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Abstract: We analyze non-integrable deformations of two-dimensional N = 1 super-

symmetric quantum field theories with kink excitations. As example, we consider the

multi-frequency Super Sine Gordon model. At weak coupling, this model is robust with

respect to kink confinement phenomena, in contrast to the purely bosonic case. If we vary

the coupling, the model presents a sequence of phase transitions, where pairs of kinks dis-

appear from the spectrum. The phase transitions fall into two classes: the first presents the

critical behaviors of the Tricritical Ising model, the second instead those of the gaussian

model. In the first case, close to the critical point, the model has metastable vacua, with

a spontaneously supersymmetry breaking. When the life-time of the metastable vacua is

sufficiently long, the role of goldstino is given by the massless Majorana fermion of the

Ising model. On the contrary, supersymmetry remains exact in the phase transition of the

second type.
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1. Introduction

In two dimensions there are several bosonic field theories that have kinks as the basic

excitations of their spectrum, the simplest example being the Ising model in its low tem-

perature phase (see, for instance, [1]). Other examples are provided, for instance, by the

minimal models Mm (m = 3, 4, . . .) of Conformal Field Theory perturbed by the operator

Φ1,3 [2]: these are off-critical theories with (m−1) degenerate vacua, connected by massive

kinks.

At the lagrangian level, theories with kink excitations are described by a scalar real

field ϕ(x) with an action A =
∫

d2xL and a Lagrangian density

L =
1

2
(∂µ ϕ)2 − U(ϕ) , (1.1)

where the potential U(ϕ) possesses a set of degenerate minima at ϕ
(0)
k (k = 1, 2, . . . , n),

with ϕ
(0)
k−1 < ϕ

(0)
k < ϕ

(0)
k+1. While these minima correspond to the different vacuum states

| 0 〉k of the associate quantum field theory, the kink states1 | Kkl (θ) 〉 can be put in

correspondence with the static solutions of the classical equation of motion

∂2
x ϕ(x) = U ′ [ϕ(x)] , (1.2)

1The quantity θ in the symbol | Kkl(θ) 〉 is the rapidity variable of the kinks, parameterising their

relativistic dispersion relation E = Mkl cosh θ, P = Mkl sinh θ, where Mkl is their mass.

– 1 –
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Figure 1: Effective potential U(ϕ) of a quantum field theory with kink excitations.

with boundary conditions ϕ(−∞) = ϕ
(0)
k and ϕ(+∞) = ϕ

(0)
l , where l = k ± 1. The

semi-classical quantization of these solutions has been discussed in [3 – 5]. Conventionally

| Kk,k+1(θ) 〉 denotes the kink state between the pair of vacua | 0 〉k, | 0 〉k+1 while the

corresponding anti-kink is associated to | Kk+1,k(θ) 〉.
A popular example of such a lagrangian theory is the Sine-Gordon model, described

by the potential

U(ϕ) = −µ cos αϕ , (1.3)

that has an infinite number of degenerate vacua at ϕ
(0)
n = 2πn/α. The classical kink

configurations that interpolate between two nearest ones are given by

ϕ±(x) =
4

α
arctan[exp(±α

√
µ x)] , (1.4)

(+ refers to the kink whereas − to the antikink), so that, going from x = −∞ to x = +∞,

the field has a jump ±2π/α.

The kinks obviously owe their existencies to the n-fold degenerate vacuum structure

of the theory. However, such a degeneracy is often a fragile condition, which can be easily

broken by inserting additional operators into the action. For instance, by adding an extra

trigonometric interaction λ cos ωϕ (with ω 6= α) to the Sine-Gordon model, the landscape

of its potential changes from the situation (a) to the situation (b) of figure 2, even for small

value of the coupling constant λ. The unbalance of the vacua has a drastic consequence

on the particle content of the theory: once the degeneracy of the original minima is lifted,

some kink excitations (if not all) disappear from the spectrum of the perturbed theory, i.e.

they get confined. As a consequence, the linear confinement potential between the kink

and antikink causes the collapse of this pair into a string of bound states [6 – 10] (see figure

3).

Apart some special cases (some of them discussed in section 2.2), the above situation

seems to be the general scenario for the bosonic theories with kink excitations. The situa-

tion changes, however, if we add fermions. In fact, as shown below, adding fermions to a

bosonic theory, while requiring a supersymmetry of the corresponding action, has the effect

to stabilize the vacuum states. In other words, supersymmetric theories are less sensitive

to the confinement phenomena of the kinks, if put under a weak coupling deformation of

the original action. At strong coupling, instead, they may present interesting phenomena

– 2 –
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Figure 2: Potential of (a) Sine-Gordon model; (b) Perturbed Sine-Gordon model.
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Figure 3: (a) Kink-antikink state at distance x, where ∆E is the gap of the unbalanced vacua.

The tendency of the system to shrink, in order to minimise the energy of this configuration, gives

rise to the linear potential (b), with slope given by ∆E. The dashed lines are the bound states of

the kink-antikink pair.

of metastable vacuum states, which signal certain phase transitions. The two situations

can be related to the spontaneous breaking of the supersymmetry that occurs at certain

vacua.

The paper is organised as follows. In the next section we briefly summarise the con-

finement phenomena of kinks in pure bosonic theories. In section 3 we introduce the

supersymmetric theories and discuss their conformal limit. Section 4 deals with the Super

Sine Gordon model, i.e. an integrable quantum field with kink excitations. In section 5 we

address the stability of the kinks under the supersymmetric deformation of the action that

leads to the multi-frequency Sine Gordon model. In section 6 we discuss the phenomena

of meta-stable states that occur at finite value of the coupling constant of the perturbing

operator. Our conclusions are presented in section 7.

2. Kink confinement in bosonic theories

Quantum field theories with kink excitations are not necessarily integrable: ϕ4 theory in

its Z2 broken phase, for instance, is not an integrable model although it has kink excita-

tions. At the same time, the confinement of the kinks is also a general phenomenon, i.e.

– 3 –
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it occurs in deformation of both integrable and non-integrable theories. In order to have a

certain analytic control of this phenomenon, it is however more convenient to discuss the

confinement of the kink excitations that takes place in perturbed integrable theories. The

reason is that, for these theories, we can rely on a well-defined perturbation approach, the

so called Form Factor Perturbation Theory (FFPT) [7, 8], that allows us to analitically

follow the fate of the kink states: properly interpreted, the results obtained in the context

of perturbed integrable theories turn out to be useful also to understand the confinement

phenomena of a generic model.

Based on what stated above, let us consider an integrable theory with purely bosonic

degrees of freedom described by the action A0. We assume that such a theory has n

degenerate vacua | 0〉k, (k = 1, 2, . . . , n) and therefore its spectrum contains the topological

excitations | Kk,k±1(θ)〉 (the theory may also have bound states thereof). All kinks have

the same mass M .

Suppose now that we perturb the system using a field Υ(x): does the perturbed action

A = A0 + λ

∫

d2x Υ(x) , (2.1)

still support the topological kinks | Kk,k±1(θ) 〉 as asymptotic states? As shown in [7, 8], to

answer this question is sufficient to compute the correction δMkl to the mass of the kinks

due to the field Φ(x). At the first order in λ, this correction is given by

δM2
kl ≃ 2λFΥ

kl (iπ) , (2.2)

where

FΥ
kl (θ) ≡ k〈0|Υ(0)|Kkl(θ1)Klk(θ2)〉 (2.3)

is the kink-antikink Form Factor of the operator Υ(x), with θ = θ1 − θ2. In integrable field

theories (and this is the important technical point for which it is useful to consider these

theories), Form Factors of a generic scalar operator O(x) can be computed exactly. In fact,

they satisfy manageable functional equations in virtue of the simple form assumed by the

unitarity and crossing symmetry equations [12, 13].

Consider the two-particle case: shortening the notation and denoting the kink state

| Kk,k+1〉 by a and the anti-kink state | Kk+1,k〉 by ā, for the Form Factor of the scalar

operator O we have the following equations

FO
aā(θ) = Sbb̄

aā(θ)FO
b̄b (−θ) , (2.4)

FO
aā(θ + 2iπ) = e−2iπγO,a FO

āa(−θ) . (2.5)

In the first of these equations the sum on b is on all kink states which start from the

vacuum | 0 〉k, i.e. it includes the two states | Kk,k±1〉. It expresses the fact that in an

integrable theory the two-particle threshold is the only unitarity branch point in the plane

of the Mandelstam variable s = (pa + pā)
2 = 4M2 cosh2(θ/2), the discontinuity across the

cut being determined by the two-body scattering amplitude Sbb̄
aā.

In the second equation the explicit phase factor e−2iπγO,a is inserted to take into account

a possible semi-locality of the kink with respect to the operator O(x).2 When γO,a = 0,

2Consistency of eq. (2.5) requires γO,ā = −γO,a.

– 4 –
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there is no crossing symmetric counterpart to the unitarity cut but when γO,a 6= 0, there

is a non-locality discontinuity in the s-plane with s = 0 as branch point. However, in the

rapidity parameterisation, there is no cut because the different Riemann sheets of the s-

plane are mapped onto different sections of the θ-plane; the branch point s = 0 is mapped

onto the points θ = ±iπ which become, in this way, the locations of simple annihilation

poles, whose residues are given by [13] (see also [16])

−iRes θ=±iπ FO
aā(θ) = (1 − e∓2iπγO,a) k〈0|O|0〉k . (2.6)

Notice that these residues are expressed by the product of two terms: the first, determined

by the semi-local index, while the second given by the vacuum expectation value of the

field O(x).

With the above information, let’s come back to the perturbed action (2.1). It is easy

to see that there is a drastic effect on the kink spectrum if (a) the perturbing operator

Υ(x) is semi-local with respect to them and (b) if its expectation value of the vacuum | 0 〉k
is different from zero.

If both conditions are fulfilled, the application of eq. (2.2) leads to an infinite correc-

tion to the kink masses. This divergence has to be interpreted, in turn, as the technical

manifestation of the fact that the kink starting from the vacuum | 0 〉k no longer survive as

asymptotic particles of the perturbed theory. In order to clarify better this point, it may

be useful to discuss a couple of examples.3

2.1 Low-temperature Ising model in a magnetic field

The simplest example of the above scenario is given by the Ising model. In its low-

temperature phase it has two degenerate vacua, connected by a kink and an anti-kink

excitation. Suppose now this system is coupled to an external magnetic field h, so that the

perturbed action is given by (A0 is the integrable action of the low-temperature Ising)

A = A0 + h

∫

d2xσ(x) . (2.7)

The magnetization operator σ(x) is non-local with respect to the kinks, with non-local

index given by γσ,a = 1
2 [15, 16]. Hence, the two-particle Form Factor of the operator σ(x)

should have a pole at θ = ±iπ. This is confirmed by the exact expression of this matrix

element, given (up to normalization) by [16]

〈0 | σ(0) | a(θ1) ā(θ2) 〉 = tanh
θ1 − θ2

2
. (2.8)

Consequently, the kinks disappear from the spectrum of the perturbed theory (2.7), pro-

ducing though an infinite tower of bound states4 [6 – 10]. The confinement of the kink is

evident from figure 4: no matter how small the magnetic field h may be, the two original

vacua are no longer degenerate in the perturbed theory. Hence, the perturbed theory (2.7)

does not have any longer kink excitations.

3It may be also useful to see [14].
4Not all of them are stable: the number of the stable ones changes by moving in the plane with axes

(h, T ) [9, 11]: near the magnetic axis, the decay processes of the unstable particles can be computed by

using the Form Factor Perturbation Theory [11].

– 5 –
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(a) (b)

Figure 4: Effective potential of the Ising model in (a) low-temperature phase and (b) in the

presence of a magnetic field.

2.2 Multi-frequency Sine-Gordon model

As a second example, let’s consider the perturbed Sine-Gordon model

L =
1

2
(∂µϕ)2 + µ cos αϕ + λ cos(βϕ + δ) . (2.9)

This system has been analysed in detail in [8], so here we briefly remind some of the main

results. First of all, the quantum model does not depend separately by µ and λ, it rather

depends on the dimensionless variable

η ≡ λµ−(1−∆β)/(1−∆α) = λµ−(8π−β2)/(8π−α2) .

In terms of η, we can identify two perturbative regimes of the model (2.9) where it is

possible to apply the FFPT: the first regime is obtained in the limit η → 0, while the other

is reached for η → ∞. In the last case, one has simply to swap the role played by the two

operators.

Let us consider, for instance, the system in the vicinity of η = 0. In the unperturbed

situation (η = 0), the field undergoes to the following discontinuity ϕ −→ ϕ + 2π/α across

a soliton configuration. As a consequence, the exponential operator eiβϕ(x) is semi-local

with respect to the kink with semi-locality index γα,s = β/α. According to eq. (2.6), the

kink-antikink Form Factor of the perturbing operator Υ = cos(βϕ+δ) contains annihilation

poles at θ = ±iπ, with residues given by5

−iRes θ=±iπFΦ
aā(θ) = [cos δ − cos(δ ∓ 2πβ/α)] 〈0|eiβϕ|0〉 . (2.10)

Hence, for generic values of the frequency β (and the phase-shift δ) of the perturbing

operator Υ(x), the above residues are different from zero. Consequently, the kink and

the anti-kink of the original Sine-Gordon model become unstable excitations of the per-

turbed theory. This result that can be easily understood by noting that the perturbed

lagrangian (2.9) loses its original 2π/α-periodicity (see figure 2).

5We choose as a vacuum state of the unperturbed theory the one at the origin, characterised by 〈0|ϕ|0〉 =

0. With this choice the unperturbed theory is invariant under the reflection ϕ −→ −ϕ and therefore it

holds the equality 〈0|eiǫϕ|0〉 = 〈0|e−iǫϕ|0〉.

– 6 –
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(a) (b) (c)

Figure 5: Potential of the multiple Sine-Gordon model with β/α = 1/3 and δ = π/3 in the vicinity

of ηc: (a) η < ηc, (b) η = ηc and (c) η > ηc.

The possibility to control the changes of the spectrum in both perturbative limits

(η → 0 and η → ∞) allows one to deduce interesting information about its evolution in

the intermediate, non-perturbative region. In certain cases, for instance, there may be

a topological excitation in one limit which is no longer present in the other. When this

happens, the very nature of topological excitations requires that a change in the vacuum

structure of the theory takes place somewhere in the non-perturbative region, namely that

a quantum phase transition occurs. Lines of phase transition are then expected to appear

in the multi-frequency SG model for particular values of the parameters: as discussed

in [8], this circumstance occurs when |δ| = π/n and β/α = 1/n. Once these values of

the parameters are fixed, by varying η a change of the vacuum state takes place at ηc: at

this critical value, the quantum field theory may be regarded as associated to a massless

Renormalization Group flow that interpolates between the conformal field theory with

central charge c = 1 (in the ultravioled regime) and the one associated to the Ising model,

with c = 1/2 (in the infrared regime). The simplest way to see this, is to note that, at ηc,

the effective theory at the vacuum nearby the origin is given by the massless φ4 associated

to the class of universality of the Ising model: for η slightly smaller than ηc, there are

two degenerate ground states separated by a potential barrier, for η slightly greater than

ηc there is only one vacuum with a parabolic shape, while at η = ηc the quadratic term

vanishes, giving rise to an effective φ4 behaviour with massless excitations (see figure 5)

3. Bidimensional supersymmetric theories

In this paper we will consider N = 1 supersymmetric theories. They describe the dynamics

of a real superfield Φ(x, θ) that consists of a scalar field ϕ(x), a real (Majorana) spinor

ψα(x) and a real auxiliary field F (x), with the expansion

Φ(x, θ) = ϕ(x) + θ̄ ψ(x) +
1

2
θ̄ θF (x) . (3.1)

The space coordinates xµ = (x0, x1) and the the two real Grassmann coordinates θα =

(θ1, θ2) describe the N = 1 superspace. We adopt the following representation for the

γ-matrices

γ0 =

(

0 −i

i 0

)

, γ1 =

(

0 i

i 0

)

(3.2)

– 7 –
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The role of γ5 is played by

γ5 = γ0 γ1 =

(

1 0

0 −1

)

. (3.3)

The charge-conjugation is implemented by the matrix Cαβ = −(γ0)αβ , so that for a charge-

conjugate spinor ψC
α ≡ Cαβ ψ̄β = ψ†

α, with ψ̄ = ψ†γ0. Hence, in the above representation,

the Majorana spinors ψ and θ are real.

Under a translation in superspace

xµ → xµ + iξ̄γµθ , θα → θα + ξα (3.4)

the superfield has a variation expressed by

δΦ(x, θ) = ξ̄α Qα Φ(x, θ) , (3.5)

with Qα = ∂/∂θ̄α + i(γµθ)α ∂µ. The most general action invariant under the supersym-

metric transformation (3.5) is given by

A =

∫

d2x d2θ

[

1

4
(D̄αΦ)DαΦ + W (Φ)

]

, (3.6)

where
∫

d2θθ̄θ = 2, with the covariant derivative Dα given by

Dα ≡ ∂

∂θ̄α
− (i∂µγµθ)α . (3.7)

W (Φ) is the so-called superpotential, that we assume to be an analytic function of Φ.

Integrating on the Grassmann variables, one arrives to the following expression of the

action

A =

∫

d2x

{

1

2

[

(∂µϕ)2 + iψ̄γµ∂µψ + F 2
]

+ F W
′

(ϕ) − 1

2
W ”(ϕ)ψ̄ψ

}

, (3.8)

where W
′

(ϕ) = dW (ϕ)/dϕ, etc. Finally, elimitating the auxiliary field F from its alge-

braic equation of motion, i.e. substituting F → −W
′

(ϕ) in the above expression, yields a

lagrangian density for a supersymmetric theory given, in its most general form, by

L =
1

2

[

(∂µϕ)2 + iψ̄γµ∂µψ
]

− 1

2
[W

′

(ϕ)]2 − 1

2
W ”(ϕ)ψ̄ψ . (3.9)

Associated to the transformation (3.4) is the conserved supercurrent

Jµ
α = (∂νϕ)(γνγµψ)α − iF (γµψ)α , (3.10)

and the conserved supercharges

Qα =

∫

dx1 J0
α . (3.11)

Let’s also define the stress-energy tensor

T µν =
i

2
ψ̄ γµ∂νψ + ∂µϕ∂νϕ − 1

2
gµν

[

(∂αϕ)2 − F 2
]

, (3.12)

– 8 –
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and the topological current

ξµ = −ǫµνF ∂νϕ = ǫµν∂νW (ϕ) . (3.13)

As shown by Witten and Olive [17], the most general supersymmetry algebra is then

{Qα, Q̄β} = 2(γλ)αβ P λ + 2i(γ5)αβ Z , (3.14)

where P λ =
∫

dx1T 0λ is the total energy and momentum, whereas Z is the topological

charge

Z =

∫

dx1ξ0 = [W (ϕ)]+∞
−∞ ≡ W (ϕ) |x1=+∞ −W (ϕ) |x1=−∞ . (3.15)

A convenient and explicit form way of the supersymmetry algebra (3.14) is the following

Q2
+ = P+ , Q2

− = P− , Q+ Q− + Q− Q+ = 2Z , (3.16)

where we have used the notation (Q1, Q2) ≡ (Q−, Q+) and P± = P0 ± P1.

In the above formulas, Z is different from zero only when W (Φ) admits several solutions

of the equation W
′

(Φ) = 0, i.e. if the model supports kink excitations that interpolate

between different vacua at x1 = ±∞. This is also evident from the expression of the

topological current ξµ: this is a purely derivative term which is different from zero only

on field configurations that do not vanish at infinity. When it is evaluated on the classical

expression of the kinks, Z is equal to their mass (see eq. (4.10) below). Some examples of

theories with non-zero Z will be considered in section 4.

Eq. (3.9) gives the most general lagrangian of a supersymmetric theory. As evident

from its expression, its interactions consists of two terms: the first one, a Yukawa coupling

for the fermion (VY = W ”(ϕ)ψ̄ψ), the second one, a potential that involves only the

bosonic degree of freedom (VB = [W
′

(ϕ)]2). The last term is intrinsicaly positive and, as

well-known [18], it can be used to study the spontaneously breaking of supersymmetry: if

[W
′

(ϕ)]2 has zeros, they are the true vacua of the theory and supersymmetry is unbroken;

viceversa, if [W
′

(ϕ)]2 has local minima that are not zeros of this function, supersymmetry

is spontaneously broken at these minima. They are called meta-stable vacua if exists a

true vacuum somewhere in the landscape of VB(ϕ). The possibility of constructing reliable

theories with a broken supersymmetry at these meta-stable vacua is a topic currently under

an active investigation, after the seminal work [19]. We will further comment on this topic

in section 6.

3.1 Superconformal minimal models and deformations

As for pure bosonic theories, supersymmetric models may present a critical behavior. In

the following, our attention will focus on the so-called N = 1 discrete series SMm [20],

identified by combining the conformal invariance of the critical point together with the

supersymmetry and the unitarity of the models.6 The central charge of these conformal

6In this section we will only remind the properties of these models that are useful in the sequel of the

paper. For a detailed discussion of the super-conformal models, in addition to [20], see for instance [21 – 26].

– 9 –
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theories assumes the discrete values

c =
3

2
− 12

m(m + 2)
, m = 3, 4, 5, . . . (3.17)

The fields Or,s;r̄,s̄, with 1 ≤ r, r̄ ≤ m− 1 and 1 ≤ s, s̄ ≤ m + 1, have anomalous dimensions

η = ∆r,s + ∆r̄,s̄, where

∆r,s = ∆m−r,m+2−s =
[(m + 2)r − ms]2 − 4

8m(m + 2)
+

1

32

[

1 − (−1)r−s
]

. (3.18)

When r − s is an even number, the field Or,s;r̄,s̄ is a primary superfield that belongs to

the Neveu-Schwartz representation of the super-algebra. When r − s is instead an odd

number, the corresponding field Or,s;r̄,s̄ is an ordinary conformal primary field that creates

a representation of the Ramond sector of the super-algebra.

As shown by Zamolodchikov [23], the N = 1 superconformal model SMm (with the op-

erator content fixed by the diagonal partition function) can be identified with the Landau-

Ginzbrug lagrangian of a real scalar superfield Φ with the superpotential given, in this

case, by W (Φ) = 1
m Φm.

The first superconformal model, with m = 3 and c = 7
10 , corresponds to the class of

universality of the Tricritical Ising Model (TIM) [20]. According to the above identification,

this model is associated to the superpotential W (Φ) = 1
3 Φ3: after eliminating the auxiliary

field F , it gives rise to the interaction terms

V =
1

2
ϕ4 + ψ̄ψ ϕ . (3.19)

The next model, with m = 4 and c = 1, corresponds to the class of universality of the critical

Ashkin-Teller model (i.e. a particular gaussian model). Its superpotential W (φ) = 1
4Φ4

produces the interaction terms

V =
1

2
ϕ6 +

3

2
ψ̄ψ ϕ2 . (3.20)

An important difference exists between the superconformal minimal models SMm when

m is an even or an odd number. To see this, it is useful to computed the Witten index

Tr(−1)f of the superconformal models (f is the fermion number, which assumes the value

f = 0 for bosonic states and f = 1 for fermionic states). As usual, this can be computed

by initially defining the theory on a cylinder [26]: the Hamiltonian on the cylinder is given

by H = Q2 = L0 − c/24, where Q is the holomorphic compoment of the supercharge, c/24

is the Casimir energy on the cylinder and L0 = 1
2πi

∮

dz z T (z), with T (z) the holomorphic

component of the stress-energy tensor. Since for any conformal state | a〉 with ∆ > c/24

there is the companion state Q | a〉 of opposite fermionic parity, their contributions cancel

each other in Tr(−1)f and therefore only the ground states with ∆ = c/24 (which are

not necessarily paired) enter the final expression of the Witten index. For the minimal

models, by using the conformal dimensions given in eq. (3.18), it is easy to check that there

is a non-zero Witten index only for m even: the Ramond field Om
2

, m
2

+1 of these models

has indeed conformal dimension ∆ = c/24. Therefore the lowest superconformal minimal

– 10 –
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Figure 6: Shape of the bosonic interaction term of the Tricritical ising Model by varying λ: (a)

λ < 0 (susy exact) (b) λ = 0 (superconformal point) and (c) λ > 0 (broken susy) .

model with a non-zero Witten index is the one with m = 4, i.e. the gaussian model, whereas

the Tricritical Ising Model has a zero Witten index.

It is well known that the Witten index is related to the supersymmetry breaking

problem: if it is nonzero, the supersymmetry cannot be broken and if the supersymmetry

is broken it must be zero. This is explicitly confirmed by the examples studied in the

literature. In the case of the Tricritical Ising Model, perturbing the critical action by

the super-operator O1,3, i.e. inserting the extra term λΦ in the supersymmetrix action,

produces the bosonic interaction term (see figure 6)

VB =
1

2
(ϕ 2 + λ)2 . (3.21)

If λ < 0, the ground state energy is zero and supersymmetry is unbroken: both scalar

and fermion fields are massive and the theory has kink excitations [27]. Viceversa, if

λ > 0 the ground state energy is non-zero and supersymmetry is spontaneously broken:

the scalar field ϕ becomes massive whereas the fermion stays massless and plays the role of

goldstino. In this case, the Landau- Ginzbrug theory describes the massless flow from the

Tricritical Ising model to the critical Ising model [26]. This flow gives rise, in particular,

to an integrable field theory with the exact S-matrix determined in [28]. Notice that, at

the critical point, VB has a behaviour VB ∼ ϕ4, that obviously does not correspond to

the class of universality of the Ising model: in fact, one has to take into account that the

superconformal model SM3 has also additional interaction relative to its fermionic degree

of freedom, i.e. the nteractions of the model are not only expressed by VB.

In the gaussian model, the role of the super-operator O1,3 is played by the term Φ2.

Perturbing the conformal action by means of this operator, one has (see figure 7)

VB =
1

2
ϕ2 (ϕ2 + λ)2 . (3.22)

By varying λ, the landscape of the bosonic potential changes as in figure 7: in this case,

no matter what the sign of λ may be, the potential has always at least one zero, i.e.

supersymmetry is always unbroken. Notice that at the critical point, VB has a behaviour

at the origin VB ∼ ϕ6. For λ < 0, the excitations of the model are massive kinks while,

for λ > 0, they consists of massive scalar and fermion particles localised around the exact

vacuum of the theory.
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Figure 7: Shape of the bosonic interaction term of the gaussian model by varying λ: (a) λ < 0

(three degenerate vacua of zero energy: susy exact) (b) λ = 0 (superconformal point) and (c) λ > 0

(unique vacuum of zero energy: susy exact) .

4. Kink in supersymmetric theories

In the following, as an example of a supersymmetric integrable theory with kink excitations,

we will consider the super Sine-Gordon mode (SSG). This model has been studied by several

authors and a great deal is known about it: its quantum integrability, for instance, has

been checked in [29], its exact S-matrix has been proposed in [30] and it follows the general

classification given in [31], whereas its analysis in the framework of perturbed conformal

theories has been carried out in [33]. Its thermodynamics and finite size spectrum has

been studied in [32]. The long-standing and subtle issue of quantum correction to the mass

of the solitons has been solved in the series of papers [34, 35], where it was shown that

the soliton states satisfy a BPS property (i.e. their mass being equal to their topological

charge) even beyond the tree level.

As action of the SSG we will take

A =

∫

d2x d2θ

[

1

4
(D̄αΦ)DαΦ − µ

α2
cos(αΦ)

]

. (4.1)

Eliminating the auxiliary field F , it gives rise to the Lagrangian

L =
1

2

[

(∂µϕ)2 + iψ̄γµ∂µψ
]

− µ2

2α2
sin2(α ϕ) − µ

2
cos(α ϕ)ψ̄ψ . (4.2)

In the standard perturbative approach of this model, the parameter µ (that we assume

to be a positive quantity) plays the role of the mass of the scalar excitations nearby each

minima of VB = µ2

2α2 sin2(αϕ), that are located at ϕ
(0)
k = k π/α. All these minima have

zero energy, i.e.they are all possible supersymmetric vacua of the quantum theory. A more

detailed discussion on the nature of these vacuum states will be done at the end of this

section. Notice that the above theory may be also regarded as a massive deformation of

the free conformal action with central charge c = 3/2, given by a massless bosonic field

and a massless fermionic field.7

The theory (4.2) is invariant under the Z2 parity ϕ → −ϕ and under the shift

ϕ → ϕ + n
2π

α
. (4.3)

7The discussion of this point of view can be found in [33].
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It is also invariant under a half-period shift of the bosonic field

ϕ → ϕ + n
π

α
, (4.4)

a pact to change the relative sign of the fermion by γ5, ψ → γ5 ψ, i.e.

ψ1 → ψ1 , ψ2 → −ψ2 . (4.5)

In view of the periodicity (4.3), we can always focus our attention to the interval (0, 2π/α)

of the field ϕ.

The minima of VB are connected by (supersymmetric) kinks | S 〉, which can be iden-

tified by the conditions [17]

(Q+ ± Q−) | S 〉 = 0 , (4.6)

where the + refers to the kink whereas the − to the anti-kink. For the bosonic component

of these kink states, the above conditions end up in solving the first order differential

equations8

dϕcl

dx
= ±F (ϕcl) = ±W

′

(ϕcl) . (4.7)

The kink and the anti-kink solutions (corresponding to + and − respectively) of the SSG

model are explicitly given by

ϕcl
±(x) =

2

α
arctan(e±µx) . (4.8)

They connect the adjacent vacua ϕ(0) = 0 and ϕ(0) = π/α, all other kinks or antikinks of

the model being equivalent to the above. Their classical mass M is expressed in terms of

their topological charge, thanks to the identity

P+ + P− = (Q+ ± Q−)2 ∓ 2Z (4.9)

that follows from the supersymmetry algebra (3.16): for the kink (anitkink) at rest, the

left hand side is given by P+ + P− = 2M , whereas the right hand side, using eq. (4.6), is

equal to ∓2Z, therefore [17]

M = |Z| . (4.10)

As a matter of fact, the kink and the anti-kink are double degenerate states [37]. One way

to see this is to observe that, in the presence of kink solutions, the Dirac equation for the

fermion field

i γµ ∂µ ψ − µ cos(αϕcl
±)ψ = 0 (4.11)

possesses static normalizable solutions ψ
(0)
± , localised at the position of the kinks [36 – 38].

Namely, they satisfy the static differential equation

iγ1 ∂1ψ
(0)
± − µ cos(αϕcl

±)ψ
(0)
± = 0 . (4.12)

8See [35] for an elegant discussion of the classical kink solutions in terms of the superspace formalism.
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For the kink backgrounds ϕcl
± of the SSG model, their explicit expression is given by

ψ
(0)
± (x) =

N

cosh(µx)

(

1

±1

)

, (4.13)

(N is a finite normalization constant). These are zero-energy eigenfunctions of the Dirac

equation, as it can be seen by looking for solutions of eq. (4.11) in terms of eigenfunctions,

ψ(x, t) = e−iǫpt ψp(x). Let’s focus the attention, for simplicity, only on the kink configura-

tion, since for the antikink one has an analogous situation. We can expand the fermionic

field in terms of its eigenfunctions: taking into account that ψ is a Majorana field, one has

ψ = a0 ψ
(0)
+ +

∑

p

(

bp ψp+ + b†p ψc
p−

)

. (4.14)

The operators a0 and bp satisfy anticommutation relations

{a0, a
†
0} = 1 , {bp, b

†
q} = δp,q , (4.15)

and other anticommutation relation vanish. The operators b†p and bp are standard creation

and annihilation for the non-zero energy fermions in the presence of the kink. The operator

a0, associated to the fermion zero mode, has instead a bidimensional representation: oper-

ating on the kink state, it produce another kink state with the same energy but different

fermion number. Hence, in supersymmetric theories, the kink is a doublet. Denoting these

two states by | K ;±〉, one has

a0 | K ; −〉 = 0 , | K ; + 〉 = a†0 | K ; −〉 . (4.16)

The same considerations also apply to the antikink state.

In view of the above discussion, the nature of the vacuum states of the SSG model is

as follows: every vacuum ϕ
(0)
2n = 2n π

α is non-degenerate, while those located at ϕ
(0)
2n+1 =

(2n+1) π
α are double degenerate. As discussed in [33] on the basis of an argument by Zamolod-

chikov [27], this can be also argued by the sign of the effective mass term of the fermion

field

VY =
µ

2
cos(αϕ) ψ̄ ψ (4.17)

at these vacua: when the effective mass is positive, the vacuum is not degenerate, while is

double degenerate if the effective mass is negative. Hence, altogether we have the situation

shown in figure 8.

5. Multi-frequency super Sine-Gordon model

Let’s now deform the supersymmetric action (4.1) by inserting another trigonometric term,

i.e let’s consider the action

A =

∫

d2x d2θ

[

1

4
(D̄αΦ)DαΦ − µ

α
cos(αΦ) − λ

β
cos(βΦ)

]

, (5.1)
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Figure 8: (a) Plot of VB of the SSG model in the range (0, 2π/α). (b) Structure of the vacua and

of the kink excitations.

where we have opportunately rescaled the couplings. By using the super-Coulomb gas

formalism [39] and the operator product expansion of the (super) exponential operators

present in (5.1), one can establish the renormalizability (i.e. the stability) of this action in

the range of the parameters

α2 < 8π , β2 < 8π , α β < 4π . (5.2)

In the following we assume the validity of these inequalities. Moreover, we restrict the

attention to the case in which the ratio ω of the two frequencies is a rational number

ω ≡ β

α
=

p

q
, (5.3)

with p and q two co-prime natural numbers, p < q. Since any irrational number can

be approximated with arbitrary precision by the sequence of rational approximants given

by its continued fraction expressions, the case when ω is irrational may be regarded as a

particular limit of the rational situation.

Since the two trigonometric interactions enter the action (5.1) in a symmetric way,

there are two natural perturbative regimes of the theory:9 λ → 0 (with µ fixed) or µ → 0

(with λ fixed). Below we will deal with the first regime, since the other can be simply

recovered by swapping the role of the two operators.

The question we would like to address concerns the fate of the kinks of the original

SSG: are they going to be confined once the new interactions is switched on? Or, on the

contrary, are they going to remain stable excitations of the perturbed action (5.1)? To

answer these questions, let us first of all eliminate the auxiliary field F and then focus the

attention on the resulting bosonic interaction VB associated to the action (5.1)

VB(ϕ, λ) =
1

2
[µ sin(αϕ) + λ sin(βϕ)]2 . (5.4)

9As in the bosonic case [8], the quantum theory actually depends on the appropriate dimensionless

combination of the two couplings.
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To simplify the following formulas, let us rescale the field ϕ → ϕ/α and the coupling

constant λ → λ/µ in such a way that, up to an overall constant, VB assumes the form

V̂B(ϕ, λ) = [sinϕ + λ sin (ω ϕ)]2 =

[

sin ϕ + λ sin

(

p

q
ϕ

)]2

. (5.5)

The first observation is that, no matter what are the values assumed by λ, the origin ϕ(0) =

0 is always a zero of this expression, i.e. this model always possesses a true supersymmetric

vacuum. We will comment later on the possibility of having meta-stable vacua, i.e. vacua

where the supersymmetry is spontaneously broken, by varying λ.

The second observation is that, at lowest order in λ, all the vacua of the original SSG

potential continue to remain degenerate, i.e. the original kinks are always stable at weak

coupling! The simplest way to show this, is to follow the evolution of the zeros of (5.5)

when we switch on λ. At λ = 0, they are placed at ϕ
(0)
n = nπ. Switching on λ, we can look

for the new location of the zeros in power-series in λ, i.e.

ϕ(0)
n ≃ nπ + λǫ(1)

n + · · · (5.6)

Substituting this expression into the equation V̂B(ϕ, λ) = 0, it is easy to prove that, at

the first order in λ, VB(ϕ, λ) has the same zeros of VB(ϕ, 0). This can be seen as a simple

consequence of the fact that VB is given, in supersymmetric theory, by the square of a

function: namely, if VB(x) = [f(x)]2 and f(x) has zeros at x = x1, x2, . . . in the interval I,

perturbing this function by λg(x) one has VB(x, λ) = [f(x)+λg(x)]2 ≃ [f(x)]2+2λf(x)g(x).

Therefore, if g(x) does not have zeros in the interval I, at the lowest order in λ, VB(x, λ) has

the same zeros of VB(x) in I. The actual shift of the zeros can be computed by imposing

that VB(ϕ, λ) has zeros also at the second order in λ: the consistency of this request comes

from the result there is always a solution in terms of ǫ
(1)
n , given by

ǫ(1)
n = (−1)n sin

npπ

q
. (5.7)

Hence, at weak coupling, the zeros ϕ
(0)
n shift their position by ǫ

(1)
n but they do not disappear.

The stability of the kinks at the lowest order in λ and the role played by supersymmetry

becomes even more evident if we apply the considerations of section 2. For doing so, the

first thing is to identify the operator that, at lowest order in λ, spoils the integrability of

the original model. It is easy to see that the role of Υ is played in this case by the operator

Θ = sinϕ sin(ωϕ) + ωψ̄ψ cos(ωϕ) . (5.8)

To compute its semi-local index γΘ,a on the kink state, we can use the fact that the fermionic

and the bosonic field are components of the same superfield and that the exponential

operators eiηϕ has a semi-local index γ = η
2 with respect to the kink of this theory.10 If

we quantize the theory by choosing as vacuum the zero at the origin, for the residue of the

Form Factor of Θ that controls the confinement of the kinks we have

Resθ=±iπ FΘ
aā(θ) = [1 + cos(πω)] 0〈0|Θ(0)|0〉0 . (5.9)

10Notice that this is half the semi-local index of the bosonic Sine-Gordon case, since the supersymmetric

bosonic potential sin2 ϕ has a frequency that is twice the frequency of the usual Sine-Gordon model.
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Notice that the above quantity consistently vanishes if ω = 1, i.e. if we had decided to

perturb the action by the same trigonometric term that enters its original definition: in

this case the deformation just redefines the original coupling constant µ and this cannot

have consequences on the confinement of the kink. For all other values of ω, the term

[1 + cos(πω)] is different from zero but the residue is nevertheless zero, because it is the

vacuum expectation value of Θ that vanishes in this case! This is a consequence of the

unbroken supersymmetry of the theory: in fact, Θ is nothing else that an additional term

in the trace of the stress-energy tensor of theory and, since the supersymmetry is exact,

from Q± | 0 〉0 = 0 simply follows 0〈0|Θ(0)|0〉0 = 0 [40]. It is interesting to notice that the

absence of the confinement of the kinks is also independent from the rational or irrational

nature of ω.

From a naive point of view, the vanishing of the vacuum expectation value of the

perturbing operator Θ is due to the simultaneous presence of a bosonic and a fermion term

in its expression: in this case, the vacuum expectation value of the fermionic term tends

to cancel the bosonic one. The exact cancellation obviously happens for an opportune

fine-tuning of the relative couplings of these terms — a fact that simply expresses the

supersymmetry invariance of the theory. In the usual multi-frequency Sine-Gordon, this

cancellation is absent for the only presence of the bosonic term: the result is then, in

general, the confinement of its kinks.

The vanishing of the residue (5.9) implies the absence of confinement of the kinks at

weak coupling but, obviously, this does not imply that their mass remain untouched. As

a matter of fact, the masses change and, in particular, the kinks are no longer degenerate

when λ is switched on. Namely, the original kink excitations split into families of long-

kinks and short kinks: the former overpass higher barriers, the latter lower barriers (see,

for instance, figure 9). The actual computation of the new masses of the kinks can be done

by employing their topological charges, i.e. by using eqs. (3.15) and (4.10), together with

the shift of the zeros given by (5.7).

6. Phase transition and meta-stable states

The analysis done in the previous section applies in the weak coupling regime λ → 0. One

may wonder, however, what is the evolution of the spectrum11 of the theory by varying λ

to finite values or even pushing it to the strong coupling limit λ → ∞. The result , as we

will see, is quite interesting.

Consider the bosonic and the fermionic potential terms of the theory, in their rescaled

form

V̂B =

[

sinϕ + λ sin

(

p

q
ϕ

)]2

. (6.1)

V̂Y =

[

cos ϕ + λ
q

p
cos

(

p

q
ϕ

)]

ψ̄ψ .

11The SSG model has, in addition to the kinks, also bound states thereof. In this paper, for the sake of

simplicity, we focus our attention only on the kink excitations of the theory.
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Figure 9: Plot of VB with λ = 0.1 in the interval (−2πq, 2πq) for q = 3: (a) p = 1 and (b) p = 2.

In the presence of λ, the periodicity of the theory is no longer equal to 2π but has become

2πq. Therefore it is convenient to plot VB on this extended interval, as in figure 9.

The evolution of the spectrum by varying λ is constrained by a simple argument. At

λ = 0, one has the sequence of the zeros of the first trigonometric term, which become

slightly displaced from their original position when λ is small, without changing though

their number. Denoting by Nz(λ) the number of zero at a given λ in the enlarged interval

(0, 2πq), we have

Nz(0) = 2q + 1 (6.2)

(in the above number we have also included the zero at the origin). On the other hand,

when λ → ∞, the number of zeros becomes

lim
λ→∞

Nz(λ) = 2p + 1 , (6.3)

i.e. the number of zeros in the interval (0, 2πq) of the second trigonometric term in VB .

Hence, by varying λ, there should be a variation of the number of zeros equal to

∆Nz = 2(q − p) . (6.4)

Since the kinks own their existence to the zeros, a variation of their number implies that

certain kinks will disappear by moving λ from λ = 0 to λ = ∞. Since they are topological

excitations, their disappearance signals that certain phase transitions will take place in the

model at some critical values of the coupling, λ = λ
(n)
c . At these critical values, the system

has massless excitations that will rule its long-distance behaviour. As discussed below, λ
(n)
c

are identified as the values where Nz(λ) jumps by a step of 2 units (figure 10).

The way in which the number of zeros changes, by varying with continuity λ, is that

pairs of zeros collide and then move on immaginary values. When this happens, the barrier

between the two colliding vacua vanishes and, correspondingly, the kinks that connect them

become massless. Notice that, in the evolution of the zeros, the ones placed at ϕ(0) = 0,

ϕ(0) = πq and ϕ(0) = 2πq will never disapper.

There is, however, a different way in which the disappearance of the zeros is imple-

mented, according whether (p− q) is an even or an odd number. In fact, when (q−p) is an
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Figure 10: Nz(λ) vs λ, with the sequence of the critical values λ
(n)
c

odd number, among the pairs of colliding zeros there will always be a couple of them placed

just on the right and on the left position of ϕ(0) = πq: at some critical value λ̂c, these zeros

will collide but strangling, in the meantime, the zero at πq that is in between. When (q−p)

is an even number, this will not happen. Hence, the conclusion is the following:12

• When (q − p) is an even number, there will be a sequence of phase transitions that

will recall the phase transition of the Tricritical Ising Model, i.e. a phase transition

with a local spontaneously supersymmetry breaking (see eq. (3.21) and the relative

discussion). At the critical points, the local form of the potential VB at the position

ϕ̃ of the colliding zeros is given by VB ∼ (ϕ − ϕ̃)4.

• When (q − p) is an odd number, in addition to a sequence of TIM-like phase tran-

sitions, at a certain value of the coupling, λ = λ̂c, there is also a phase transition

localized at the vacuum ϕ = πq. This phase transition will recall the phase transition

of the gaussian model, i.e. a phase transition without a local spontaneously super-

symmetry breaking (see eq. (3.22) and the relative discussion). At λ = λ̂c the local

form of the potential VB at ϕ = πq is given by VB ∼ (ϕ − πq)6.

In order to make more transparent the above analysis, it is useful to consider explicitly

two examples: the first refers to ω = 1
3 , i.e. (q − p) = 2, the second instead to ω = 2

3 , with

(q − p) = 1.

Let us consider first the case ω = 1
3 . By varying λ, the landscape of V̂B changes as

shown in the sequence of the pictures of figure 11. Observe that, just before reaching λc,

there are two zeros in the interval (0, 3π) that are going to merge together (obviously there

are similar zeros in all other intervals obtained by periodicity). Let’s call these vacua ϕ
(0)
1

and ϕ
(0)
2 . At λ = λc the barrier between these two zeros vanishes and, soon after λc, a

meta-stable vacuum is created at their middle position ϕ = ϕmv . For λ close to λc, the

shape of VB at ϕmv can be parameterized similarly to the bosonic potential of the Tricritical

Ising Model

VB ∼
[

(ϕ − ϕmv)
2 + (λ − λc)

]2
. (6.5)

12The analysis refers to λ > 0. If λ is negative there is a swap of the two cases.
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Figure 11: Plot of VB in the interval (0, 6π) for ω = 1/3 by varying λ: (a) small value of λ; (b)

λ < λc; (c) λ = λc; (d) λ > λc; (e) λ ≫ λc; (f) λ → ∞ .

Since at λ = λc some topological excitations disappear, a phase transition takes place in

the model: if we had originally decided to quantize the theory either at ϕ
(0)
1 or at ϕ

(0)
2 ,

the effective dynamics seen by any of these two vacua appears as a cascade of massless

flows: the first, at λ = λc, from c = 3/2 to c = 7/10 (the central charge of TIM) and soon

after λc, from c = 7/10 to c = 1/2, the last value being the central charge of the Ising

model. This jumps in the central charge are consistent with the c-theorem [41] and with the

unitarity of the theory. Although the zero at the origin always leaves the supersymmetry

of the model exact, the quantization around the meta-stable vacuum state at ϕmv realises

however a spontaneously supersymmetric breaking situation, with a spectrum given by a

massive scalar and a massless fermion. This can be explicitly checked by studying VY :

for λ > λc (and for all the range of values of λ that permits to consider the lifetime of

this meta-stable vacuum sufficiently long), the term that multiplies ψ̄ψ is indeed zero at

ϕ = ϕvm. The massless fermion is nothing else than the usual Majorana fermion of the

critical Ising Model. Increasing further λ and reaching values much larger than λc, the

lifetime of the metastable vacuum shortens and the effective theory based on this pseudo

vacuum loses, at certain point, its validity. As a matter of fact, at strong coupling this

pseudo-vacuum is going to be finally absorbed into the maximum of the second term of

VB , i.e. sin
(

1
3ϕ

)

. It is easy to check that the situation just discussed for the case ω = 1
3

also occurs in all other cases when (q − p) is an even number, possibly with several critical

values of λ where phase transitions of the type of the Tricritical Ising Model occur.

Let us discuss now the second case, ω = 2
3 . The evolutation of the landscape of VB by

varying λ is shown in the sequence of pictures of figure 12. When λ is just switched on, the

number of zeros does not change but the barriers that separate them start to lower. If one

concentrates the attention on the barriers placed in the middle of the plots, one notices

that their evolution follows the patter presented by the gaussian model. Denoting by λ̂c

the critical value of the coupling, in the vicinity of this value the shape of the VB can be
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Figure 12: VB for ω = 2/3 by varying λ: (a) small value of λ (b) λ < λ̂c; (c) λ = λ̂c; (d) λ > λ̂c;

(e) λ ≫ λ̂c; (f) λ → ∞.

parameterized similarly to the bosonic potential of the gaussian model

VB ∼ (ϕ − 3π)2
[

(ϕ − 3π)2 + (λ − λ̂c)
]2

. (6.6)

In this case, overpassing the critical value λ̂c, supersymmetry still remains exact at the

vacuum ϕ(0) = 3π. It is easy to see that a similar situation occurs in all other case when

(q − p) is an odd number, the only difference possibly being the existence of a sequence

of other critical values λ
(n)
c (in addition to λ̂c) where TIM-like phase transitions occur at

other vacua. This happens if (q − p) > 1. If we had decide to quantize the theory by

choosing as vacuum the one placed at ϕ(0) = πq, the dynamics seen at this vacuum state

consists, at λ = λ̂c, in a massless flow from c = 3/2 to c = 1, and then from c = 1 to c = 0,

without a breaking of the supersymmetry.

7. Conclusions

In this paper we have analysed, through the study of a particular model, the breaking of

integrability of a supersymmetric theory. On the contrary to purely bosonic theories, this

does not lead to a confinement of the kink exitations. The absence of this phenomenon

is due precisely to the unbroken supersymmetry invariance of the theory. However, by

varying the coupling constant, the spectrum changes.

At weak coupling, there is no longer the degeneracy of the original kinks: the kinks

split into a sequence of long and short kinks. Since they are still BPS states, their mass

can be computed in terms of their topological charge Z. An interesting open problem

consists of comparing the values obtained by this approach with the masses computed in

terms of the Form Factor Perturbation Theory. In order to do so, one needs to generalize

the supersymmetric Form Factors analysed in [42] to theories with kinks.
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At finite values of the coupling, there exist critical points where phase transitions take

place in the system: at these critical values, pairs of kinks become massless and then

disappear from the set of asymptotic states.

Among the phase transitions that take place in the theory, some of them realise a

spontaneously supersymmetry breaking around certain meta-stable vacua. This happens

if (q − p) > 1, where ω = p/q is the frequency of the perturbing superfield. A quantization

of the theory around the metastable vacua leads, nearby the critical values of the coupling,

to the effective dynamics that describes the spontaneously supersymmetry breaking of the

Tricritical Ising model. This consists of a massless flow from this model to the critical Ising

model, going from the short to the large distance scales. In this flow, the scalar particle

is massive while the fermion is the massless Mayorana particle of the Ising model, i.e. the

goldstino of the supersymmetry breaking.

If (q − p) is an odd number, the system also present a phase transition at λ̂c which

does not break supersymmetry at the vacuum in the middle of the interval (0, 2πq) where

it occurs. In this case, the effective dynamics seen at this vacuum consists of the class of

universality of the gaussian model, which presents massive and supersymmetric excitations

either before or after the critical point, becoming massless just at λ = λ̂c: for λ < λ̂c they

appear as kinks, for λ > λ̂c, they are instead ordinary particles.
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