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ABSTRACT

Context-aware recommendation became a major topic of interest

within the recommender systems community as the context is cru-

cial to provide the right items at the right moment. Many studies

aim at developing complex models to include contextual factors in

the recommendation process. Despite a real improvement on the

recommendations quality, such contextual factors face users’ pri-

vacy and data collection issues. We support the idea that context

could be expressed in term of item a�ributes rather than contex-

tual factors. To investigate that hypothesis, we designed an online

experiment where 174 users were asked to describe the context in

which theywould listen the proposed songs for whichwe collected

12 musical a�ributes. We make available all the material collected

during this study for research purposes and non-commercial use.
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1 INTRODUCTION

Since it has been demonstrated that recommendations quality is

not only about precision relatively to users preferences, current

recommendation algorithms aim at integrating human factors in

the recommendation process. Among them, context which is used

to provide the right recommendations at the right moment is one

of the most studied factors and its bene�ts no longer have to be

demonstrated [1]. For example, context is crucial to recommende

the right genre of music to a user in harmony with his activity or

mood, or to recommend exhibits in a museum according to user’s

timeframe and people accompanying him.

Traditional Context-Aware Recommender Systems (CARS) col-

lect and exploit information about the user situation (individual-

ity, activity, location, time, and relations). Such information can

be collected in several ways, by using sensors of the devices (GPS,

temperature, light,. . . ) or by cross-checking information gathered

from other sources (e.g. inferring the weather from the geolocal-

ization) [1]. A system can also directly question users about their
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context 1. Once contextual factors are de�ned, several methods

are used to exploit them as matrix factorization [2], tensors [5]

or graph-based approaches [7]. Despite unquestionable bene�ts

in term of recommendation quality, such approaches face many is-

sues. First, collecting such information is intrusive, some researches

have demonstrated that collecting personal data becomes less and

less desirable [4] and could lead to mistrust [6]. Second, context is

known to be a very dynamic dimension and changes of one contex-

tual factors can lead to a completely di�erent context. Suchmodels

then require a non-stop tracking to detect any change of contex-

tual dimension in order to adapt their recommendations and this

point supports the previous discussed limitation. �ird, required

pieces of information are sometimes partially or non observable

by the system due to technical or privacy preservation issues (as

an example, users may have blocked the geolocalization on their

smartphone making them obsolete).

For all these reasons, we proposed in 2015 a new de�nition of con-

text based on the sol basis of consumed item a�ributes [3]. Our

model was based on a�ributes diversity evolution over time and

was used to isolate sequences of consultations sharing similar at-

tributes called Implicit Context. �us, context was nomore de�ned

by user situation description but according to item a�ributes val-

ues and their evolutions. Rather than �nding items consumed in

similar context to provide recommendations, our model could be

used to extract the dimensions (a�ributes) that characterize the

current implicit context. Adapting recommendations to these im-

plicit context could be a new way to provide contextualized rec-

ommendations. However, no existing relations between the set

of features discribing an item and explicit context characteristics

were shown.

With the study proposed in this paper, we intend to provide a real

dataset to investigate the potential links between context features

and item a�ributes. More speci��cally, we wonder how users as-

sociate items with explicit contexts in an online music service. We

used amusical dataset in our study as listening contexts are numer-

ous, can easily be made explicit, and �nding item a�ributes does

not constitute an obstacle. Such study could also �t e-learning,

museum or e-commerce scenarii.

2 EXPERIMENT SETUP

For the purpose of our experiment, we created an online survey2

to collect users’ point of view as regards the context in which they

would listen to tracks. �ese la�er were selected on the basis of

their preferred genres. Our goal was not to �nd the most suitable

1h�ps://www.spotify.com/, h�ps://play.google.com/music/
2h�p://movit.tv/
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tracks for each user but to �nd a way to collect information on how

users assign context dimensions to tracks.

2.1 MATERIALS

Users were recruited using mailing lists and the average duration

to complete the study was about twenty �ve minutes. �e track

dataset used contains 360 tracks randomly selected from a Last.fm
3 dataset collected from 28 June 2005 to 18 December 2014. We

choose to randomly select tracks in a large dataset (more that 170,000

tracks) to avoid bias due to popularity. 30 tracks were selected for

each of the following genre: rock, pop, rap, country, punk, jazz,

hip-hop, classical, folk, metal, electronic, blues. �e only selec-

tion criteria were to have only one track per artist for all the se-

lected tracks and to ensure that every a�ributes could be retrieved

through the Spotify API4. We then gathered 12 a�ributes for each

track (10 a�ributes tracks, and 2 for artists).

• track attributes: acousticness, danceability, duration,

energy, instrumentalness, liveness, loudness, speechiness,

tempo, valence;

• artist attributes: genre, popularity.

In the �rst part of the survey, users were asked to give some de-

mographic information (age, gender, socio-professional category)

and some information about their listening habits (preferred genre,

favorite place to listen to music, listening time per day, how they

chose their music). �e second part of the survey consisted in pre-

senting 15 tracks to each user according to their prefered genres

and ask them to assign adapted contexts to these tracks (see Table

1).

Table 1: Context dimensions and conditions collected

Context dimensions Context conditions

Activity

relaxing, cleaning-up, cooking, driving,

partying, reading, exercising, thinking,

traveling, waking up, walking, working

Day morning, day, evening, night

Energy quiet, normal, energetic

Environment personal, professional

Place indoors, outdoors

Season spring, summer, fall, winter

Social alone, family, friends, couple

Weather sunny, rainy, snowy, cloudy

Week week, week-end

2.2 RESULTS

In order to reduce bias due to non conscientious responses, we de-

cided to discard users who did not �nished the study and obtained

a �nal dataset of 172 users. By discarding records for tracks which

were disliked (it is meaningless to ask users to specify the context

for a track they will not listen to), we got a dataset of 1,507 tracks

annotated (see Figure 1 for repartition).

3h�p://www.last.fm/fr/api
4h�ps://developer.spotify.com/web-api/
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Figure 1: Number of times tracks were annotated

3 CONCLUSION

Implicit context appears to be a promising alternative to explicit

context as it could be used to de�ne user context while preserv-

ing his privacy and prevent data acquisition issues. In order to do

so, overlaps between implicit and explicit context have to be high-

lighted and the data collected throught this study can be used to

achieve this goal. We provide all the material collected during this

study to encourage the research communtity to investigate rela-

tions between item a�ributes and explicit contexts.

Link to the data: https://github.com/teamKiwi/umap2017
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