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Abstract

Background: Diamond-Blackfan anaemia (DBA) is a rare inherited red cell hypoplasia
characterised by a defect in the maturation of erythroid progenitors and in some cases associated
with malformations. Patients have an increased risk of solid tumors. Mutations have been found in
several ribosomal protein (RP) genes, i.e RPSI9, RPS24, RPSI7, RPL5, RPLI I, RPL35A. Studies in
haematopoietic progenitors from patients show that haplo-insufficiency of an RP impairs rRNA
processing and ribosome biogenesis. DBA lymphocytes show reduced protein synthesis and
fibroblasts display abnormal rRNA processing and impaired proliferation.

Results: To evaluate the involvement of non-haematopoietic tissues in DBA, we have analysed
global gene expression in fibroblasts from DBA patients compared to healthy controls. Microarray
expression profiling using Affymetrix GeneChip Human Genome U133A 2.0 Arrays revealed that
421 genes are differentially expressed in DBA patient fibroblasts. These genes include a large
cluster of ribosomal proteins and factors involved in protein synthesis and amino acid metabolism,
as well as genes associated to cell death, cancer and tissue development.

Conclusion: This analysis reports for the first time an abnormal gene expression profile in a non-
haematopoietic cell type in DBA. These data support the hypothesis that DBA may be due to a
defect in general or specific protein synthesis.
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Background

Protein synthesis is essential to the survival and growth of
cells. Ribosomes, the sites where translation occurs, there-
fore play a fundamental role in cell biology. In human
cells, ribosome biogenesis occurs in the nucleolus: it
requires the transcription of four ribosomal RNA (rRNA)
species and their assembly with 79 ribosomal proteins
(RPs) in order to produce the small (40S) and large (60S)
ribosomal subunits. These subunits are independently
exported to the cytoplasm and joined to obtain mature
ribosomes [1].

Several inherited or acquired bone marrow failure syn-
dromes are due to mutations in genes encoding proteins
involved in ribosome biogenesis. They include Diamond-
Blackfan anaemia (DBA, MIM#105650), Shwachman-
Diamond syndrome (SDS, MIM#260400), dyskeratosis
congenita (DC, MIM#127550, #305000, #224230) and
5¢- syndrome (MIM#153550) [2,3]. DBA is an inherited
erythroid hypoplasia which usually develops within the
first year of life and is characterised by a severe normo-
chromic macrocytic anaemia caused by a defect in the
maturation of erythroid progenitors. Haematological
signs include paucity of bone marrow progenitors, reticu-
locytopenia, elevated erythrocyte adenosine deaminase
(eADA) activity and high levels of foetal haemoglobin.
Patients are prone to develop malignancies and one third
of them present congenital abnormalities [4,5]. Mutations
causing DBA have been found so far in six RP genes,
encoding both small and large subunit components:
RPS19 (in 25% of cases), RPS24 (2%), RPS17 (one case),
RPL35A (2%), RPL5 (9%) and RPL11 (6.5%), overall
accounting for about 50% of cases [6-10]. All patients are
heterozygous with respect to mutations and haplo-insuf-
ficiency is thought to be responsible for the pathogenetic
mechanism of the disease. The main hypothesis to explain
DBA implies that a defect in ribosome biogenesis and pro-
tein synthesis would trigger apoptotic processes in eryth-
roid progenitors. This is supported by several studies
showing that mutations in RPs impair rRNA processing,
both in CD34+ cells from DBA patients and in erythroid
cells with knock-down of the known DBA genes [8-13].
Mutations in different genes impair different steps of
rRNA maturation, but they all lead to the accumulation of
rRNA precursors and to a reduction in mature ribosomes.
Similar alterations have also been demonstrated in yeast
and human cells deficient for other RPs, not yet found
mutated in DBA [2,14,15]. However, the link between the
haplo-insufficiency of an RP and the erythroid defect
occurring in DBA has not been clarified yet.

DBA has been considered a disease that affects only eryth-
roid progenitors and thus the prototype of a pure eryth-
roid aplasia. However, several lines of evidence suggest
that erythroid progenitors, though apparently more sensi-
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tive to RP haplo-insufficiency than other cell types, are not
the only cell type affected in DBA. Some patients evolve
trilinear aplasia [16], showing that haematopoiesis in
general can be affected, while the presence of congenital
malformations demonstrates that some organogenetic
processes are affected by DBA mutations. Moreover,
patients show short statures well below their genetic
potentials [5].

To gain a better insight into the biological processes and
functions involved in the pathogenesis of DBA, we per-
formed a global gene expression analysis of fibroblasts
isolated from DBA patients carrying mutations in RPS19.
Our data reveal for the first time the presence of abnormal
gene expression in non-haematopoietic DBA cells. Protein
synthesis, nucleotide and amino acid metabolism and
apoptosis are the most affected biological processes.

Results

Gene expression profiling of cells from DBA patients

To identify genes associated with a defect of RPS19, a
whole genome expression profiling study was performed
using Affymetrix GeneChip Human Genome U133A 2.0
Arrays which allow the screening of 18,400 transcripts,
including 14,500 well-characterised genes. We analysed
the gene expression profiles of dermal fibroblasts isolated
from four DBA patients carrying mutations in RPS19, in
comparison to those obtained from six healthy individu-
als. Of the 22,227 probes present on the chip, 13,396 had
Affymetrix "Present" detection calls and intensity values
more than 100 in all arrays and have been used for data
analysis. A list of 490 statistically significantly differen-
tially expressed probes was generated, 215 of which are
up-regulated and 275 down-regulated in DBA patients
(see additional file 1: Genes differentially expressed in
DBA patients identified by microarray profiling). These
probes correspond to 421 differentially expressed genes
(176 up-regulated and 245 down-regulated) in patients
compared to controls.

We also evaluated whether the observed differences in
gene expression may be due to a gender-dependent bias.
The comparison between the array data of female to male
individuals irrespective of the health status yielded a list of
33 differentially expressed probes (six up-regulated and
27 down-regulated in females), corresponding to genes
mainly located on chromosomes X or Y (see additional
file 2: Differentially expressed genes in females relative to
males). Moreover, we identified only five differentially
expressed genes in female DBA patients relative to male
DBA patients (see additional file 3: Differentially
expressed genes in female patients relative to male
patients). These results rule out the presence of gender-
dependent defects in DBA patients.
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Microarray analysis was performed on samples from
patients carrying two missense (p.Arg62Trp and
p-Argl01His), one frameshift and one splice site muta-
tions (c.58delG and c.1-1G>A) in RPS19 (table 1). We did
not identify any gene showing a statistically significant
differential expression in patients with missense muta-
tions compared to other mutation types, indicating that
changes due to the specific nature of the mutational status
were not found in our study.

Microarray analysis did not show any statistically signifi-
cant difference in the mean expression of RPS19 when the
group of patients is compared to the group of controls.
This is due to the fact that two patients carried missense
mutations that are expressed similarly to controls. Inspec-
tion of the microarray data relative to each patient showed
that patient 4 with the frameshift mutation c.del58G had
reduced RPS19 levels (fold change 0.68) as expected by
activation of NMD [17,18]. A slightly reduced RPS19
expression was found also in patient 3 carrying mutation
¢.1-1G>A (fold change 0.84). This was confirmed by qRT-
PCR with a fold change of 0.76 as compared to five con-
trols (data not shown). Mutation c.1-1G>A affects intron
1 acceptor splice site and is expected to cause exon 2 skip-
ping. PCR using primers complementary to exon 1 (for-
ward) and exon 4 (reverse) revealed the presence of two
amplicons of 628 and 557 bp in patient 3 (figure 1a).
Sequencing of PCR products confirmed that the smaller
abnormal transcript lacks exon 2 which contains the
canonical ATG (figure 1b). The first available ATG at posi-
tion 96-98 in exon 3 is out-of-frame (nucleotide number-
ing uses the A of the ATG translation initiation start site as
nucleotide 1): this transcript is expected to be degraded by
NMD [17,18]. However, we cannot rule out that the use
of the in-frame ATG at codon 75 in exon 4 would generate
a short protein of 71 aminoacids. Either way, a loss of
function effect is expected to occur by this mutation in
agreement with the assumed haploinsufficiency theory of
DBA pathogenesis.

Table I: Clinical characteristics of DBA patients
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Biological processes altered in DBA patients

In order to systematically detect impaired biological proc-
esses and molecular functions, we analysed the dataset of
genes differentially expressed in patients relative to con-
trols through the use of Ingenuity Pathways Analysis [19].
The analysis identified a statistically significant enrich-
ment of genes that belong to the following pathways
(table 2): aminoacyl-tRNA biosynthesis (LARS, WARS,
GARS, SARS, QARS, EPRS), glycine, serine and threonine
metabolism (PSAT1, PHGDH, GARS, CTH, SARS,
SHMT?2), death receptor signaling (CASP9, NFKBIA, NFK-
BIE, APAF1, NFKB2, NFKB1, BIRC3), role of PKR in inter-
feron induction and antiviral response (CASP9, NFKBIA,
NFKBIE, APAF1, NFKB2, NFKB1) and RAR activation
(SRC, PRMT2, RDHI11, ADCY3, PRKACA, NFKB2,
NFKB1, MAPKAPK2, RBP1, MMP1, PTEN). In addition,
analysis of the molecular function of the annotated genes
revealed enrichment of gene clusters with roles in protein
synthesis, including a large cluster of RP genes (RPL22,
RPL27A, RPL29, RPL31, RPL14, RPL18A, RPS3, RPL1S,
RPL13, RPL3, RPL34, RPS2, RPS12, RPL15, RPL28), cell
death, cellular development, lipid metabolism and
molecular transport. Additionally, we identified clusters
of genes belonging to the "Top Bio Functions" category of
molecular and cellular functions (table 3) and diseases
and disorders, which comprises cancer related genes, as
well as genes involved in haematological, immunological,
renal and skeletal disorders (table 4). Finally, we observed
enriched clusters of genes related to the development and
function of embryonic, skeletal and connective tissues
(table 5).

Quantitative RT-PCR validation of microarray data

In order to corroborate the microarray gene expression
results, we selected seven genes among those differentially
expressed in DBA patients relative to controls. Real-time
RT-PCR was performed on the same RNA samples used for
microarray analysis. The expression of AMPD3, CCND2,
SOD2, TNFAIP3 (up-regulated in DBA patients) and

Patient Gender Mutation Steroid Follow-up Congenital
(RPS19) Response Abnormalities
| M p.-Argb62Trp R/I2 BMT/Reme yes
2 F p-ArglOIHis Rb TRT/Remf no
3 F cl-1G>A NRe d BMT/Rem no
4 M c.del58G R SDs no

2R/l responsive and subsequent interruption of therapy
bR responsive

¢ this patient was transfusion dependent

4NR non responsive

¢ BMT/Rem remission after bone marrow transplant
fTRT/Rem remission after treatment

8SD steroid dependent
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ATGCCTGGAGTTACTGTAAAAGACGTGAACCAGCAGGAGTTCGTCAGAGCTCTGGCAGCCTTCCTCAAAAA
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RPS 19 expression in patient 3. a) RPS19 expression in patient 3 and controls is shown. Primers complementary to exon |
(forward) and exon 4 (reverse) were used. Two PCR products are indicated in lane | at 628 and 557 bp. b) Sequencing of
RPS19 in patient 3. Exon 2 is 71 nt long and the first three nucleotides represent the translation initiation start site (bold). The
chromatogram shows deletion of exon 2 in c.|-1G>A allele compared to the wild-type sequence in patient 3.

Page 4 of 12

(page number not for citation purposes)



BMC Genomics 2009, 10:442

Table 2: Ingenuity Pathways Analysis: Top canonical pathways.

http://www.biomedcentral.com/1471-2164/10/442

Pathway -Log(P-value*) Ratio** Molecules N°
Aminoacyl-tRNA Biosynthesis 3.36E+00 7.14E-02 LARS, WARS, GARS, SARS, QARS, EPRS 6
Role of PKR in Interferon Induction and 2.84E+00 1.28E-01 CASP9, NFKBIA, NFKBIE (includes EG:4794), APAFI, NFKB2, 6
Antiviral Response NFKBI

Death Receptor Signaling 2.73E+00 1.08E-01 CASP9, NFKBIA, NFKBIE (includes EG:4794), APAFI, NFKB2, 7

NFKBI, BIRC3

Glycine, Serine and Threonine Metabolism 2.31E+00 4.17E-02 PSATI, PHGDH, GARS, CTH, SARS, SHMT2 6
RAR Activation 2.28E+00 6.04E-02 SRC, PRMT2, RDHI I, ADCY3, PRKACA, NFKB2, NFKBI, I

MAPKAPK2, RBPI, MMPI (includes EG:4312), PTEN

*Fischer's exact test was used to calculate a p-value determining the probability that each canonical pathway assigned to that data set is due to

chance alone.

*Number of genes from the dataset that map to the pathway divided by the total number of molecules that exist in the canonical pathway

COMP, WARS and ZIC1 (down-regulated in DBA
patients) was tested. All genes were found to be differen-
tially expressed in patients relative to controls and data are
statistically significant (figure 2a). The correlation
between qRT-PCR and microarray data is 0.7 (figure 2b),
which corresponds to the value obtained in similar stud-
ies [20,21]. Figure 2c shows the comparison of fold
changes from qRT-PCR and microarray analysis. Microar-
ray data showed the same trend as qRT-PCR results for all

the examined genes in each sample, as represented in fig-
ure 3. These data overall indicate that the expression pat-
terns detected by microarray analysis are in good
agreement with those detected by qRT-PCR and validate
our study.

Discussion
The most prominent feature in DBA is anaemia due to
paucity of erythroid progenitors. However, other cellular

Table 3: Ingenuity Pathways Analysis: Top Bio Functions - Molecular and Cellular Functions

Category P-value* Molecules N°

3.67E-07 to 3.06E-02 MME, RPL22, UBE2H (includes EG:7328), RPL27A, LIF, RPL29, MMP14, RPL31, RPLI4, IDE, 44
NFKBI, EIF4EBPI, CASP9, TRHDE, RPLI8A, EDNI, CTSS, MRP63, EIF5, RPS3, RPLI8, MMPI
(includes EG:4312), RPL13, SRC, RRBPI, PJAl, EIF3H, RPL3, RPL34, C9ORF3, RPS2, APAFI,
CEBPB, DCTN2, RPS12, KIAA0368, RPLI5, WARS, RPL28, USEI, SGSM3, IFT52, SMURF2,

PLAU

Protein Synthesis

Cell Death |.78E-04 to 3.06E-02 LIF, ATXNI, NME2, CDKN2C, TMEMI32A, ARG2, MSX2, RBPI, PTEN, SOD2, CASP9, 90
CCNBIIPI, CTSS, PQBPI, SUBI, NUPRI, FOSL2, BIRC3, HLA-C, FBL, NOX4, RP5-886K2.1,
NOVAI, YWHAE, SGCG, MITF, FGFRI, THRA, JUNB, NFKB2, NDN, ADII, OGGI,

CCND2, RAPGEF2, BTG2, PRKACA, RUNXI, CYLD, LRIGI, MME, BRD2, GABPB2, ICAMI,
RGS3, MMP14, KLFI0, BMP2, SATI, EXTI, DUSP22, TNFAIP3, FKBPIA, FNTA, NFKBI,

QARS, ASNS, RPLPO (includes EG:6175), COMP, EIF4EBPI, PGF, RASSFI, ANGPTLA4,

NFKBIA, EDNI, FOXO3, ACTCI, MMPI (includes EG:4312), ATNI, BAGALTS, MUCI,

CALR, SRC, PXN, PRMT2, THGIL, PPIF, BGN, ELL, APAFI, PPPIRI5A (includes EG:23645),

CEBPB, CLCFI, IGF2R, PRG2 (includes EG:5553), NUP62, MAFB, CTH, PLAU, ATP2B4

Cellular Development  2.14E-04 to 3.06E-02 LIF, NME2, SFPQ, MSX2, EEFID, LIMKI, PTEN, SERPINB2, NR4A3, CDON, POSTN, 60
NUPRI, FOSL2, NOX4, NABI, MITF, FGFRI, THRA, LICAM, NFKB2, MBD2, JUNB, NDN,
CCND2, BTG2, RUNXI, MAST2, MSC, ICAMI, NLGNI, MMP14, BMP2, KLF10, MCC,

METTLS, TNFAIP3, EXTI, NFKBI, PGF, RASSFI, NFKBIA, EDNI, FOXO3, ATNI, MMPI
(includes EG:4312), SRC, NHEJI, CALR, PXN, RELB, ELL, APAFI, IRAK3, CEBPB, IGF2R,

CLCFI, AFFI, RBPJ, MAFB, PLAU

Lipid Metabolism 2.41E-04 to 3.06E-02 MUCI, SRC, CASP9, EDN I, APAFI, PHGDH, FAR2, ABCAI, PTEN 9

2.41E-04 to 3.06E-02 CACNAIG, CALR, SRC, YWHAE, ATXNI, NUPI33, SATI, APAFI, NUP50, ABCAI, 15

CASP9, EDNI, SMG7, PHGDH, ATP2B4

Molecular Transport

*Fischer's exact test was used to calculate a p-value determining the probability that each biological function assigned to that data set is due to
chance alone.
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Table 4: Ingenuity Pathways Analysis: Top Bio Functions - Diseases and Disorders

Category P-value*

Molecules

N°

Cancer 1.12E-04 to 3.06E-02

Hematological Disease 1.12E-04 to 3.06E-02

RPL22, EPS8, LIF, NME2, SFPQ, CDKN2C, SSHI, PTEN, LIMKI, SERPINB2,
SOD2, CASP9, CTSS, POSTN, NEDDAL, BIRC3, EPB4ILI, CACNAIG, SOX4,
YWHAE, RRAD, FGFRI, LICAM, MBD2, NFKB2, JUNB, SIPI, ADII, OGGl,
NDN, CCND2, RAPGEF2, BTG2, PRKACA, RUNXI, CYLD, LRIGI, MME, BRD2,
ICAMI, GEM, RGS3, BMP2, KLF10, MMP14, MCC, HAXI, SATI, FKBPIA, EXTI,
SEPT9, NFKBI, RPLPO (includes EG:6175), COMP, EIF4EBPI, PGF, RASSFI,
NFKBIA, ANGPTL4, EDNI, FOXO3, TAOK2 (includes EG:9344), MEG3 (includes
EG:55384), B4GALTS5, MMPI (includes EG:4312), MUCI, CALR, SRC, PXN,
RELB, APAFI, PPPIRI5A (includes EG:23645), CEBPB, CLCFI, IGF2R, AFFI,
NOV, PLAU

LIF, ICAMI, MCC, SFPQ, NFKBI, SERPINB2, PTEN, EIF4EBPI, CASP9, NFKBIA,
HLA-C, SRC, RELB, ELL, MAN2AI, NFKB2, JUNB, CEBPB, CLCFI, AFFI,

78

27

CCND2, BTG2, PRKACA, CYLD, PLAU, RUNXI, LRIGI

Immunological Disease 1.12E-04 to 3.06E-02

ICAMI, LIF, BGN, MMP14, BMP2, RELB, CDKN2C, NFKB2, JUNB, NFKBI, 24

RPLPO (includes EG:6175), CLCFI, PTEN, SOD2, CASP9, CCND2, NFKBIA,
BTG2, FOXO3, RUNXI, CYLD, LRIGI, BIRC3, HLA-C

Renal and Urological Disease 3.57E-04 to 3.06E-02

Skeletal and Muscular Disorders 6.7 1E-04 to 3.06E-02

SRC, RASSFI, SOD2, EDNI, POSTN, NUPRI, PLAU, LRIGI, SIPI, PTEN 10

MME, LIF, ICAMI, BMP2, MMP14, EXTI, TNFAIP3, CI8ORFI0, IDE, NFKBI, 40

PTEN, NR4A3, CASP9, SOD2, NFKBIA, EDNI, CTSS, FOXO3, RPS3,
MAPKAPK2, MMPI (includes EG:4312), HLA-C, SRC, NOX4, PPIF, MITF, BGN,
APAFI, LICAM, NFKB2, CEBPB, NDN, DCTN2, CLIC2, NUPé2, PLAU, RUNXI,
ATP2B4, C200RF43, MCTP2

*Fischer's exact test was used to calculate a p-value determining the probability that each biological function and/or disease assigned to that data set

is due to chance alone.

types also display molecular alterations. Lymphocytes
from patients show reduced proliferation and impaired
translational rates irrespective of the nature of the muta-
tion [22]. An abnormal proliferation rate has been found
also in fibroblasts from patients with mutations in RPS19.
Additionally, both lymphocytes and fibroblasts are char-
acterised by impaired pre-rRNA processing with accumu-
lation of 218 species. Fibroblasts show abnormal nucleoli,
which have irregular shape and disorganised dense fibril-
lar centers, the compartments where early pre-ribosome
maturation takes place [11].

To characterise the molecular abnormalities in DBA non-
haematopoietic cells, we evaluated gene expression pro-
files of fibroblasts isolated from DBA patients carrying
mutations in RPS19. Patients 1 and 2 carried mutations
leading to amino acid substitutions (p.Arg62Trp and
p.Argl01His), the mutation in patient 3 (c.1-1G>A)
impairs the correct splicing of the first intron and abro-
gates the ATG start codon, whereas the mutation in
patient 4 (c.del58G) causes a frameshift of the open read-
ing frame with insertion of a premature stop codon.
Regardless of the heterogeneity of the mutational types,
we did not observe any significant difference when mis-
sense cases were compared to the other mutations,
although this may be due to the limited number of patient
samples of each mutational class in our study.

Gene expression profiling has been previously performed
on bone marrow CD34+ cells isolated from three DBA
patients with mutations in RPS19 and in remission from
the disease (i.e. without any treatment for at least 10
years), compared with healthy controls [23], and on CD4+
peripheral blood mononuclear cells from two DBA
patients with unknown mutations compared with two
acquired aplastic anaemia patients [24]. Our study dem-
onstrates for the first time a global alteration of several
biological processes in non-haematopoietic DBA cells. In
agreement with previous studies [23,24], we identified a
cluster of 22 ribosomal protein genes down-regulated in
DBA patients relative to controls. Patients exhibit signifi-
cant down-regulation of genes encoding proteins impor-
tant for translation, including several eukaryotic
translation initiation factors (EIF3, EIF2, EIF4E), EIF3 and
EIF4 interacting proteins (EIF3S6IP and EIF4EBP1) and
the eukaryotic elongation factor 1 8 (EEF1D). This may be
caused either by the co-regulated transcription of RP genes
or by their coordinated post-transcriptional regulation.

Most interestingly, among down-regulated genes we iden-
tified a large cluster of aminoacyl-tRNA synthetases
(QARS, EPRS, SARS, GARS, LARS, WARS). Aminoacyl-
tRNA synthetases (ARS) catalyse the aminoacylation of
their cognate tRNAs and thus are key enzymes to maintain
the fidelity of protein synthesis. In mammals, additional
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Table 5: Ingenuity Pathways Analysis: Top Bio Functions - Physiological System Development and Function

Category P-value*

Molecules N°

Connective Tissue Development and Function

Embryonic Development

Skeletal and Muscular System Development and Function

Tissue Morphology

Respiratory System Development and Function

2.14E-04 to 3.06E-02

2.14E-04 to 3.06E-02

2.14E-04 to 3.06E-02

2.14E-04 to 3.06E-02

| .44E-03 to 3.06E-02

RPL22, ICAMI, LIF, KLF10, BMP2, MMPI4, METTLS, 33
HAXI, TNFAIP3, NFKBI, MSX2, EIF4EBPI, PTEN, PGF,
LIMKI, EDNI, CHST3, FOSL2, SSBP3, MMPI (includes
EG:4312), SRC, PXN, MITF, BGN, JUNB, IRAK3, CEBPB,
NFKB2, IGF2R, NDN, NOV, RUNXI, PLAU

LIF, ICAMI, BMP2, EXTI, NUP50, MSX2, PTEN, NR4A3, 26
NFKBIA, RASSFI, EDNI, POSTN, FOSL2, SRC, PXN,

MITF, FGFRI, THRA, LICAM, JUNB, CEBPB, AFFI,

BTG2, RBP), IFT52, PLAU

MSC, VAMPS, LIF, MMP14, BMP2, KLFI10, METTLS, 42
FKBPIA, EXTI, NFKBI, COMP, MSX2, PGF, PTEN,

SATB2, NFKBIA, EDNI, CDON, FOXO3, CHST3,

POSTN, FOSL2, ACTCI, SSBP3, CACNAIG, SRC,

NOX4, BMP2K (includes EG:55589), NABI, SGCG, MITF,
FGFR1, BGN, ADCY3, THRA, NFKB2, IRAK3, JUNB,

SMA4, RBP), PLAU, RUNXI

ICAMI, LIF, BMP2, NFKBI, MSX2, ABCAI, PGF, PTEN, 33
EIF4EBP1, CASP9, NFKBIA, EDNI, CTSS, PHGDH,

FOSL2, SSBP3, SRC, RELB, BGN, ZICI, APAFI, LICAM,
THRA, JUNB, NFKB2, CEBPB, OGGI, AFFI, CCND2,

RBPJ, CYLD, PLAU, ATP2B4

SRC, NFKBIA, CCND2, COXI |, EDNI, MAN2AI, 10
MAFB, ABCAI, NDN, PTEN

*Fischer's exact test was used to calculate a p-value determining the probability that each biological function assigned to that data set is due to

chance alone.

cofactors, i.e. proteins p18, p38 and p43, and interacting
core proteins are required to form a functional multisyn-
thetase complex [25]. The gene encoding p18 (CDKN2C)
is also down-regulated in DBA fibroblasts. Moreover, ARS
contribute to the regulation of amino acid metabolism,
which is tightly regulated and essential for ribosome bio-
genesis and function. Human tryptophanyl-tRNA syn-
thetase (WARS) is wup-regulated after IFN-gamma
treatment, together with indoleamine 2,3-dioxygenase
(IDO), the enzyme responsible for tryptophan degrada-
tion, thus creating a pool of Trp-tRNA and providing a res-
ervoir of Trp available for protein synthesis [26-28].
Interestingly, haem stimulates Trp catabolism enhancing
both IDO and WARS enzymatic activities [29,30]. An
abnormal haem catabolism has been suggested to occur
in DBA [31]. Finally, non canonical functions have been
proposed for glutamyl-prolyl-tRNA synthetase (EPRS) in
the translational regulation of specific genes containing a
GAIT element in the 3'UTR [32]. We demonstrate here
that these key regulators are defective in fibroblasts from
DBA patients. This suggests that a differential regulation
of specific mRNAs may have a role in DBA.

High levels of erythrocyte adenosine deaminase (eADA)
activity are a common clinical feature in DBA patients,
suggesting that adenine catabolism is stimulated. This

most likely happens since DBA cells show the impaired
processing of TRNA precursor species, which markedly
accumulate in the nucleoli and need to be degraded [14].
Interestingly, we observed an increased expression of ade-
nosine monophosphate deaminase (AMPD3), an enzyme
of nucleotide break-down involved in the regulation of
energetic metabolism in mammalian cells. It catalyses the
irreversible deamination of adenylic acid and represents a
branchpoint of adenylate nucleotides catabolism, regulat-
ing the size of the purine nucleotide pool [33,34]. The
maintenance of an appropriate intracellular purine nucle-
otide concentration range is necessary for cell survival.
The increased expression of AMPD3 may indicate the
need to dispose of an excess purine pool in DBA fibrob-
lasts.

About 4% of DBA patients develop cancer, most fre-
quently acute myeloid leukemia, myelodysplastic syn-
drome and osteosarcoma [5]. This prevalence is much
higher than that in the general population. Thus DBA
patients seem to have an increased risk of developing
malignancies. Gene expression analysis performed on
fibroblasts from DBA patients revealed dysregulation of
genes involved in cell death and cancer. The decrease in
pro-apoptotic (CASP9, APAF1) and oncosuppressor genes
(PTEN), coupled to the increased expression of some
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Figure 2

Gene expression by qRT-PCR. a) The mean relative
expression in the group of DBA patients relative to the
group of controls (set equal to 1) is reported for each ana-
lysed gene. Beta actin was used to normalise data. P values
less than 0.05 were considered as statistically significant. b)
Correlation of fold changes in the expression of analysed
genes by microarray and qRT-PCR. The R2 coefficient of cor-
relation is reported. c¢) The mean relative expression in the
group of DBA patients relative to the group of controls is
reported for each analysed gene. Fold changes obtained from
gqRT-PCR and microarray analysis are shown for each ana-
lysed gene.

oncogenes (SRC, CYLD) and pro-survival genes (CALR)
may suggest a predisposition for RPS19 mutated fibrob-
lasts to carcinogenesis. It is interesting to note that several
zebrafish lines carrying heterozygous mutations for RP
genes are also prone to develop malignancies [35].

http://www.biomedcentral.com/1471-2164/10/442

Finally, patient fibroblasts differentially express several
genes involved in embryonic and tissue development,
including ZIC1, strongly down-regulated in patients. In
mice, deletion of zic1 gene results in cerebellar malforma-
tions and axial skeletal abnormalities [36,37]. It is worth-
while stressing that 30-48% of DBA patients display
congenital malformations, including abnormalities
affecting the skeletal axis, such as preaxial polydactily.

Conclusion

The global gene expression analysis we performed shed
light for the first time on the impaired biological processes
in a non-haematopoietic cell type in DBA. We revealed a
dysregulation of genes involved in ribosome biogenesis
and protein synthesis, as well as amino acid and nucle-
otide metabolism. These data support the hypothesis that
DBA may be due to a defect in general or specific protein
synthesis.

Methods

Patients and cell culture

This study was performed on four DBA patients, carrying
two missense (p.Arg62Trp and p.ArglO1His), one
frameshift and a splice site mutations (c.58delG and c.1-
1G>A), respectively, in RPS19. Table 1 reports the main
clinical characteristics of these patients. Further informa-
tion about these mutations and their functional character-
isation may be found in [4] and in the DBA genes
Database [38,39].

Research was carried out in compliance with the Helsinki
Declaration. Dermal biopsies were obtained from the four
DBA patients and from six healthy controls after informed
consent during surgery for medical reasons that were not
connected with this study. Fibroblasts were cultured in
IMDM (Iscove's Modified Dulbecco's Medium) supple-
mented with 4 mM L-glutamine, 10% foetal calf serum,
0.1 mg/ml streptomycin, 100 U/ml penicillin (Sigma-
Aldrich) at 37°C and 5% CO,. Total RNA was extracted
from 10°¢ cells upon reaching 80% confluence, within 2-5
tissue culture passages.

RNA isolation, microarray processing and data analysis

Total RNA was isolated using the TRIzol reagent (Invitro-
gen) according to manufacturer's instructions, and puri-
fied with the RNeasy Mini kit (QIAGEN). The quality of
total RNA was assessed using an Agilent 2100 Bioanalyzer
(Agilent Technologies). RNA was quantified with a Nano-
Drop 1000 spectrophotometer (Thermo Scientific). A 6
pg-amount of each total RNA sample was labelled accord-
ing to the standard one-cycle amplification and labelling
protocol developed by Affymetrix (Santa Clara, CA).
Labelled cRNA was hybridised on Affymetrix GeneChip
Human Genome U133A 2.0 Arrays containing over
18,000 transcripts. Hybridized arrays were stained and
washed (GeneChip Fluidics Station 450) and then
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Comparison between qRT-PCR and microarray fold changes. The relative expression of genes analysed by qRT-PCR
is reported for each sample. The mean expression of controls was used as calibrator (set equal to 1) and beta actin was used
to normalise data. Fold changes obtained from microarray analysis are shown for each analysed gene.
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scanned (GeneChip Scanner 3000 7G). Cell intensity val-
ues and probe detection calls were computed from the raw
array data using the Affymetrix GeneChip Operating Soft-
ware (GCOS). Further data processing was performed in
the R computing environment [40] using packages from
the BioConductor software project [41]. Robust Multi-
Array Average (RMA) normalisation was applied [42].
Normalised data were then filtered based on the Affyme-
trix detection call, so that only probes that had a Present
call in at least one of the arrays were retained [43]. Probes
with low intensity values (less than 100) in all arrays were
also excluded from statistical analysis. Data were then
imported into the MultiExperiment Viewer (MeV) soft-
ware [44], and statistical analysis was performed with the
SAM (Significance Analysis of Microarrays) module [45],
implemented as in [46]. A False Discovery Rate (FDR) of
3% was applied to detect significantly differentially
expressed genes in DBA patients versus healthy controls.
Functional analysis of differentially expressed genes was
performed through the use of Ingenuity Pathways Analy-
sis [19]. Microarray data have been deposited in the NCBI
Gene Expression Omnibus (GEO) database with Acces-
sion Number GSE14335.

Validation of data by real time RT-PCR

Genes to be validated were selected on the basis of poten-
tial interest and as representative of a wide range of
expression fold changes in patients relative to controls.
500 ng of total RNA was reverse transcribed to cDNA
using the High Capacity cDNA Archive Kit (Applied Bio-
systems) and random primers. Quantitative PCR was per-
formed with an AbiPrism7000 instrument (Applied
Biosystems) and 1 pl of cDNA was used in a 25-pl final
volume reaction containing Power SYBR® Green PCR Mas-
ter Mix (Applied Biosystems) and specific primers (see
additional file 4: Primers used in the expression analysis
by qRT-PCR). ¢cDNA from each sample was examined in
triplicate in each experiment. Experimental Ct values were
normalised to beta actin, used as endogenous control.
Gene expression was calculated in each sample relative to
the mean of controls, using the formula 2-ddCt, where dCt
is Clgene-Clengo and ddCt is dCtgyyy - mean dCt gyl Dif-
ferences in gene expression of patients relative to controls
were statistically evaluated by ¢ test for independent sam-
ples.

Mutation analysis

DBA patient 3 was further analyzed for exon 2 skipping in
RPS19 transcript. The coding sequence spanning exon 1
and exon 4 was PCR-amplified by standard procedures.
PCR products were excised from agarose gel, purified with
HiYield Gel/PCR DNA Fragments Extraction Kit (Real Bio-
tech, Bangiao City, Taiwan) and sequenced in both direc-
tions using a Big Dye Terminator® v1.1 cycle sequencing
kit (Applied Biosystems) and an Abi PRISM® 3100 genetic

http://www.biomedcentral.com/1471-2164/10/442

analyzer (Applied Biosystems). Primer sequences are
available upon request.
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Additional material

Additional file 1

Genes differentially expressed in DBA patients identified by microar-
ray profiling. The table reports the probeset IDs which are differentially
expressed in DBA patients relative to controls, with an FDR of 3%. The
gene annotation, chromosome location and fold change of expression in
patients relative to controls is also reported.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-442-S1.pdf]

Additional file 2

Differentially expressed genes in females relative to males. The table
reports the probeset IDs which are differentially expressed in females rel-
ative to males, with an FDR of 10%. The gene annotation, chromosome
location and fold change of expression in females relative to males is also
reported.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-442-S2.pdf]

Additional file 3

Differentially expressed genes in female patients relative to male
patients. The table reports the probeset IDs which are differentially
expressed in female DBA patients relative to male DBA patients, with an
FDR of 10%. The gene annotation, chromosome location and fold change
of expression in females relative to males is also reported.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-442-S3.pdf]

Additional file 4

Primers used in the expression analysis by qRT-PCR. The table reports
the sequence of both forward and reverse primers used to amplify genes in
the validation experiments by qRT-PCR. The final concentration used in
the reactions is also indicated for each primer.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-442-54.pdf]
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