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1 Introduction and summary

We have a complete classification of the 4d N = 2 gauge theories where SU(2) SYM is

coupled to vector-less matter (possibly non-Lagrangian) [1]. By vector-less matter we mean

N = 2 QFTs whose BPS spectra, in all chambers, consist only of hypermultiplets: the ones

having a gaugeable SU(2) symmetry are precisely the Argyres-Douglas (AD) theories of

type Dp (p ≥ 2) [1, 2] quark doublets being the case p = 2. From the classification we

learn that the SCFTs in this class are in one-to-one correspondence with the orbifolds of

an elliptic curve E i.e.

E/Zp where p = 1, 2, 3, 4, 6. (1.1)
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For p > 2 the curve E should have complex multiplication by the appropriate quadratic field

namely1 Q(ω) for p = 3, 6 and Q(i) for p = 4. This observation plays a crucial role below.

We have five SCFTs in this class of SU(2) gauge theories. The SCFT is a Lagrangian

model iff the modulus τ of E is a free parameter, i.e. for p = 1, 2 which correspond,

respectively, to N = 2∗ and SQCD with Nf = 4. p = 3, 4, 6 yield three additional

non-Lagrangian (≡ intrinsically strongly coupled) SCFTs. From the viewpoint of [1] it is

more natural to state this classification as a one-to-one correspondence between this class

of SCFTs and the star graphs (possibly with multiple edges2) which are affine Dynkin

diagrams. There are five such affine stars

g(1) = A
(1)
1 , D

(1)
4 , E

(1)
6 , E

(1)
7 , E

(1)
8 , (1.2)

which correspond to the five orbifolds (1.1). In the first two models, the Lagrangian

ones, g(1) is also the affinization of the flavor symmetry algebra g which is, respectively,

su(2) and so(8): thus in the Lagrangian models the flavor charges are weights of g. In

the non-Lagrangian theories the matter consists of strongly interacting systems with their

own conserved electric and magnetic charges in addition to the flavor ones. Although the

Dirac pairing between the internal charges of the matter is no longer trivial, yet it remains

true that the matter charges3 take value in the weight lattice of the corresponding finite-

dimensional Lie algebra g which, for the non-Lagrangian models, is E6, E7, or E8 (see

section 2.1).

These theories, already described in [1, 3, 4], recently have been constructed also as

toroidal compactifications of certain 6d (1, 0) SCFTs [5]. From the internal torus, all five

(mass deformed) 4d SCFTs inherit a PSL(2,Z) group of S-dualities. In the p = 2 case

Seiberg and Witten [6] have shown that PSL(2,Z) acts on the flavor charges by SO(8)

triality; the triality group S3 being identified with the modular quotient PSL(2,Z)/Γ(2).

By the same token, for p = 3, 4, 6 we have a non-trivial action of S-duality, hence of the

modular group PSL(2,Z), on the lattice of the matter charges, i.e. on the weight lattices

of E6, E7, E8. This action should be thought of as a generalization of the triality action on

the weights of SO(8) to the weights of the exceptional Lie groups E6, E7, E8.

At first sight this statement seems rather odd: from Lie algebra theory we do not

expect any higher rank analog of SO(8) triality. Yet physics predicts its existence.

The full duality group S is actually an extension of the modular group

1 → W → S → PSL(2,Z) → 1, (1.3)

where W is the ‘obvious’ group of physical symmetries acting on the lattice of conserved

charges. For the Lagrangian models W is simply the Weyl group of the flavor symmetry.

In the general case W is a well-understood finite group of symmetries of the matter system

(seen as decoupled from the Yang-Mills sector) which fixes the charge to be gauged. W is

1ω is a primitive third root of unity, i.e. a solution to the cyclotomic equation ω2 + ω + 1 = 0.
2Non simply-laced star graphs corresponds to matter in SU(2) representations of isospin > 1/2.
3Throughout this paper, by matter charges we mean all conserved charges of the N = 2 QFT but the

SU(2) electric and magnetic ones.
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also the kernel of the action of S on the Yang-Mills electric/magnetic charges, on which

only the quotient group PSL(2,Z) acts effectively. The quotient group of S which acts

effectively on the matter charges, Smatter, is the finite group

1 → W → Smatter → PSL(2,Z/pZ) → 1, p = 1, 2, 3, 4, 6, (1.4)

whose action on the root lattice of g preserves the Cartan inner product as well as the

Dirac skew-symmetric pairing. For p = 1, 2 eq. (1.4) was obtained by Seiberg and Wit-

ten [6]. Its extension to the non-Lagrangian cases looks rather natural, a simple ‘analytic

continuation in p’.

Since the action of W on the matter charges is obvious, to understand the ‘higher

versions of triality’ it is enough to understand the action of the quotient group

PSL(2,Z/pZ) ≃ PSL(2,Z)
/
Γ(p) for p = 2, 3, 4, 6, (1.5)

where Γ(p) ⊂ PSL(2,Z) is the principal congruence subgroup of level p [7]. p = 6 is

special since4

PSL(2,Z/6Z) = PSL(2,Z/2Z)× PSL(2,Z/3Z). (1.6)

However, it is preferable to study the action of a subgroup Gmatter ⊂ Smatter which is a

central extension of PSL(2,Z/pZ) by a finite Abelian group of the form (Z/2Z)k. Studying

the central extension Gmatter, rather than PSL(2,Z/pZ) itself, allows to discuss all five

models in an unified way via the theory of reflection groups.

Let us explain. Weyl groups should be thought of as reflection groups defined over

the rationals Q, and Coxeter groups as real reflection groups. For Nf = 4 SQCD (p = 2)

the action of PSL(2,Z/2Z) is through SO(8) triality which is a rational reflection group:

indeed, in concrete terms, the triality group is the quotient

Smatter

/
Weyl(SO(8)) ≡ Weyl(F4)

/
Weyl(SO(8)). (1.7)

In passing from p = 2 to p = 3, 4, 6 what we have to do is to replace reflection groups

defined over Q with reflection groups defined over the appropriate complex multiplication

fields Q(ω) or Q(i). Roughly speaking, the abstract form of S-duality is the same for p > 2

as for the SQCD p = 2 model (where it is given by SO(8) triality) but structures that in

the p = 2 case are defined over the ground field Q get replaced by structures defined over

the complex quadratic fields Q(ω) and Q(i).

Reflection groups defined over such quadratic fields are special instances of complex re-

flection groups. The finite complex reflection groups have been fully classified by Shephard

and Todd [9]. From their classification we read the complete list of the “higher triality”

groups Gmatter which act on the matter charges of the p = 3, 4, 6 models, i.e. on the weight

lattices Γw
g of E6, E7 and E8. The classification also yields the decomposition of the vector

space Γw
g ⊗ C in irreducible representations of Gmatter, and thus completely specifies how

PSL(2,Z/pZ), and hence the full modular group PSL(2,Z), acts on the matter charges.

4There is a much stronger reason why p = 6 is different. As Klein proved in 1884 [8] the group

PSL(2,Z)/N(6) has infinite order, while for p = 1, 2, 3, 4, PSL(2,Z)/N(p) = PSL(2,Z/pZ) (see sec-

tion 4.2.1).
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field F
reflection
group

abstract
group

extension of a quotient
of the modular group

reflection
group grapha

McKay affine

graphb

Q Weyl(A2) S3 PSL(2,Z/2Z) 765401232 765401232 D
(1)
5

Q(ω) G4
binary

tetrahedral SL(2,Z/3Z) 765401233 765401233 E
(1)
6

Q(i) G8 Z/2Z ⋉

(
binary

octahedral

)
Z/2Z ⋉SL(2,Z/4Z) 765401234 765401234 E

(1)
7

aUsually the 2’s in the nodes of the A2 Dynkin graph are omitted.
bMore precisely : the McKay graph of the SU(2) subgroup which has the same image in PSU(2).

Table 1. The relevant complex reflection groups.

The relevant reflection groups for the three complex multiplication fields Q, Q(ω) and

Q(i) are listed in table 1. In the second column we write the group, seen as a concrete

reflection group acting on a two-dimensional space, in the Shephard-Todd notation. In

the third column we write the standard name of the corresponding abstract group. In the

fourth column we describe the same group seen as a quotient of a central extension of the

modular group PSL(2,Z); this column specifies how the action of S-duality group S on Γw
g

factorizes through a representation of the reflection group Gmatter. In the fifth column we

draw the graph of the reflection group [10]: we stress that, in all three cases, it is the A2

Dynkin graph but with order p at the nodes. The uniformity of the graph expresses our

rough idea that the structure of S-duality is independent of p up to a change of the ground

field. In particular, all three groups are realized as a concrete group of reflections by faithful

two–dimensional unitary representations which we denote as W , R and F , respectively (see

section 4.2.1 for full details). In the last column of the table we recall the affine Dynkin

graph which is related to the given reflection group by the McKay correspondence [11];

more precisely, the affine graph shown in the table is the one associated to the finite SU(2)

subgroup which has the same image in PSU(2) as the reflection group Gmatter viewed as a

subgroup of U(2) via its defining two-dimensional representation. Note that to the E
(1,1)
6

and E
(1,1)
7 SCFTs there correspond, respectively, the McKay graphs E

(1)
6 and E

(1)
7 .

Summarizing, the reflection groups Gmatter acting on the matter charges, which take

values in the weight lattices Γw
g , are (see section 4.2.1 for the definition of the groups

G4, G8)

Gmatter =





S3 p = 2

G4 p = 3

G8 p = 4

S3 ×G4 p = 6.

(1.8)

For p = 2 the symmetric group S3 acts on the weights of D4 by triality. In this paper we

describe the corresponding action of Gmatter for p = 3, 4, 6. We do so in two ways. First

we list the irreducible representations of the matter group in eq. (1.8) acting on the root

– 4 –
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vector space ΓEr ⊗ C

p = 3 ΓE6 ⊗ C ≃ 1⊕ 1⊕R⊕R (1.9)

p = 4 ΓE7 ⊗ C ≃ 1⊕W ⊕ F ⊕ F (1.10)

p = 6 ΓE8 ⊗ C ≃ χ⊕ χ⊕ (W,1)⊕ (1, R)⊕ (1, R), (1.11)

where: 1 is the trivial representation; W , R and F are the defining 2-dimensional repre-

sentations of S3, G4 and G8, respectively; R, F are their conjugates (W is real); χ is a

one-dimensional representation, namely a primitive character of the Abelian quotient5

Z/6Z ≃ Z/2Z× Z/3Z ≃ S3

/
A3 × A4

/
V4 (1.12)

In eq. (1.10) by W we mean the 2-dimensional representation of Z/2Z⋉SL(2,Z/4Z) defined

by the degree 2 representation W of S3 via the canonical mod 2 surjection

Z/2Z ⋉ SL(2,Z/4Z) −→ PSL(2,Z/2Z)
W−−→ GL(W ). (1.13)

The action of Gmatter on ΓEr ⊗C preserves the lattice ΓEr , the inner product in root space

given by the Cartan matrix, and the Dirac electro-magnetic pairing. For concreteness, in

appendix A we also give a very explicit realization of the action of S-duality on the charges

in terms of integral (r(g)+2)×(r(g)+2) matrices acting on the full charge lattice Γ (which

includes the matter charges as well as the Yang-Mills electric and magnetic ones).

The rest of the paper is organized as follows. In section 2 we collect the basic tools

of the homological approach to S-duality. In section 3 we reconsider N = 2 SQCD with

two colors and four flavors as a warm-up; here we recover the Seiberg-Witten result in two

ways: first in a rather naive but very concrete approach, and then from a more intrinsic

group-theoretical perspective. In section 4 we describe the E
(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 cases.

In appendix A we write explicit (r(g)+ 2)× (r(g)+ 2) matrices which represent the action

of S-duality on the conserved charges of the theory, and list some of the beautiful identities

they satisfy. In appendix B we show how the present approach is related to the one in [1, 26]

by cluster-tilting.

2 Homological approach to S-duality

In this section we review S-duality for the four (mass-deformed) SCFTs D
(1,1)
4 , E

(1,1)
6 ,

E
(1,1)
7 and E

(1,1)
8 following the mathematical literature [12–17] (see also [18]).

Remark. For definiteness, here we use the 4d definition of the relevant SCFTs, see

refs. [1, 3]. Alternatively, one could have adopted the 6d viewpoint of ref. [5], and in

particular their mirror Landau-Ginzburg description of the E/Zp orbifolds. By a theorem

of Orlov ([19] Theorem 2.5.(iii), see also the discussion in [20]), the category of B-branes

for the relevant Landau-Ginzburg models is equivalent to the derived category of coherent

sheaves on the corresponding weighted projective lines of tubular type, which is the central

5From table 1 one has G4 ≃ Z/2Z ⋉ A4. V4 ≃ Z/2Z × Z/2Z is the Klein Vierergruppe [8], the unique

non-trivial normal subgroup of the alternating group A4.
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object of our analysis, see section 2.2. Then all our considerations apply directly to the

Landau-Ginzburg set up. Needless to say, the equivalence of the two categories is an

instance of the 2d/4d correspondence advocated in [21].

2.1 Overview

The relation between eqs. (1.1), (1.2) and the mass-deformed SCFTs is as follows.6 The

BPS particles of the QFT are given by the (quantization of) continuous families of stable

objects in a certain orbifold category C(E/Zp) of the derived category of coherent sheaves

on the orbifold E/Zp or, equivalently [22], on the orbifold P1/Γp where Γp ⊂ SU(2) is the

finite subgroup associated to the affine Lie algebra g(1) by the McKay correspondence7 [11]

C(E/Zp) = Db(coh E/Zp)
/
C ≃ Db(cohP1/Γp)

/
C . (2.1)

Here C is an infinite cyclic subgroup of Aut(Db coh E/Zp) to be described later. C(E/Zp) is

the cluster category [17, 36] of the orbifold E/Zp whose relevance for the physics of the BPS

sector stems from the Kontsevich-Soibelman wall-crossing formula [23], see refs. [21, 24]. In

the present context, stable means that the lift of the object in Db coh E/Zp is stable in the

sense of ref. [25]; the stability condition on Db coh E/Zp is defined by the mass deformation

we consider and the chosen point in the Coulomb branch. Since all five QFTs are complete

in the sense of [1], we have only zero– and one-dimensional families of stable objects which

yield, respectively, hypermultiplets and vector multiplets of N = 2 susy.

Charge lattices. The lattice of conserved QFT charges, Γ, may then be identified with

the Grothendieck group of the associated additive categories8

Γ = K0(D
b coh E/Zp) ≃ K0(coh E/Zp). (2.2)

Given an object X ∈ Db coh E/Zp, we write [X] ∈ Γ for its Grothendieck class; if X is

stable, [X] is the charge vector of a corresponding BPS state. In all chambers the charges

of BPS particles generate Γ. On Γ we have a bilinear form, the Euler pairing

〈[X], [Y ]〉E =
∑

k∈Z

(−1)k dimHom•(X,Y [k]), (2.3)

where Y → Y [1] denotes the shift equivalence in the triangle category Db coh E/Zp. The

Dirac pairing in Γ is just the anti-symmetric part of the Euler one

〈[X], [Y ]〉Dirac = 〈[X], [Y ]〉E − 〈[Y ], [X]〉E . (2.4)

The Tits form is the integral quadratic form on Γ

q([X]) = 〈[X], [X]〉E . (2.5)

The symmetric bilinear form associated to the Tits quadratic form will be written 〈·, ·〉sym.
6For the justification of these assertions, see footnote 15. More technical details in appendix B.
7We write cohX/G as a shorthand for the category of G-equivariant coherent sheaves on X.
8The fact that the Grothendieck group is a finite-rank lattice follows from the fact that the Abelian

category coh E/Zp admits a tilting object [12–14].
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For X stable one has [26, 27]

q([X]) = 2
(
1−MaxSpin([X])

)
, (2.6)

where MaxSpin([X]) is the largest possible spin for a BPS particle of charge [X]. Since

for a complete N = 2 theory [1, 27], the spin of the BPS particles is bounded by 1, the

quadratic form q([X]) is positive semi-definite; its radical

rad q ≡
{
[X] ∈ Γ

∣∣ q([X]) = 0
}
⊂ Γ, (2.7)

is a sublattice of rank 2 which may be identified with the lattice of electric/magnetic Yang-

Mills SU(2) charges; in particular, the restriction to rad q of the Dirac pairing has the form9

p

(
0 1

−1 0

)
. (2.8)

We define the matter charges lattice as Γ modulo the sublattice of Yang-Mills charges

Γmatter ≃ Γ
/
rad q. (2.9)

The above categorical identification of the charges is not the conventional one in physics

(but it coincides for Lagrangian QFTs). For the three non-Lagrangian models, our SU(2)

electric charge is a linear combination of the physical electric charge and matter ones;

the present conventions make the group actions more transparent (in facts, they are the

obvious generalization of the factor 2 difference of normalizations for the p = 1 and p = 2

models pointed out in section 16 of the original Seiberg-Witten paper [6]).

By general theory of integral quadratic forms [28] (reviewed in the present context

in [27]) the Tits form q induces an integral quadratic form q on Γ
/
rad q which is positive-

definite, hence Z-equivalent to the Tits form qg on the root lattice Γg of a Lie algebra g of

ADE type

qg(xi) =
1

2
Cijxixj , Cij the Cartan matrix of g. (2.10)

For our five categories Db(coh E/Zp) with p = 1, 2, 3, 4, 6 one finds (see section 2.2)

q ≃ qg hence Γmatter ≃ Γg where g = A1, D4, E6, E7, E8 respectively. (2.11)

In the language of refs. [1, 27] the two statements rank rad q = 2 and q ≃ qg are summarized

in the fact that the mutation class of quivers with superpotentials (Q,W) which describe

the BPS sector of our five theories is given by the elliptic Dynkin graphs g(1,1) of respective

type g = A1, D4, E6, E7, E8 (with all triangles oriented). The elliptic (or toroidal [29]) Lie

algebra g(1,1) of type g is obtained by affinization of the affine Lie algebra g(1) of the same

type; see [27] for more details.

As a basis of the matter charges we take the simple roots αa of g. Then the matter

charges of the BPS particle corresponding to the stable object X ∈ Db coh E/Zp are

fa(X) = 〈[X], αa〉sym ∈ Z, a = 1, 2, . . . , r(g). (2.12)

9In the Lagrangian case, p = 2, the overall coefficient 2 is interpreted as the Cartan matrix of SU(2).

– 7 –
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In particular, for p = 1, 2 we get back that the flavor charges take values in the weight

lattice of Sp(1) and SO(8), respectively. The same statement holds, in the present sense,

for p = 3, 4, 6.

Serre duality and Coxeter transformation. The Abelian category coh E/Zp satisfies

Serre duality in the form10

Ext1(X,Y ) = DHom(Y, τX), τX ≡ ω ⊗X, (2.13)

where ω is the dualizing sheaf. τ is an auto-equivalence of coh E/Zp, and hence of the

derived category Db coh E/Zp; τ also plays the role of Auslander-Reiten translation [30].

Given that τ is an auto-equivalence, coh E/Zp has no non-zero injectives or projectives and

the Abelian category coh E/Zp is hereditary (global dimension 1).

Since ωp ≃ O, one has τp = Id. The Coxeter transformation Φ : Γ → Γ is defined by

[τX] = Φ · [X]. (2.14)

In particular, for all [X], [Y ] ∈ Γ we have

〈Φ · [X],Φ · [Y ]〉E = 〈[X], [Y ]〉E , (2.15)

〈[X],Φ · [Y ]〉E = −〈[Y ], [X]〉E , (2.16)

which implies

[X] ∈ rad q ⇐⇒ Φ · [X] = [X], (2.17)

i.e. the Yang-Mills magnetic/electric charges are the (+1)-eigenvectors of Φ. Likewise, the

flavor charges are the (−1)-eigenvectors of Φ. The eigenvectors associated to eigenvalues

λ 6= ±1 correspond to internal electric/magnetic charges of the matter AD systems. Note

that Φp = 1, in fact (for p > 1)

det[z −Φ] =

∏s
i=1(z

pi − 1)

(z − 1)s−2
, (2.18)

where s is the number of branches of the associated star graph and pi are the number of

nodes in the i-th branch (counting the vertex node), while p ≡ l.c.m.{pi}.

Auto-equivalences of the derived category. Suppose

K : Db coh E/Zp → Db coh E/Zp (2.19)

is an auto-equivalence (of triangulated categories). K induces an automorphism K of the

Grothendieck group Γ

K : Γ → Γ, given by [KX] = K · [X]. (2.20)

Choosing a Z-basis in Γ, Φ and K may be seen as rankΓ × rankΓ matrices with inte-

gral entries. For all auto-equivalences K we have τK = Kτ (since the Auslander-Reiten

translation is unique). Then Φ and K, as matrices, commute

KΦ = ΦK, (2.21)

10Here D stands for the usual duality over the ground field C, i.e. D(−) = Hom(−,C).

– 8 –
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and, in particular, K preserves the radical sublattice rad q ⊂ Γ; this already follows from

the fact that all auto-equivalences are isometries of the Euler form

〈K · [X],K · [Y ]〉E = 〈[X], [Y ]〉E . (2.22)

Comparing with (2.9), we see that all auto-equivalence K of the derived category

Db coh E/Zp induces a reduced additive map

K : Γmatter → Γmatter (2.23)

which commutes with the reduced Coxeter element Φ and is an isometry of the reduced

Tits form q(·)
q
(
K · f

)
= q

(
f
)
, ∀ f ∈ Γmatter. (2.24)

It follows that the image of the automorphism group of the derived category,

Aut
(
Db coh E/Zp

)
,

under the homomorphism ̺ : K 7→ K is a subgroup of the finite group O(Γg) of the Z-

isometries of the positive-definite Tits form qg. More precisely, the image is a subgroup of

the centralizer of the reduced Coxeter element Φ

̺
(
Aut(Db coh E/Zp)

)
⊂ Z(Φ) ⊂ O(Γg) = Weyl(g)⋉Aut(Dg), (2.25)

where Dg is the Dynkin graph of g.

Remark. The triality of so(8) is a group of outer automorphisms; from the point

of view of eq. (2.25) this means that its image is not contained in Weyl(so(8)). For, say,

g = E8, Aut(Dg) is trivial and the image of Aut(Db coh E/Zp) is a subgroup of the Weyl

group. The reader then may wonder in which sense the S-duality action is a generalization

of triality which is an outer action. The point is that the duality action is outer with

respect to the natural group of ‘inner’ automorphisms which is W (see eq. (2.101)). For

SQCD Nf = 4 W is the full Weyl group but it is a small subgroup for E6, E7, E8.

2.2 Coherent sheaves on weighted projective lines

With the exclusion11 of N = 2∗, the complete N = 2 gauge theories with gauge group

SU(2) are in one-to-one correspondence with the weighted projective lines having non-

negative Euler characteristic χ ≥ 0 [1, 3]. SU(2) SYM coupled to a set of AD matter

systems of types Dpi (i = 1, .., s) corresponds to the weighted projective line with weights

(p) = (p1, p2, . . . , ps). The superconformal theories in this class are precisely the ones

associated with the χ = 0 weighted projective lines;12 there are four such lines with weights

(p) = (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6), (2.26)

11The case of N = 2∗, i.e. p = 1, is rather similar. Indeed, the theory of coherent sheaves on the weighted

projective lines of tubular type was constructed by Geigle and Lenzing in [12] using as a model the Atiyah

description of coh E [31]. The main technical difference is that for p = 1 the canonical sheaf is trivial, while

for p > 1 is a p-torsion sheaf. Then for p = 1 there is no tilting object.
12Indeed, the coefficient of the β-function of the Yang-Mills coupling, gYM, is −2χ, see [1, 3, 4].
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the i-th weight pi being equal to the number of nodes in the i-th branch of the corresponding

affine star graph (counting the vertex). The χ = 0 weighted projective lines will be written

Xp (where p ≡ l.c.m.(pi) = 2, 3, 4, 6) or simply X. We have [12, 22, 32]

Xp = E/Zp, (2.27)

and passing from elliptic orbifolds E/Zp to weighted projective lines Xp is just a convenient

shift in language.

Weighted projective lines [12–16, 33, 34]. Given a set of positive integral weights13

p = (p1, p2, . . . , ps) we define L(p) to be the Abelian group over the generators ~x1, ~x2, . . . , ~xs
subjected to the relations

~c = p1~x1 = p2~x2 = · · · = ps~xs. (2.28)

~c is called the canonical element of L(p), while the dual element is

~ω = (s− 2)~c−
s∑

i=1

~xi ∈ L(p). (2.29)

Given the weights p and s distinct points (λi : µi) ∈ P1 we define a ring graded by L(p)

S(p) =
⊕

~a∈L(p)

S~a = C[X1, X2, · · · , Xs, u, v]
/(

Xp1
1 −λ1u−µ1v, · · · , Xps

s −λsu−µsv
)
(2.30)

where the degree of Xi is ~xi and the degree of u, v is ~c. The weighted projective line X(p)

is defined to be the projective scheme ProjS(p). Its Euler characteristic is

χ(p) = 2−
s∑

i=1

(1− 1/pi). (2.31)

The Picard group of X(p) (i.e. the group of its invertible coherent sheaves ≡ line bundles)

is isomorphic to the group L(p)

PicX(p) =
{
O(~a)

∣∣ ~a ∈ L(p)
}
, (2.32)

i.e. all line bundles are obtained from the structure sheaf O ≡ O(0) by shifting its degree

in L(p). The dualizing sheaf is O(~ω). Hence

τ O(~a) = O(~a+ ~ω). (2.33)

One has

Hom(O(~a),O(~b)) ≃ S~b−~a
, Ext1(O(~a),O(~b)) ≃ DS

~a+~ω−~b
. (2.34)

Any non-zero morphism between line bundles is a monomorphism [13, 14]. In particular,

for all line bundles L, EndL = C. Hence, if (λ : µ) ∈ P1 is not one of the special s points

(λi : µi), we have the exact sequence

0 → O λu+µv−−−−→ O(~c) → S(λ:µ) → 0 (2.35)

13For definiteness we write the pi’s in a non-decreasing order. Without loss we may assume pi ≥ 2.
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which defines a coherent sheaf S(λ:µ) concentrated at (λ : µ) ∈ P1. It is a simple object in

the category cohX(p) (the ‘skyscraper’). At the special points (λi : µi) ∈ P1 the skyscraper

is not a simple object but rather it is an indecomposable of length pi. The simple sheaves

localized at the i-th special point (λi : µi) are the Si,j (where j ∈ Z/piZ) defined by the

exact sequences

0 → O(j~xi) → O((j + 1)~xi) → Si,j → 0. (2.36)

Applying τ to these sequences we get

τS(λ;µ) = S(λ;µ), τSi,j = Si,j−1. (2.37)

In conclusion we have14 [13, 14]

cohX(p) = H+ ∨H0, (2.38)

where H0 is the full Abelian subcategory of finite length objects (which is a uniserial

category) and H+ is the subcategory of bundles. Any non-zero morphism from a line

bundle L to a bundle E is a monomorphism. For all bundles E we have a filtration [13, 14]

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Eℓ = E, (2.39)

with Ei+1/Ei line bundles. Then we have an additive function rank : K0(cohX(p)) → Z,

the rank, which is τ -invariant, zero on H0 and positive on H+. rankE is the length ℓ of

the filtration (2.39); line bundles have rank 1.

In physical terms [3] H0 is the ‘light category’ which encodes the zero Yang-Mills

coupling limit gYM → 0; hence H0 is well understood in terms of ‘perturbative’ physics [3].

We define the additive function degree, deg : K0(cohX(p)) → 1
pZ, by

degO
(∑

i
ni~xi

)
=

∑

i

ni

pi
. (2.40)

deg satisfies the four properties: (i) the degree is τ stable; (ii) degO = 0; (iii) if S is a

simple of τ -period q one has degS = 1/q; (iv) degX > 0 for all non-zero objects in H0.

Physically, rank is the Yang-Mills magnetic charge while deg is (a linear combination

of) the Yang-Mills electric charge (and matter charges) normalized so that the W boson

has charge +1. For the four weighted projective lines Xp with χ(p) = 0, eq. (2.26), the

Riemann-Roch theorem reduces to the equality [12–14]

1

p

p−1∑

j=0

〈
[τ jX], [Y ]

〉
E
= rankX deg Y − degX rankY. (2.41)

14The notation in the rhs [13, 14, 28] stands for two properties: (i) all object X of cohX(p) has the form

X+ ⊕X0 with X+ ∈ H+, X0 ∈ H0, and (ii) Hom(H0,H+) = 0.
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Explicit formulae in the canonical basis. To write explicit expressions, it is conve-

nient to choose a set of homological generators of cohX(p); their classes then give a Z-basis

of the Grothendieck group K0(cohX(p)). It is convenient to choose the generators to be

the direct summands of a tilting object of cohX(p) [12–14]. We choose the canonical15

such tilting object whose endomorphism algebra is the Ringel canonical algebra Λ(p) of

type (p) [12–14]. The canonical generating set consists of the following n ≡ ∑
i(pi − 1)+ 2

line bundles

O, O(ℓ~xi) (with i = 1, . . . , s, ℓ = 1, . . . , pi − 1), O(~c). (2.42)

By definition of tilting object, Ext1 vanishes between any pair of sheaves in eq. (2.42),

while the only non-zero Hom spaces are

dimHom(O,O(~c)) = 2, dimHom(O(ki~xi),O(ℓi~xi)) = 1, 0 ≤ ki ≤ ℓi ≤ pi, (2.43)

where, for all i, O(0 ~xi) ≡ O and O(pi~xi) ≡ O(~c).

We write (φ1, . . . , φn) for the elements of the basis of K0(cohX(p)) given by the

Grothendieck classes of the n line bundles in eq. (2.42) ordered so that the φ1 = [O],

φn = [O(~c)] while the {φa}n−1
a=2 are the [O(j~xi)] listed in the (i, j) lexicographic order. The

YM magnetic and electric charges of the generating sheaves (2.42) are

(rankφ1, . . . , rankφn) = (1, 1, . . . , 1, 1) ≡ M t (2.44)

p(deg φ1, . . . , deg φn) = (0, q1,1, q1,2, . . . , q1,p1−1, . . . . . . , qs,1, qs,2, . . . , qs,ps−1, p) ≡ Qt.

(2.45)

Specializing to the χ(p) = 0 case. For the χ(p) = 0 weighted projective lines,

eq. (2.26), the electric charges

qi,1, · · · , qi,pi−1, p (2.46)

of the sheaves (2.42) are just the Coxeter labels on the i-th branch of the associated affine

star Dynkin graph g(1) numbered in increasing order from the most peripheral node to the

vertex of the star (which has label p). Explicitly,

qi,j =
p

pi
j. (2.47)

The Euler form between the elements of the basis Eab = 〈φa, φb〉E is given by the unipotent

(upper triangular) block matrix

E =




1 1tp1 · · · 1tps 2

0 Tp1 · · · 0 1p1
...

...
. . .

...
...

0 0 · · · Tps 1ps
0 0 · · · 0 1




(2.48)

15In view of [3] the existence of this tilting object justifies our claim that the BPS particles of the relevant

QFT correspond to stable objects of the derived category D
b
cohX(p) ≡ D

b
modΛ(p). A more detailed

analysis is presented in appendix B.
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where 1p stands for the column (p− 1)-vector with 1’s in all entries, and Tp is the (p− 1)×
(p− 1) triangular matrix with 1’s along the main diagonal and everywhere above it.

In the canonical basis the Coxeter element is represented by the matrix Φab such that

τφa = Φab φb; comparing with eqs. (2.15), (2.16) we get

Φ = −E(Et)−1. (2.49)

The radical of the Tits form q is generated by the two vectors

R1 =E−1M ≡ (−1, 0, · · · , 0, 1)t, (2.50)

R2 =E−1Q. (2.51)

In particular, we note that the last two entries of the radical vector E−1(pM − Q) are

(· · · , 1, 0)t. It follows that in this basis we may identify the matter charge lattice Γmatter ≡
Γ/rad q with the sublattice Γ̂matter ⊂ Γ of vectors of the form

x ≡ (x⋆, x1,1, · · · , x1,p1−1, · · · · · · , xs,1, · · · , xs,p−2, 0, 0) ⊂ Zn ≃ Γ. (2.52)

Since E is upper triangular and unimodular, it maps a basis of the sublattice Γ̂matter into

a Z-equivalent basis. Then we write the vectors (2.52) in the form

x = E−1 y, y ∈ Γ̂matter. (2.53)

Let Ė (resp. Ë) be the principal submatrix of E obtained by omitting the last (resp. the

last two) row(s) and column(s). Essentially by definition,

Ė−1 + (Ė−1)t = Cg(1) =

[
the Cartan matrix of the

affine Lie algebra g(1)
(2.54)

Ë−1 + (Ë−1)t = Cg =

[
the Cartan matrix of the

finite-type Lie algebra g.
(2.55)

Then the restricted Tits form q on Γmatter ≃ Γ̂matter is

q(x) = qg
(
y
)
, (2.56)

where qg(y) = 1
2y

tCgy is the Tits form of the finite-dimensional Lie algebra g. The

integers (y) = (y⋆, yi,j) are attached to the vertices of the Dynkin graph g as in figure 1.

In particular, q and qg are Z-equivalent; the isometry between the two Tits forms is just

multiplication by E−1. Under this isometry

Γ̂matter
∼= Γg. (2.57)

Remark. Here we defined the matter charges as equivalence classes in Γ/rad q. Of

course, the physical matter charges are specific representatives of these classes. In sec-

tion 3.1 we shall use the physical definition. However, the action of the S-duality group

is independent of the choice of representatives, and often a different choice simplifies the

computations.
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y1,1

y3,4 y3,3 y3,2 y3,1 y⋆ y2,1 y2,2

Figure 1. The assignments of integral variables (y) to the nodes of the E8 graph. For D4, E6, E7

just restrict to the corresponding Dynkin subgraph.

Structure of the derived category Db cohX(p). The Abelian category H = cohX(p)

is hereditary. The derived category DbH of a hereditary Abelian category H coincides with

its repetitive category repH [13, 14].

Definition. Let A be an Abelian category. Its repetitive category repA is

repA =
∨

n∈Z

A[n], (2.58)

whose objects are of the form

A =
⊕

n∈Z

An[n] (2.59)

with An ∈ A and only finitely many An’s non-zero; the morphisms are

Hom(A[m], B[n]) = Extn−m(A,B) (2.60)

with Yoneda compositions. The notation in eq. (2.58) stands for eq. (2.59) together with

the fact that Hom(A[m], B[n]) = 0 for m > n. The translation functor is A[m] 7→ A[m+1].

Thus, to describe DbH, it is enough to study the Abelian category H.

The slope µ(E) of a coherent sheaf E is the ratio of its degree and rank16

µ(E) = degE/rankE. (2.61)

A coherent sheaf E is semi-stable (resp. stable17) if for all non-zero subsheaf F one has

µ(F ) ≤ µ(E) (respectively µ(F ) < µ(E)).

The χ(p) = 0 case. We restrict ourselves to the four weighted projective lines with

χ = 0, i.e. to Xp with p = 2, 3, 4, 6. In this case all indecomposable coherent sheaf is

semi-stable [12, 13]. Let H(q) be the full (hereditary) Abelian subcategory of semi-stable

objects of slope q ∈ Q∪∞. For all q one has H(q) ≃ H0 the full subcategory of finite-length

objects. Then

H =
∨

q∈Q∪∞

H(q) (2.62)

16By convention, the zero object has all slopes.
17This notion of stability is related but distinct from the one relevant for the existence of BPS states we

mentioned at the beginning of this section. That notion is based on a stability function (the N = 2 central

charge Z) which depends on the couplings, masses and Coulomb branch point.
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and hence

DbH =
∨

n∈Z

∨

q∈Q∪∞

H(q)[n], (2.63)

where the notation implies that HomH(H(q),H(q′)) = 0 for q > q′. H0 (and then H(q) for

all q) is a P1-family of stable tubes all of which are homogenous but the ones over the three

(or four) special points (λi : µi) which have periods pi > 1.

In conclusion, all indecomposable object X of the derived category Db cohXp belongs

to a H(q)[n] for some q ∈ Q and n ∈ Z; all these subcategories H(q)[n] are equivalent to the

‘perturbative’ category H0 and hence physically well understood [3].

2.3 Telescopic functors and B3 braid group action on Db cohXp

If our N = 2 theory has S-duality, the duality should be, in particular, a property of

its BPS sector. Hence the duality should act by automorphisms of the relevant derived

category or, more precisely, of its orbit category (2.1). For the five SU(2) SCFTs we expect

the S-duality group S to contain a PSL(2,Z) from the internal torus of its 6d construction.

Before entering in the technical details, let us see why this fact is rather natural in view

of the peculiar form of the derived category as described in eq. (2.63). We may identify

Q ≡ Q ∪∞ with the projective line over the field Q. The group PSL(2,Z) naturally acts

on P1(Q). Then the structure in the rhs of (2.63) suggests the existence of an action

of PSL(2,Z) on Db cohXp which sends an object X of slope q ∈ P1(Q) into an object of

slope q′ = γ · q ∈ P1(Q) for γ ∈ PSL(2,Z). Since the slope is essentially the ratio of the

Yang-Mills electric and magnetic charges, such a natural PSL(2,Z) action will have the

physical interpretation of the electro-magnetic S-duality.

In order to implement this idea, we first need to normalize correctly the Yang-Mills

charges so that they are integral, while the degree is quantized in units of 1/p. So, for all

object X of the derived category, we set

YM(X) ≡
(
p degX

rankX

)
∈ Z2, (2.64)

and call the integral 2-vector YM(X) the Yang-Mills charges of X. Then we have to

construct auto-equivalences of the derived category Db cohXp which induce on the Yang-

Mills charges YM(·) an action of SL(2,Z). To be concrete, consider the two matrices

T =

(
1 1

0 1

)
, L =

(
1 0

−1 1

)
. (2.65)

T and L generate SL(2,Z). Indeed, the braid group on three strands, B3, is generated by

two elements T, L subject to the single relation

TLT = LTL, (2.66)

while we have

1 → Z(B3) → B3 → PSL(2,Z) → 1, (2.67)
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where the center of the braid group, Z(B3), is the infinite cyclic group generated by (LT)3.

The two 2× 2 matrices in eq. (2.65) satisfy the braid relation (2.66) as well as (LT)3 = −1,

and hence generate the full SL(2, Z).

To prove that the electro-magnetic duality group SL(2,Z) is part of Aut(Db cohXp) we

need to construct two functors T and L, which are auto-equivalences of the triangulated

category Db cohXp, and have the property that

YM(T (X)) = TYM(X), YM(L(X)) = LYM(X), (2.68)

so that the subgroup of Aut(Db cohXp) generated by the two functors T, L will induce an

SL(2,Z) action on the Yang-Mills charges YM(·). Such auto-equivalences T , L do exist:

they are called telescopic functors [15, 16, 33].

T is simply the functor which shifts the L(p) degree of the sheaf by ~x3 [14, 16, 33]

X 7−→ X(~x3) ≡ T (X), (2.69)

where we ordered the weights so that p3 ≡ p is the largest one. One can see the map

X 7−→ T (X) as the completion of a canonical map to a triangle of Db cohXp [15, 16, 33]

p−1⊕

j=0

Hom•(τ jS3,0, X)⊗ τ jS3,0
canX−−−−→ X −→ T (X), (2.70)

so that T induces the following action on the Grothendieck group Γ [33]

[T (X)] = [X]−
p−1∑

j=0

〈S3,j , X〉E [S3,j ]. (2.71)

Explicitly, the action on the generating set O, Si,j is given by

T (O) = O(~x3), T (S3,j) = S3,j+1, T (Si,j) = Si,j for i 6= 3. (2.72)

Thus T preserves the rank, while increases the degree by 1/p times the rank; therefore

YM(T (X)) = TYM(X), (2.73)

as required. The definition of the second functor L is similar; one introduces the triangle

p−1⊕

j=0

Hom•(τ jO, X)⊗ τ jO canX−−−−→ X −→ L(X), (2.74)

and proves that X 7−→ L(X) is an auto-equivalence of the derived category, see [15, 16].

The action of L on the Grothendieck group is then

[L(X)] = [X]−
p−1∑

j=0

〈τ jO, X〉E [τ jO]. (2.75)
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This formula shows that degL(X) = degX while

rankL(X) = rankX −
p−1∑

j=0

〈τ jO, X〉E = rankX − p degX, (2.76)

where we used the Riemann-Roch theorem (2.41). Thus we get the desired property

YM(L(X)) = LYM(X). (2.77)

The explicit action on the generating set O, Si,j (j = 0, 1, . . . , pi − 1) is

L(O) = τ−1O ≡ O(−~ω), (2.78)

L(Si,j) = ker



p/pi⊕

k=1

O
(
(kpi − 1− j)~ω

)
can−−−→ Si,j


[1], (2.79)

which, in the particular case pi = p, reduces to

L(Si,j) = O
(
− ~xi + (p− 1− j)~ω

)
[1]. (2.80)

The B3 braid group relation. It is easy to see that [15, 16]

LTL = TLT. (2.81)

As an illustration (and to establish a few useful equalities), we check that the two sides of

the equality act in the same way on the structure sheaf O and on the simple sheaves S3,j

(assuming p3 = p). By proposition 5.3.4 of [16] this suffices to conclude that the two

automorphisms of Db cohX are at least isomorphic. Since τ commutes with T, L,

LTL(O) = LT (τ−1O) = τ−1L(O(~x3)), (2.82)

while the triangle

L(S3,0)[−1] → L(O) → L(O(~x3)) (2.83)

gives

L(O(~x3)) = S3,0 =⇒ LTL(O) = S3,1. (2.84)

On the other hand,

TLT (O) = TL(O(~x3)) = T (S3,0) = S3,1 ≡ LTL(O). (2.85)

By (2.80) we have

TLT (S3,j) = τ−(j+2)O[1]. (2.86)

Eq. (2.80) gives the triangle

τ j+1L(S3,j)[−1] → O → S3,p−1

apply τLT
and rotate

+3 τL(S3,0)[−1] → τ j+2 LTL(S3,j)[−1] → S3,p−1.

(2.87)
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Since τL(S3,0)[−1] ≡ O(−~x3) (cf. (2.80)), the above triangle yields

LTL(S3,j) = τ−(j+2)O[1] (2.88)

in agreement with eqs. (2.81), (2.86).

Eq. (2.81) says that the two functors L, T generate a subgroup of Aut(Db cohX) which

is isomorphic to the braid group B3. Note that the functor TLT acts on YM(X) by the

matrix S

S := TLT =

(
0 1

−1 0

)
. (2.89)

Arguing as in ref. [3] one concludes that the functor TLT has the physical effect of inter-

changing weak and strong Yang-Mills coupling gYM ←→ 1/gYM.

The center Z(B3) of the braid group. In view of eq. (2.67), we have PSL(2,Z) =

B3/Z(B3). The center Z(B3) of B3 is the infinite cyclic group generated by (TL)3 which

acts on the Yang-Mills charges as the non-trivial element of the center of SL(2,Z)

(TL)3 : YM(X) 7−→ −YM(X). (2.90)

Using eqs. (2.85), (2.86), we get

(TL)3(O) = TLT · LTL(O) = TLT (S3,1) = τ−3O[1], (2.91)

(TL)3(S3,j) = TLT · LTL(S3,j) = τ−(j+2)TLT (O)[1] = τ−(j+2)S3,1[1] = τ−3S3,j [1]. (2.92)

So (again by proposition 5.3.4 of [16]) we have the isomorphism of triangle functors

(TL)3 ≃ τ−3Σ, (2.93)

where Σ stands for the shift functor, Σ(X) = X[1]. Hence (TL)3 induces an automorphism

(TL)3 of the Grothendieck lattice Γ of order 2, 2, 4, 2 for p = 2, 3, 4, 6, respectively.

Consider the automorphism τ3(TL)3Σ−1: (i) it fixes the structure sheaf and the sim-

ples S3,j , (ii) it preserves the slope µ(X) = deg(X)/rank(X), and (iii) its action on Γ

has order dividing 2, 2, 4, 2, respectively. The group of slope preserving automorphisms

of Db cohX which fix O is precisely Aut(X) i.e. (essentially) the permutations of equal

weight special points in P1. Thus τ3(TL)3Σ−1 is a permutation of the special points

which respects their weights and leaves the third one fixed (by convention p3 = p). Hence

τ3(TL)3Σ−1 = 1 for p = 4, 6. For p = 2, τ3(TL)3Σ−1 is either the identity or an order 2

permutation of three objects (x1, x2, x4) which treats the three objects on the same footing;

hence τ3(TL)3Σ−1 = 1. For p = 3

τ3(TL)3Σ−1 ≡ (TL)3Σ−1, (2.94)

is either the identity or the permutation π12 of the first two special points. From their

explicit action on the Grothendieck group, see section A.1, we conclude for the second

possibility. Hence

(TL)3 =

{
τ−3Σ p 6= 3

π12Σ p = 3,
(2.95)
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where π12 is the automorphism which interchanges the first two special points i.e., in terms

of the canonical generating set (2.42), O(ℓ~x1) ↔ O(ℓ~x2) for ℓ = 1, 2.

We note that (TL)3 acts as −1 on the Yang-Mills charges and as +1 on the flavor

charges.

2.4 The groups Aut(Db cohX) and S ≡ Aut C(X)
The subgroup B3 generated by L, T is not the full automorphism group Aut(DbcohX).

We have a surjection of the automorphism group on B3 whose kernel is the group of the

automorphisms of the Abelian category cohX which fix degree and rank. This is the group

Pic(X)0 ⋉ Aut(X), where Pic(X)0 is the group of degree zero line bundles and Aut(X) is

the group of geometric automorphisms of X, essentially18 the group of permutations of the

special points having the same weight pi. Thus, for a weighted projective line X having

zero Euler characteristic, χ(X) = 0, we have [15, 16]

1 → Pic(X)0 ⋉Aut(X) → Aut(DbcohX) → B3 → 1. (2.96)

In particular, the derived auto-equivalence

(TL)3(τ−1Σ)−1 =

{
O(−2~ω)⊗− p 6= 3

π12O(~ω)⊗− p = 3
∈ Pic(X)0 ⋉Aut(X), (2.97)

belongs to the kernel of Aut(DbcohX) → B3.

The cluster category of the weighted projective line X is defined to be the orbit category

of Db cohX with respect to the cyclic subgroup generated by τ−1Σ

C(X) = Db cohX
/〈

τ−1Σ
〉
. (2.98)

Then comparing eqs. (2.96), (2.67), and (2.97) we get:

Let X be a weighted projective line with χ(X) = 0 and C(X) = Db(cohX2)
/
〈τ−1Σ〉 its

cluster category. Then (cf. Proposition 7.4 of [17])

1 → Pic(X)0 ⋉Aut(X) → Aut(C(X)) → PSL(2,Z) → 1. (2.99)

We call the group Aut C(X) the full S-duality group written S

S =
(
Pic(X)0 ⋉Aut(X)

)
⋉ PSL(2,Z). (2.100)

S is the S-duality group of the four SCFT D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 . Its quotient

group acting effectively on the Yang-Mills charges (modulo the Weyl action of the gauge

group) is PSL(2,Z). The physical interpretation of the kernel subgroup

W ≡ Pic(X)0 ⋉Aut(X) (2.101)

will be discussed in section 3.

18For D
(1,1)
4 the situation is slightly subtler [15, 16]. We shall ignore this aspect.
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2.5 Some useful formulae

Note that both our generating functors L, T ∈ Aut(Db cohX) are of the form X 7−→ LY (X)

where, for a fixed object Y , the functor LY is defined by the triangle

p−1⊕

k=0

Hom•(τkY,X)⊗ τkY
can−−−→ X −→ LY (X). (2.102)

Indeed one has

L = LO, T = LS3,0 . (2.103)

A basic theorem (see theorem 5.1.3 of [16]) states that, for a weighted projective line

with χ(X) = 0, a functor X 7−→ LY (X) is an auto-equivalence of the derived category iff

(i) p is length of the τ -orbit of the object Y , and (ii) the object Y is quasi-simple. These

two conditions imply, in particular,19

〈τ jY, τkY 〉E = dimHom(τ jY, τkY )− dimHom(τkY, τ j+1Y ) = δ
(p)
j,k − δ

(p)
j,k−1, (2.104)

from which we get

1

p

p−1∑

j,k=0

exp
[
2πi(j − k)s/p

]
〈τ jY, τkY 〉E = 1− exp

[
− 2πis/p

]
. (2.105)

We shall see in section 4.2 that this last equation guarantees that the induced action in

the Grothendieck group

[X] 7−→ [LY , X] = [X]−
p−1∑

p=0

〈
[τkY ], [X]

〉
E
[τkY ], (2.106)

is an isometry of the Euler form i.e.
〈
LY X,LY Z

〉
E
=

〈
X,Z

〉
E
, (2.107)

which is (obviously) a necessary condition in order LY to be an auto-equivalence.

3 Warm-up: SU(2) SQCD with Nf = 4 again

As a warm-up, we consider again N = 2 SQCD with Ggauge = SU(2) and four flavors of

quarks (the D
(1,1)
4 model). The eight quark states with electric charge +1 transform in

the vector representation of SO(8). Seen as coherent sheaves on the weighted projective

line X2 of weights (2, 2, 2, 2) these quark states correspond to the eight exceptional simple

sheaves

Si,j i = 1, 2, 3, 4, j = 0, 1. (3.1)

In the X2 case τ2 = Id, so Φ2 = 1. The Yang-Mills charges correspond to the (+1)-

eigenvectors of Φ and the flavor charges to the (−1)-eigenvectors.

To make everything very transparent, in the next subsection we illustrate how flavor

Spin(8) triality arise in concrete terms i.e. writing down explicit expressions in the basis

of Γmatter which is standard in physics. Then in section 3.2 we present a more elegant

abstract viewpoint. The reader may prefer to skip section 3.1.

19Here δ
(p)
j,k is the mod p Kronecker delta, i.e. δ

(p)
j,k = 1 if j = k mod p and zero otherwise.
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3.1 Flavor charges and flavor weigths

The four linear independent flavor charges are

α1 = [O(~x3)]− [O(~x4)] = [S3,0]− [S4,0] (3.2)

α2 = [O(~x2)]− [O(~x3)] = [S2,0]− [S3,0] (3.3)

α3 = [O] + [O(~c)]− [O(~x1)]− [O(~x2)] = [S1,1]− [S2,0] (3.4)

α4 = [O(~x1)]− [O(~x2)] = [S1,0]− [S2,0] (3.5)

i.e. the Grothendieck classes which have zero rank and zero degree. Note that in the

Grothendieck group we have the relation [Si,0] − [Si+1,0] = [Si+1,1] − [Si,1] for all i. The

Euler pairing restricted to the sublattice Γflavor ⊂ Γ generated by the charges {αa}4a=1 is

〈αa, αb〉E ≡ αt
aEαb = the Cartan matrix of the D4 graph

α1

α3 α2 α4

(3.6)

Γflavor is thus identified with the root lattice of Spin(8). An object X of Db cohX2 then

carries a weight (w1(X), w2(X), w3(X), w4(X)) of the flavor Spin(8). Explicitly,

wa(X) =
〈
αa, [X]

〉
E
≡

〈
[X], αa

〉
E
. (3.7)

(Note that the Euler form is symmetric if one of its arguments is a flavor charge).

Using (3.7) we easily compute the flavor weights of (i) the exceptional simples (3.1),

(ii) the degree zero line bundles (which correspond to monopoles with magnetic charge

+1 and zero electric charge), and (iii) the degree 1 line bundles (dyons with unit electric

and magnetic charges), see table 2. We see that the quarks have the weights of the vector

representation v of Spin(8), the monopoles of the spinorial representation s, and the dyons

of the spinorial representation c. Of course, this is the physically correct result [6].

PSL(2,Z) and triality. Let us check how the two derived auto-equivalences T and L

of section 2.3 act on the Yang-Mills and flavor charges. T acts on the generating set O,

Si,j as20

T (O) = O(~x1),

T (S1,0) = S1,1, T (S1,1) = S1,0,

T (Si,j) = Si,j i = 2, 3, 4, j = 0, 1

(3.8)

which is consistent with the expected action on the Yang-Mills charges21

(
2 deg T (X)

rankT (X)

)
=

(
1 1

0 1

)(
2 degX

rankX

)
, (3.9)

20In this subsection we change our conventions from T : X → X(~x3) to T : X → X(~x1) to facilitate

comparison with standard conventions in SO(8) representation theory.
21Note that the factor 2 in the upper entry of the Yang-Mills charge vector for Nf = 4 as compared to

N = 2∗ precisely corresponds to the discussion in section 16 of [6]. In the general case 2 gets replaced by p.
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sheaf (w1, w2, w3, w4) sheaf (w1, w2, w3, w4)

S1,0 (0, 0,−1, 1) S1,1 (0, 0, 1,−1)

S2,0 (0, 1,−1,−1) S2,1 (0,−1, 1, 1)

S3,0 (1,−1, 0, 0) S3,1 (−1, 1, 0, 0)

S4,0 (−1, 0, 0, 0) S4,1 (1, 0, 0, 0)

Spin(8) weights of exceptional simple sheaves

sheaf (w1, w2, w3, w4) sheaf (w1, w2, w3, w4)

O (0, 0, 1, 0) O(−~ω) (0, 0,−1, 0)

O(~x1 + ~x2 − ~c) (0, 1,−1, 0) O(~x3 + ~x4 − ~c) (0,−1, 1, 0)

O(~x1 + ~x3 − ~c) (1,−1, 0, 1) O(~x2 + ~x4 − ~c) (−1, 1, 0,−1)

O(~x1 + ~x4 − ~c) (−1, 0, 0, 1) O(~x2 + ~x3 − ~c) (1, 0, 0,−1)

Spin(8) weights of degree zero line bundles

sheaf (w1, w2, w3, w4) sheaf (w1, w2, w3, w4)

O(~x1) (0, 0, 0, 1) τO(~x1) (0, 0, 0,−1)

O(~x2) (0, 1, 0,−1) τO(~x2) (0,−1, 0, 1)

O(~x3) (1,−1, 1, 0) τO(~x3) (−1, 1,−1, 0)

O(~x4) (−1, 0, 1, 0) τO(~x4) (1, 0,−1, 0)

Spin(8) weights of degree 1 line bundles

Table 2. Spin(8) weight of coherent sheaves on X2.

while the induced transformation on the Grothendieck group T : Γ → Γ acts on the flavor

charges αa as (cf. eqs. (3.2)–(3.5))

T (α1) = α1, T (α2) = α2, T (α3) = α4, T (α4) = α3, (3.10)

in other words by the automorphism α3 ←→ α4 of the Dynkin graph (3.6). This is precisely

the non-trivial element of the Spin(8) triality group S3 which maps the weights of v into

themselves, consistently with the fact that the T -duality makes sense at weak coupling

where the quark fields keep their identity.

The functor L acts as

L(O) = O(−~ω),

L(Si,j) = O(−~xi + (1− j)~ω)[1], i = 1, . . . , 4, j = 0, 1.
(3.11)

Thus (
2 degL(X)

rankL(X)

)
=

(
1 0

−1 1

)(
2 degX

rankX

)
, (3.12)
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and (cf. eq. (2.75))

L[Si,j ] = (−1)j−1[O(~xi)] mod rad q, j = 0, 1, (3.13)

so that the Spin(8) weights of the eight objects L(Sij) are equal to those of the eight

sheaves {O(~xi), τO(~xi)}4i=1 which are the weights of the spinorial representation c. Thus

L maps the Spin(8) vector representation v into the spinorial representation c. However,

the action of L on the weights is not simply the automorphism α1 ←→ α4 of the Dynkin

graph (3.6) but rather the composition of this graph automorphism with a Spin(8) Weyl

transformation. In order to see this, we need to look at the full automorphism group

Aut(Db cohX2).

From eq. (2.96) we know that, besides the braid group generated by by T , L we have

the automorphism group Pic(X2)
0 ⋉Aut(X2). Now

Pic(X2)
0 = (Z/2Z)4

/
(Z/2Z)diag, (3.14)

while, neglecting the subtlety already mentioned,22 we may effectively take Aut(X2) ≃ S4,

the permutation of the four special points in P1. Then

Pic(X2)
0 ⋉Aut(X2) ≃ (Z/2Z)4

/
(Z/2Z)diag ⋉S4 ≃ Weyl(Spin(8)). (3.15)

Let Π be the autoequivalence of the derived category associated with the permutation

π = (14)(23) of the four special points in P1. We define a new auto-equivalence of Db cohX2

L̂ = ΠL. (3.16)

L̂ has the same action on the Yang-Mills charges as L. It follows from eq. (3.13) that the

Spin(8) weights of L̂(Si,1) are equal to those of O(~xπ(i)); comparing with table 2 we see

that the effect of L̂ on the flavor weights is simply
(
w1(L̂(X)), w2(L̂(X)), w3(L̂(X)), w4(L̂(X))

)
=

(
w4(X), w2(X), w3(X), w1(X)

)
, (3.17)

i.e. L̂ induces the graph automorphism α1 ↔ α4 which interchanges the Spin(8) spinorial

representations v ↔ c. However, L̂ is less convenient than L since L̂T L̂ 6= T L̂T .

3.2 Relation with the F4 root system

Let us look to the action of B3 on the flavor charges from a more conceptual standpoint.

We start from the formulae proven in section 2.5 which we specialize to Nf = 4 SQCD.

In this case both O and S3,0 have τ -period p = 2. For p = 2 the action of LY on the

Grothendieck group, eq. (2.106), reduces to

LY [X] = [X]− 〈[Y ], [X]〉E [Y ]− 〈[τY ], [X]〉E [τY ] = (3.18)

= [X]−
〈
[Y ] + [τY ]

2
, [X]

〉

E

(
[Y ] + [τY ]

)
−
〈
[Y ]− [τY ]

2
, [X]

〉

E

(
[Y ]− [τY ]

)

22The points is as follows: a permutation of the four special points does not give back the same X2 but

rather a new one with a different cross-ratio of the four special points. Since this cross-ratio does not enter

anywhere in the BPS sector, as far as we are interested to BPS physics, we may identify all X2 and consider

S4 to be a symmetry of the physics. For a generic configuration of the four points the actual Aut(X2) is the

Klein group. Hence the operation Π defined in the text is an actual automorphism of the derived category.
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with Y = O, S3,0 (S1,0) respectively. Since [τY ] = Φ · [Y ], the charges [Y ] ± [τY ] are ±1

eigenvectors of Φ i.e. they are a Yang Mills and a matter charge, respectively. Hence, the

induced action on the matter lattice is Γmatter ≡ Γ/rad q is simply

LY [X] = [X]− 1

2

〈
[Y ]− [τY ], [X]

〉
sym

(
[Y ]− [τY ]

)
(3.19)

where 〈·, ·〉sym is the inner product on Γmatter ≃ ΓD4 given by the Cartan matrix. The

action of an automorphism is an isometry of the positive definite symmetric pairing; this

requires ∥∥[Y ]− [τY ]
∥∥2 ≡

〈
[Y ]− [τY ], [Y ]− [τY ]

〉
E
= 4 (3.20)

which is automatic in view of eq. (2.105). From eqs. (2.96), (3.15) we conclude that

Aut(Db cohX2) acts
23 on the flavor root lattice Γso(8) as the group of reflections gener-

ated by its elements of square-length 2 and 4. This group is isomorphic to Weyl(F4) [35].

One has

1 → Weyl(SO(8)) → Weyl(F4) → S3 → 1. (3.21)

The triality group is simply Weyl(F4)/Weyl(SO(8)).

3.3 The cluster category

Around eq. (2.1) we claimed that the triangulated category which describes the physics of

the BPS sector is not Db cohX itself but rather an orbit category of the form Db cohX/C

where C is a certain subgroup of Aut(Db cohX). The subgroup C is determined by non-

perturbative physical considerations, in particular by the study of the quantum monodromy

M(q) and its fractional powers [21, 24]. In the case of a Lagrangian field theory, however,

the group C should also have an elementary interpretation in terms of conventional weak-

coupling physics. Then we use Nf = 4 SU(2) SQCD as a convenient example to shed light

on the physical meaning of the cluster category.

We claim that passing from Db cohX2 to C(X2) in this example corresponds to imple-

menting the Gauss’ law on the physical states. Indeed, the center Z(B3) of the braid group

B3 is the infinite cyclic group generated by (TL)3 = (LT )3. For p = 2 one has the equality

(TL)3 ≡ τ−3Σ = τ−1Σ (3.22)

and hence (TL)3 acts on the Yang-Mills charges YM(X) as multiplication by −1, while

fixing all flavor charges. Thus (TL)3 acts on Γ as the Weyl group of the gauge group SU(2),

which is a gauge transformation belonging to the connected component of the identity

which leaves invariant all physical states satisfying the Gauss’ law. Hence (TL)3 ≡ τ−1Σ

should act trivially on the physical states, i.e. two objects in the same τ−1Σ-orbit should

be considered the same ‘physical’ object. Then the natural triangulated category which is

associated to the physical BPS states is

C(X2) = Db(cohX2)
/
〈τ−1Σ〉, (3.23)

23Neglecting the subtlety in footnote 22.

– 24 –



J
H
E
P
0
9
(
2
0
1
5
)
0
3
5

which is precisely the definition of the cluster category for the coherent sheaves on the

weighted projective line of type (2, 2, 2, 2) (equivalently of the canonical algebra of the

same type) [17, 36].

It is convenient to see the orbit category C2 ≡ Db(cohX2)/〈τ−1Σ〉 as a (triangulated)

category with the same objects as the triangulated category Db(cohX2) and morphism

spaces

HomC2(X,Y ) =
⊕

g∈〈τ−1Σ〉

HomDb(cohX2)(X, gY ), (3.24)

see appendix B for further details. Then the isoclasses of C2 objects are the orbits of

isoclasses of objects of the derived category, and the physical BPS states — satisfying

Gauss’ law — are in one-to-one correspondence with the isoclasses of stable C2 objects.

The physical meaning of equation (3.24) is that defining the “physical” morphism space to

be the direct sum of morphisms in the original category from X to gY for all g, makes the

morphism to account correctly for all the possible “relative gauge orientations” of the two

objects when they form a BPS bound state.

4 S-duality for the E(1,1)
r

models

4.1 Generalities

We have seen in section 2.1 that the matter charges of the five g
(1,1)
r models (g =

A1, D4, E6, E7, E8) take values in the weight lattice Γw
g of g. By this we mean that they are

valued on a lattice endowed with the Cartan (integral) symmetric form 〈·, ·〉sym which is

preserved by all symmetries and dualities of the quantum field theory. On the root lattice

Γg there is, in addition, an integral skew-symmetric form 〈·, ·〉Dirac which is also preserved

by all dualities. Indeed, the reduced Coxeter element Φ centralizes the action of all duali-

ties on Γg, cf. eq. (2.25). However there are two major differences between the Lagrangian

models A
(1,1)
1 , D

(1,1)
4 and the non-Lagrangian ones E

(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 :

A) In the Lagrangian case the skew-symmetric form 〈·, ·〉Dirac is identically zero on Γg,

i.e. the matter charges are pure flavor (≡ the matter system are free hypermultiplets);

B) in the Lagrangian case the Lie group exp(g) is a symmetry of the theory. This is not

true in the non-Lagrangian case.

Indeed, in section 3 we saw that, in the two Lagrangian models, the class of coherent

sheaves X with a fixed Yang-Mills charge YM(X) ≡ (p degX, rankX)t have the correct g

weights to form a complete representation of g. This is certainly not true for p = 3, 4, 6.

For instance, the number of zero-degree line bundles is equal to the order of the restricted

Picard groups

Pic(X3)
0 = Z/3Z× Z/3Z, Pic(X4)

0 = Z/2Z× Z/4Z, Pic(X6)
0 = Z/2Z× Z/3Z, (4.1)

and no non-trivial representation of E6, E7 and E8 have dimension 9, 8, and 6. Alterna-

tively we may note that Weyl(Er) is not a triangle auto-equivalence for E
(1,1)
r models. The
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subgroups of Aut(C(Xp)) which fix the rank and the degree are listed in the second column

of the following table:

p = 3 (Z/3Z× Z/3Z)⋉S3 SU(3)

p = 4 (Z/2Z× Z/4Z)⋉S2 Sp(2)

p = 6 Z/2Z× Z/3Z Sp(1)

(4.2)

They certainly do not contain the Weyl group of any Lie group but those listed in the third

column and their subgroups. The lattice of flavor charges

Γfl =
{
x ∈ Γ

∣∣ Φ · x = −x
}
, (4.3)

has rank 0, 3, 2 for p = 3, 4, 6. For p = 4 Γfl is generated by the three classes

α1 = [S2,0] + [S2,2]− [S1,1],

α2 = [S3,0] + [S3,2]− [S1,0],

α3 = [S1,0]− [S2,0]− [S2,2]

(4.4)

The symmetric form on Γfl

〈αa, αb〉E =




3 −1 −1

−1 3 −1

−1 −1 3


 (4.5)

is not related in any obvious way to a Cartan matrix, which is consistent with the fact

that (contrary to the p = 2 case studied in section 3) physically we do not expect any non-

Abelian enhancement of the flavor symmetry for the p = 4 model. Aut(X4) just permutes

the two identical matter AD subsystems of type D4, and acts on the flavor charges as

α1 ↔ α1 + α2 + α3, α2 ↔ −α3. (4.6)

The two generators of Pic(X4)
0 act as24

O(~x2 − ~x3) : (α1, α2, α3) 7→ (α3,−α1 − α2 − α3, α1) (4.7)

O(~x1 −~2x2) : (α1, α2, α3) 7→ (α3, α1 + α2 + α3, α1). (4.8)

For p = 6 the generators of Γfl are

α1 = [S1,1]− [S3,0]− [S3,2]− [S3,4], α2 = −[S1,0] + [S3,0] + [S3,2] + [S3,4] (4.9)

with

〈αa, αb〉E =

(
4 −2

−2 4

)
= 2CA2 . (4.10)

Tensoring with O(~x1−3~x3) changes the sign of both flavor charges, while the flavor charges

are inert under O(~x2 − 2~x3).

24A perhaps more transparent description of the action of the Picard group on the flavor charges is the

following: O(~x2−~x3) inverst the signs of the flavor charges of the two D4 matter systems, while O(~x1−2~x2)

invert the sign of the flavor charge of the D2 hypermultiplet.
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4.2 Emergence of Shephard-Todd complex reflection groups

From section 2.5 we know that the action of the two functors L and T on the Grothendieck

group Γ is given by

[LX] = [X]−
p−1∑

k=0

〈
Φk · [O], [X]

〉
E
Φk · [O] (4.11)

[TX] = [X]−
p−1∑

k=0

〈
Φk · ([O(~c)]− [O((p− 1)~x3]), [X]

〉
E
Φk · ([O(~c)]− [O((p− 1)~x3]) (4.12)

where we used

[S3,p−1] = [S(~c)]− [O((p− 1)~x3)]. (4.13)

Writing [X] =
∑

a[X]aφa, where {φa}na=1 is the canonical basis of Γ (cf. section 2.2)

and [X]a ∈ Z, we have25

[X]bLba ≡ [LX]a = δab [X]b −
p−1∑

k=0

(Φk)1a (Φ
k)1cEcb[X]b (4.14)

[X]b T ba ≡ [TX]a = δab [X]b −
p−1∑

k=0

(
(Φk)r a − (Φk)r−1 a

)(
(Φk)r c − (Φk)r−1 c

)
Ecb[X]b.

(4.15)

Since Φ = −E(Et)−1, the matrices T and L are expressed in terms of the Euler matrix E

only; plugging in the explicit matrix E in eq. (2.48), we get integral n× n matrices T and

L giving the concrete action of T , L on the lattice Γ. See appendix A.

For p = 3, 4, 6, the matrices T and L give a (reducible) n = 8, 9, 10 dimensional

representation of B3 on the vector space V = Γ⊗C. Indeed they satisfy the braid relation

TLT = LTL. (4.16)

T and L commute with Φ and, for p = 3, also with the permutation π12 in eq. (2.95). We

decompose V in eigenspaces of the semisimple linear map Φ,

V =

p−1⊕

s=0

Vs, Φ
∣∣∣
Vs

= e2πis/p. (4.17)

From eqs. (4.14), (4.15) the restrictions of the braid generators T , L to each Φ-eigenspace,

Ls,T s : Vs −→ Vs (4.18)

25The matrices T and L are defined to act on the left of the basis elements φa
L,T
−−−→ Lab φb, T ab φb, and

hence they act on the right of the coefficients [X]a.
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are

Ls = 1− 1

p

(
p−1∑

k=0

e−2πiks/pΦkv

)
vtE

(
p−1∑

ℓ=0

e−2πiℓs/pΦℓ

)
(4.19)

T s = 1− 1

p

(
p−1∑

k=0

e−2πiks/pΦkw

)
wtE

(
p−1∑

ℓ=0

e−2πiℓs/pΦℓ

)
(4.20)

where v = (1, 0, · · · , 0)t, w = (0, · · · , 0,−1, 1)t. (4.21)

Eqs. (4.19), (4.20) together with eq. (2.105) imply that the minimal equations satisfied by

the restricted generators T s,Ls are

{
(Ls − 1)(Ls − e−2πis/p) = (T s − 1)(T s − e−2πis/p) = 0 if dimVs > 1

Ls − e−2πis/p = T s − e−2πis/p = 0 if dimVs = 1.
(4.22)

In particular, acting on V0 — which corresponds to the Yang-Mills charges YM(·) — T 0

and L0 are 2× 2 irreducible unipotent matrices in agreement with eqs. (2.68), (2.65). For

p even, T p/2 and Lp/2 acting on Vp/2 — i.e. on the flavor charges — are involutions, in fact

reflections on square-length 2p lattice vectors

y 7−→ y − 1

p
〈u, y〉sym u, for some u ∈ Γ, ‖u‖2 = 2p, (4.23)

just as found in section 3.2 for the D
(1,1)
4 model.

The minimal polynomial for the n × n matrices T , L which give the action of the

telescopic functors T , L on the Grothendieck group Γ is then

(
T − 1

)(
T p − 1) =

(
L− 1)

(
Lp − 1) = 0. (4.24)

Indeed, more generally, the following identities are true for all analytic function f(z)

(
f(T )− f(Φ−1)

)(
T − 1

)
=

(
f(L)− f(Φ−1)

)(
L− 1

)
= 0, (4.25)

eq. (4.24) being the special case f(z) = zp. In addition, the following identities hold (see

appendix A)

(T t)p = 1 +R1 ⊗M t (Lt)p = 1 +R2 ⊗Qt, (4.26)

where M,Q,R1, R2 are the magnetic/electric charge and radical vectors defined in

eqs. (2.44), (2.45), (2.50) and (2.51).

B3 action on the matter charges. The braid group action on the matter vector space

Vmatter =
⊕

s 6=0

Vs ≡ Γmatter ⊗ C (4.27)

preserves the positive-definite Hermitian product induced by the Euler form as well as the

lattice Γmatter ⊂ Vmatter. Hence the quotient of B3 which acts effectively on Vmatter is a

finite group Gmatter. This group is generated by the restriction of the matrices T and L
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to the (n − 2)-dimensional space Vmatter. By abuse of notation, we denote these ‘matter’

restrictions by the same symbols T , L. Then the finite group Gmatter is generated by the

two elements T , L subjected at least to the obvious relations

Lp = T p = 1, TLT = LTL. (4.28)

Each eigenspace Vs with s 6= 0 carries a unitary representation of Gmatter (with respect to

the Hermitian product induced by the Euler form). From eqs. (4.19), (4.20) we see that

The multiplicity of e−2πis/p as an eigenvalue of T s and Ls in Vs is

precisely one. Their other eigenvalues are all equal 1 (cf. eq. (4.22)).
(4.29)

Given the underling real structure on the complex vector space Vmatter induced by the

lattice Γmatter we know that the Gmatter-modules Vs and Vp−s are conjugate

Vp−s = Vs, p = 3, 4, 6, s = 1, 2, . . . , p− 1. (4.30)

The case Vs is one-dimensional. If dimVs = 1 the action of both generators T s, Ls

is just multiplication by e−2πis/p, and the quotient group of Gmatter which acts effectively

on Vs is the cyclic group

Z

/
p

gcd(s,p)Z. (4.31)

In this case the action of the generator of Z(B3) on Vs is

(T sLs)
3 = e−12πis/p ≡

{
1 for p = 3, 6

(−1)s for p = 4.
(4.32)

From section 2.3 we know that

(TL)3 =

{
−π p = 3

−Φ−3 p = 2, 4, 6.
(4.33)

Thus for p 6= 3 we have

(TL)3
∣∣
Vs

= −e−6πis/p, (4.34)

which is consistent with eq. (4.32) only for p = 6, s = 1, 3, 5 and p = 4, s = 2. In particular,

in all one-dimensional representations of Gmatter: (T sLs)
3 = 1. (4.35)

Vs of dimension larger than 1. If dimVs > 1, both T , L are complex reflections i.e.

unitary matrices with all but one eigenvalues equal 1 [9], cf. eq. (4.29). A group generated

by complex reflections is called a complex reflection group. We conclude that the quotient

group Gs of Gmatter which acts effectively on Vs is a finite complex reflection group.
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4.2.1 Finite complex reflection groups

Finite complex reflection groups have been classified by Shephard and Todd [9]: there

are three infinite families and 34 exceptional groups denoted G4, · · · , G37. Real reflec-

tion groups (Coxeter groups) and rational reflection groups (Weyl groups) are encoded in

Dynkin graphs; complex reflection groups are also encoded in certain graphs of a more

general kind [10]. We look for Shephard-Todd groups generated by two elements T , L

satisfying relations which imply (4.28) with p = 3, 4, 6. A part for the Weyl group of SU(2)

(which corresponds to the already discussed D
(1,1)
4 model), there are two other candidates

in the classification list, namely the exceptional Shephard-Todd groups G4 and G8, see the

following table:

G4 is a subgroup of U(2) which as an abstract group (i.e. forgetting its realization as

a complex reflection group) is

G4 ≃ binary tetrahedral group T ≃ SL(2,Z/3Z). (4.36)

Consider the standard Coxeter presentation of T (which is the subgroup of SU(2) corre-

sponding to the affine graph E
(1)
6 in the McKay correspondence)

T =
〈
A,B

∣∣ A2 = B3 = (−AB)3 = −1
〉

(4.37)

The identification

T = −B, L = AB, (4.38)

maps (4.37) into the standard presentation of G4. However its explicit realization as a

subgroup of SU(2) does not realize it as a complex reflection group. To get a complex

reflection group we must twist the standard quaternionic degree 2 Klein realization Q of T

by the character χ of one of its two non-trivial one-dimensional representations (the two

choices producing equivalent results26). Thus, G4 is the subgroup of U(2) generated by the

two matrices

T = −χ(B)BQ, L = χ(AB)AQBQ (4.39)

or, explicitly,

T = − 1√
2
ω

(
ǫ ǫ3

ǫ ǫ7

)
, L =

1√
2
ω

(
ǫ3 ǫ5

ǫ7 ǫ5

)
(4.40)

where ω, ǫ are primitive roots of unity of order, respectively, 3 and 8. The irreducible

representations of G4 may be then read directly from the character table of the binary

tetrahedral group T .

In the same fashion, G8 is a subgroup of U(2) which is a central extension by Z/2Z of

the binary octahedral group O, i.e. of the subgroup of SU(2) associated to the affine graph

E
(1)
7 . Explicitly [9]

T = − 1√
2
ǫ3

(
1 −1

1 1

)
, L = ǫ3

(
ǫ3 0

0 ǫ5

)
(4.41)

26The two choices are related by interchanging the defining representation and its conjugate R ↔ R.
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with ǫ as before. Again we may obtain the irreducible representations of G8 by twisting

the character table of O. We claim that G8 is a central extension by Z(G8) ≡ Z/4Z of the

group PSL(2,Z/4Z)

1 −→ Z/4Z −→ G8
P−−→ PSL(2,Z/4Z) −→ 1. (4.42)

To show our claim, the only thing we have to prove is that the quotient of G8 by its center

Z(G8) is the group PSL(2,Z/4Z). Now

G8/Z(G8) =
{
T ,L

∣∣ TLT = LTL, (TL)3 = T 4 = L4 = 1
}
≡ PSL(2,Z)/N(4), (4.43)

where N(n) (for n ∈ N) stands for the normal closure27 of Tn in PSL(2,Z) i.e. the inter-

section of all normal subgroups of PSL(2,Z) containing Tn. Comparing presentations, for

all n ∈ N, one has

PSL(2,Z)/N(n) = the (2, 3, n) triangle group ≡
≡

〈
a, b, c | a2 = b3 = cn = abc = 1

〉
.

(4.44)

Klein proved that N(n) = Γ(n) for n ≤ 5 [8] so28

〈
T ,L ∈ PSL(2,Z)

∣∣∣ T n=Ln=1
〉
≡ PSL(2,Z)/N(n) =

= PSL(2,Z/nZ) =





dihedral D
(1)
5 n = 2

tetrahedral E
(1)
6 n = 3

octahedral E
(1)
7 n = 4

icosahedral E
(1)
8 n = 5.

(4.45)

The affine diagrams g(1) in the second column are the McKay graphs of the double cover of

the PSL(2,Z/nZ) group which is a finite subgroup of SU(2). It is amusing that the three

Lie algebras E
(1)
6 , E

(1)
7 and E

(1)
8 appear again in the game, now as quotients of the modular

group by principal congruence subgroups Γ(n). As abstract groups, the dihedral group of

order 6 is isomorphic to S3, while the tetrahedral one is isomorphic to A4.

In view of eq. (4.43), the case n = 4 in (4.45) proves our claim (4.42).

4.2.2 The E
(1,1)
6 model

Let us look case by case. For p = 3 we have dimV1 = dimV2 = 3. Comparing the

presentation of G4 in table 3 with eq. (4.28) we conclude that V1, V2 carry a representation

of G4 ≃ SL(2,Z/3Z). We decompose Vs (s = 1, 2) into irreducible representations of

27
T is the 2× 2 matrix defined in (2.65). In eq. (4.43) we use that L−1 is conjugate to T in PSL(2,Z).

28The case n = 5 in eq. (4.45) is never used in our present analysis: we listed it merely to give the

complete statement of Klein’s fundamental result. The case n = 6 is radically different, since the triangle

group (2, 3, 6) yields a tessellation of the Euclidean plane, and hence is an infinite group, while all groups

of interest here must be finite by the argument around eq. (2.25). We have already pointed out that the

case of the E
(1,1)
8 model, corresponding to p = 6, is slightly different from the other ones: using the Chinese

remainder theorem, PSL(2,Z/6Z) is written as the product of two triangle groups instead of a single triangle

group as for p = 2, 3, 4, cf. eq. (1.6).
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name graph order defining relations center Z order of Z

G4 ?>=<89:;3 ?>=<89:;3 24 L3 = T 3 = 1, TLT = LTL (LT )3k 2

G8 ?>=<89:;4 ?>=<89:;4 96 L4 = T 4 = 1, TLT = LTL (LT )3k 4

Table 3. Shephard-Todd groups G4 and G8: graphs, orders, presentations and centers.

G4. First we rule out that Vs decomposes into the direct sum of three one-dimensional

representations since, in that case we would get (TL)3 = 1 (by eq. (4.35)), while we know

that (TL)3 is the non-trivial involution −π12; its action on Vs has eigenvalues (−1,−1, 1).

We also rule out the irreducible three dimensional representation of G4 — which coincides

with the 3-dimensional irrepresentation of T — which, being real, cannot be a complex

reflection subgroup of U(3). We remain with the defining two-dimensional representation

R in eq. (4.40) and its conjugate R. For the defining representation R (with the standard

choice ω = e2πi/3) we have

eigenvalues of T , L in R = (e−2πi/3, 1), (4.46)

and we conclude that

V1 = R⊕ 1, V2 = R⊕ 1, (4.47)

where 1 stands for the trivial representation. As a further check, note that in the repre-

sentation R, (TL)3 = −1 so that the eigenvalues of (TL)3 acting on Vs are (−1,−1,+1)

as they should.

4.2.3 The E
(1,1)
7 model

By comparing presentations, we see that for p = 4 the space Vs (s = 1, 2, 3) carry a

representation of the Shephard-Todd group G8. We have

dimV1 = dimV3 = 2, dimV2 = 3 (4.48)

and (TL)3 acts on Vs as τ
−3Σ, i.e. as multiplication by −e−3πis/2. From eq. (4.35) it follows

that V1, V3 are irreducible representations of G8 of degree 2. There are four such repre-

sentations Fχ which are obtained by twisting the defining representation F in eq. (4.41)

by one of the four one-dimensional characters χ of G8 (with χ4 = 1). One has (choosing

ǫ = eπi/4)

eigenvalues of T , L in Fχ = (χ e3πi/2, χ) (4.49)

so the only realizations as complex reflection groups in C2 are F and its conjugate F . On

F the central element (TL)3 acts as −eπi/2. Comparing with eq. (4.34) we see that, as

representations of G8,

V1 = F, V3 = F . (4.50)

Next we consider the space V2 which is spanned over C by the three strict-sense flavor

charges of the QFT model. The eigenvalues of T , L in V2 are (+1,+1,−1) so Gmatter acts
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on V2 as a real reflection group, i.e. a Coxeter group. The central element (TL)3 acts as

1. Since L2 and T 2 act trivially, the group which acts effectively on V2 is

PSL(2,Z)/N(2) ≡ PSL(2,Z)/Γ(2) ≡ PSL(2,Z/2Z) ≃ S3. (4.51)

We have two possibilities: either V2 is two copies of the trivial representation of the sym-

metric group S3 plus the sign one-dimensional representation σ, or it is the trivial repre-

sentation plus the irreducible degree 2 representation of S3, W . To distinguish the two

possibilities, note that in the first case TL acts as the identity, and then (in particular)

V2 = 1⊕ 1⊕ σ =⇒
3∑

k=0

(−1)k
{
[TLT (τ−kO)]− [T (τ−kO)]

}
= 0. (4.52)

Using eq. (2.85), the above sum becomes

3∑

k=0

(−1)k
{
[S3,k+1]− [O(~x3 − k~ω)]

}
=

=
3∑

k=0

(−1)k
{
[S3,k+1]−

k∑

ℓ=0

[S3,ℓ]−
2∑

i=1

k−1∑

ℓ=0

[Si,ℓ]
}

mod rad q

(4.53)

collecting the terms proportional to the classes localized, say, at the first special point,

[S1,ℓ] we see that the sum does not vanish mod rad q. We conclude that

V2 = W ⊕ 1, (4.54)

that is: (in a suitable basis) the 3 flavor charges of the E
(1,1)
7 theory are permuted by the

action of the S-duality group which acts through its S3 ≡ PSL(2,Z/2Z) factor group, cf.

eq. (1.13). This fact was already noted in refs. [39, 40].

4.2.4 The E
(1,1)
8 model

For p = 6 we have

dimV1 = dimV5 = 1, dimV2 = dimV3 = dimV4 = 2. (4.55)

The central element (TL)3 acts as multiplication by −eπis on Vs.

On the one-dimensional representations V1, V5, the generators L, T act as multiplica-

tion by e−πi/3 and eπi/3, respectively. We denote these two characters by χ and χ.

The two conjugate representation V2 and V4 are irreducible by criterion (4.35). Acting

on these representations we have

T 3 = L3 = 1, TLT = LTL, (4.56)

and hence the group acting effectively on V2, V4 is G4. Acting on V2

eigenvalues of T , L = (e−2πi/3, 1). (4.57)
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Comparing with eq. (4.46) we get

V2 = R, V4 = R. (4.58)

We remain with the flavor charge sublattice V3 of dimension 2. The group acting

effectively on this flavor lattice has a presentation

T 2 = L2 = 1, TLT = LTL, (4.59)

and hence it is identified with the Weyl group

Weyl(A2) ≃ PSL(2,Z/2Z) ≃ S3. (4.60)

Again, we have two possibilities: either (i) V3 is the direct sum of the trivial and the sign

representations, V3 = 1⊕σ, or (ii) V3 is the irreducible two-dimensional representation W

of S3. Again, the first possibility implies TL = 1. We repeat the diagnostics in eq. (4.52)

V3 = 1⊕ σ =⇒
5∑

k=0

(−1)k
{
[TLT (τ−kO)]− [T (τ−kO)]

}
= 0. (4.61)

Explicitly the sum has the form

5∑

k=0

(−1)k
{
[S3,k+1]− [O(~x3 − k~ω)]

}
=

=
5∑

k=0

(−1)k
{
[S3,k+1]−

k∑

ℓ=0

[S3,ℓ]−
2∑

i=1

k−1∑

ℓ=0

[Si,ℓ]
}

mod rad q

(4.62)

while the last sum does not vanish mod rad q. Again, we conclude that

V3 = W. (4.63)

This completes the proof of eqs. (1.9)–(1.11).
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A Explicit matrices in the canonical basis and additional identities

In this appendix, we write the explicit matrices which give the action of T and L on the

canonical basis i.e.

[TLa] = T ab φb, [LLa] = Lab φb, (A.1)

where {La}na=1 are the line bundles in eq. (2.42) such that φa = [La]. From section 4

we have

L = 1−
p−1∑

k=0

Et(Φt)kv ⊗ vtΦk, T = 1−
p−1∑

k=0

Et(Φt)kw ⊗ wtΦk, (A.2)
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where E is the upper triangular matrix in eq. (2.48), Φ = −E(Et)−1 and

v = (1, 0, . . . , 0)t, w = (0, . . . , 0,−1, 1)t. (A.3)

For many purposes it is more natural to use the transpose matrices T t and Lt giving the

action on the coefficient vectors ([X]a), where, for all X ∈ Db cohX we set [X] = [X]aφa.

The matrices T and L have quite remarkable properties, some of which were already

discussed in section 4.

A.1 E
(1,1)
6 model

With respect to the canonical basis (2.42), one has

T =




0 0 0 0 0 1 0 0

−1 1 0 0 0 1 0 0

−1 0 1 0 0 1 0 0

−1 0 0 1 0 1 0 0

−1 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−1 0 0 0 0 1 0 1




L =




−1 1 0 1 0 1 0 −1

−1 1 0 0 0 0 0 0

−1 0 0 0 −1 0 −1 2

−1 0 0 1 0 0 0 0

−1 0 −1 0 0 0 −1 2

−1 0 0 0 0 1 0 0

−1 0 −1 0 −1 0 0 2

−2 0 −1 0 −1 0 −1 3




(A.4)

It is easy to check that

(T − 1)(T 3 − 1) = (L− 1)(L3 − 1) = 0, TLT = LTL, (A.5)

specT = specL = (1, 1, . . . , 1, e2π/3, e−2π/3). (A.6)

Using the explicit matrices (A.4), we confirm that the central element is

(TL)3 = −π12, (A.7)

proving the claim in eq. (2.95). Moreover

(T t)3 − 1 = R1 ⊗M t (A.8)

where M is the vector of magnetic charges of the φa’s, eq. (2.44), and R1 ≡ E−1M is the

first generator of rad q, eq. (2.50), and . Likewise

(Lt)3 − 1 = R2 ⊗Qt (A.9)

where Q is the vector of electric charges of the φa’s, eq. (2.45), and R2 ≡ E−1Q is the

second generator of rad q. Note the similarity of the last two equations with the equation

satisfied by the Coxeter element of an Euclidean algebra.
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A.2 E
(1,1)
7 model

For the E
(1,1)
7 model the matrices are

T =

































0 0 0 0 0 1 0 0 0

−1 1 0 0 0 1 0 0 0

−1 0 1 0 0 1 0 0 0

−1 0 0 1 0 1 0 0 0

−1 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

−1 0 0 0 0 1 0 0 1

































L =

































−1 1 1 0 0 1 0 0 −1

−1 0 0 0 −1 0 0 −1 2

−1 0 1 0 0 0 0 0 0

−1 0 0 0 0 0 −1 0 1

−1 −1 0 −1 0 0 −1 −1 3

−1 0 0 0 0 1 0 0 0

−1 0 0 −1 0 0 0 0 1

−1 −1 0 −1 −1 0 −1 0 3

−2 −1 0 −1 −1 0 −1 −1 4

































(A.10)

It is easy to check that they satisfy the identities:

(T − 1)(T 4 − 1) = (L− 1)(L4 − 1) = 0, (A.11)

specT = specL = (1, 1, . . . , 1, i,−1,−i) (A.12)

(TL)3 = −Φ−3 TLT = LTL, (A.13)

(T t)4 − 1 = R1 ⊗M t, (Lt)4 − 1 = R2 ⊗Qt. (A.14)

A.3 E
(1,1)
8 model

For the E
(1,1)
8 model the matrices are

T =





































0 0 0 0 1 0 0 0 0 0

−1 1 0 0 1 0 0 0 0 0

−1 0 1 0 1 0 0 0 0 0

−1 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

−1 0 0 0 1 0 0 0 0 1





































L =





































−1 1 1 0 1 0 0 0 0 −1

−1 −1 0 −1 0 0 −1 0 −1 3

−1 0 0 0 0 0 0 −1 0 1

−1 −1 −1 −1 0 −1 0 −1 −1 4

−1 0 0 0 1 0 0 0 0 0

−1 0 0 −1 0 0 0 0 0 1

−1 −1 0 −1 0 −1 0 0 0 2

−1 −1 −1 −1 0 −1 −1 0 0 3

−1 −2 −1 −2 0 −1 −1 −1 0 5

−2 −2 −1 −2 0 −1 −1 −1 −1 6





































(A.15)

which satisfy the identities:

(T − 1)(T 6 − 1) = (L− 1)(L6 − 1) = 0, (A.16)

specT = specL = (1, 1, . . . , 1, eπi/3, e2πi/3, eπi, e4πi/3, e5πi/3) (A.17)

(TL)3 = −Φ−3, TLT = LTL, (A.18)

(T t)6 − 1 = R1 ⊗M t, (Lt)6 − 1 = R2 ⊗Qt. (A.19)

B Cluster-tilting

In this appendix we give some more details on the relation between the present approach

to the BPS spectra of the four SCFT D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 — which is based on the
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Abelian category cohXp — and the standard quiver approach [1, 26] which is based on the

module category of the Jacobian algebra CQ/(∂W) of the quiver Q with superpotential W.

We write T for the direct sum of all sheaves of the canonical basis (2.42)

T =
⊕

~a∈C

O(~a) C =
{
0, ~c, ℓi~xi, 1 ≤ ℓi ≤ pi − 1

}
. (B.1)

We already know that the canonical algebra Λp having the same weight type (p1, · · · , ps)
as the line Xp is given by (here Hp = cohXp)

Λp = EndHp(T ). (B.2)

However, Λp does not coincide with the Jacobian algebra CQ/(∂W) for any choice of

(Q,W) in its mutation class. What is true [3] is that there exists a Q in the class which

is the completion of the quiver Qcan of Λp: Q contains (s − 2) extra arrows going from

the sink of Qcan to its source and Q is endowed with a superpotential linear in the new

arrows ηa so that the Jacobian relations ∂W/∂ηa give back the original relations of Λp.

For instance, for E
(1,1)
r we add just one new arrow η and the superpotential becomes

W = η(Xp1
1 +Xp2

2 +Xp3
3 ). (B.3)

The modules of Λp are then identified with the class of modules of the Jacobian algebra

with η = 0. One may wonder whether our treatment ‘forgets’ the modules with η 6= 0.

The answer is that these modules are already properly taken into account thanks to the

properties of the cluster-category Cp.
The category Cp has the same objects as DbHp and morphism spaces

Cp(X,Y ) =
⊕

n∈Z

HomDb Hp
(X, (τ−1Σ)nY ). (B.4)

and hence it is equivalent [17] to the category H̃p having the same objects as Hp and

Z2-graded morphism spaces

Hom
H̃p

(X,Y ) = HomHp(X,Y )⊕ Ext1Hp
(X, τ−1Y ), (B.5)

with the appropriate composition law [17]. The tilting object T ∈ Hp in eq. (B.1) is also

a cluster-tilting object [37] for Cp (for a review see [38]). With respect to Hp, the category

H̃p has additional (odd) morphisms; for instance the new morphisms O(~c) → O are

Hom
H̃p
(O(~c),O) = Ext1Hp

(O(~c),O(−~ω)) ≃ DS~c+2~ω, (B.6)

which precisely correspond to the new (s−2) arrows of the completed quiver Q with respect

to old Qcan. More generally, one shows [17, 37]

CQ/(∂W) = EndCp(T )
op. (B.7)

Then we have a functor

HomCp(T, ·) : Cp −→ modCQ/(∂W), (B.8)

– 37 –



J
H
E
P
0
9
(
2
0
1
5
)
0
3
5

which is full and dense; it gives an equivalence of categories

Cp/add τT ≃ modCQ/(∂W). (B.9)

In particular, the indecomposable objects of the category Hp ≡ cohXp are the indecompos-

able modules of the Jacobian algebra together with the n ≡ r(g)+ 2 line bundles O(~a+ ~ω)

with ~a ∈ C (cf. eq. (B.1)).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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