

978-1-5090-1081-3/17/$31.00 ©2017 IEEE

2017 International Siberian Conference on Control and Communications (SIBCON)

Applying a Model Based Testing Approach for
Testing the Communication Protocol between the
Cash Register Software and the Loymax Service

Maria S. Forostyanova1, Natalia V. Shabaldina2, Nina V. Yevtushenko3
Department of Information Technologies for Studying Discrete Structures,

Tomsk State University,
Tomsk, Russia

1mariafors@mail.ru, 2nataliamailbox@mail.ru, 3nyevtush@gmail.com

Abstract — In this work we apply test derivation methods for
(extended) finite state machines for testing the functionality of the
Communication Protocol between the cash register software and
the Loymax service when conducting cash transactions. The
Protocol was provided by Loymax that is the company involved in
the development and support of loyalty programs. We analyze the
difficulties that occur when we extract a formal model from the
description of the system and we suggest different ways for
simplify the derived models; we also discuss further directions for
this investigation.

Keywords—web-services, Loymax, EFSM, FSM, model based
testing

I. INTRODUCTION

 Testing of web-services is still a hot topic in spite of the plenty
of tools for automatic generation [see, for example, 1-2] and
applying test suites. The reason is that most test suites are
derived based on intuition and experience of a tester. This
approach does not guarantee that the derived test suites are
complete. Correspondingly, in this work we study the quality of
tests which are derived based on the model of an (extended)
finite state machine; such tests show their effectiveness when
testing telecommunication protocols [3,4]. Under the web-
services we mean applications that are working in WEB in
different network nodes and the logic of data exchange between
applications is set by some protocol.

 As an example for web service testing, we took the one
provided by Loymax [5]. Loymax is the company that has been
automating loyalty programs which are in turn aimed at
implementing a set of marketing events to promote repeat
purchases, increase traffic by attracting new customers and
contribute to other potentially profitable developments. The
Loymax IT-platform is intended for implementation of multi-
format loyalty programs and allows one to raise the efficiency in
producing important and effective solutions. The system has
universal APIs for integration with external systems – e.g., cash
register software. By this time, the Loymax platform has been
integrated with the major cash software vendors; there are about
15 vendors. In this regard, relevant is the qualitative testing of
this web service. The integration solution provides a possibility
of processing within the online and offline modes of operating,
which ensures preservation of the client’s preferences even in

the case of a disconnection and a lack of information exchange
between the cash register and the processing unit. Thus, Loymax
is interested in a strict conformity with the Protocol requirements
presented in the specification and this requires the use of formal
models and methods for testing.

This paper provides a short description of the
Communication Protocol between the cash register software and
the Loymax service when conducting cash transactions and
presents an extended automata model developed based on this
description. For applying methods for constructing tests with the
guaranteed fault coverage, we modeled a service using an
extended finite state machine (EFSM) taking into account some
limitations. Further, a classical finite state machine (FSM)) was
derived and we constructed a test by passing over the transition
graph and, despite the fact that theoretically such a test
guarantees the detection of only output errors, this test enabled
to reveal four errors in the web service implementation being
tested, one of which was critical. In the future we are planning
to construct tests for the finite-state machine developed by
methods that guarantee the detection of transition errors [6].

II. THE DESCRIPTION OF THE COMMUNICATION PROTOCOL

BETWEEN THE CASH REGISTER SOFTWARE AND THE LOYMAX

SERVICE WHEN CONDUCTING CASH TRANSACTIONS

Within the five years of existence in the market of IT
solutions Loymax has released about six major and five minor
versions of the Communication Protocol for cash register
software, taking into account specific features of processing in
different business sectors. The testing presented in this paper
was conducted based on Protocol 3.0. This Protocol is used for
communication of the cash equipment/software with the
Loymax system where the formation of an XML document and
the use of an HTTPS protocol are possible. When using the
Loymax processing unit for transactions and payments one must
submit a request in a strictly specified format to the cash register.
The request is an XML document. The document can contain a
list of commands and the server processes each individually, i.e.,
if an error occurs while processing one of the commands in the
document, the rest will be processed independently. If the
command is sent to the server again (the command field
coincides with the one previously processed), the server will
return the result of the previous processing step. This can be used
when the communication with the server is lost; in this case, it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tomsk State University Repository

https://core.ac.uk/display/287434372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2017 International Siberian Conference on Control and Communications (SIBCON)

is enough to repeat the only command. If the command is sent
with the fields partially changed, the system will return an error
to the changed parameters within the old receipt.

Almost all commands require confirmation if the result is
accepted by the cashier. In other words, after processing (receipt
printing) it is necessary to send the command to confirm or
cancel the receipt for transferring the operation to the specified
status. Each of the lists can contain an unlimited number of
commands. The order of the commands being discussed in this
work is presented below:

1) Calculates – calculation of a direct discount (can be
performed without a loyalty card);

2) AvailableAmounts – calculation of the available amount
on the card account to pay for the current receipt;

3) Payments – calculation of the payment with this card for
the current receipt;

4) Discounts – calculation of a pending discount with the
loyalty program card (cashback accrual);

5) ConfirmPurchases – confirmation of all operations for
this transaction;

6) CancelPurchases – cancellation of all operations for this
transaction.

Complete test suites generation for the software is possible
only in case of using the fault model, thus in this work we are
trying classical finite transition models as specifications,
namely, EFSM and FSM.

III. EXTRACTING EFSM FROM WEB-SERVICE DESCRIPTION

Finite state machines are studied very well [7], in particular,
test suite derivation methods are well known for finite state
machines (including non-deterministic machines).

An (initialized) FSM S is a 5-tuple (S, I, O, Ts, s0), where S is
the set of states with the designated initial state s0, I is an input
alphabet, O is an output alphabet, T is a transition relation, T ⊆
S × I × O × S.

However, classical FSMs do not allow the explicit
description of different parameters, such as input or output
parameters, predicates for transitions. For this reason, extended
FSMs are often used for describing the behavior of protocols and
services [8]. An EFSM model allows describing the system
behavior in a compact way (in terms of transition number). An
EFSM model in addition to the sets of state, inputs, outputs and
transitions has the set of context variables (the values of these
variables determine the current state of the system), the set of
input parameters (in order to determine the current input), the set
of outputs parameters (in order to determine the current output),
and predicates.

More precisely, an EFSM M is a 5-tuple (M, I, O, V, T) [3],
where M is the set of states, I is the set of inputs, O is the set of
outputs, V is the set of context variables (this set can be empty),
T is the set of transitions. Each transition t = (m, x, P, op, y, up,
m′) where m, m′ ∈ M are the initial and final states of the
transition, i ∈ I is an input and Dinp-i is the set of vectors with
parameters values that correspond to the input i (input
parameters). Correspondingly, o ∈ O is an output and Dout-o is
the set of vectors with parameters values that correspond to the

output o (output parameters). Functions P, op and up are defined
on the Cartesian product of the sets of input parameters and
context variables:

- P: Dinp-i × DV → {true, false} is a predicate where DV
is the set of context vectors, the components of these vectors
correspond to the values of context variables;

- op: Dinp-i × DV → Dout-o is a function for calculating the
values of output parameters;

- up: Dinp-i × DV → DV is a function for calculating the
values of context variables.

For the protocol describing the interaction of cash software
with Loymax we determine the following input and output
alphabets:

• AllCheque is a receipt with mandatory parameters:

- ChequeNumber is the receipt number (must be
unique within the cash register);

- ChequeDate is the receipt date;
- ChequeLine is the receipt line including information

on the position number, the product quantity, the product ID,
the product name, the total value of the position;

- Number is the card number in the Loymax
database;

- PurchaseID is the unique transaction ID which is
unique within the entire system and must be the same within the
receipt at all stages of communication;

• PayAmount is the amount to be paid

Output symbols:

• Error is the message in the case of an error at the
Protocol level;

• CardHolder is the Loymax cardholder;

• list(chequePositionDiscount) is the direct discount
amount for each ChequeLine

• list(chequePositionCashback) is the pending discount
amount for each ChequeLine;

• list(chequePositionPayAmount) is the payment amount
for a position for each ChequeLine;

• BonusAmount is the number of bonus points in the
customer's account available for payment for the current
receipt;

• CashierMessage is the message to the cashier on the
checkout screen;

• ChequeMessage is the message print to the receipt.

Context Variables:

• chequeNumber, chequeDate, chequeLine, purchaseId,
cardNumber are the receipt parameters; the transaction
ID and the card number must not be changed within the
receipt, except for the adoption of the Protocol functions
at the stage of communication;

• bonusAmount is the number of bonus points in the
customer's account available for payment for the current
receipt;

2017 International Siberian Conference on Control and Communications (SIBCON)

States:

• Open is the state corresponding to opening the receipt in
the cash register, initialization of the receipt and context
variables;

• Calculates is the state of calculating a direct discount for
the receipt;

• AvailableAmounts is the calculation of the maximum
amount for paying by bonus points;

• Payments is the state for debiting the loyalty points from
the account with a decrease in total (the proper amount
of bonus points is blocked in the Loymax cardholder’s
account);

• Discounts – calculation of a pending discount for the
receipt (the proper amount of bonus points is blocked on
the cash register account);

• ConfirmPurchases is the confirmation of the
transaction; all financial flows are reversed and the
bonus points are unblocked;

• CancelPurchases is the cancellation of the transaction;
all financial flows are performed and the bonus points
are credited to the accounts;

• CalculateReqError is the state corresponded to the
Protocol error when calculating a direct discounts for
the receipt;

• AvailableAmountsError is the state corresponded to the
Protocol error when calculating the maximum amount
to be paid by the bonus points;

• PaymentsError is the state corresponded to the Protocol
error when paying by the bonus points;

• DiscountsError is the state corresponded to the Protocol
error when calculating a pending discount for the
receipt.

The list of transitions is as follows.

t1: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number)/ /chequeNumber=Cheque.Number,
chequeDate=ChequeDate, chequeLine=ChequeLine,
purchaseId = PurchaseID, cardNumber = Number/NULL

t2: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number)/ ChequeNumber==ChequeNumber AND
chequeDate==ChequeDate AND chequeLine==ChequeLine
AND purchaseId == PurchaseID AND cardNumber ==
Number / chequeLine = chequeLine -
list(chequePositionDisount) / list(chequePositionDiscount)

t3: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number)/ ChequeNumber!=ChequeNumber OR
chequeDate!=ChequeDate OR chequeLine!=ChequeLine OR
purchaseId != PurchaseID OR cardNumber != Number OR
check(card)==false OR PurchaseID is not unique in the system/
/ Error

t4: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number)/ ChequeNumber==ChequeNumber AND

chequeDate==ChequeDate AND chequeLine==ChequeLine
AND purchaseId == PurchaseID, cardNumber == Number /
bonusAmount = BonusAmount / BonusAmount

t5: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number)/ ChequeNumber!=ChequeNumber OR
chequeDate!=ChequeDate OR chequeLine!=ChequeLine OR
purchaseId != PurchaseID OR (cardNumber != Number AND
type(card)!='gift')OR check(card)==false / / Error

t6: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number, PayAmount) /
ChequeNumber==ChequeNumber AND
chequeDate==ChequeDate AND chequeLine==ChequeLine
AND purchaseId == PurchaseID AND cardNumber ==
Number AND PayAmount <= bonusAmount / /
list(chequePositionPayAmount)

t7: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number, PayAmount)/
ChequeNumber!=ChequeNumber OR
chequeDate!=ChequeDate OR chequeLine!=ChequeLine OR
purchaseId != PurchaseID OR (cardNumber != Number AND
type(card)!='gift') OR check(card)==false OR PayAmount >
bonusAmount/ /Error

t8: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number) / ChequeNumber==ChequeNumber
AND chequeDate==ChequeDate AND
chequeLine==ChequeLine AND purchaseId == PurchaseID
AND cardNumber == Number / /list(chequePositionCashback)

t9: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number) / ChequeNumber!=ChequeNumber OR
chequeDate!=ChequeDate OR chequeLine!=ChequeLine OR
purchaseId != PurchaseID OR cardNumber != Number OR
check(card)==false / / Error

t10: PurchaseID / / NULL

t11: PurchaseID / / NULL

t12: PurchaseID / chequeNumber = NULL, chequeDate =
NULL, chequeLine = NULL, purchaseId = NULL, cardNumber
= NULL / NULL

t13: NULL / chequeNumber = NULL, chequeDate = NULL,
chequeLine = NULL, purchaseId = NULL, cardNumber =
NULL / NULL

t14: NULL / chequeNumber = NULL, chequeDate = NULL,
chequeLine = NULL, purchaseId = NULL, cardNumber =
NULL / NULL

t15: NULL / chequeNumber = NULL, chequeDate = NULL,
chequeLine = NULL, purchaseId = NULL, cardNumber =
NULL / NULL

t16: Cheque, PurchaseID, Number, PayAmount /
ChequeNumber==ChequeNumber AND
chequeDate==ChequeDate AND chequeLine==ChequeLine
AND purchaseId == PurchaseID AND cardNumber ==
Number AND PayAmount == 0 / chequeList = ChequeList -
list(chequePositionDisount) / list(chequePositionDiscount

2017 International Siberian Conference on Control and Communications (SIBCON)

An EFSM extracted based on the above description of
exchange protocol software cash with Loymax is shown in
Figure 1.

Fig. 1. Extended finite state machine for Loymax protocol

IV. CONSTRUCTING FSM BASED ON EFSM AND DERIVING

TEST SUITE BY TRAVERSING THE TRANSITION GRAPH

After extraction the model with finite number of transitions
from the description of the system we can construct a test suite
using one of the classical methods that guarantee the fault
coverage. One of such methods is a transition tour for the finite
state machine model [9].

When we construct an FSM based on the given EFSM, we
match an input symbol in FSM to the pair: input symbol in
EFSM and the values of the input parameters vector. So the
number of inputs in FSM depends on the number of input
parameters values. Similar, each output symbol in FSM
corresponds to the pair: output symbol in EFSM and the values
of the output parameters vector. And each state in FSM
corresponds to the pair: state in EFSM and the values of context
variables. In order to construct finite state machine for the given
extended finite state machine we need to use some restrictions.
In this work, for the system at hand we propose the following
restrictions.

For the input parameter values:

• ‘1’ corresponds to the case when the value is the same
as at the moment of service initialization, or the value
satisfies the requirements of the processing (for
example, PurchaseId is unique);

• ‘0’ corresponds to the case when the value is different
from the value at the moment of service initialization, or
the value does not satisfy the requirements of the
processing.

Consider the following transition:

t1: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number)/ /chequeNumber=Cheque.Number,
chequeDate=ChequeDate, chequeLine=ChequeLine,
purchaseId = PurchaseID, cardNumber = Number/NULL.

This transition corresponds to the transition from the initial
state; there are no predicates for this transition. In finite state
machine, it will be the input configuration (1, 1, 1, 1, 1). All
context variables are equal to 1. The next transition contains the
request to the server:

t2: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number)/ ChequeNumber==ChequeNumber AND
chequeDate==ChequeDate AND chequeLine==ChequeLine
AND purchaseId == PurchaseID AND cardNumber ==
Number / chequeLine = chequeLine -
list(chequePositionDisount) / list(chequePositionDiscount).

In this input vector we need to consider all input parameters
and check predicates:

• (0, 1, 1, 1, 1) – this transition corresponds to the case
when the receipt number that is sending to the server is
different from the receipt number that has been sent
before;

• (1, 0, 1, 1, 1) – the receipt time is different from the
receipt time that has been sent before;

• (1, 1, 0, 1, 1) –the receipt positions are different from
the receipt positions that has been sent before (in this
work we consider only the case when the number of
receipt positions are different);

• (1, 1, 1, 0, 1) – the transaction identifier is different from
the identifier that has been sent before;

• (1, 1, 1, 1, 0) – the card number is different from the
card number that has been sent before.

There can be also the following combinations from (0, 0, 0,
0, 1) to (1, 1, 1, 0, 0), except combinations that were described
above, however, we will not consider this combinations in finite
state machine model since for all of them the output ‘exception’
will be returned.

Now we describe the list of additional output responses.
These responses differ from each other because of the different
error codes and error messages.

The list of additional output symbols contains the following
outputs:

• Er1 is an error message for a different receipt number;

• Er2 is an error message for the different receipt time;

• Er3 is an error message for different receipt positions;

• Er3 is an error message for a different transaction
identifier;

• Er4 is an error message for a different card number.

For the simplifying the visual representation we consider
these output reactions as different outputs, since there are

2017 International Siberian Conference on Control and Communications (SIBCON)

different response models at each stage of interactions. For
example, if there is an error in calculating the discount, then the
response model is <CalculateRequest> Er1
</CalculateRequest>; if there is an error at the payment stage
then the response model is <PaymentRequest> Er1
</PaymentRequest >.

And we also use the following restriction: if the value of the
context variable is updated at the transition, as for example at t2
where in the case of correct transitions of all the data the discount
has been calculated, then the value of the parameter ChequeLine
will be changed according to the discount value. Thus «1» for
all further requests corresponds to the execution of the operation
chequeLine = chequeLine - list(chequePositionDisount.

Consider the following transition:

t6: AllCheque (ChequeNumber, ChequeDate, ChequeLine,
PurchaseID, Number, PayAmount) /
ChequeNumber==ChequeNumber AND
chequeDate==ChequeDate AND chequeLine==ChequeLine
AND purchaseId == PurchaseID AND cardNumber ==
Number AND PayAmount <= bonusAmount / /
list(chequePositionPayAmount).

In this transition, the new parameter PayAmount is added and
for this parameter, the rules and restrictions described above take
place:

• 1 – the amount to be paid is available for this account;

• 0 – the amount to be paid is more than the receipt sum
or is not available for this account.

Additional outputs

• Er6 means the message of incorrect amount for paying
by bonus points for the receipt under processing taking
into account the state of card account.

Based on the above rules, we construct an FSM with 26
states and 69 transitions and then derive a transition tour for this
FSM. The total length of all test sequences (test cases) is 221
symbols. The minimum length of a test case is three, the
maximum length of a test case is eight. We apply the test suite
half-automatically using Microsoft Visual Studio and NUnit
(version 3.0.6, the last version).

All requests were emulated in the same device within the test
environment and processed by the processing unit sequentially.
The marker of change in the contextual variables, e.g.,
generation of a new PurchaseId, change in the card number, the
receipt number, etc., was the input vector (-, -, -, -, -). When
testing, two types of preferences were installed in the emulator:
a direct discount and a pending discount (bonuses). As an option
added to one of the cards, there was an action condition for a
personal offer.

V. ANALYSIS OF THE TESTINF RESULTS

When testing the IT-solutions of loyalty programs, the
following errors and inconsistencies in implementations of the
Communication Protocol with the cash register software were
detected:

1) The error of the system if the request
<CalculateRequest> was not accompanied with the loyalty
card.

Criticality of the error is high, as the system can also handle
requests to calculate direct discounts without loyalty cards.

This error was caused by the personal offer added to the
system and an available access to the context variable without
checking it for presence:

Exception Message from system after request: Object
reference is not set to an instance of an object.

The error was detected in the new version which is only
being prepared for release, and will be eliminated before putting
it on production.

2) No checking for change in the receipt date and number
in the requests <AvailableAmountRequest> and <
PaymentRequest >.

Criticality of the error: medium.

In a similar request of <DiscountRequest> (by its processing
principle) such a procedure is implemented and the given
exception returns. According to the business requirements, as
well as the formal description of the Protocol, it is necessary to
track changes in two variables and return an error at the Protocol
level.

3) An incorrect principle of operating when sending
different cards within the same PurchaseID with paying for the
receipt.

Criticality of the error: medium.

An exception for the error that within one PurchaseID some
cards were handed and they do not meet the requirements that
only one card can be the primary while the others are gift cards
for which multiple payments are acceptable, only at the stage of
confirmation of the purchase when the customer concerned may
not already be at the point of sale.

Requirements for the development: move the module with
the card checking for multiple payments to the stage of
calculation of a direct discount.

4) An incorrect principle of operating when sending
different cards within the same PurchaseID without paying for
the receipt.

Criticality of the error: above medium.

Based on the requirements for integration with the external
cash register software, one of the points requires that the card
used in the requests should be the same (except for gift cards).
Meanwhile, within the system there is a reversed situation of
operating with data which is incorrect according to the formal
requirements. Among other faults, there is an optional web
interface which specifies the card number for each transaction
and instead of the card sent in the request <CalculateRequest> it
displays the card of <DiscountRequest> which is an incorrect
operation. This error also allows the loyalty program customers
to find a loophole for obtaining the highest level of preference
by using more cards that are advantageous at each stage of

2017 International Siberian Conference on Control and Communications (SIBCON)

processing the receipt; this may result in financial losses for the
company.

 Therefore, deriving test suites based on formal model allow
us to find 1 critical error and 3 not critical errors in
implementations of the exchange protocol of cash software with
Loymax which is using almost everywhere in more than 20
companies and operated with about 600 000 receipts per day.
Software developments are now working at the fixing these
mistakes.

VI. CONCLUSIONS

In this paper, we have studied the applicability of formal
models, such as extended finite state machine and classical finite
state machine, for describing the behavior of a proper web-
service in order to derive tests with the guaranteed fault
coverage. We considered the communication protocol of cash
software with Loymax. We extracted an EFSM from the
description of this web-service with 11 states and 16 transitions.
Then based on this EFSM an FSM was constructed excluding
some EFSM configurations. In order to avoid the enumeration
of all possible values from database for checking of its
uniqueness in the whole system, we suggested to restrict input
parameter values to «0» or «1» which are related to the
conditions «coincide» and «not coincide» in the current receipt.
Thus, using the rules and properties of the system, we restricted
the input alphabet, and the size of the corresponding FSM. A
transition tour of the FSM allowed to find one critical error and
two not-critical errors and one error that may may result in
financial losses for the company. In our future work we are
planning to derive the test suite using HSI-method that
guarantees the detection not only of output faults but also of
latent transition faults.

REFERENCES
[1] L. Bentakouk, P. Poizat, F. Zaïdi, “A Formal Framework for Service

Orchestration Testing Based on Symbolic Transition Systems”, In: Núñez
M., Baker P., Merayo M.G. (eds) Testing of Software and
Communication Systems. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, vol 5826, pp.16-32, 2009.

[2] F. Zaidi, Ana Cavalli and Emmanuel Bayse, “NetworkProtocol
Interoperability Testing based on Contextual Signatures”, The 24th
Annual ACM Symposium on Applied Computing SAC'09Hawaii, USA,
pp. 2-7, March 9-12 2009.

[3] A.V. Kolomeets “Algoritmy sinteza proveryayushchikh testov dlya
upravlyayushchikh sistem na osnove rasshirennykh avtomatov”: dis. ...
kand. tekhn. nauk. Tomskii gosudrastvennyi universitet, [PhD
dissertation, Tomsk state university], 129 p., 2010.

[4] N. Kushik, M. Forostyanova, S. Prokopenko, N. Yevtushenko, “Studying
the optimal height of the EFSM equivalent for testing elecommunication
protocols”, Proc. of the Second Intl. Conf. on Advances In Computing,
Communication and Information Technology – CCIT. 2014, pp. 159-163.

[5] Loymax: [official site]. URL: http://loymax.ru

[6] R. Dorofeeva, “Experimental evaluation of FSM-based testing methods”,
In Proc. of the IEEE International Conference on Software Engineering
and Formal Methods (SEFM05), Pp. 23-32, 2005.

[7] A. Gill, Introduction to the Theory of Finite-state Machines. M. Science,
272 p., 1966.

[8] A. Ermakov, N. Yevtushenko, “Increasing the fault coverage of tests
derived against Extended Finite State Machines, System informatics”, №
7, pp. 23-32, 2016.

[9] K. El-Fakih, S. Prokopenko, N. Yevtushenko, G. Bochmann, “Fault
Diagnosis in Extended Finite State Machines. Lecture Notes in Computer
Science”, vol. 2644, Pp 197-210, 2003.

ACKNOWLEDGMENT

This work is supported by the grant for the basic research
№16-49-03012 of Russian Scientific Fund.

