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The rotational dynamics of CO single molecules solvated in small He clusters (CO@HeN) has been
studied using reptation quantum Monte Carlo simulations for cluster sizes up toN530. Our results
are in good agreement with the rotovibrational features of the infrared spectrum recently determined
for this system and provide a deep insight into the relation between the structure of the cluster and
its dynamics. Simulations for largeN also provide a prediction of the effective moment of inertia of
CO in the He nanodroplet regime, which has not been measured so far. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1697388#

I. INTRODUCTION

Thanks to recent progresses in helium nanodroplet iso-
lation ~HENDI! spectroscopy,1 the infrared and microwave
spectra of small molecules solvated in HeN clusters are now
becoming accessible in the small- and intermediate-size
regimes.2–5 In the particular case of carbon monoxide, the
rotovibrational spectrum of the molecule solvated in small
He clusters (CO@HeN) has been recently studied in the size
rangeN52 – 20.5 The infrared spectrum in the 2145-cm21

region of the C–O stretch consists of twoR(0) transitions
which smoothly correlate with thea-type (K50←0) and
b-type (K51←0) R(0) lines of the binary complex,
CO@He1. The series ofb-type transitions—which starts off
about 7 times stronger forN51—progressively loses inten-
sity as N increases, until it disappears aroundN57 – 8.
Around this size, just before it disappears, theb-type line
seems to split in two. Analogously, aroundN515 thea-type
line also seems to split, and the assignment of experimental
lines becomes uncertain for larger clusters. Elucidating the
relation existing between the position, number, and intensity
of the rotational lines and the size and structure of the cluster
is the principal goal of the present paper.

Computer simulations of quantum many-body systems
have also considerably progressed in recent years, allowing

in some cases to determine the low-lying spectrum of excited
states. The rotational dynamics of small molecules solvated
in He clusters and nanodroplets is one of these favorable
instances. The scarcity of low-lying excited states typical of
superfluid systems makes it possible in this case to extract
information on the location and intensity of the spectral lines
from an analysis of the time series generated by quantum
Monte Carlo random walks.6–8 The rotational spectrum of
OCS@HeN has been studied along these lines in Refs. 9 and
10. Among the many different flavors of the quantum Monte
Carlo method available in the literature, we adoptreptation
quantum Monte Carlosimulations,6,7 which we believe pre-
sents distinctive advantages in the present case and which
will be briefly introduced in Sec. II. In Sec. III we present
and discuss our results, whereas Sec. IV contains our conclu-
sions.

II. THEORY, ALGORITHMS, AND TECHNICAL DETAILS

Virtually all ground-state quantum simulation methods
are based on prior knowledge of some approximate wave
function F0 for the system under study. In the variational
Monte Carlo~VMC! method one contents oneself with this
knowledge and the simulation simply aims at calculating the
complicated multidimensional integrals which are needed to
estimate ground-stateapproximate expectation values,

^F0uÂuF0& ~here and in the following quantum-mechanical
operators are indicated with a caret!. To this end, a random
walk in configuration space is generated according to the
Langevin equation

dx5ef0~x!1dj, ~1!
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wherex[$xa% indicates the coordinates of the system,e is
the step of time discretization,

f0~x!52
] ln@F0~x!#

]x
, ~2!

and dj is a Gaussian random variable of variance 2e:
^djadjb&52edab . Approximateground-state quantum ex-
pectation values are then estimated as time averages over the
random walk, Eq.~1!.

Within the reptation quantum Monte Carlo~RQMC!
method, exact ground-state expectation values and
imaginary-time correlation functions are calculated as appro-
priate derivatives of the pseudo partition function, in the
low-temperature~large-T! limit,

Z05^F0ue2TĤuF0&, ~3!

whereĤ is the Hamiltonian of the system. By breaking the
time T into P intervals of lengthe5T/P, Eq. ~3! can be
given a path-integral representation:

Z0'E F0~x0!P i 50
P21^xi ue2eĤuxi 11&F0~xP!dP11x. ~4!

For the relatively small systems considered here, it is suffi-
cient to use theprimitive approximationto the imaginary-
time propagator,

^xue2eĤuy&}e2~x2y!2/2e2e@V~x!1V~y!#/21O~e3!, ~5!

whereV(x) is the potential energy at pointx. The dynamical
variables of the statistical-mechanical system whose partition
function is given by Eq.~4! are segments of the VMC ran-
dom walk generated from Eq.~1!, x(t) of length T, which
we call reptiles. As the random walk proceeds, the reptile is
allowed to creep back and forth: new configurations of the
reptile are accepted or rejected according to a Metropolis test
made on the integrand of the path-integral representation of
Z0 , Eq.~4!. It can be demonstrated6,7 that in the large-T limit
the sample of reptile configurations thus generated is such
that the sample average of quantities like

A@x~t!#5
1

T E
0

T

A„x~t!…dt ~6!

converges without any systematic bias~but those due to the
finite values ofe andT! to ^Â&5^C0uÂuC0&, C0 being the
exactground-state wave function of the system. Even more
interesting is the fact that sample averages of reptile time
correlations,

CA~t!5
1

T2t E0

T2t

A„x~t8!…A„x~t81t!…dt8, ~7!

provide equally unbiased estimates of the corresponding
quantum correlation functions in imaginary time,

CÂ~ i t !2^C0uÂ~ i t !Â~0!uC0&[^C0ueĤtÂe2ĤtÂuC0&, ~8!

CA(t)'CÂ( i t). The absorption spectrum of a molecule sol-
vated in a nonpolar environment is given by the Fourier
transform of the autocorrelation function of its electric di-
pole d,

I ~v!}2p(
n

u^C0ud̂uCn&u2d~En2E02v!

5E
2`

`

eivt^d̂~ t !•d̂~0!&dt, ~9!

whereC0 andCn are ground- and excited-state wave func-
tions of the system, respectively, andE0 and En the corre-
sponding energies. The dipole of a linear molecule—such as
CO—is oriented along its axis, so that the optical activity
is essentially determined by the autocorrelation function
of the molecular orientation versor:c(t)[Cn̂(t)

5^C0ueiĤ tn̂e2 iĤ tn̂uC0&. We have seen that the RQMC
method gives easy access to the analytic continuation to
imaginary time of correlation functions of this kind. From
now on, when referring totime correlation functions, we will
mean reptile time correlations—i.e., quantum correlation
functions in imaginary time. Continuation to imaginary time
transforms the oscillatory behavior of the real-time correla-
tion function—which is responsible for thed-like peaks in its
Fourier transform—into a sum of decaying exponentials
whose decay constants are the excitation energiesEn2E0

and whose spectral weights are proportional to the absorp-
tion oscillator strengths,u^C0uduCn&u2. Dipole selection
rules imply that only states withJ51 can be optically ex-
cited from the ground state which hasJ50. Information on
excited states with different angular momentaJ can be easily
obtained from the multipole correlation functionscJ(t), de-
fined as the reptile time correlations of the Legendre polyno-
mials,

cJ~t!5^PJ~n~t!•n~0!!&

[K 4p

2J11 (
M52J

J

YJM* „n~t!…YJM„n~0!…L . ~10!

Both He–He and He–CO interactions used here are de-
rived from accurate quantum-chemical calculations.11,12 The
CO molecule is allowed to perform translational and rota-
tional motions, but it is assumed to be rigid. The trial wave
function is chosen to be of the Jastrow form:

F05expF2(
i 51

N

Ui~r i ,u i !2(
i , j

N

U2~r i j !G , ~11!

wherer i is the position of thei th atom with respect to the
center of mass of the molecule,r i5ur i u, u i is the angle be-
tween the molecular axis andr i , andr i j is the distance be-
tween thei th andj th helium atoms.U1 is expressed as a sum
of five products of radial functions times Legendre polyno-
mials. All radial functions~including U2) are optimized in-
dependently for each cluster size with respect to a total of 27
variational parameters. The propagation time is set toT
51 K21, with a time step ofe51023 K21. The effects of
the length of the time step and of the projection time have
been estimated by test simulations performed by halving the
former or doubling the latter. These effects were barely de-
tectable on the total energy and very small on the excitation
energies discussed below~we estimate that more converged
simulations would actually improve the already excellent
agreement with experimentally observed spectra!.

9072 J. Chem. Phys., Vol. 120, No. 19, 15 May 2004 Cazzato et al.
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The estimate of excitation energies and spectral weights
from imaginary-time correlations amounts to performing an
inverse Laplace transform, a notoriously ill-conditioned op-
eration which is severely hindered by statistical noise.13 For
each value ofJ, we extract the value of the two lowest-lying
excitation energiesea,b

J —i.e., the two smallest decay con-
stants in cJ(t)—as well as the corresponding spectral
weightsAa,b

J , from a fit of cJ(t) to a linear combination of
three decaying exponentials. This fitting procedure does not
solve in general the problem of obtaining the spectrum from
a noisy imaginary-time correlation function. However, if we
know in advance that very few strong peaks, well separated
in energy, nearly exhaust the entire spectral weight, their
position and strength can be reliably estimated from this
multiexponential fit. In the present study these favorable con-
ditions are usually met, although the limitations of the pro-
cedure will show in some cases, as discussed below.

III. RESULTS AND DISCUSSION

RQMC simulations have been performed for CO@HeN

clusters in the size rangeN51 – 30. In Fig. 1 we report the
values of the He atomic binding energyDEN5EN212EN as
a function of the cluster size.DEN first increases up toN
54 – 5, and it stays roughly constant in the rangeN55 – 8;
from this size on,DEN starts decreasing, first slowly, then,
from N510– 11, rapidly down to a minimum atN519. For
N.19, DEN increases again and slowly tends to the nano-
droplet regime@where it coincides with the bulk chemical
potential,m57.4 K ~Ref. 7!#, which is, however, attained for
much larger cluster sizes than explored here.14 This behavior
can be understood by comparing the shape of the CO–He
potential energy functionv(r ) with the incremental atomic
density distributionsDrN(r )5rN(r )2rN21(r ), whererN is
the expectation value of the He density operator:

r̂~r !5(
i 51

N

d~r2r i ! ~12!

~see Fig. 2!. For very smallN the atomic binding energy is
dominated by the He–CO attraction which is strongest in a
well located atop the oxygen atom. As He atoms fill this
well, DEN first slightly increases, as a consequence of the
attractive He–He interaction: then, for largerN, the increased

He–He interaction is counterbalanced by the spill-out of He
atoms off the main attractive well, until forN'9 the reduc-
tion of the He–CO interaction overcomes the increased at-
traction and the binding energy starts decreasing steeply. For
N in the range 10–14 He density accumulates towards the C
pole, while, aroundN515, the first solvation shell is com-
pleted and the differential atomic densityDrN is consider-
ably more diffuse starting fromN516. DEN reaches a mini-
mum at N519. For larger sizes, the trend in the atomic
binding energy is dominated by the increase of the He–He
attraction related to the increase of the cluster size, until it
converges to the bulk chemical potential.

In Fig. 3 we report the positions and spectral weights of
the rotational lines, as functions of the cluster sizeN. In the
size rangeN51 – 9, analysis of the dipole time correlations
clearly reveals the presence of two peaks, with the weight of
the one at higher energy~b type! rapidly decreasing by al-
most a factor of 2. Note that the sum of the spectral weights
of these two lines nicely sums to 1, indicating that they ex-
haust all the oscillator strength available for optical transi-
tions originating from the ground state. ForN between 10
and 12~shaded area in Fig. 3! the situation is less clear. As
the weight of theb-type line drops to zero, the statistical
noise on its position grows enormously. Furthermore, the
multiexponential fit introduces some ambiguity, as the results
are somewhat sensitive to the number of terms in the sum.
However, the important information that one line disappears
betweenN510 and 12 is clear. For largerN only one rel-
evant line remains, and the robustness of the fitting proce-
dure is recovered, with the minor exception of the sizes
aroundN516, where the minimum of thex2 appears to be
less sharp, possibly correlating with the splitting of the line
observed in the infrared spectra forN515 ~see below!.

In the upper panel of Fig. 4 we compare the rotational
structure of the observed infrared~vibrational! spectrum5

with the rotational excitation energies calculated in this
work. Experimental data are referred to the centern0 of the
vibrational band forN50 ~CO monomer!. In order to better
compare our predictions with experiments, we have cor-
rected the former with an estimate of thevibrational shift

FIG. 1. Atomic binding energyDEN5EN2EN21 as a function of the clus-
ter size in CO@HeN . The horizontal line on the right of the figure indicates
the chemical potential in bulk4He, m57.4 K ~Ref. 7!.

FIG. 2. ~Color! Upper left panel: He–CO interaction potential. C~blue! and
O ~cyan! atoms are pictured by two circles whose radius is the correspond-
ing van de Waals radius. The other panels picture the differential He density
DrN5rN2rN21 for various sizes of the CO@HeN cluster. Color conven-
tion is rainbow: red to purple in order of increasing magnitude.
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Dn0—i.e., the displacement of the vibrational band origin as
a function of the number of He atoms. The vibrational shift
can be calculated as the difference in the total energy of the
cluster obtained with two slightly different potentials12 v00

andv11, representing the interaction of a He atom with the
CO molecule in its vibrational ground state and first excited
states, respectively. Our estimate of the vibrational shift as a
function of the cluster size is reported in the lower panel of
Fig. 4. Since the evaluation of a small difference between
two large energies is computationally demanding for large
clusters,Dn0 has been evaluated perturbatively with respect
to the differencev002v11.14 We have used the vibrational
shift calculated in Ref. 14 after verifying on small clusters
that the perturbative treatment is reliable. The agreement be-
tween our results and experiments is remarkable. Some of
the features of the observed spectrum, however, call for a
deeper understanding and theoretical investigation. Two
questions, in particular, naturally arise: Why are two peaks
observed in the small-size regime and what determines the
disappearance of one of them atN58? What determines the
split of the higher-frequency~b-type! line atN57 and of the
lower-frequency~a-type! one atN515?

The existence of two lines for smallN is likely due to a
larger asymmetry of the cluster in this regime. If the
CO@HeN complex is described as a rigid rotor, in fact, one
would have one rotational line originating from aJ50
ground state if the complex has cylindrical symmetry, while
this line would double if some of the atomic density accu-
mulates in a longitudinal protrusion. The inertia of the com-
plex would in this case be larger for a rotation about an axis

perpendicular to a plane containing the protrusion~end-over-
end rotation! than about an axis lying on such a plane. Given
that the He density in the ground state of CO@HeN is cylin-
drically symmetric, any departure from this symmetry can
only show up in higher correlation functions. The situation is
conceptually similar to that of a fluid whose density is ho-
mogeneous and whose structure at the atomic scale is re-
flected in the pair correlation function. Analogously, we de-
fine an atomic angular correlation functionC(f) as the
probability of finding two He atoms which form a dihedral
anglef with respect to the molecular axis:

C~f!5K 1

N~N21! (i , j
d~f i2f j2f!L . ~13!

In the upper panel of Fig. 5 we showC(f) for different
cluster sizes. The depletion ofC for f larger thanp/2,
clearly visible forN53 ~circles!, indicates a tendency of the
He atoms to cluster on a same side of the molecular axis. For
larger clusters, however, this effect weakens to the extent
that it becomes difficult to disentangle from the structural
information related to the He–He interaction@the dimple at
small f and the subsequent maximum aroundf
5(0.3– 0.4)p]. A more sensitive measure of the propensity
of He atoms to cluster on a side of the molecule is given by
the integral ofC(f) from 0 to p/2:

M5E
0

p/2

C~f!df2
1

2
. ~14!

FIG. 4. Upper panel: positions of the infrared lines of CO@HeN as observed
experimentally~Ref. 5, open circles! and as estimated from the present
simulations and corrected by the estimated vibrational shift~solid diamonds;
see text!. Lower panel: vibrational shift of the lines, as estimated in the
present work~triangles! and in Ref. 14~diamonds and dashed line!.

FIG. 3. Upper panel: position of the rotational lines of CO@HeN as ob-
tained from RQMC simulations as a function of the cluster sizeN. Here
a-type lines are indicated with triangles,b-type lines with diamonds. Lower
panel: spectral weights of the lines reported in the lower panel; the solid line
near the upper border of the figure corresponds to the sum of the spectral
weights.

9074 J. Chem. Phys., Vol. 120, No. 19, 15 May 2004 Cazzato et al.
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In the lower panel of Fig. 5 we displayM as a function of the
cluster sizeN: one sees thatM decreases withN and reaches
a minimum atN514. This is the size at which the first
solvation shell is completed, and the cluster asymmetry in-
creases again when the second shell starts to build. The ro-
tational spectrum of the solvated molecule, however, is in-
sensitive to this asymmetry for clusters of this and larger
sizes because the motion of He atoms in the second and outer
solvation shells is decoupled from that in the first and from
molecular rotation. The existence of a longitudinal asymme-
try is a necessary condition for the doubling of the rotational
line. Whether or not this condition is also sufficient depends
on the dynamics: if quantum fluctuations make the motion of
the protrusion around the molecular axis fast with respect to
the molecular rotation, then the asymmetry is effectively
washed out. The existence of two lines in the rotational spec-
trum of the molecule implies, therefore,~i! that an asymme-
try in the classicaldistribution of He atoms around the mo-
lecular axis exists,~ii ! that the molecular inertia is sensitive
to this asymmetry~the protrusion can be ‘‘dragged’’ along
the molecular rotation!, and~iii ! that the motion of this pro-
trusion around the molecular axis is not adiabatically decou-
pled from the molecular rotation.

In order to better characterize the motion of He atoms
around the molecule and the coupling of this motion to mo-
lecular rotation, we examine the imaginary-time correlations
of the versoru of the He center of massr c.m. relative to the
molecular center of mass:

Cu~t!5^u~t!•u~0!&. ~15!

For the binary complex He–CO,r c.m. coincides with the po-
sition of the helium atom, and we expect its angular dynam-
ics to be strongly correlated to the molecular rotation, at least
in the end-over-end mode. In Fig. 6 we report the frequency
of the slowest mode appearing in the spectral analysis of
Cu(t), eu , as a function ofN, and compare it with the cor-
responding frequencies of the molecular rotation. We see that
for cluster sizes up toN59 – 10, eu is degenerate with the
a-type frequency in the molecular rotational spectrum, with a
spectral weight which passes fromAu'1 for N51 to Au

'0.7 for N510. These findings are a manifestation of the
fact that He atoms are dragged along the slowest, end-over-
end, rotation of the solvated molecule and that the effect of
this dragging decreases when more He states withJ51 be-
come available and subtract spectral weight to the slowest
mode. ForN.10, eu further increases and departs fromea ,
indicating an effective decoupling of the two kinds of mo-
tion. In this regime, the effective rotational constantB of the
solvated molecule is almost independent of the cluster size.
Free molecular rotation with an increased moment of inertia
with respect to the gas phase is the typical signature of su-
perfluid behavior in He nanodroplets. Extrapolating the re-
sult obtained forN up to 30 to the nanodroplet limit, we
predict a renormalization factor of theB value of 0.78 with
respect to the gas-phase value. The lowest atomic modeeu

slows down again forN515. This is due, however, to the
slow He motion in the second solvation shell, which hardly
affects the rotation of the solvated molecule. Although the
resolution that can be achieved with our simulations is not
sufficient to detect the doubling of thea andb lines which is
experimentally observed forN515 andN57, respectively,
it is interesting to notice that the former occurs in correspon-
dence with the crossing betweeneu andea , possibly due to
the resonant interaction between the two modes. It is tempt-
ing to assume that a similar mechanism may be responsible
for the doubling of theb line at N57, involving, however,
higher-energy He states. A deeper study of the He dynamics
would clarify this point.

FIG. 5. Upper panel: probability density of finding two He atoms which
form a dihedral anglef with respect to the molecular axis; the probability is
normalized to 1. Results pertain to clusters withN53 ~circles!, N56 ~tri-
angles!, andN513 ~diamonds!. Lower panel: the integrated probability den-
sity, defined in Eq.~14!, as a function of the cluster size.

FIG. 6. Diamonds: CO rotational frequencies in CO@HeN as functions of
the cluster sizeN ~same as in Fig. 3!. Dots: frequency of the lowest mode
appearing in the spectral analysis of the angular He–He correlation function
@see Eq.~15!#.
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IV. CONCLUSIONS

Computer simulations of quantum many-body systems
have reached such a degree of sophistication and reliability
that in some cases they can be used to provide information,
complementary to that which can be obtained in the labora-
tory, on the dynamical processes probed spectroscopically.

In the case of small polar molecules solvated in He clus-
ters, for instance, the calculation of the time autocorrelation
of the molecular dipole~which is the quantity directly
coupled to the experimental probe! allows us to reproduce
rather accurately important features of the rotovibrational ex-
citation energies which are now becoming experimentally
accessible for small clusters (N51 – 20). Even more impor-
tantly, computer simulations give direct access to quantitities
and features~such as, e.g., static and dynamic properties of
the He matrix! which are not accessible to the experiment
and whose knowledge provides the basis for understanding
the relation between structure and dynamics in these con-
fined boson systems.

In the specific case of CO@HeN , which is the subject of
the present study and of a recent infrared spectroscopy
experiment,5 the presence of two spectral lines—a type andb
type, evolving, respectively, from the end-over-end and free-
molecule rotations of the binary complex—is related to the
propensity of the He atoms to cluster on a same side of the
molecular axis, which we measure by an angular pair distri-
bution function: as more He atoms progressively fill the first
solvation shell, their clustering propensity weakens; the CO
impurity gets more isotropically coated, loses a preferred
axis for the free-molecule mode, and theb-type line disap-
pears.

The time autocorrelation of the versor of the He center
of mass provides dynamical information on the He atoms in
excited states withJ51. We find a substantial spectral
weight on a He mode whose energyeu is degenerate with the
a-type line forN up to about 10. This indicates that some of
the He density is dragged along by the molecular
rotation—in other words, part of the angular momentum in
the cluster mode involving molecular rotation is carried by

the He atoms. We also find that for larger clusters the mo-
lecular rotation effectively decouples from this He mode, and
its energyea becomes essentially independent of the number
of He atoms. Based on the nearly constant value ofea in the
range ofN between 15 and 30, well beyond completion of
the first solvation shell, we predict the effective rotational
constant in the nanodroplet limit to be smaller by a factor
0.78 than its gas-phase value.
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