) iff G e2πiΛe2πiR = e2πiΛe2πiRG, det G 6= 0.

Denote

(2.17) C0(Λ, R) ⊂ C(Λ, R)

the subgroup consisting of matrices G such that the expansion (2.15) contains
only non-negative powers of z. Multiplying the Levelt fundamental matrix
(2.10) by a matrix G ∈ C0(Λ, R) one obtains another Levelt solution to (2.4)

(2.18) Ψ(z)zΛzRG = Ψ̃(z)zΛzR.

In the next Section we will see that the quotient C(Λ, R)/C0(Λ, R) plays an
important role in the theory of monodromy preserving deformations.

2.2. Monodromy data and isomonodromic deformations of a Fuch-
sian system. Denote λ

(k)
j , j = 1, . . . ,m, the eigenvalues of the matrix Ak,

k = 1, . . . , n,∞ where the matrix A∞ is defined as

A∞ := −
n∑

k=1

Ak.

For the sake of technical simplicity let us assume that

(2.19) λ
(k)
i 6= λ

(k)
j for i 6= j, k = 1, . . . , n,∞.

Moreover, it will be assumed that A∞ is a constant diagonal m × m matrix
with eigenvalues λ

(∞)
j , j = 1, . . . ,m.
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Denote Λ(k), R(k) the local monodromy data of the Fuchsian system near
the points z = uk, k = 1, . . . , n, ∞. The matrices Λ(k) are all diagonal

(2.20) Λ(k) = diag (λ(k)
1 , . . . , λ(k)

m ), k = 1, . . . , n,∞.

and, under our assumptions
Λ(∞) = A∞.

Recall that the matrix G ∈ GL(m, C) belongs to the group C0(Λ(∞)) iff

(2.21) z−Λ(∞)
G zΛ(∞)

= G0 +
G1

z
+

G2

z2
+ . . . .

It is easy to see that our assumptions about the eigenvalues of A∞ imply
diagonality of the matrix G0.

Let us also remind that the matrices Λ(k) satisfy

(2.22) Tr Λ(1) + · · ·+ TrΛ(∞) = 0.

Definition 2.4. The numbers λ
(k)
1 , . . . , λ

(k)
m are called the exponents of the

system (1.2) at the singular point uk.

Let us fix a fundamental matrix solutions of the form (2.10) near all singular
points u1, . . . , un, ∞. To this end we are to fix branch cuts on the complex
plane and choose the branches of logarithms log(z − u1), . . . , log(z − un),
log z−1. We will do it in the following way: perform parallel branch cuts πk

between ∞ and each of the uk, k = 1, . . . , n along a given (generic) direction.
After this we can fix Levelt fundamental matrices analytic on

(2.23) z ∈ C \ ∪n
k=1πk,

(2.24)
Φk(z) = Tk ( +O(z − uk)) (z − uk)Λ

(k)
(z − uk)R(k)

, z → uk, k = 1, . . . , n

and

(2.25) Φ(z) ≡ Φ∞(z) =
(

+O(
1
z
)
)

z−A∞z−R(∞)
, as z →∞,

Define the connection matrices by

(2.26) Φ∞(z) = Φk(z)Ck,

where Φ∞(z) is to be analytically continued in a vicinity of the pole uk along
the positive side of the branch cut πk.

The monodromy matrices Mk, k = 1, . . . , n,∞ are defined with respect to
a basis l1, . . . , ln of loops in the fundamental group

π1 (C\{u1, . . . un},∞) .

Choose the basis in the following way. The loop lk arrives from infinity in a
vicinity of uk along one side of the branch cut πk that will be called positive,
then it encircles uk going in anti-clock-wise direction leaving all other poles
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outside and, finally it returns to infinity along the opposite side of the branch
cut πk called negative.

Denote l∗j Φ∞(z) the result of analytic continuation of the fundamental ma-
trix Φ∞(z) along the loop lj . The monodromy matrix Mj is defined by

(2.27) l∗j Φ∞(z) = Φ∞(z)Mj , j = 1, . . . , n.

The monodromy matrices satisfy

(2.28) M∞Mn · · ·M1 = , M∞ = exp (2πiA∞) exp
(
2πiR(∞)

)
if the branch cuts π1, . . . , πn enter the infinite point according to the order
of their labels, i.e., the positive side of πk+1 looks at the negative side of πk,
k = 1, . . . , n− 1.

Clearly one has

(2.29) Mk = C−1
k exp

(
2πiΛ(k)

)
exp

(
2πiR(k)

)
Ck, k = 1, . . . , n.

The collection of the local monodromy data Λ(k), R(k) together with the
central connection matrices Ck will be used in order to uniquely fix the Fuch-
sian system with given poles. They will be defined up to an equivalence that
we now describe. The eigenvalues of the diagonal matrices Λ(k) are defined
up to permutations. Fixing the order of the eigenvalues, we define the class of
equivalence of the nilpotent part R(k) and of the connection matrices Ck by
factoring out the transformations of the form

Rk 7→ G−1
k RkGk, Ck 7→ G−1

k CkG∞, k = 1, . . . , n,

Gk ∈ C0(Λ(k)), G∞ ∈ C0(Λ(∞)).(2.30)

Observe that the monodromy matrices (2.29) will transform by a simultaneous
conjugation

Mk 7→ G−1
∞ MkG∞, k = 1, 2, . . . , n,∞.

Definition 2.5. The class of equivalence (2.30) of the collection

(2.31) Λ(1), R(1), . . . ,Λ(∞), R(∞), C1, . . . , Cn

is called monodromy data of the Fuchsian system with respect to a fixed or-
dering of the eigenvalues of the matrices A1, . . . , An and a given choice of the
branch cuts.

Lemma 2.6. Two Fuchsian systems of the form (1.2) with the same poles
u1, . . . , un,∞ and the same matrix A∞ coincide, modulo diagonal conjugations
if and only if they have the same monodromy data with respect to the same
system of branch cuts π1, . . . , πn.
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Proof. Let

Φ(1)
∞ (z) =

(
+ O(

1
z
)
)

z−Λ(∞)
z−R(∞)

, Φ(2)
∞ (z) =

(
+ O(

1
z
)
)

z−Λ̃(∞)
z−R̃(∞)

be the fundamental matrices of the form (2.25) of the two Fuchsian systems.
Using assumption about A∞ we derive that Λ̃(∞) = Λ(∞). Multiplying Φ(2)

∞ (z)
if necessary on the right by a matrix G ∈ C0(Λ(∞)), we can obtain another
fundamental matrix of the second system with

R̃(∞) = R(∞).

Consider the following matrix:

(2.32) Y (z) := Φ(2)
∞ (z)[Φ(1)

∞ (z)]−1.

Y (z) is an analytic function around infinity:

(2.33) Y (z) = G0 +O
(

1
z

)
, as z →∞

where G0 is a diagonal matrix. Since the monodromy matrices coincide, Y (z)
is a single valued function on the punctured Riemann sphere C\{u1, . . . , un}.
Let us prove that Y (z) is analytic also at the points uk. Indeed, having fixed
the monodromy data, we can choose the fundamental matrices Φ(1)

k (z) and
Φ(2)

k (z) of the form (2.24) with the same connection matrices Ck and the same
matrices Λ(k), R(k). Then near the point uk, Y (z) is analytic:

(2.34) Y (z) = T
(2)
k ( +O(z − uk))

[
T

(1)
k ( +O(z − uk))

]−1

.

This proves that Y (z) is an analytic function on all C and then, by the Liouville
theorem Y (z) = G0, which is constant. So the two Fuchsian systems coincide,
after conjugation by the diagonal matrix G0. �

Remark 2.7. The connection matrices are determined, within their equiva-
lence classes by the monodromy matrices if the quotients C(Λ(k), R(k))/C0(Λ(k), R(k))
are trivial for all k = 1, . . . , n. In particular this is the case when all the char-
acteristic exponents at the poles u1, . . . , un are non-resonant.

From the above Lemma the following result readily follows.

Theorem 2.8. If the matrices Ak(u1, . . . , un) satisfy Schlesinger equations
(1.1) and the matrix

A∞ = −(A1 + · · ·+ An)
is diagonal then all the characteristic exponents do not depend on u1, . . . ,
un. The fundamental matrix Φ∞(z;u) can be chosen in such a way that the
nilpotent matrix R(∞) and also all the monodromy matrices are constant in u1,
. . . , un. The coefficients of expansion of the fundamental matrix in 1/z belong
to a Picard - Vessiot type extension of the field K(n,m) associated with the
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solution to Schlesinger equations. Moreover, the Levelt fundamental matrices
Φk(z;u) can be chosen in such a way that all the nilpotent matrices R(k) and
also all the connection matrices Ck are constant. Viceversa, if the deformation
Ak = Ak(u1, . . . , un) is such that the monodromy data do not depend on u1,
. . . , un then the matrices Ak(u1, . . . , un), k = 1, . . . , n satisfy Schlesinger
equations.

Recall that the u-dependence of the needed fundamental matrix Φ∞(z;u)
is to be determined from the linear equations

(2.35) ∂iΦ∞(z;u) = − Ai

z − ui
Φ∞(z;u), i = 1, . . . , n,

so

∂iΨ1 = −Ai(2.36)
∂iΨ2 = −AiΨ1 − uiAi(2.37)

etc.

Example 2.9. The following example shows that in general the coefficients of
expansion of the fundamental matrix may not be in the field K(n,m). Indeed, let
us consider the following isomonodromic deformation of the Fuchsian system

dΦ
dz

=
[
A1

z
+

A2

z − x
+

A3

z − 1

]
Φ,

A1 =


− (√x+1)2

16
√

x
− 1

2
√

x

(√x+1)4

128
√

x

(√x+1)2

16
√

x



A2 =


− 3

√
x−1

16
√

x
1

2(√x+1) √x

− (√x+1)(3√x−1)2

128
√

x
3
√

x−1
16
√

x



A3 =


1
16 (

√
x− 3) 1

2(√x+1)

− 1
128 (

√
x− 3)2 (

√
x + 1) 1

16 (3−
√

x)

 .

In this case

A∞ =
(

1
2 0
0 − 1

2

)
, R(∞) = R

(∞)
1 =

(
0 − 1

2
0 0

)
.

The fundamental matrix

Φ =
(

+
Ψ1

z
+ O

(
1
z2

))
z−A∞z−R
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satisfying also the equation
∂Φ
∂x

= − A2

z − x
Φ

has

Ψ1 =


1
16 (3x− 2

√
x) − log (

√
x + 1)

1
128

(
9x2

2 + 2x3/2 − 5x + 2
√

x
)

1
16 (2

√
x− 3x)

 .

This matrix does not belong to the field K3,2 isomorphic in this case to the
field of rational functions in

√
x.

3. Reductions of the Schlesinger systems.

3.1. Reducible monodromy groups.

Definition 3.1. Given a Fuchsian system of the form (1.2), we say that its
monodromy group 〈M1, . . . ,Mn〉 is l-reducible, 0 < l < m if the monodromy
matrices admit a common invariant subspace Xl of dimension l in the space
of solutions of the system (1.2).

In particular, if the monodromy group is l-reducible, then there exists a
basis where all monodromy matrices have the form

Mk =
(

δk βk

0 γk

)
, k = 1, . . . , n,∞,

where δk, βk and γk are respectively some l×l, l × (m− l) and (m− l)× (m− l)
matrices.

Given the above definition, we can proceed to the proof of Theorem 1.1.
We begin with the proof of Lemma 1.3. Our proof, valid for the case of

diagonalizable A∞, is based on the fact that the sum of the exponents of
the invariant sub-space Xl must always be a negative integer (see [?] Lemma
5.2.2). We will perform a sequence of gauge transformations which map such
sum to zero. Let λ

(∞)
1 , . . . , λ

(∞)
m be the eigenvalues of A∞ (which is assumed

to be diagonal). By means of a permutation P ∈ Sm, we order the eigenvalues
of A∞ as follows: the first l eigenvalues correspond to the invariant sub-space
Xl and we order them in such a way that <λ1 ≥ <λr, for all r = 2, . . . , l.
Then we order the other eigenvalues in such a way that <λm ≤ <λs for all
s = l + 1, . . . ,m− 1.

Let us fix a fundamental matrix Φ normalized at infinity

Φ∞ =
(

+
Ψ1

z
+

Ψ2

z2
+O

(
1
z3

))
z−A∞z−R(∞)

,

where Ψ1, Ψ2 and R(∞) are given by formulae (2.11) in Example 2.2.
Consider the following gauge transformation Φ(z) = (I(z) + G)Φ̃(z) where

I(z) := Diagonal (z, 0, . . . , 0) ,
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and

Gm1 = Ψ1m1 , G1m = − 1
Gm1

,

if p 6= 1,m, Gpp = 1, G1p = Ψ1mp
G1m, Gp1 = Ψ1p1 ,(3.1)

if p, q 6= 1, p 6= q, Gpq = 0,

G11 = G1mΨ2m1 + Ψ111 , and Gmm = 0.

Let us first observe that the entries of the matrix G belong to an extension of
the differential field K(n,m) obtained by adding solutions of the linear equations
(2.36), (2.37). In order to see that this gauge transformation always works
let us show that Ψ1m1(u) is never identically equal to zero if at least one of
the (m, 1) matrix entries of the matrices A1(u), . . . , An(u) is different from
identical zero. Indeed, this follows from the equations (2.36).

Let us prove that this transformation maps the matrices A1, . . . , An to new
matrices Ã1, . . . , Ãn given by

Ãk := (I(uk) + G)−1Ak(I(uk) + G),

such that

(3.2) Ã∞ = −
n∑

k=1

Ãk = diagonal
(
λ

(∞)
1 + 1, λ

(∞)
2 , . . . , λ

(∞)
m−1, λ

(∞)
m − 1

)
.

In fact (I(z) + G)−1 = J(z) + G−1 where

J(z) := Diagonal (0, . . . , 0, z) ,

therefore

Ãk := G−1AkI(uk) + G−1AkG + J(uk)AkI(uk) + J(uk)AkG.
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Multiplying by G from the left and summing on all k we get that the condition
(3.2) is satisfied if and only if

−g11 (λ(∞)
1 − λ

(∞)
2 )g12 . . .

(λ(∞)
2 − λ

(∞)
1 − 1)g21 0 . . .

. . . 0 . . .

(λ(∞)
m − λ

(∞)
1 − 1)gm1 0 . . .

. . . (λ(∞)
1 − λ

(∞)
m−1)g1 m−1 (λ(∞)

1 − λ
(∞)
m + 1)g1m

. . . . . . 0

. . . . . . 0

. . . . . . 0

 =

=

 ∑
k Ak11uk 0 . . . 0
. . . 0 . . . 0∑

k Akm1uk 0 . . . 0

+

 g1m

∑
k Akm1u

2
k 0 . . . 0

0 0 . . . 0
. . . 0 . . . 0

+

(3.3)

+


g1m

∑
s

∑
k Akmsukgs1 . . . g1m

∑
s

∑
k Akmsukgsm

0 . . . 0
. . . . . . . . .
0 . . . 0

 .

Observe that in the non-resonant case, these formulae are clearly satisfied
thanks to the fact that Ψ1, Ψ2 and R(∞) are given by formulae (2.11) in
Example 2.2. In the resonant case, we only need to prove that when there
is a resonance of type λ

(∞)
m − λ

(∞)
p = 1 or λ

(∞)
p − λ

(∞)
1 = 1 for any p =

1, . . . ,m− 1, then the corresponding coefficients
∑

k Akmp
uk, and

∑
k Akp1uk

are zero. Observe that such entries coincide with the (m, p) and (p, 1) entries
in the matrix R

(∞)
1 defined in Section 2.1 (see the formulae (2.11)). Due to

our ordering of the eigenvalues, if λ
(∞)
m − λ

(∞)
p = 1 then p = 1, . . . , l and if

λ
(∞)
p − λ

(∞)
1 = 1 then p = l + 1, . . . ,m. This means that the corresponding

R
(∞)
1 must lie in the l× (m− l) lower left block, which is 0 by the hypothesis

that the monodromy group is l-reducible.
Finally, if λ

(∞)
m − λ

(∞)
1 = 2, we find that the gauge transformation works

only if (
n∑

l=1

Alm1ul

)(
n∑

l=1

(Al11 −Almm
) ul

)
−

n∑
l=1

Alm1u
2
l −

−
m−1∑
p=2

(
n∑

l=1

Almp
ul

)
Gp1 = 0.

This is precisely the condition
(
R

(∞)
2

)
m1

= 0, as it follows from (2.11).
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Let us prove that this gauge transformation preserves the Schlesinger equa-
tions. Differentiating Ãk w.r.t. uj , with j 6= k and using the Schlesinger
equations for A1, . . . , An we get:

∂Ãk

∂uj
=
[
Ãk, (I(uk) + G)−1 ∂G

∂uj
+

(I(uk) + G)−1Aj(I(uk) + G)
uk − uj

]
=

=

[
Ãk, Ãj

]
uk − uj

+

+
[
Ãk, (I(uk) + G)−1

(
∂G

∂uj
+

Aj(I(uk)− I(uj))−BkjAj(I(uj) + G)
uk − uj

)]
,

where

Bkj =


0 . . . 0 uk−uj

gm1

0 . . . 0 0
. . . . . . . . . . . .
0 . . . 0 0

 .

Given the formulae (3.1), it is straightforward to prove that the equation

∂G

∂uj
+

Aj(I(uk)− I(uj))−BkjAj(I(uj) + G)
uk − uj

= 0,

is equivalent to the equations (2.36), (2.37). This proves that also Ã1, . . . , Ãn

satisfy the Schlesinger equations.
Now let the sum of the exponents of the invariant sub-space Xl be −N ,

where N is a positive integer. By iterating the above gauge transformation N
times, we arrive at a new solution (B1, . . . , Bn) of the Schlesinger equations
S(n,m) such that the sum of the exponents of the invariant sub-space Xl is zero
and

B∞ = Diagonal
(
λ

(∞)
1 + N,λ

(∞)
2 , . . . , λ

(∞)
m−1, λ

(∞)
m −N

)
.

To conclude the proof of this lemma, let us prove that this new solution
(B1, . . . , Bn) is of the form

Bkij
= 0, ∀ i = l + 1, . . . , n, j = 1, . . . , l.

In fact suppose by contradiction that Bk are not in the above form. Then
by Lemma 5.2.2. in [?], there exists a gauge transformation P , constant in z,
such that the new residue matrices B̃k = P−1BkP have the form has the form

B̃kij
= 0, ∀ i = l + 1, . . . , n, j = 1, . . . , l.

In general B̃∞ won’t be diagonal, but we can diagonalize it by a constant
gauge transformation Q preserving the block triangular form of B̃1, . . . , B̃n.
So we end up with

B̂∞ = Q−1P−1B∞PQ, B̂k = Q−1P−1BkPQ,
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and since Q−1P−1B∞PQ = B∞, we have that PQ is diagonal. But then if Bk

is not block triangular, B̂k is not either, so we obtain a contradiction. Lemma
1.3 is proved.

Proof of Theorem 1.1. By Lemma 1.3, we obtained a gauge transformation
mapping a solution (A1, . . . , An) of the Schlesinger system Sn,m with a l-
reducible monodromy group to a solution B1, . . . , Bn of the block triangular
form. As it was explained in the Introduction, the solution (B1(u), . . . , Bn(u))
belongs to a Picard–Vessiot type extension K(N) for some N of the composite

K = Kn,lKn,m−l.

So, to conclude the proof of this theorem, we need to prove Lemma 1.4.
Let us prove the formulae (1.6). Our gauge transformation constructed in

Lemma 1.3 is an iteration of elementary gauges transformation Φ = (I(z)+G)Φ̃
mapping the matrices A1, . . . , An to new matrices Ã1, . . . , Ãn such that Ã∞ =
A∞ + Diagonal(1, 0, . . . , 0,−1).

Let us prove that each elementary gauge transformation preserves the nor-
malization at infinity. More precisely, we prove that if we fix a fundamental
matrix Φ normalized at infinity

Φ∞ =
(

+
Ψ1

z
+

Ψ2

z2
+O

(
1
z3

))
z−A∞z−R(∞)

,

then Φ̃ = (J(z) + G−1)Φ∞ =
(

+O
(

1
z

))
z−Ã∞z−R̃(∞)

, whith R̃(∞) = R(∞).
In fact it is straightforward to prove that

(J(z) + G−1)
(

+
Ψ1

z
+

Ψ2

z2
+O

(
1
z3

))
Diagonal(z, 0, . . . , 0,

1
z
) =

= χ1z + χ0 +O
(

1
z

)
where all matrix elements of χ1 are zero apart from the (m, 1) element which
is

χ1m1 =
1

g1m
+ Ψ1m1

and the matrix elements of χ0 are given by the following: for p 6= 1,m

χ0pp
= 1, χ0p1 = −gp1 + Ψ1p1 , χ0pm

= − g1p

g1m
+ Ψ1mp

,

χ011 = χ0mm = 1,

and

χ0m1 = −
g11 −

∑m−1
p=2 g1pΨ1pm

−Ψ111 +
∑m−1

p=2 g1pΨ1p1

g1m
+ Ψ21m .

Using the formulae (3.1) for G it is easy to prove that all entries of χ0 and χ1

are zero.
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Therefore each elementary gauge transformation preserves the normaliza-
tion at infinity and maps A∞ to

Ã∞ = A∞ + Diagonal(1, 0, . . . , 0,−1).

Since the fundamental matrix remains normalized at infinity and the gauge
transformation Φ = (I(z) + G)Φ̃ is analytic over C, all monodromy data
Λ(1)(A), R(1)(A), . . . ,Λ(n)(A), R(n)(A), C1(A), . . . , Cn(A) are preserved in each
iteration. Finally we prove that R(∞) = R̃(∞). Due to the above we only need
to prove that if

z−A∞R(∞)(A)zA∞ =
R1

z
+

R2

z2
+ ......

where R1, R2, . . . are some matrices defined in Section 2, then the matrix

z−B∞R(∞)(A)zB∞

is also polynomial in 1
z . Since B∞ = A∞ + Diagonal(N, 0, . . . , 0,−N) we get

z−B∞R(∞)(A)zB∞ =

Diagonal(z−N , 1, . . . , 1, zN )z−A∞R(∞)(A)zA∞Diagonal(zN , 1, . . . , 1, z−N ) =

Diagonal(z−N , 1, . . . , 1, zN )
(

R1

z
+

R2

z2
+ ......

)
Diagonal(zN , 1, . . . , 1, z−N ) =

Pol

(
1
z

)
+ Div(z),

where Pol
(

1
z

)
and Div(z) are matrix values polynomials in 1

z and z respec-
tively. The matrix elements of the latter are of the form:

Divpq = 0, for q 6= 1, p 6= m, Div11 = 0, Divmm = 0,

Divp1 =
∑

R
(∞)
kp1

zN−k, for p 6= 1,m,

Divmq =
∑

R
(∞)
kmq

zN−k, for q 6= 1,m

Divm1 =
∑

R
(∞)
km1

z2N−k.

Since the monodromy group is reducible, all the entries of R
(∞)
k involved in

the above expressions are identically zero. Therefore Div(z) ≡ 0 as we wanted
to prove. This proves the relations (1.6).

Let us now prove the statement ii) of Lemma 1.4. Starting form the solu-
tion (B1, . . . , Bn), we can reconstruct (A1, . . . , An) by iterating another gauge
transformation of the form (J(z) + F ) where J(z) = Diagonal(0, . . . , 0, z) and

F1m = Ψ̃11m
, Fm1 = − 1

Ψ̃11m

,

if p 6= 1,m, Fpp = 1, Fmp = Ψ̃11p
Gm1, Fpm = Ψ̃1pm

,(3.4)
if p, q 6= 1, p 6= q, Fpq = 0,

F11 = 0, and Fmm = Fm1Ψ21m
+ Ψ1mm

.
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This gauge transformation is always well defined because Ψ̃11m
is always non-

zero (proof of this fact is analogous to the proof that Ψ1m1 is never zero given
above). Following the same computations as in the proof of Lemmata 1.3 and
1.4, it is easy to verify that this gauge transformation preserves the Schlesinger
equations, the normalization of the fundamental matrix at infinity, R(∞) and
maps Ã∞ to

A∞ = Ã∞ −Diagonal(1, 0, . . . , 0,−1).

The above arguments complete the proof of Lemma 1.4 and, therefore of The-
orem 1.1.

3.1.1. Upper triangular monodromy groups. In this section we deal with the
case of upper triangular monodromy groups, that is there exists a basis where
all monodromy matrices have the form

Mkij = 0, ∀ i > j.

To prove Corollary 1.2 we iterate the procedure of the proof of Lemma 1.3:
at the first step we show that (A1, . . . , An) is mapped by a rational gauge
transformation to (A(1)

1 , . . . , A
(1)
n ) of the form

A
(1)
k i1

= 0, ∀ i 6= 1, ∀ k = 1, . . . , n.

At the l-th step we show that (A1, . . . , An) is mapped by a rational gauge
transformation to (A(l)

1 , . . . , A
(l)
n ) of the form

A
(l)
k ij

= 0, i > j, j ≤ l, k = 1, . . . , n.

At the m-th step we obtain that is mapped by a rational gauge transformation
to

Ãkij
:= A

(m)
kij

= 0, ∀ i > j.

Let us show that Ãkij
(u1, . . . , un) belongs to the Picard–Vessiot type extension

K(N) for some N of

K = C(u1, . . . , un).

Clearly the diagonal elements Ãk are the eigenvalues λ
(k)
1 , . . . λ

(k)
m . The Schlesinger

equations for i 6= j read:

∂

∂uj
Ãip,p+q

λ
(j)
p+q − λ

(j)
p

ui − uj
Ãip,p+q

−
λ

(i)
p+q − λ

(i)
p

ui − uj
Ãjp,p+q

+

+
q−1∑
s=1

Ãip,p+s
Ãjp+s,p+q

− Ãjp,p+s
Ãip+s,p+q

ui − uj
,(3.5)
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and for i = j

∂

∂ui
Ãip,p+q

= −
∑
j 6=i

[λ(j)
p+q − λ

(j)
p

ui − uj
Ãip,p+q

−
λ

(i)
p+q − λ

(i)
p

ui − uj
Ãjp,p+q

+

+
q−1∑
s=1

Ãip,p+s
Ãjp+s,p+q

− Ãjp,p+s
Ãip+s,p+q

ui − uj

]
,

where for q = 1 the sum
∑q−1

s=1 is zero. It is clear that for each q, 1 ≤ q <
m − p, the differential system for the matrix elements Aip,p+q

, i = 1, . . . , n
is linear and it is Pfaffian integrable because the Schlesinger equations are
Pfaffian integrable. In particular it is worth observing that for each q, 1 ≤
q < m− p, the homogeneous part of such differential system is the Lauricella
hypergeometric system (see [?]).

3.2. An example. Consider the following solution A1, A2, A3 of the Schlesinger
equations in dimension m = 2, where we have chosen u1 = 0, u2 = x, u3 = 1,
with matrix entries:

A111 =
2 log

√
x+1√
x−1

√
x(x2 + 4x− 5)− 4x(4 + 3x)−

(
log

√
x+1√
x−1

)2

(x− 1)2

2
(
(x− 1) log

√
x+1√
x−1

− 2
√

x
)2 ,

A112 =

(
log

√
x+1√
x−1

)2

(x− 1)2 + 2x(5 + 3x)− (x2 + 6x− 7)
√

x log
√

x+1√
x−1

4
(
(x− 1) log

√
x+1√
x−1

− 2
√

x
)2

(x− 1)
×

×
(

6
√

x(1 + x)− (x2 + 2x− 3) log
√

x + 1√
x− 1

)

A121 =
4
√

x(1− x)(
(x− 1) log

√
x+1√
x−1

− 2
√

x
)2

A211 =

(
log

√
x+1√
x−1

)2

(x− 1)3 − 4x(7 + x)− 8 log
√

x+1√
x−1

√
x(x2 − 3x + 2)

4
(
(x− 1) log

√
x+1√
x−1

− 2
√

x
)2

(x− 1)
,

A212 = −

(
log

√
x+1√
x−1

)2

(x− 1)3 − 16x− 2(3x2 − 8x + 5)
√

x log
√

x+1√
x−1

8
(
(x− 1) log

√
x+1√
x−1

− 2
√

x
)2

(x− 1)2
×

×
(

2
√

x(3 + x) + (x2 − 4x + 3) log
√

x + 1√
x− 1

)
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A221 = − 4
√

x(
(x− 1) log

√
x+1√
x−1

− 2
√

x
)2

A311 =
1
2
−A111 −A211 , A312 = −A112 −A212 , A321 = −A121 −A221 ,

A122 = −A111 , A222 = −A211 , A322 = −A311 .

This solution has a reducible monodromy group. Observe that

A∞ =
(
− 1

2 0
0 1

2

)
is resonant and that

R
(∞)
121

= A
(2)
21 x + A

(3)
21 = 0,

therefore to obtain the 21 elements in the matrices Ψ1 and Ψ2 we need to solve
the linear equations (2.36), (2.37). This is easily done:

Ψ121 =
2(x− 1)

2
√

x + (x− 1) log
√

x+1√
x−1

, Ψ221 =
(6 + x)(x− 1)

2
(
2
√

x + (x− 1) log
√

x+1√
x−1

) .

Now, by applying a gauge transformation of the form(
−Ψ221

Ψ121
+ Ψ111 + z − 1

Ψ121

Ψ121 0

)
,

it is straightforward to see that the new solution B1, B2, B3 of the Schlesinger
equations has the upper triangular form:

B1 =

 1
2

√
x

x−1

0 − 1
2

 , B2 =

 − 1
4

√
x

(x−1)2

0 1
4

 ,

and

B3 =

 − 3
4 − x

√
x

(x−1)2

0 3
4

 , B∞ =
(

1
2 0
0 − 1

2

)
.

This new solution is actually algebraic. This shows that the differential fields
KA

3,2 and KB
3,2 associated with the solutions A1, A2, A3 and B1, B2, B3 respec-

tively are not isomorphic.

3.3. Smaller monodromy groups. The proof of Theorem 1.5 is based on a
few lemmata:

Lemma 3.2. Let A1, . . . , An be a solution of the Schlesinger equations such
that one of the monodromy matrices (M1, . . . ,Mn), say Ml, is proportional to
the identity, then then there exists a solution Ã1,. . . ,Ãl−1, Ãl+1, . . . Ãn of the
Schlesinger equations in n−1 variables with monodromy matrices M1, . . . ,Ml−1,
Ml+1, . . . ,Mn. The original solution A1, . . . , An depends rationally on Ã1,. . . ,
Ãl−1, Ãl+1,. . . Ãn, Φ̃(ul) and on ul.
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Proof. Let us first consider the case Ml = , for simplicity, l = n. This
means that all eigenvalues λ

(n)
1 , . . . λ

(n)
m of An are integers and R(n) = 0. To

eliminate the singularity n, we perform a confromal transformation ζ = 1
z−un

.
We obtain

dΦ
dζ

=

(
A∞
ζ

+
n−1∑
k=1

Ak

ζ − ũk

)
Φ,

where ũk = 1
uk−un

, for k 6= n. The new residue matrix at infinity is −An.
We perform a gauge transformation diagonalizing An and use iterations of the
gauge transformation of the form (I(ζ) + G) where G is defined by formulae
(3.3) to map all eigenvalues of An to zero.

We have seen in the proof of Lemma 1.3 that this gauge transformation is
always well defined and it works for R(∞) = 0. Of course similar formulae can
be given to map any λ

(∞)
j to λ

(∞)
j +1 and any λ

(∞)
i to λ

(∞)
i −1. After enough

iterations we end up with a new Fuchsian system of the form

dΦ̃
dζ

=

(
Ã∞
ζ

+
n−1∑
k=1

Ãk

ζ − ũk

)
Φ̃,

such that the residue at infinity is Ãn = 0.
Now we perform the inverse conformal transformation, z = 1

ζ + un, we
obtain

dΦ̃
dz

=
n−1∑
k=1

Ãk

z − uk
Φ̃,

and the residue at infinity is Ã∞. We finally perform a gauge transformation
diagonalizing Ã∞, so that the final Fuchsian system is

dΦ̂
dz

=
n−1∑
k=1

Âk

z − uk
Φ̂,

where Â∞ = A∞.
All the monodromy data of this new system coincide with the ones of the

original system with matrices A1, . . . , An, A∞. The proof of this fact is very
similar to the proof of statement ii of lemma 1.4 and we omit it.

The new matrices Â1, . . . , Ân−1 satisfy the Schlesinger equations because
the gauge transformations of the form (I(z) + G) where G is defined by the
formulae (3.3) preserve the Schlesinger equations. Observe that since Ân is
zero, Â1, . . . , Ân−1 satisfy the Schlesinger equations Sn−1,m.

We now want to reconstruct the original solution A1, . . . , An from Â1,. . . ,Ân−1.
Let us consider the Fuchsian system

dΦ̂
dz

=
n−1∑
k=1

Âk

z − uk
Φ̂.
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Let us choose any point un 6= uk, k = 1, . . . , n − 1 and perform the constant
gauge transformation Ψ̂ = Φ̂(un)−1Φ̂, where Φ̂(un) is the value at z = un of

Φ̂(z)
(

+O(
1
z
)
)

z−A∞zR(∞)
.

Let us perform the conformal transformation ζ = 1
z−un

,

Ψ̂(ζ) := Φ̂(un)−1Φ̂(
1
ζ

+ un).

Let us apply a product F∞(ζ) of gauge transformations of the form (J(ζ)+F ),
where F is given by the formulae (3.4), to create a new non-zero residue matrix
at infinity with integer entries λ

(n)
1 , . . . λ

(n)
m :

Ψ̂(ζ) = F∞(ζ)Ψ̂(ζ) = F∞(ζ)Φ̂(un)−1Φ̂(
1
ζ

+ un).

Let us now apply the conformal transformation z = 1
ζ + un:

Φ̃(z) := F∞(
1

z − un
)Φ̂(un)−1Φ̂(z).

We need now to diagonalize the new residue matrix at infinity

Ã∞ = F∞(un)Φ̂(un)−1Â∞Φ̂(un)F∞(un)−1.

To do so we put
Φ(z) := Φ̂(un)F∞(un)−1Φ̂(z).

The new residue matrices are

Bi = Φ̂(un)F∞(un)−1F∞(
1

ui − un
)Φ̂(un)−1ÂiΦ̂(un)F−1

∞ (
1

ui − un
)F∞(un)Φ̂(un)−1

for i = 1, . . . , n− 1 and

Bn = Φ̂(un)F−1
∞ (un)diagonal(λ(n)

1 , . . . λ(n)
m )F∞(un)Φ̂(un)−1.

The Fuchsian system with residue matrices B1, . . . , Bn, B∞ has the same expo-
nents and the same monodromy data as the original system of residue matrices
A1, . . . , An, A∞. Therefore, by the uniqueness lemma 2.6, A1, . . . , An, A∞ co-
incide with B1, . . . , Bn, B∞ up to diagonal conjugation.

As a consequence A1,. . . ,An depend rationally on Â1,. . . ,Ân−1, on Φ̂(un)
and un.

Now let us suppose that Ml is only proportional to the identity. This means
that all eigenvalues λ

(l)
1 , . . . λ

(l)
m of Al are resonant. Since their sum is zero, the

only possibility is Ml = exp
(

2πis
m

)
for some s = 1, . . . ,m− 1. To transform

this matrix to the identity we use iterations of the symmetries (1.13), (1.14),
to map our solution A1, . . . , An to a solution Â1, . . . , Ân having Mn = .
Since these symmetries are birational, A1, . . . , An are rational functions of
Â1, . . . , Ân. Then we can apply the above procedure to kill Ân.
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Remark 3.3. Observe that in Lemma 3.2, for Ml = exp
(

2π
m

)
, the new so-

lution Ã1,. . . ,Ãl−1, Ãl+1,. . . Ãn has monodromy matrices M1, . . . ,Ml−1,Ml+1,
. . . , Mn, and a new monodromy matrix at infinity exp

(
− 2π

m

)
M∞.

Lemma 3.4. Let (A1, . . . An) be a solution of the Schlesinger equations with
M∞ proportional to the identity , say M∞ = exp( 2πi

m ) . Suppose that Mn

is not proportional to the identity, then there exists a solution Ã1,. . . Ãn−1 of
the Schlesinger equations with monodromy matrices

(3.6) CnM1C−1
n , . . . , CnMn−1C−1

n ,

and M̃∞ = Cn exp(− 2πi
m )MnC−1

n , Cn being the connection matrix of Mn. The
given solution A1, . . . An depends rationally on Ã1,. . . ,Ãn−1, Φ̃(un) and on
un.

We perform a symmetry (1.14) (or a conformal transformation), in order to
apply Lemma 3.2 to the case M1 proportional to the identity.
End of the proof of Theorem 1.5. Suppose that A1, . . . , An is a solution
of the Schlesinger equations such that the collection of its monodromy matri-
ces M1,. . . ,Mn, M∞ is l-smaller. If none of the monodromy matrices being
proportional to the identity is equal to M∞, we can simply conclude by l it-
erations of Lemma 3.2. If M∞ is proportional to the identity, first we apply
Lemma 3.4, then we iterate Lemma 3.2 l − 1 times. This concludes the proof
of Theorem 1.5. �
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