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Prion diseases are fatal neurodegenerative illnesses, which include Creutzfeldt-Jakob disease in humans and scrapie, chronic
wasting disease, and bovine spongiform encephalopathy in animals.They are caused by unconventional infectious agents consisting
primarily of misfolded, aggregated, 𝛽-sheet-rich isoforms, denoted prions, of the physiological cellular prion protein (PrPC).
Many lines of evidence suggest that prions (PrPSc) act both as a template for this conversion and as a neurotoxic agent causing
neuronal dysfunction and cell death. As such, PrPSc may be considered as both a neuropathological hallmark of the disease and
a therapeutic target. Several diagnostic imaging probes have been developed to monitor cerebral amyloid lesions in patients with
neurodegenerative disorders (such as Alzheimer’s disease, Parkinson’s disease, and prion disease). Examples of these probes are
Congo red, thioflavin T, and their derivatives. We synthesized a series of styryl derivatives, denoted theranostics, and studied
their therapeutic and/or diagnostic potentials. Here we review the salient traits of these small molecules that are able to detect
and modulate aggregated forms of several proteins involved in protein misfolding diseases. We then highlight the importance of
further studies for their practical implications in therapy and diagnostics.

1. Introduction

Neurodegenerative diseases are a medical, social, and eco-
nomic problem of paramount importance in developed
countries. Besides the fact that their etiology is generally
unknown, developing therapeutic and diagnostic interven-
tions for diseases of the central nervous system (CNS) is
further complicated by the impermeability of the blood brain
barrier (BBB). Thus, Alzheimer’s disease (AD) and prion
diseases are still not curable with drugs, and only in 2012 [1–
3] positron emission tomography (PET) imaging probes have
been included in the AD diagnostic armamentarium.

In recent years, the close cooperation between drug
delivery/treatment and molecular imaging disciplines has
resulted in a relatively new branch of knowledge, known as
theranostics. The term theranostics was coined to indicate
the concomitant therapeutic and diagnostic properties in a
single agent. The purpose of theranostics is to optimize the
efficacy and safety of therapy, as well as to streamline the
entire drug development process. Several exciting examples

of theranostic systems have now been reported in the lit-
erature for the treatment of cancer [4], atherosclerosis [5],
and gene delivery [6], but very few examples are reported
in the neuropathological field, especially in the prion field.
In our recent work [7] we detailed the development of a
small molecule with fluorescent properties that is able to
simultaneously detect and inhibit A𝛽 and PrPSc plaques in in
vitro studies.The progress to date in the design and utilization
of these compounds is discussed herein.

2. Human Prion Diseases

The term prion (pronounced “pree-on”) is the acronym for
proteinaceous infectious particle. The prion hypothesis was
put forward in 1982 to explain the surprising transmission
mechanisms of this unconventional protein [13, 14]. The
discovery that proteins can behave like infectious agents to
transmit disease is a milestone in biology. In fact, what sets
prions apart, as proposed by Prusiner [14], is that the actual
infectious principle consists merely of protein and is capable
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of replicating and transmitting infections without the need
for informational nucleic acids. Over the past decade, there
has been renewed interest in proteins causing neurodegen-
eration since they may all act as prions (i.e., amyloid-𝛽, 𝛼-
synuclein). This hypothesis has profoundly influenced the
development of diagnosis methods and effective therapies for
the corresponding diseases.

Prion diseases, also known as transmissible spongiform
encephalopathies (TSEs), occur in both humans and animals.
Prion diseases are a group of rapidly progressive disorders
characterized by a defined spectrumof clinical abnormalities.
The number of human and animal diseases recognized as
TSEs has increased steadily in recent years. They all share
similar hallmarks such as the spongiform degeneration of the
brain and variable amyloid plaque formation (PrPSc). In fact,
PrPSc is the disease-associated isoform of the endogenously
expressed prion protein (PrPC), which may be present as
amyloid deposits. The first cases of human prion disease,
Creutzfeldt-Jakob disease (CJD), were reported in the 1920s
[15, 16]. Since then, different forms of human TSEs have been
described that can appear as sporadic, inherited, or iatro-
genic disorders; they include CJD, Gerstmann-Sträussler-
Scheinker syndrome (GSS), fatal familial insomnia (FFI),
and kuru. In animals, several TSEs have been reported,
including scrapie in goats and sheep, bovine spongiform
encephalopathy (BSE) in cattle, chronic wasting disease in
deer and elk, and transmissible mink encephalopathy.

Here we review some crucial points of human prion
disorders.

2.1. CJD. CJD presents as a sporadic, hereditary (familial), or
acquired (iatrogenic or BSE-related) illness. Approximately
85% of all CJD cases occur sporadically, geographically, and
ubiquitously, with an incidence rate of 0.5–2 cases per one
million people per year. The median age of onset is the
seventh decade (64 years) equally affecting men and women
[17]. The clinical progression typically occurs over a few
weeks. Around 70% of those afflicted die in less than 6
months. Typically, CJD presents with progressive dementia
and cerebellar degeneration, characterized by spongiosis,
neuronal loss, astrogliosis, and a clinical syndrome accompa-
nied by dementia, memory loss, ataxia, andmyoclonus. Early
symptoms, present in approximately one-third of the cases,
include fatigue, insomnia, depression, weight loss, headaches,
general malaise, and ill-defined pain sensations. In addition
to mental deterioration and myoclonus, frequent additional
neurological features include extrapyramidal signs, cerebellar
ataxia, pyramidal signs, and cortical blindness [18]. Homozy-
gosity for methionine (Met) or valine (Val) at position 129
of the human PrP gene (PRNP) has been identified as a
predisposing factor in themajority of sporadic and iatrogenic
CJD cases [19, 20].

2.2. Familial CJD. Familial CJD (fCJD), representing 5–15%
of all CJD cases, is classified into many haplotypes based
on PRNP mutations present in the open reading frame and
codon 129 on the mutant allele [21]. The majority of fCJD
cases (>70%) have been associated with codon 200mutations

(E200K) [22–24] or with a codon 178 mutation (D178N) in
the PRNP gene [25–27]. The symptoms of the familial form
of CJD vary depending on the type of PrP mutation involved
[28].

2.3. Iatrogenic CJD. Iatrogenic CJD (iCJD) is a very rare
disease resulting fromneurosurgery, corneal grafting, human
dura mater implants, and the use of human growth hor-
mone (hGH) and pituitary derived gonadotropin (hGNH).
Iatrogenic CJD was first recognized in 1974 in a US patient
who received a corneal transplant from a donor later proven
to have died from CJD [29]. Worldwide, at least 226 cases
of iCJD, including 26 US cases, have been associated with
administration of contaminated human growth hormone
(hGH) from cadavers. Of 74 UK cases reported from 1979
till 2011, 65 individuals received human-derived growth hor-
mone, the other 8 individuals received infected dura mater
implants, and one case of iCJD was reported after receiving
human gonadotropin. InApril 2013 one case of probable iCJD
was reported (http://www.cdc.gov/eid) after treatment for 23
months with commercial cadaveric hGH when the patient
was 6 years old. At the age of 33, 26.5 years (range 25.5–
28 years) after the midpoint of commercial cadaveric hGH
treatment, dizziness and gait imbalance developed, causing a
fall. Seven months after the fall, he entered a state of akinetic
mutism; he died 9 months after symptom onset. A small
number of additional cases, known as variant CJD, are caused
by secondary infection transmitted by transfusion of blood
products. No new sources of disease have been identified, and
current practices, which combine improved recognition of
potentially infected persons with new disinfection methods
for fragile surgical instruments and biological products,
should continue to minimize the risk for iatrogenic disease
until a blood screening test for the detection of preclinical
infection is validated for human use [30].

2.4. Variant CJD. In 1995 and early 1996, a small number of
remarkably youngCJD patients were diagnosed in theUnited
Kingdom. Due to its similarity to sCJD, this human disease
was termed new variant of CJD (vCJD) [31]. In contrast to
sCJD, the median age of onset of the disease in vCJD patients
is 28 years (sCJD64 years) and the clinical course is prolonged
(median 14 months, sCJD 6 months). The appearance of
vCJD in the United Kingdom and the experimental evidence
that vCJD is caused by the same prion strain responsible
for BSE raised the possibility of a vCJD epidemic [32, 33].
Laboratory transmission studies in transgenic mice showed
that the characteristics of vCJD, including incubation period
and neuropathological changes, are very similar in BSE and
vCJD [34]. The favored hypothesis for transmission of BSE
to humans is a dietary exposure to prion-contaminated
bovine tissue (likely CNS) in the 1980s [35]. Variant CJD
is difficult to distinguish from other neurological disorders,
hence a definitive diagnosis has relied on neuropathology.
It has been shown that vCJD can be diagnosed by PrPSc

immunostaining on a tonsil biopsy [36]. The majority of
vCJD cases have been recognized in individuals homozygous
for Met at codon 129 in the PRNP gene [37]. However, Peden
et al. reported a case of a patient who was heterozygote at
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codon 129 of PRNP, suggesting that susceptibility to vCJD
infection is not confined only to the Met homozygous PRNP
genotype [38]. The human genotype at codon 129 of the
PRNP gene is known to be a key determinant in human
TSEs. This polymorphism modulates phenotype and disease
susceptibility to acquired or sporadic prion infection [39].
The large majority of individuals affected by prion diseases
are homozygous at codon 129 for either Met or Val [19, 20,
40]. The prevalence of Met/Met is only 39% in the normal
Caucasian population, whereas the frequency for Met/Val
is about 50% and for Val/Val 11% [19]. In some reports the
protective effect of PRNP codon 129 heterozygosity is seen in
some of the inherited prion diseases [41, 42].

2.5. GSS. GSS is a rare form of prion disease and occurs at a
rate of one per 100 million people per year worldwide [43]. In
contrast to CJD, GSS is almost always described in a familial
context. Only a few sporadic cases resembling GSS have been
reported so far [44].The syndromewas first described in 1928
by the Austrian neurologist Josef Gerstmann (1887–1969),
followed by a more detailed report in collaboration with his
colleagues Ernst Sträussler and Ilya Scheinker [45]. Most
patients show the first symptoms in the fourth or fifth decade
of life. Investigations have shown that missensemutations are
present in the PRNP gene of GSS patients. To date, a variety
of mutations have been identified, and the most common is
at codon 102 (P102L) [46]; others reported are 105 (P105L)
[47], 114 (G114V), 117 (A117V) [48], 131 (G131V) [49], 180
(V180I), 187 (H187R), 198 (F198S) [50], 202 (D202N), 212
(Q212P), and 217 (Q217R) [42].The STOPmutations reported
are Y145STOP-129M [51, 52], Q160STOP, Y226STOP, and
Y227STOP [53] (Figure 1). In addition, several insertional
mutations have been described that occur in the N-terminal
octapeptide repeat region of PRNP [54, 55].

2.6. FFI. Fatal familial insomnia (FFI) was first described
in 1986 in a 53-year-old man [56]. Since then, it has been
reported in several European countries [57–59], Australia
[60], and Japan [61]. The occurrence of FFI is associated with
the same codon 178 mutation (D178N) also observed in a
subtype of familial CJD [62]. The phenotype caused by the
D178N mutation depends on a polymorphism at codon 129.
The Met 129-Asn 178 allele segregates with FFI, while the Val
129-Asn 178 allele segregates with fCJD [25]. Recently, the
first cases of a sporadic form of fatal insomnia (sFI) have
been reported in a 44-year-oldman and a 58-year-oldwoman
[63–65]. FFI and sFI have similar disease phenotypes. Both
disorders have clinical features of disrupted sleep (loss of
sleep spindles, slow-wave sleep, and enacted dreams during
rapid-eye-movement sleep), autonomic hyperactivation, and
motor abnormalities (myoclonus, ataxia, dysarthria, dyspha-
gia, and pyramidal signs). PET shows pronounced thalamic
and limbic hypometabolism that become more widespread
in later stages. Neuropathological assessment reveals severe
neuronal loss and astrogliosis of the anteriormedial thalamus
and inferior olives, with later cerebral cortical and cerebellar
involvement [66].

2.7. Kuru. Kuru (“trembling with fear”) is the prototype of
human spongiform encephalopathy. It is restricted to the Fore
people living in the Eastern Highlands of NewGuinea, where
prions were transmitted by ritualistic cannibalism [67]. The
disease occurredmostly in children andwomen, because they
consumed the brain of deceased family members. In 1959, the
local government banned the cannibalistic practice.

3. Prion Conversion:
The ‘‘Protein-Only’’ Hypothesis

The central molecular event in the replication of mammalian
prions is the self-propagating conformational conversion of
PrPC to the misfolded PrPSc form. This postulate is known as
the “protein-only hypothesis” [14]. In recent decades several
efforts have beenmade to understand themechanism of PrPC

to PrPSc conversion. Twomodels have been proposed, known
as (i) template-directed refolding model and (ii) seeded-
nucleation model.

(i) The template-directed refolding model postulates a
direct interaction between PrPSc and PrPC, which is
induced to convert into more PrPSc. A high-energy
barrier might prevent the spontaneous conversion
of PrPC to PrPSc. In this model the critical step in
the conversion is the formation of a dimer between
PrPSc and PrPC or a partially destabilized folding
intermediate of PrPC denoted by PrP∗. Eventually
PrPSc acts as a template that catalyzes the refolding
of PrPC to a thermodynamically more stable PrPSc

conformation (Figure 2(a)).
(ii) The “seeding” or nucleation-polymerization model

states that PrPC and PrPSc are in a reversible thermo-
dynamic equilibrium. So, only if several monomeric
PrPSc molecules (less stable than PrPC) are mounted
in a highly ordered seed can more monomeric
PrPSc be recruited and eventually aggregated to form
amyloid. In such a crystal-like seed, PrPSc becomes
stabilized. The rate-limiting step in this mechanism
is not the conformational conversion itself but the
nucleation step. Fragmentation of PrPSc aggregates
increases the number of nuclei, which can recruit
more PrPSc and thus seems to replicate the agent.
In sporadic prion diseases, fluctuations in the local
PrPC concentration might (exceptionally rarely) trig-
ger spontaneous seeding and self-propagating prion
replication (Figure 2(b)).

In this transition, the primary structure of PrP does not
change, but the secondary and tertiary structures in PrPSc are
considerably different from those in PrPC.

3.1. Physiological Functions of𝑃𝑟𝑃𝐶. It is still unclear whether
the toxicity of PrPSc represents a gain of function [68] or
whether loss of function of PrPC is responsible for neu-
ropathological changes induced by prions [69]. One thing
is certain—PrPC has to be expressed in CNS to permit the
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Figure 2: (a) The “template-assistance model” [8] and (b) the “seeding nucleation model” [9].

conversion into PrPSc, since the infection of PrP-deficient
mice,Prnp0/0 [Zürich I] [70] orPrnp−/− [Edinburgh] [71], was
not successful. As predicted by the protein-only hypothesis,
these mice were entirely resistant to prion infections [72].
The ubiquitous presence of PrPC supports the notion that
PrP has a generalized cellular function in brain tissue. Several
experimental studies [73–75] suggest that PrPC could play a
role in synaptic structure, function, and maintenance. Defin-
ing the function of PrPC remains one of the main challenges
in prion biology, and it is an absolute requirement also for
comprehending TSEs attributed to the posttranslational PrPC

to PrPSc conversion.
The focus of this review is not the physiological form of

PrP, rather the pathologic PrPSc scrapie isoform.

4. Diagnosis of TSEs

Unfortunately, confirming a clinical diagnosis of TSEs has
historically been difficult, as conventional laboratory tests

have been ineffective in detecting them. For example, the
cerebrospinal fluid most often appears normal, except for an
increase in tau and 14-3-3 proteins. Both of these biomarkers
support the CJD diagnosis with a sensitivity of 92% and
specificity of 71% [76]. Brain MRI is increasingly useful in
identifying sCJD cases. High signal abnormalities in the basal
ganglia and/or cortical ribbon on diffusion weighted imaging
(DWI) and fluid attenuated inversion recovery (FLAIR)
sequences have recently been added to the diagnostic criteria
for probable sCJD (Figures 3(a) and 3(b)) [77]. Moreover,
neuroimaging with MRI is useful to exclude other causes
of subacute neurologic illnesses. Generally, few imaging
abnormalities are seen, for example, generalized atrophy in
some cases; in less than 10% of sCJD cases, hyperintensity
of the basal ganglia may be seen in T2-weighted images. In
vCJD, putaminal hyperintensity on T2-weighted images is
a common finding [78]. In FFI, PET may detect thalamic
hypometabolism although in other prion diseases PET gen-
erally shows nonspecific cortical hypometabolism. A helpful
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Figure 3: (a) A 50-year-old man with definite sCJD. Axial DWI shows pathologic hyperintensity in bilateral posterior temporoparietal
neocortex. Cortex along parietal-occipital fissure is abnormally hyperintense (vertical arrows), but primary visual region is spared (horizontal
arrows). Note asymmetric abnormal hyperintensity in right cingulum (arrowhead). Striatum is uninvolved. (b) FLAIR image at same level
shows more subtle pathologic hyperintensity in all abnormal regions on DWI, as shown in cingulate cortex (arrowhead) [10]. (c) Definite
sCJD (MM1); total duration: 10 months; EEG at 6 weeks: typical (used to classify case as probable); source: http://www.eurocjd.ed.ac.uk.

test is the electroencephalogram (EEG), which measures
brain wave activity (Figure 3(c)). The EEG often shows a
characteristic abnormal pattern, typically observed in later
stages of the disease, but this technique does not confirm a
TSE diagnosis. A definite diagnosis of prion disease, as with
any dementia, can be made only by pathologic confirmation
following biopsy or autopsy. Since the definitive antemortem
detection of PrPSc in biopsy specimens is discouraged,
because it is invasive and poses risks to health care personnel,
unfortunately the last option is autopsy and the analysis of
postmortem tissue of infected patients [79].

Prion diseases are generally characterized by widespread
neurodegeneration and therefore exhibit clinical signs and
symptoms of cognitive and motor dysfunction. In addition,
infectious prions propagate by forming amyloid plaques,
which are considered as the main hallmark of the disease
and serve as a main diagnostic criterion. Since PrPSc is
partially resistant to digestion with proteinase K (PK), this

characteristic feature has been used to identify infected
samples. Other biochemical characteristics useful to differ-
entiate PrPC from PrPSc are insolubility in nonionic deter-
gents and high content of 𝛽-sheet secondary structure. The
assays for the detection of PrPSc test brain tissue, where
the greatest concentrations of prions are found during the
terminal stage of disease. Standard histopathological and
immunohistochemical techniques are used to view the tissue
microscopically and identify characteristic vacuoles, plaques,
or other abnormal features and staining associated with prion
diseases. The standard confirmatory test is the Western blot
after PK digestion.

4.1. Western Blot. This technique takes advantage of the
partial PK resistance of the scrapie form. Treating PrPSc with
PK results in the removal of only 90 amino acids from the N-
terminus (Figure 1). The remaining PrP “core” is denoted by

http://www.eurocjd.ed.ac.uk
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Figure 4: Detection of PK-sensitive PrPSc. (a) Conventional Western blot of PrP treated with or without PK. No PrP was observed after
PK treatment in the samples from non-CJD. The PK-resistant PrP27–30 was indicated in the sample from sCJD. Samples were digested
with 50 𝜇g/mL proteinase K for 1 hour at 37∘C, completely hydrolyzing PrP𝐶. Proteinase digestion cleaves ∼90 amino acids from the amino
terminus of PrPSc to generate PrP27–30. Blot is developed with anti-PrP mouse monoclonal antibody 3F4 [11].

PrPRES (PrP, proteinase resistant). Limited protease digestion
of PrPSc often produces a smaller, protease-resistantmolecule
of approximately 142 amino acids, referred to as PrP 27–30.
Under the same conditions, PrPC and some forms of PrPSc are
completely hydrolyzed. Although resistance to limited prote-
olysis has proven to be a convenient tool for detecting PrPSc,
not all PrPSc molecules are resistant to protease digestion
(denoted by sensitive PrPSc, sPrPSc) [80–84]. Figure 4 shows
the typicalWestern blot profile of infected/uninfected and PK
digested/PK not digested brain homogenates.

4.2. Conformation-Dependent Immunoassay (CDI). Another
test useful for the detection of prions is the conformation-
dependent immunoassay (CDI).This diagnostic test simulta-
neously measures specific antibody binding to denatured and
native forms of PrP [82]. In 1998, Prusiner et al. described this
assay as not only able to measure very low levels of PrPSc but
also capable of discriminating among a wide variety of prion
strains. In 2002, the same authors [85] reported that CDI is
capable of measuring the disease-causing isoform (PrPSc) in
bovine brainstems with sensitivity similar to that of the end-
point titrations in transgenic (Tg) mice expressing bovine
PrP (BoPrP). Prion titers were ∼107 ID

50
units per gram of

bovine brainstem when measured in Tg BoPrP mice, a figure
∼10 times greater than that determined by bioassay in cattle
and ∼10,000 times greater than that determined by bioassay
in wild-type mice. This immunoassay provides important
information about the tertiary and secondary structure of
PrPSc, which is strain dependent. Results fromCDI should be
correlated with those from optical spectroscopic techniques
such as time-resolved fluorescence spectroscopy (FRT) and
circular dichroism (CD) spectroscopy. The ability to assay
features of the tertiary and secondary structure of PrPSc in
crude homogenates opens several new areas of investigation,
including determination of PrPSc structure in various tissues
as well as in different regions of the CNS for a variety of prion
strains. In 2005, the sensitivity of the assay was improved by
selectively precipitating the PrPSc withNa

2
H[PW

12
O
40
] [86].

4.3. Protein Misfolding Cyclic Amplification (PMCA). As
reported by several groups, sustained propagation of PrPSc

(largely in the CNS) results in the accumulation and deposi-
tion of the pathogenic protein.Therefore, the conversion into
PrPSc can be reproduced in vitro using a technique named
protein misfolding cyclic amplification (PMCA) which was
pioneered by Soto and colleagues [87]. PMCA allows prop-
agation of PrPSc in vitro from very small amounts of unde-
tectable seeding material to quantities sufficient for detection
by Western blot or plate-based immunoassays. For example,
using brain-derived PrPC as a substrate, as little as 1 𝜇g/mL
of PrPSc can be detected [88]. This ultrasensitive method has
been previously applied to identify prions in a wide range of
tissue and fluids from scrapie-infected sheep (blood, feces,
saliva, and milk) where only small amounts of the infectious
agent reside [89–93]. Given its unique ability to detect prions
in readily accessible tissue and at preclinical stages of the
disease, PMCA is a viable preclinical test for prion diseases.

4.4. Amyloid Seeding Assay (ASA). Back in 2004, Legname
et al. [94] reported the production of synthetic prions via
in vitro conversion of recPrP [94]. Under different condi-
tions they were able to obtain two different forms of 𝛽-
sheet enriched structures (𝛽-oligomer PrPSc-like and recPrP
aggregates in fibrillar amyloid form). The polymerization
process was monitored by simply applying thioflavin (ThT)
to the reaction mixture. This dye shows strong increase of
fluorescence upon binding to 𝛽-sheet-rich structures like
amyloid aggregates. Importantly, in this work authors discov-
ered that the addition of a seed of prefolded amyloid to the
fresh reaction substantially shortens the fibrillation process
(called lag phase). This experiment shows that recPrP fibrils
can be induced by seeding, defining the technique as amyloid
seeding assay (ASA). Later in 2007, the authors reported that
the ASA detected PrPSc, the sole component of the prion,
in brain samples from humans with sporadic Creutzfeldt-
Jakob disease as well as in rodents with experimental prion
disease [95]. Using theThT assay, they found that many prion
strains are capable of seeding the polymerization of recPrP
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into amyloid, demonstrating that this seeding property can
be used as an assay to detect prions in biological samples [95].

4.5. Real-Time Quaking-Induced Conversion Assay (RT-
QUIC). The development of in vitro techniques, such as
PMCA and ASA, has generated the potential for sensi-
tive detection of prions. Quaking-induced conversion assay
(QUIC) is another PrPSc amplification assay similar to ASA
[96]. This in vitro PrPSc amplification technique employs
soluble recombinant PrP (rPrP-sen) as a substrate, which is
seeded with PrPSc and then subjected to intermittent auto-
mated shaking. This technique can be performed more easily
than PMCA, which requires repeated sonication. Previous
studies have shown that QUIC assays correctly discriminate
between normal and scrapie-infected CSF samples in both
hamster and sheep prion disease models [97, 98]. More
recently, a more refined QUIC assay, known as real-time
quaking-induced conversion assay (RT-QUIC), was designed
[99]. RT-QUICoffers sensitivity similar to the in vivo bioassay
in hamsters but is roughly 50–200 times faster and much less
expensive. RT-QUIC allows the detection of ≥1 fg of PrPSc

in diluted Creutzfeldt-Jakob disease (CJD) brain homogenate
[99]. These findings indicate the promising enhanced diag-
nostic capacity of RT-QUIC in the antemortem evaluation of
suspected CJD [100]. Moreover, Gmitterová et al. reported
that the ELISA assay, which measures all 14-3-3 isoforms,
was very useful in PrPSc detection [101]; however, this system
is not commercially available. Therefore, according to the
World Health Organization, diagnosis of prion diseases is
usually based on medical history, symptoms (myoclonus,
depression), and diagnostic tests, for example,MRI scans and
EEGs.

5. Compounds That Target PrPSc

The presence of PrPSc deposits is considered a hallmark for
prion diseases and serves as a main diagnostic criterion. At
the same time it represents a therapeutic target for pharma-
cological intervention. In fact, treatment investigations target
mostly the accumulation of PrPSc in the brain. Dozens of
drug candidates for TSEs have been reported to date, but only
very few proved to be effective in in vivo studies. The two
most promising compounds, quinacrine and pentosan poly-
sulphate, have largely been dismissed as ineffective in patients
[102, 103]. A number of compounds have shown antiprion
activity in numerous studies using prion inhibitory assays
in cell culture [104–107]. These compounds include sulfated
polysaccharides, for example, pentosan polysulphate [108],
Congo red and other azo dyes [109], amphotericin B and
analogues [110], anthracyclines [111], phthalocyanines and
porphyrins [112], phenanthridine derivatives [113], inorganic
ions, branched polyamines, antagonists of the N-methyl-D-
aspartate receptor, such as memantine [114], and acridine
derivatives, such as quinacrine [115–117]. Immunotherapeutic
approaches are also being attempted for prion infection, with
various levels of success [106, 118, 119]. In addition, further
methods have recently been reported in the screening of large
compound collections in vitro [113, 120, 121].

6. Diagnosis of Alzheimer’s Disease

Whereas prion diseases are a rare form of neurodegenerative
diseases leading to dementia, Alzheimer’s disease (AD) is the
most common one.

The pathological features of AD include neuritic plaques
composed of amyloid-𝛽 peptide (A𝛽) fibrils, neurofibrillary
tangles of hyperphosphorylated tau (NFT) protein, and
neurotransmitter deficits. Although there has been a rapid
increase in the understanding of the etiology, genetics, and
underlying pathophysiological mechanism for AD during
recent years, there is still no cure for the disease. Therapy
is mainly symptomatic as it aims to replace the neurotrans-
mitter deficits. In the quest for disease-modifying treat-
ments, many drug development programs pursue strategies
directly related to amyloid or tau. Indeed, these extracellular
plaques and deposits of A𝛽 and intracellular NFT became
over the years the pathological hallmark of AD and drug
targets. Despite a robust support for the importance of both,
most efforts have focused so far on developing antiamyloid
agents to be used in the early stages of the disease. A
prerequisite for the early treatment of the disease would be
early detection of AD plaques. Therefore, several strategies
have been developed for the imaging of amyloid, namely,
radiolabeled amyloid-𝛽 peptide (A𝛽) antibodies and peptide
fragments, small molecules for PET and SPECT imaging, and
compounds for MRI.

Several research groups have adopted the small-molecule
approach to develop substances suitable for amyloid imaging.
Some of the most promising compounds are derivatives of
Congo red, thioflavin T, stilbene, and FDDNP. Some of them,
like [18F]FDDNP and [18F]TZDM, have been reported to
have affinity for diffuse plaques or A𝛽

1−42
-positive plaques

[122, 123]. Notably, FDDNP has been reported to label
also PrP plaques in brain sections [124]. However, these
compounds have some limitations in their practical use
as probes for in vivo imaging, because of their delayed
washout and nonspecific accumulation in the brain white
matter [125]. Nonspecific binding of imaging probes leads to
high background activity and low contrast images of target
structures, resulting in difficult early detection of plaque
deposits.Therefore, some basic criteria need to be followed to
obtain a small-molecule probe for amyloid plaques (Table 1).
Table 1 lists the criteria of an ideal imaging compound for the
detection of amyloid in brains of living patients with AD.

The visualization of amyloid plaques in the brains of
living patients with AD would greatly aid the assessment
of efficacy for antiamyloid therapy. To date, a number of
groups have worked on MRI [126, 127] and PET [12, 128, 129]
probes for amyloid plaques. Notably, the PET ligand
Pittsburgh compound B ([11C-]PIB, or 6-OH-BTA-1) has
shown promise in early clinical trials and is currently
used in a number of human studies [130, 131]. Other
groups reported the development of the new near infra-
red fluorescent (NIRF) ligands for A𝛽 [132, 133]. Due to
the short physical half-life of carbon-11 (20.4 minutes),
recently, great efforts have focused on the development
of A𝛽 plaques tracers radiolabeled with fluorine-18, a
radioisotope with a considerably longer half-life (109.4
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Table 1: Ideal properties for a diagnostic small molecule.

(i) Stable in vivo
(ii) Moderately lipophilic
(iii) Entering the brain in sufficient amounts and retained in the
brain
(iv) Low uptake of metabolites to brain
(v) Detection of plaques (imaging properties)
(vi) High specificity for amyloid deposits, low nonspecific
bonding

minutes). Some of them, like 4-(N-methylamino)-4-(2-(2-
(2-[18F]fluoroethoxy)ethoxy)ethoxy)-stilbene ([18F]BAY94-
9172, florbetaben, with Ki = 2.22 ± 0.54 nM) [1, 2] and
2-(3-[18F]fluoro-4-methylaminophenyl)benzothiazol-6-ol
([18F]GE-067, flutemetamol, Ki = 0.74 ± 0.38 nM) [3], had
already been reported under clinical trials. In April 2012, (E)-
4-(2-(6-(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethoxy)pyridin-
3-yl)vinyl)-N-methylaniline ([18F]AV-45, florbetapir, Ki =
2.87 ± 0.17 nM) [134, 135] had been approved by the US Food
and Drug Administration (FDA) as a radioactive diagnostic
agent indicated for brain imaging of A𝛽 plaques in patients
who are being evaluated for AD and other causes of cognitive
impairment. Although autopsy remains the only positive
way to diagnose Alzheimer’s disease, being able to identify
the A𝛽 plaques in vivo is a major step forward.

Because the biologic role of 𝛽-amyloid peptides is uncer-
tain, researchers are also investigating alternative targets of
intervention at various stages of progression. Ongoing efforts
by the research community to qualify biomarkers in clin-
ical trial designs and methods for enriching study popu-
lations with patients with early-stage Alzheimer’s disease
reflect important FDA priorities. Despite our growing under-
standing of the relationship between various disease-based
biomarkers and the clinical course of Alzheimer’s disease, it
remains unclear whether the effect of a drug on one or more
such biomarkers can actually predict a meaningful clinical
benefit.

7. Amyloid Dyes and Their Derivatives

As mentioned above, candidate probes have primarily been
derived from amyloid dyes such as Congo red (CR) and
thioflavin T (ThT) [125]. Among all amyloid-staining com-
pounds, CR provides historically the most standardized
way of staining amyloid plaques and is still employed in
postmortemhistological analysis of ADbrains, as the binding
is specific [136]. Here we review a few aspects of Congo red,
thioflavin T, and their derivatives.

7.1. Congo Red (CR). Congo red (Scheme 1) was invented in
1884, by the youngGerman chemist Paul Böttiger (Böttiger, P.
Deutsches Reichs Patent 28753, August 20, 1884). He created
the first “direct” dye that did not require additional substances
for fixation to the textile fibers [137]. The mechanism of
interaction of CR with amyloid fibrils is not well understood.
Some studies suggest that the origin of the specific binding
of CR to amyloid-𝛽 aggregates is due to the combination

of electrostatic interactions between the negatively charged
CR’s sulfonate groups with the positively charged amino-acid
residues in the 𝛽-sheet structures [138, 139]. However, it is
even generally believed that CR’s binding depends on the sec-
ondary configuration of the fibril, consisting predominantly
of cross-𝛽-sheets [140]. Unexpectedly, recent investigations
indicate that the dye also possesses the capacity to interfere
with processes of protein misfolding and aggregation. This is
possible by stabilizing native protein monomers or partially
folded intermediates, while reducing the concentration of
more toxic protein oligomers [141]. In fact, CR is able to
block A𝛽 aggregation and toxicity in rat hippocampal neuron
culture [142, 143], in HeLa and PC12 cells [144], and in
human macrophage culture [145]. Although the effect of CR
in transgenic mouse models of AD has not been investigated
so far, CR exerted a positive effect on other experimental
models, such as Drosophila melanogaster. Feeding with 5%
w/v CR from the embryonic stage resulted inmarked survival
prolongation, and further histological analysis showed the
reduction in the amount of A𝛽 aggregates and preservation of
brain and retinal tissue [146]. Back in 1992, Caughey andRace
[147] reported that CR suppresses even PrPSc accumulation
and inhibits scrapie agent replication (in interval going
from 1.4 𝜇M to 42 𝜇M) in cell culture studies (on mouse
neuroblastoma cells, N2a), showing that the accumulation
of PrPSc remained suppressed even after CR removal. In in
vivo studies, CR has been observed to exert an ameliorative
effect in animals experimentally infected with two different
prion strains (263K and 139H) [148, 149]. Dosages of 0.1 and
10mg CR (i.p.) did not have any effect, while higher CR
dosages (10mg once a week or 5mg twice a week) induced a
small increase in incubation time in i.c. scrapie-infectedmice.
A cumulative weekly dose of 75mg of CR distributed over
six days (12.5mg) had a considerable effect, with incubation
times extended almost to 14 days. In the i.p. infected animals,
the lower dosages of 1mg and 10mg of CR produced a similar
extension of incubation time. In a second trial of the same
study, CR in dosages of 25mg per day was given over 6 days,
1 or 2 weeks before inoculation, at the day of infection, or
1, 2, 3, or 4 weeks later. The maximal effect was achieved if
treatment was initiated on the same day of scrapie infection.
Treatments started 2 weeks before or 2 weeks after infection
were less effective and almost ineffective if started at 3 and
4 weeks after infection. Thus, the timing of CR treatment
is crucial for beneficial effect. On the other hand, other in
vitro experiments, either with A𝛽 [150] or PrPSc [151], showed
that at low concentrations CR can promote the protein
aggregation. Hence, the effect of CR on fibril formation
can be either inhibitory or stimulatory depending on its
concentration. At low concentrations, CR binding populates
generation of partially folded, aggregation-prone forms of
proteins (oligomers and protofilament intermediates) result-
ing in accelerated fibril formation. At higher concentrations,
however, CR inhibits fibril arrangement supporting the
denatured state, which is much less prone to aggregation.
Since CR is toxic (highly carcinogenic due to its benzidine
structure) and is not able to cross the BBB, derivatives have
been developed and made suitable for antemortem and in
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vivo visualization and quantification of brain amyloids. Here
we report some examples of CR derivatives able to inhibit
some of these aggregated proteins. Chrysamine-G, X-34, and
BSB were the most promising derivatives of CR dye.

7.2. Chrysamine-G. Chrysamine-G (CG) is the most inten-
sively examined compound among structural analogues of
CR. In this derivative, naphthalenesulfonic acid groups are
exchanged for salicylic acid groups with a retained interdis-
tance of 19–20 Å. Its smaller size, as compared to CR, and
the higher lipophilicity allow it to cross the intact BBB when
injected in a dose of 1mg/kg in mice [139]. Most importantly,
CG appears to be less toxic than CR, since the administration
in vivo (10mg/kg–100mg/kg via i.p.) did not induce any
notable behavioral effects in mice during an observation
period of up to 72 h [139]. When incubated with human
postmortem brain tissue homogenates, [11C]CG showed the
labeling of amyloid angiography and significantly higher
binding in the frontal, temporal, and parietal cortices of
AD patients in comparison to those of age-matched controls
[152]. CG appeared to be amore potent A𝛽 inhibitor thanCR,
with effective concentrations of the latter being in the range
of 2–20𝜇M. This finding is in agreement with higher binding
affinities of CG than CR to synthetic A𝛽 (Ki of 0.37 𝜇M
and 2.8 𝜇M, resp.). Chrysamine-G even attenuated A𝛽

25–35-
induced toxicity in PC12 cells, validated as a decrease inMTT
reduction in the concentration range of 0.2–2𝜇M [153].

7.3. X-34. X-34 (1,4-bis-(3-carboxy-4-hydroxyphenylethen-
yl)-benzene) is a highly fluorescent CG derivative, whose
structure consists of a central benzene ring, where the two
diazo bonds (N=N) were replaced by alkene bonds (C=C).
Most importantly, naphthalenesulfonic acids of CR are sub-
stituted by salicylic acids; as for CG, this change results in
higher lipophilicity and better BBB penetration capacity.This
compound has shown promising staining properties of the
𝛽-sheet structures of amyloid plaques and cerebrovascular
amyloid in AD autopsy of brain tissue [154].

7.4. BSB. In 2000, Skovronsky and colleagues reported the
synthesis of another CR derivative, BSB [(trans, trans)-1-bro-
mo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene],
demonstrating its high binding affinity for A𝛽 aggregates in
vitro (Ki = 0.4 𝜇M) [155]. Like X-34 and CG, BSB specifically
labels senile plaques in postmortem AD brain sections. The
authors even observed that BSB permeates living cells in
culture and binds specifically to intracellular A𝛽 aggregates.
After i.c. injection in living transgenic mouse models of AD
amyloidosis, BSB labels plaques composed of A𝛽 with high
sensitivity and specificity. Lastly, BSB crosses the BBB and
labels numerous AD-like plaques throughout the brain of
the transgenic mice after i.v. injection. Thus, the authors
concluded that BSB is an appropriate starting point for future
efforts to generate an antemortem diagnostic tool for AD. In
2004, Ishikawa et al. [156] hypothesized the application of
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BSB in the prion field. The authors found that BSB bound to
compact plaques of PrPSc, not only in the brain specimens of
certain types of human TSEs but also in the brains of TSE-
infected mice, when the probe was injected intravenously.
The compound was also able to inhibit abnormal PrPSc

formation in a cellular model of TSE with IC
50

value of
1.4 𝜇M. Furthermore, in an additional experimental mouse
model, the intravenous injection of 1mg BSB prolonged
the incubation period by 14% [156]. The efficacy was only
observed against the RML strain. Hence, this compound is
promising not only as imaging probe but also for therapeutic
purposes in TSEs caused by certain strains.

8. Thioflavin T (ThT)

Thioflavin T (ThT) is another dye useful in the analysis of
aggregated amyloid proteins (Scheme 2), and it is widely used
even to examine fibrillation kinetics in situ. In 1959, Vassar
and Culling first described the use of the benzathiole dye
thioflavin T as a potent fluorescent marker of amyloid in
histology [157], demonstrating the potential of fluorescent
microscopy for amyloid fibril diagnosis. They noted that
ThT is selectively localized in amyloid deposits, thereupon
exhibiting a dramatic increase in fluorescent brightness. In
fact, the binding to amyloid deposits is slightly weaker than
with CR (Ki in the sub- and low 𝜇M range), but it exhibits
a green fluorescence that becomes more than 1000 times
brighter upon binding to amyloid plaques [158]. Afterwards,
Naiki et al. and LeVine [158–163] were among the first to
characterize the fluorescence spectra and binding properties
of ThT. They showed that, upon binding of fibrils, ThT
displays a dramatic shift of the excitation maximum (from
385 nm to 450 nm) and the emissionmaximum (from445 nm
to 482 nm) and that ThT fluorescence originates only from
the dye bound to amyloid fibrils [159–161]. These studies
showed that dye binding is linked to the presence of the
cross-𝛽 structure of fibrils. However, the lack of an atomic
resolution structure of amyloid fibrils complicates the eluci-
dation of the bindingmode. Unfortunately,ThT possesses the
disadvantage of containing a charged group, the positively
charged quaternary nitrogen of the benzothiazolium group
(Scheme 2), which would likely limit the permeation of
the BBB of this compound. However, the ability of ThT
to specifically recognize and bind with modest affinity to
amyloid has allowed it to serve as an excellent starting scaffold
for derivatization and elaboration to generate a number of
amyloid stains and clinical reagents, included for use in
medical imaging of amyloid in living patients [12, 164, 165].

8.1. 6-Me-BTA-0, 6-Me-BTA-1, and 6-Me-BTA-2. In 2001,
Klunk et al. [165] showed that removing the charge from ThT
affected the amyloid-binding properties of ThT derivatives.
In that work the authors reported the synthesis of three ThT
derivatives, 6-Me-BTA-0, 6-Me-BTA-1, and 6-Me-BTA-2, all
of which were 600-fold more lipophilic thanThT.They found
that the binding to A𝛽

1–40 fibrils presented higher affinity
(Ki = 20.2 nM) than ThT (Ki = 890 nM). These uncharged
ThT derivatives stained both plaques and neurofibrillary
tangles (NFT) in postmortem AD brain, showing some

preference for plaque staining. Furthermore, they examined
whether an uncharged, lipophilic derivative of ThT would
enter the brain in amounts sufficient for imaging by PET.That
compound, designed as [N-methyl-11C]6-Me-BTA-1, entered
the brain at levels comparable to those commonly used by
neuroreceptor imaging agents (0.223%ID-kg/g or 7.61%ID/g
at 2min after-injection) and showed good clearance of free
and nonspecifically bound radioactivity in normal rodent
brain tissue (brain clearance 𝑡

1/2
= 20min). In contrast, the

6-Me-BTA compounds did not display the classic shift in
excitation and emission spectra when bound to A𝛽 that has
been well documented for ThT.

8.2. BTA-1 and 6-OH-BTA-1. One year later, the same group
[166] showed that the derivative without the methyl group
in position 6 of benzothiazole moiety, denoted by BTA-1 or
(2-[4-(methylamino)phenyl]benzothiazole (Scheme 2), had
more promising characteristics than the previously reported
compounds. This molecule presented high affinity for the
amyloid plaques (Ki = 11 nM for A𝛽

1–40), and the intravenous
injection of [11C-] labeled BTA-1 in wild type mice resulted
in high brain uptake (12.9%ID/g at 2min after-injection).
Importantly, [11C]BTA-1 is characterized by relatively rapid
egress of radioactivity from normal brain tissue. Amyloid
deposits were imaged with multiphoton microscopy in the
brains of living PS1/APP transgenic mice following the
systemic injection of unlabeledBTA-1.The authors concluded
that the [11C]BTA-1 was a promising radioligand for further
development as a PET amyloid-imaging agent for AD.

In 2004, this uncharged ThT derivative was taken into
consideration also by Ishikawa et al. as PrPSc inhibitor and as
a molecule able to label PrP deposition in TSE brains [156].
Using a well-known PrPSc inhibition assay in cell culture
on ScN2a, the authors found that BTA-1 had a promising
inhibitory activity (IC

50
= 4 nM) and low toxicity, since no

apparent changes were observed up to 10 𝜇M of treatment.
Next, they assessed its utility as diagnostic imaging tool
for PrP plaques using the histopathological specimens from
human TSE cases.They found that it was able to fluorescently
label most of the PrP plaques in the cerebral cortices of
GSS cases and of variant CJD cases, whereas it was not
able to stain PrP plaques of sporadic CJD cases. Similar
results were observed when the postmortem brains of Tg7
mice infected with the 263K strain were used, considering
that it stained the plaque type of PrP in the cerebral white
matter between cortex and hippocampus. Due to the absence
of positive charge and its capability to cross the BBB, they
even performed in vivo experiments using Tg7 mice infected
with 263K strain. A bolus injection of BTA-1 labeled PrP
plaques in the whitematter between cortex and hippocampus
of the affected brains. Faint cerebrovascular labeling was
occasionally observed at 4 h after the injection, but not at 18 h
or later. Moreover, no significant labeling was observed in
uninfected transgenic mice. Similar results were observed in
Tga20 mice infected with RML strain, although labeled PrP
plaques were less frequently observed. Even the 6-hydroxy
BTA-1 derivative (also called PIB or 6-OH-BTA-1) inhibited
PrPSc formation in ScN2a cells with an IC

50
in the nanomolar
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range; more importantly, it has been selected for the first
human trial of a benzothiazole amyloid-imaging agent [131].
In their latter report, Rowe et al. analyzed 16 patients with
diagnosed mild AD and 9 controls. Their results demon-
strated that PET imaging with the [11C-]PIB tracer provided
quantitative information on amyloid deposits in living indi-
viduals with AD. Thanks to the favorable radiotracer profile,
PIB has become the most commonly used PET amyloid
agent, adopted in more than 40 research centers world-
wide (Figure 5). However, a recent study highlighted that
[11C-]PIB PET does not detect PrP-amyloid in prion disease
patients, including variant Creutzfeldt-Jakob disease [167].

8.3. NIAD-4. Another emerging approach for in vivo detec-
tion of aggregated proteins is optical imaging through special
near-infrared (NIR) fluorescent contrast agents. In 2005,
following the rules reported in Table 1, Nesterov et al.
designed a small molecule known as [[5-(4-hydroxyphenyl)
[2,2-bithiophen]-5-yl]methylene]-propanedinitrile, or sim-
ply NIAD-4 (Scheme 3) [133].The binding studies with artifi-
cially aggregated amyloid protein assays revealed that NIAD-
4 binds to the same site as BTA-1 with a Ki of 10 nM. This
affinity is much higher than that of ThT (Ki = 580 nM) and
is close to that of high-affinity amyloid-binding compounds
like PIB (Ki = 4.3 nM) [168]. Nesterov et al. [133] studied the
specificity of NIAD-4 binding to A𝛽 by in situ histochemical
staining of fixed sections from transgenic mouse brain. Brain
sections were obtained from aged APP transgenic mice with
AD-like pathology. The brain sections were labeled with
a NIAD-4 (10 𝜇M) solution in DMSO/propylene glycol for
15min at room temperature. In vitro fluorescence imaging
showed high-specificity labeling of NIAD-4, which revealed
the exact position and size of the aggregated A𝛽 deposits.The
authors [133] showed also the in vivo A𝛽 binding of NIAD-4
in aged APP transgenic mice. Mice were prepared with cra-
nial windows to allow direct monitoring of the brain surface

and then administered 10 𝜇M of 2mg/kg NIAD-4 solution
by i.v. injection. Red fluorescence imaging usingmultiphoton
microscopy showed that the agent readily crossed the BBB
and labeled specifically both the plaques and cerebrovascular
amyloid angiopathy. A radiolabeled version of NIAD-4 may
also be advantageous for PET or SPECT imaging.

8.4. BF-168. Several stilbene derivatives have been synthe-
sized as compounds for the probing of amyloid plaques
[169]. Stilbene shows binding to A𝛽 aggregates in the na-
nomolar range [170]. Similar series of imaging probes were
reported in [171], describing in vitro and in vivo properties
of some styryl-based derivatives of ThT. The most promis-
ing one was 6-(2-fluoroethoxy)-2-[2-(4-methylaminophe-
nyl)ethenyl]benzoxazole (BF-168) (Scheme 3). In AD brain
sections, BF-168 selectively binds senile plaques and rec-
ognizes A𝛽

1–42-positive diffuse plaques as well as neuritic
plaques. Intravenous injection of BF-168 in PS1/APP and
APP23 transgenic mice resulted in specific in vivo labeling
to both compact and diffuse amyloid deposits in the brain.
In addition, 18F-radiolabeled BF-168 intravenously adminis-
tered to normal mice showed abundant initial brain uptake
(3.9%ID/g at 2min after injection, a sufficient level for
brain imaging probe) and fast clearance (𝑡

1/2
= 24.7min,

indicating fast brain washout) sufficient for the compound
to be a PET imaging probe. Furthermore, autoradiograms
of brain sections from APP23 transgenic mice at 180min
after intravenous injection of [18F]BF-168 showed selective
labeling of brain amyloid deposits with little nonspecific
binding. These findings strongly suggest that styrylbenzox-
azole derivatives are promising candidate probes for PET
and SPECT imaging for early detection of amyloid plaque
formation in high-risk AD patients in presymptomatic stage
[171]. Additionally, this new styrylbenzoxazole compound
clearly labeled PrPSc plaques in brain specimens from human
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TSEs (sCJD and vCJD) [172]. BF-168 also inhibited abnormal
PrP formation in TSE-infected cells with IC

50
= 0.4 nM in

ScN2a cell line model and prolonged the lives (∼11.4%) of
mice infected intracerebrally with TSE when the compound
was administered intravenously at the preclinical stage. Even
though their efficacy depends on the pathogen strain, these
derivatives are a new class of compounds with potential as
both therapeutic drugs and imaging probes for TSEs.

8.5. G8. Meanwhile, other styryl derivatives have been stud-
ied [129, 169, 173, 174]. Li et al. [175] tested a group of
styryl-based neutral compounds as potential in vivo imaging
agents for 𝛽-amyloid plaques.Themost promising one in this
work was designed as STB-8 (Figure 6(a)), and its use in ex
vivo and in vivo imaging experiments on an AD transgenic
mousemodel showed excellent BBBpermeability and specific
staining of the 𝛽-amyloid plaques (Figure 6(b)) [175].

A similar chemical scaffold was reported in our recent
work [7]. The compound (E)-6-methyl-4-amino-2-styryl-
quinoline or G8 is a small molecule (Figure 6) with the
proper features to potentially diagnose, deliver therapy, and
monitor response to therapy in protein misfolding diseases.
These features include compound fluorescent emission in the
NIR region and the ability to interact with both A𝛽 and
prion fibrils, staining them with high selectivity. Moreover,

the compound possesses an antiaggregation property against
A𝛽
1–42 using the well-known ThT-based fluorimetric assay

[176] and prolongs the lag phase of PrPSc formation in fibril-
lation assay [177]. At a concentration of 50𝜇M, G8 delayed
fibril formation, extending the lag phase to ≥70 h (control:
59 h). A similar profile was found for GN8, an antiprion drug
candidate (Figure 6) for which a specific binding with PrP
has been experimentally shown [178]. With such a good in
vitro profile, we treated the ScGT1 and ScN2a cell lines with
the compound, and the viability was quite good. At 1 𝜇M
concentration, G8 showed a very low toxicity, with cell via-
bility above 90% if compared with nontreated cells, while at
a 10 𝜇M concentration it still showed a tolerable toxicity, with
a residual 60% cell viability not different from that of drug
candidate GN8. Starting from these nontoxic concentrations,
we treated the cells to evaluate their inhibitory activity, and
we found that the compound possessed a submicromolar
capability to inhibit PrPSc (EC

50
= 0.5 ± 0.1 𝜇M), greater

than GN8 (EC
50

= 1.5 ± 0.1 𝜇M) in our system. To confirm
the labeling of PrPSc aggregates in living cells, fluorescent
staining with G8 was carried out using the same ScGT1
and ScN2a cell models. We found that 0.025% of G8⋅HCl
(0.84mM) was sufficient to observe many fluorescent spots
in the treated cells examined by fluorescent microscopy
(Figure 6(c)). Importantly, no spots were observed in the
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uninfected cells, confirming a specific binding. Furthermore,
the staining pattern was consistent with that observed with
0.025% thioflavin S (ThS), a common PrPSc dye. A further
experiment proved that G8⋅HCl (0.25mM) distinguishes
the abnormal, aggregated, and PK-resistant PrPSc isoform
from the normal, PK-sensitive PrPC isoform. Thus, after
eliminating PrPC through a PK digestion step, the previous
fluorescence-staining pattern was observed. We primarily
used the FITC filter set for these studies, but we confirmed
the staining by employing the ThS one, which is within the
NIR optical window. G8 was able to cross the BBB in an in
vitromodel, such as parallel artificial membrane permeability
assay (PAMPA, Pe 23.1 ± 1.9 10−6 cm−1).

From a medicinal chemistry perspective, G8 offers pecu-
liar advantages: (1) a lower molecular weight than previous
sensors [179] and (2) a small-molecule scaffold that is easily
amenable to further manipulation to improve fluorescence
response and amyloid-binding properties. Most importantly,
with respect to the previously reported NIR amyloid sensors
[132, 133, 180–182] it offers the advantage of a concomitant
promising antifibrillar profile (in vitro and in a cellular
context), together with a low toxicity. If these distinctive
properties are confirmed in vivo, G8 is likely to become the
first purposely designed therapeutic and diagnostic (thera-
nostic) tool for prion diseases and AD.

9. Conclusion

All the efforts made to date to develop rapid, accurate, and
highly sensitive antemortem tests to detect prions early in
the course of the disease have failed. Most tests still involve
PK digestion, and the specificity and sensitivity of tests
that do not use PK require further validation. Nevertheless,
neuroimaging shows promise as a future clinical diagnostic
tool for neurodegenerative diseases. Continued expansion
of scientific imaging tools has been essential toward a new
standard strategy that links established in vitro and cell
culture experimental assays to imaging studies for living
subjects. In fact, over the last few years the rapid development
of different compounds suitable for visualizing aggregated
𝛽-sheet-rich proteins has led to the first promising in vivo
studies of the amyloid ligands, such as PIB [12]. Florbetapir is
the first radioactive dye for brain imaging of amyloid plaques
to be approved by the FDA. With its introduction into the
clinical practice, we are now effectively entering the era of
neurodegenerative disease imaging.

Our hope is that our own G8 molecule [7] will confirm
in vivo the results obtained in vitro. Molecular imaging in
living subjects offers distinct advantageswhen comparedwith
conventional in vitro and cell culture research techniques
in biology. Therefore further work on promising imaging
compounds is necessary to access in vivo studies. The use of
these compounds could represent a good approach to detect
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and treat neurodegenerative disorders such as Alzheimer’s
disease and prion diseases. As the term theranostics is
derived from thewords therapeutics and diagnostics, the final
application of theranostics is combining disease diagnosis
and therapy. This combination in a single molecule enables
real-time feedback on the biodistribution and the target site
accumulation of the compound. The concurrent delivery
and readout of efficacy can be exploited to tailor treatment
regimens for specific treatment groups.

Effective treatments for devastating disorders such as
Alzheimer’s disease and prion diseases are urgently needed,
as the world’s population continues to age. We are confident
that purposely-designed theranostics might soon become
powerful tools to combat them.
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