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ABSTRACT   

Laser induced elastic waves in soft media have great potential to characterize tissue biomechanical properties. The 
instantaneous increase in local temperature caused by absorption of laser energy leads to a mechanical perturbation in the 
sample, which can then propagate as a pressure (or an elastic) wave. The generation of the elastic wave can be via 
thermoelastic or ablative processes depending on the absorption coefficient of the sample and incident laser fluence. It is 
critical to differentiate between these regimes because only the thermoelastic regime is useful for nondestructive analysis 
of tissues. To investigate the transition point between these two different regimes, we induced elastic waves in tissue 
mimicking agar phantoms mixed with different concentrations of graphite powder. The elastic waves were excited by a 
532nm pulsed laser with a pulse duration of 6 ns. The fluence of the pulsed laser was tuned from 0.08 J/cm2 to 3.19 
J/cm2, and the elastic wave was captured by ultra-fast line-field low coherent holography system capable of single-shot 
elastic wave imaging with nanometer-scale displacement sensitivity. Different concentrations of graphite powder 
enabled excitation in sample with controlled and variable attenuation coefficient, enabling measurement of the transition 
between the thermoelastic and ablative regimes. The results show that the transition from thermoelastic to ablative 
generated waves was 0.75 J/cm2 and 1.84 J/cm2 for phantoms with optical attenuation coefficients of 6.64±0.32 mm-1 
and 26.19±1.70 mm-1, respectively. Our results show promise for all optical biomechanical characterization of tissues. 
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1. INTRODUCTION  
Optical coherence elastography (OCE) [1, 2] has benefited from advancements in its parent imaging modality, optical 
coherence tomography (OCT) [3] such as speed [4-6]. However, the most common excitation methods, such as contact 
[7], acoustic [8-10], or pneumatic [11, 12] stimulation have limitations. For example, contact based methods require 
careful consideration of tissue type and may not be appropriate for certain applications where direct contact is 
undesirable. Similarly, acoustic techniques require the use of a coupling medium and may exceed allowable excitation 
energies. Air based excitation techniques can only excite low frequency responses in tissues, which is susceptible to 
boundary conditions and limits spatial resolution [13, 14]. Optical excitation may overcome these limitations. Several 
groups have demonstrated generation of elastic waves in tissue using pulsed lasers [15-21]. The absorption of light 
induces a rapid increase in the localized temperature and generates a mechanical displacement in the tissue, which can 
then propagate as an elastic wave through the target tissue. Therefore, this technique shows promise for completely 
noninvasive all-optical characterization of tissue biomechanical properties. However, generation of elastic waves with 
sufficiently detectable amplitude can induce damage to tissues and cells [22-27]. To this end, external agents have been 
proposed to enhance the laser energy absorption, such as gold nanoparticles [28], perfluorocarbon [29], ink [15], and 
graphite powder [21].  

Based on the pulsed laser fluence and the absorption coefficient of the sample at excitation laser wavelength, the 
generated elastic wave can generally be characterized into two regimes, thermoelastic or ablative [21]. In this work, we 
experimentally measured the transition point between the two regimes by exciting waves with a 532 nm pulsed laser at 
various pulse energies in tissue-mimicking agar phantoms with different concentrations of graphite powder. This work is 
a critical step for developing truly safe noncontact all-optical elastographic techniques. 
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2. MATERIALS AND METHODS 
A Q-switched, frequency doubled Nd:YAG laser at 532 nm (Polaris II, New Wave Research, Inc.) induced the elastic 
waves in the samples at various pulse energies, from 0.29 mJ to 12.27 mJ per pulse. The excitation beam was focused on 
the sample surface with an incidence angle of ~15°. The focused beam diameter on the sample surface was ~0.7 mm, 
resulting in an incident fluence of 0.08 J/cm2 to 3.19 J/cm2. The laser-induced elastic waves were detected using a line 
field low coherence holography (LF-LCH) imaging system, which has been described previously [30, 31]. The LF-LCH 
system had a temporal resolution of 5 µs and displacement sensitivity of 1 nm. The focus of the excitation beam was 
offset from the line focus of the LF-LCH system by ~5 mm. The pulsed laser was externally triggered and synchronized 
with the LF-LCH system.  

To prepare the graphite phantoms (n=3 of each type), we mixed various amounts of graphite power into a 1% (w/w) agar 
preparation. The absorption coefficient at the pulsed laser wavelength (532 nm) of each sample was determined by 
measuring the transmittance of 10 slices of phantom of different thicknesses. The mean value and the standard deviation 
of the measured absorption coefficients for the different phantoms is shown in Table 1. 
 

Table 1. Absorption coefficient of 1% (w/w) agar phantoms mixed with various amounts of graphite powder (n=3 of each type). 

Graphite Powder (%) Absorption Coefficient (mm-1) 
0.5 6.64±0.32 
2.0 26.19±1.70 

3. RESULTS & DISCUSSION  
The temporal profiles of the elastic waves induced by either the thermoelastic or ablative processes have distinguishing 
features as shown in Figure 1. In the thermoelastic regime, the wave has two distinct peaks with equal but opposite 
amplitudes as indicated in Figure 1(a). On the other hand, the ablative regime has asymmetric displacement in positive 
and negative direction, but is nearly symmetric about the center of the maximal negative displacement as shown in 
Figure 1(b). 

Moreover, the elastic wave amplitude and group velocity were analyzed as per our previous publications [30-33]. The 
Young’s modulus of all the samples were also measured by the “gold standard” uniaxial mechanical testing (Model 
5943, Instron Corp., MA, USA) as 20±5 kPa. The measured elastic wave group velocity for all concentration of graphite 
phantom was 2.18±0.2 m/s, which translates to 17.8±3 kPa as estimated by the surface wave equation, which is in 
agreement with our previous work [34] and mechanical testing. 

The dependence of the elastic wave amplitude as a function of laser energy was investigated by gradually increasing the 
excitation laser energy from 0.29 mJ to 12.27 mJ. Shear wave amplitudes were averaged for each energy on three 
samples of each graphite concentration. The excitation location was changed after each measurement to avoid any 
potential local degradation of the medium. 
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Figure 1. Temporal profile of laser induced elastic wave in (a) thermoelastic regime and (b) ablative regime at different distance 
of propagation. 

The elastic wave amplitude was measured as the mean squared amplitude of the displacement up to 0.1 mm from the 
start of the imaging region as measured from the phantom surface by the LF-LCH system. Sample measurements are 
illustrated in Figure 2. The results show that as we increased the excitation pulse energy, the transition from the 
thermoelastic to ablative regime occurred after a certain pulsed laser energy that was determined by the absorption 
coefficient of the sample. The transition point from thermoelastic regime to ablative regime is marked by 
correspondingly colored arrows for the two typical samples with different absorption coefficients in Figure 2. The elastic 
waves generated by the pulsed laser energy to the left of the arrows were excited in the corresponding thermoelastic 
regime and the waves to the right were induced in the ablative regime. Clearly, the transition point increased in energy as 
the absorption coefficient increased, which was as expected. Moreover, the slope of shear wave amplitude versus laser 
pulse energy beyond the transition point (i.e. ablative regime) is much steeper than the slope in thermoelastic regime. 
Previous work has suggested that this is due to the nonlinear nature of the ablation process [35]. 

 
Figure 2. Shear wave amplitude for different phantom samples with various attenuation coefficients as a function of 
excitation energy. The transition point from thermoelastic to ablative regime is marked by the correspondingly colored 
arrows. 
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4. CONCLUSIONS  
We investigated the excitation of elastic waves in tissue-mimicking agar phantoms mixed with various amounts of 
graphite powder. The excitation energy of the 532nm pulsed laser was incrementally adjusted, and the resulting waves 
were detected by a line-field low coherence holography system. The elastic wave amplitudes increased as a function of 
excitation pulse energy, and a clear transition point between thermoelastic and ablative induced elastic waves was 
observed. Moreover, the required incident energy to transition from the thermoelastic to ablative excitation regimes 
decreased as a function of the optical absorption coefficient. Our future work will investigate a larger range of optical 
absorption coefficients and stiffnesses. Our work is a critical step for developing safe and completely noncontact all-
optical elastography. 
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