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ABSTRACT

In this paper, we present results from a series of hydrodynamical tests aimed at validating the performance of a
smoothed particle hydrodynamics (SPH) formulation in which gradients are derived from an integral approach. We
specifically investigate the code behavior with subsonic flows, where it is well known that zeroth-order
inconsistencies present in standard SPH make it particularly problematic to correctly model the fluid dynamics. In
particular, we consider the Gresho–Chan vortex problem, the growth of Kelvin–Helmholtz instabilities, the
statistics of driven subsonic turbulence and the cold Keplerian diskproblem. We compare simulation results for the
different tests with those obtained, for the same initial conditions, using standard SPH. We also compare the results
with the corresponding ones obtained previously with other numerical methods, such as codes based on a moving-
mesh scheme or Godunov-type Lagrangian meshless methods. We quantify code performances by introducing
error norms and spectral properties of the particle distribution, in a way similar to what was done in other works.
We find that the new SPH formulation exhibits strongly reduced gradient errors and outperforms standard SPH in
all of the tests considered. In fact, in terms of accuracy, we find good agreement between the simulation results of
the new scheme and those produced using other recently proposed numerical schemes. These findings suggest that
the proposed method can be successfully applied for many astrophysical problems in which the presence of
subsonic flows previously limited the use of SPH, with the new scheme now being competitive in these regimes
with other numerical methods.
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1. INTRODUCTION

Application of computational fluid dynamics to many
astrophysical problems has grown steadily over the years with
advances in computational power, and it has now become a
standard tool for studying the nonlinear evolution of baryonic
structures in the universe.

There are two methods commonly used in numerical
astrophysics for solving the Euler equation. The first method
makes use of a spatial grid, either fixed (Stone & Norman
1992; Norman & Bryan 1999; Stone et al. 2008) or adaptative
(Fryxell et al. 2000; Teyssier 2002; Norman 2005; Bryan
et al. 2014). The second method is a Lagrangian mesh-free
numerical scheme, known as smoothed particle hydrodynamics
(SPH: Gingold & Monaghan 1977; Lucy 1977) in which
particles are used to model fluid properties. Both methods have
advantages and weaknesses that are specific to the numerical
approach on which each method is based.

Because of its Lagrangian nature, SPH possesses very good
conservation properties, moreover the method is free of
advection errors present in mesh codes and is naturally
adaptative because particle trajectories trace the mass. This
latter feature is particularly useful in many astrophysical
problems involving collapse of the structure under study.

The method, however, is not free from significant drawbacks
and more specifically it has been found that in several
hydrodynamical test cases there are significant differences
between the results obtained using the two methods, with
SPH failing to properly model the correct behavior (O’Shea
et al. 2005; Agertz et al. 2007; Tasker et al. 2008; Wadsley
et al. 2008; Mitchell et al. 2009; Junk et al. 2010; Read et al.
2010; Valcke et al. 2010).

More specifically, Agertz et al. (2007) found that SPH fails
to resolve the formation of Kelvin–Helmholtz (KH) instabilities
at fluid interfaces. This is strongly related to the fluid mixing
properties of SPH as well as to the lack of a core entropy in
non-radiative simulations of galaxy clusters, in contrast with
what is found using mesh-based codes (Wadsley et al. 2008;
Mitchell et al. 2009).
It is now widely recognized that the origin of these errors is

due to two distinct problems, which are present in SPH. The
first problem originates from the inconsistencies of standard
SPH when dealing with steep density gradients at contact
discontinuities, the so-called local mixing instability (LMI;
Read et al. 2010), thereby suppressing the growth of KH
instabilities at the fluid interfaces. The second problem is
inherent in the discrete nature of SPH, in which a finite set of
particles is used to model the fluid. The discretization implies
the presence of a zeroth-order error in the momentum equation
due to sampling effects (Read et al. 2010), the so-called E0

error. This error can be reduced if one increases the number of
neighbors Nn present within the kernel, but for the standard
cubic spline kernel there is a threshold value for Nn beyond
which a clumping instability develops thus degrading the
convergence rate.
In view of the benefits of the SPH method previously

outlined, there have been many attempts to eliminate or reduce
these difficulties. Several solutions have been proposed,
concerning the problem posed by the standard formulation at
contact discontinuities.
One solution is to modify the equations, so that it is the

pressure rather than the density that is smoothed (Ritchie &
Thomas 2001; Read et al. 2010; Hopkins 2013; Saitoh &
Makino 2013; Hu et al. 2014). On the other hand, Price (2008)
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proposed theinclusion ofa term of artificial conductivity
(AC)in the SPH energy equation with the aim of smoothing
the thermal energy across fluid interfaces and thus removing
the associated entropy gap. This approach is similar to that used
by Wadsley et al. (2008), who mimicked the effect of subgrid
turbulence by adding a heat-diffusion term to the equations.
The method, however, requires some care in the implementa-
tion of the conduction switches to avoid the risk of getting too
much diffusion.

By performing a suite of hydrodynamical tests (Valdar-
nini 2012, hereafter V12) it has been found that the method
yields consistent results when contrasted with those obtained
using mesh-based codes. In particular (V12; Biffi & Valdarnini
2015), the level of core entropies produced in simulations of
non-radiative galaxy clusters are now comparable with those of
grid codes. Recently, Beck et al. (2016)have proposed a
modification to the standard SPH code Gadget-II (Springel
2005), which incorporate the new AC term into the
hydrodynamic equations.

Finally, other variants of SPH are based on Riemann solvers
(Godunov-SPH: Inutsuka 2002; Cha et al. 2010; Murante
et al. 2011), Voronoi tessellation techniques (Heß & Springel
2010), or the use of high-order dissipation switches (Read &
Hayfield 2012).

The zeroth-order inconsistency is due to the inability of the
SPH method to properly reproduce a constant function because
of finite resolution (Dilts 1999; Liu et al. 2003), thus leading to
poor gradient estimates (Read et al. 2010; McNally et al. 2012)
and in turn affecting the momentum equations. Keeping these
errors under control becomes problematic when dealing with
subsonic flows, as in the case of subsonic turbulence (Bauer &
Springel 2012) or with Rayleigh–Taylor instabilities
(Abel 2011; García-Senz et al. 2012, V12).

A possible solution is to drastically increase the number of
neighbors used in the simulation. In this case, the clumping
instability can be avoided either by modifying the shape of the
cubic spline kernel (Read et al. 2010)or by adopting (Dehnen
& Aly 2012) the Wendland kernels (Wendland 1995). These
kernels are characterized by the specific property of not being
subject to clumping instabilities in the large Nn limit.

Another possibility is to consider other discretizations of the
momentum equation (Morris 1996; Abel 2011) but this comes
at the cost of losing energy and momentum conservation (Price
2012a), thus making the scheme of little use in practice.

Finally, to overcome the difficulties of SPH mentioned
above, new numerical schemes have been proposed (Springel
2010; Duffell & MacFadyen 2011; Hopkins 2015; Schaal
et al. 2015; Pakmor et al. 2016) thataim to retain the
advantages of using both SPH and mesh-based codes. These
new schemes are quite numerically complex and, in some
cases, their space discretization does not seem to be optimal as
required by forthcoming parallel computing systems consisting
of several million cores (Schaal et al. 2015).

A satisfactory solution to the problem of zeroth-order
inconsistency in SPH has been presented by García-Senz
et al. (2012), who showed how the accuracy in gradient
estimates can be greatly improved by calculating first-order
derivatives by means of the evaluation of integrals and the use
of matrix inversions. The resulting tensor scheme has been
tested in a variety of hydrodynamical test cases (García-Senz
et al. 2012; Rosswog 2015), showing significant improvements
as compared with the standard formulation. A crucial feature of

the method is that it retains the Lagrangian nature of SPH,
unlike previous attempts aimed at improving gradient accuracy.
Motivated by these findings, we here further investigate the

performance of the new scheme, paying particular attention to
its behavior in the regime of subsonic flows, where it has been
found that standard SPH presentsmajor difficulties.
The goal of this paper is to demonstrate that, for the

hydrodynamical tests considered here, the new SPH formula-
tion gives results with accuracy comparable to that of mesh-
based codes. Thus, the new code can be profitably used for
many astrophysical problems without the shortcomings of
standard SPH. The main advantage of the new scheme is that it
keeps its fully Lagrangian nature, while retaining a relative
simplicity in its implementation as compared with new
numerical schemes recently proposed.
The paper is organized as follows. In Section 2, we present

the hydrodynamical method and the implementation of the
integral-based approach. Some basic properties of the most
widely used SPH kernels are briefly reviewed in Section 3. The
results of the hydrodynamical tests are given in Section 4,
where we consider the Gresho–Chan vortex problem, the
development of KH instabilities, the statistic of driven subsonic
turbulence and finally the Keplerian diskproblem. Our main
results and conclusions are summarized in Section 5.

2. HYDRODYNAMIC METHOD

This section reviews the basic features of SPH; for a
comprehensive review, see Rosswog (2009) and Price (2012a).

2.1. Basic Equations

In SPH, the fluid is described within the solution domain by
a set of N particles with mass mi, velocity vi, density ri, and
specific entropy Ai (we use the convention of having Latin
indices denoting particles and Greek indices denoting the
spatial dimensions). Here, we integrate the entropy per particle
(Springel & Hernquist 2002) in place of the thermal energy per
unit mass ui (Hernquist & Katz 1989; Wadsley et al. 2004). The
entropy Ai is related to the particle pressure Pi by

r g r= = -gP A u1i i i i i( ) , where g = 5 3 for a mono-atomic
gas. The density estimate at the particle position ri is given by

år = rm W h, , 1i
j

j ij i(∣ ∣ ) ( )

where -r rW h,i j i(∣ ∣ ) is the interpolating kernel, which is zero
for  z-r r hi j i∣ ∣ (Price 2012a). Since the kernel has compact
support, the sum in Equation (1) is over a finite number of
particles. The smoothing length hi is implicitly defined by

h r=h m , 2i i i
D1( ) ( )

so that in two and three dimensions, respectively,
p zh=Nnn

D2 2( ) and p zh=N 4 3nn
D3 3( ) are the mean number

of neighboring particles of particle i within a radius zhi. In
principle, for a given parameter η, the solution of Equation (2)
allows for non-integer values of Nn (Price 2012a). Here we
solve the equation for the hi by requiring an integer value for
Nnn, to which we will generically refer to in the following as
the neighbor number.
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Following Price (2012a), the Euler equations are derived
using a Lagrangian formulation

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥å  

r r
= -

W
+

W
vd

dt
m

P
W h

P
W h , 3i

j
j

i

i i

i ij i
j

j j

i ij j2 2
( ) ( ) ( )

where Wi is defined as

⎡
⎣⎢

⎤
⎦⎥år

W = -
¶
¶

¶
¶

h
m

W h

h
1 . 4i

i

i k
k

ik i

i

( ) ( )

2.2. Artificial Viscosity

The momentum Equation (3) must be generalized to include
an artificial viscosity (AV) term, which in SPH represents the
effects of shocks. This is introduced in order to prevent particle
streaming and to convert kinetic energy into heat at shocks; the
new term reads

⎜ ⎟⎛
⎝

⎞
⎠ å = - P

vd

dt
m W , 5i

i
j ij i ij

AV

¯ ( )

where = +W W r h W r h, ,ij ij i ij j
1

2
¯ ( ( ) ( )) is the symmetrized

kernel and Pij is the AV tensor.
The latter is written following the formulation of Monaghan

(1997), based on an analogy with the Riemann problem:

a m

r
P = -

v
f

2
, 6ij

ij ij ij

ij
ij

AV

( )

where rij is the average density, m = v r rij ij ij ij· ∣ ∣ if <v r 0ij ij·
but zero otherwise and = -v v vij i j. The signal velocity vAVij is
introduced as

m= + -v c c 3 , 7ij i j ij
AV ( )

with ci being the sound velocity. The amount of AV is
regulated by the parameter ai, and fi is a viscosity limiter,
which is introduced so as to suppress AV when strong shear
flows are present. This is written as (Balsara 1995)


 

=
+ ´

v
v v

f , 8i
i

i i

∣ · ∣
∣ · ∣ ∣ ∣

( )

where  v i( · ) and  ´ v i( ) are estimated according to the
SPH formalism.

The early SPH formulation (Monaghan 2005), assumed a
constant viscosity parameter ai of order unity for all the
particles, thus making the scheme excessively viscous away
from shocks. In the literature, the SPH scheme with this
viscosity parametrization is often referred to as standard SPH,
whereas here we use this term to indicate the SPH formulation
thatuses the AV switch, which now we will describe.

To reduce the amount of AV away from shocks, Morris &
Monaghan (1997) proposed letting the aiʼs vary with time
according to some source term Si. The time evolution of ai is
given by

a a a
t

= -
-

+
d

dt
S , 9i i

i
i

min ( )

where amin is a floor value and

t =
h

c l
10i

i

i d
( )

is a decay timescale, which is controlled by the dimensionless
decay parameter ld. The source term Si is constructed so that it
increases whenever  <v 0i· (Morris & Monaghan 1997);
here we adopt a slightly modified form (Valdarnini 2011),
which reads

 a a
a a

= - -
º -

vS f S

S

max , 0

,
i i i i

i i

0 max

max

˜ ( ( · ) )( )
( )

where amax sets an upper limit and S0 is unity for g = 5 3.
In the following, unless otherwise specified, we adopt a time-
dependent AV scheme with parameters a a =l, ,min max d{ }
0.1, 1.5, 0.2{ }. This set of parameters will be denoted as AV2

(see Table 1 of Valdarnini 2011, to which we refer for more
details).
To suppress AV more efficiently away from shocks, the

time-dependent AV scheme has been further improved by
Cullen & Dehnen (2010). They introduced the time derivative
of  vi· to detect in advance when a flow is converging, as
well as higher order gradient estimators and a more
sophisticated functional form for the viscosity limiter in shear
flows. The Cullen & Dehnen (2010) scheme will be used in
some test cases and we refer to the authors’ paper for a detailed
description of its implementation in SPH.

2.3. The AC Scheme

In the entropy formulation of SPH, the rate of entropy
generation is given by (Springel & Hernquist 2002)

g
r

=
-

+g-
dA

dt
Q Q

1
, 11i

i
1 AV AC{ } ( )

where the terms in brackets denote different sources (in the
hydrodynamic test cases presented here, radiative losses are not
considered).
The term QAV refers to the numerical viscosity,

å= = P vQ m W
1

2
. 12du

dt
j

j ij ij i ijAV
AV

i( ) · ¯ ( )

The AC term QAC for the dissipation of energy takes the
form

⎜ ⎟⎛
⎝

⎞
⎠ å 

r
a= - e

du

dt

m v
u u W , 13i

j

j ij

ij
ij
C

i j ij i ij
AC

AC

[ ( )] · ¯ ( )

where vij
AC is the AC signal velocity, ºe r rij ij ij, and ai

C is the
AC parameter, which is of theorder of unity. The above
equation represents the SPH analogue of a diffusion equation
of the form (Price 2008)

⎜ ⎟⎛
⎝

⎞
⎠ du

dt
D u , 14i

i i
AC

AC 2 ( )

where DAC
i is a numerical heat-diffusion coefficient given by

aD v r
1

2
. 15i i

C
ij ij

AC AC ( )
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A crucial issue concerns reducing the AC in the absence of
contact discontinuities. In analogy with the AV scheme, one
can define an AC switch with a source term given by

e
a a=


+

-S f h
u

u
, 16C

i C i
i

i

C
i
C

2

max
∣ ∣ ( ) ( )

where the Laplacian of the thermal energy is calculated as done
by Brookshaw (1985):

å


r
 =

- e
u m

u u W

r
2 , 17i

j
j

i j

j

ij ij

ij

2 ·
( )

and for the signal velocity we use (V12)

= -v v rv r . 18ij i j ij ij
AC ∣( ) · ∣ ( )

For the other parameters, we set fC=1, a = 0C
min , a =C

max
1.5, and e = - u10 i

4 .
The time evolution of the AC parameter ai

C is similar to that
of the AV

a a a
t

= -
-

+
d

dt
S , 19i

C
i
C C

i
C

C
i

min ( )

where t = h c0.2i
C

i i sets the decaying timescale away from
jumps in thermal energy.

The AC term has been introduced with the purpose of
smoothing the thermal energy at contact discontinuities
(Price 2008), and when using the signal velocity (18) can be
interpreted as a subgrid model mimicking the effects of
diffusion due to turbulence (Wadsley et al. 2008). Finally, it
must be stressed that for the hydrodynamic test problems
considered here, with the exception of the KH tests, thermal
energy gradients are null or very small. For these tests, the
impact of AC on simulation results can then be considered
negligible.

2.4. The Integral Approximation (IA) Scheme

In SPH, the errors associated with finite sampling cannot be
simply eliminated by a more accurate interpolation scheme. A
gradient estimator, which is exact at linear order,can be
constructed by using a matrix inversion (Price 2012a), but this
comes at the cost of losing the conservation properties of SPH.

To avoid these difficulties García-Senz et al. (2012)
proposed a novel approach in which SPH first-order derivatives
are estimated through the use of integrals. This makes the
method much less noisy than in the standard formulation, with
accuracy in estimated gradients being greatly improved
(García-Senz et al. 2012; Rosswog 2015).

Moreover, a significant benefit of the method is that it retains
the Lagrangian nature of SPH, thereby ensuring exact
conservation of linear and angular momentum.

After the paper of García-Senz et al. (2012), the performance
of the scheme was investigated in detail by Rosswog (2015);
here we briefly describe the essential features of the method.

Let us define the integral

ò= ¢ - ¢ - ¢ - ¢r r r r r r rI f f W h d r, , 20
V

3( ) [ ( ) ( )]( ) (∣ ∣ ) ( )

where W is a spherically symmetric and normalized kernel. By
Taylor expanding ¢rf ( ) to first order around r

ò D D ¢a b a bI f Wd r , 213 ( )

where we have introduced the notation D = ¢ -a ar r( ) . The
gradient of the function f is then given by

 t=a ab b
-f I , 221[ ] ( )

where  t= ab{ } and

òt t= = D D ¢ab ba a bWd r . 233 ( )

SPH integrals are replaced by summations over particles, so
that, for the matrix  of particle i, one has

åt
r

= D Dab a bi
m

W r h, . 24
k

k

k

ki ki
ik i( ) ( ) ( )

In evaluating the discrete equivalent of the integral (20), a
key step is to assume that the condition

å r
- r r

m
W 0 25

k

k

k
k i ik( ) ( )

is fulfilled with a certain degree of accuracy. In such a case,the
integral (20) then becomes

å r
= Db bI i

m
f W r h, . 26

k

k

k
k

ki
ik i( ) ( ) ( )

Because of the approximation (25), for linear functions,-
gradient estimates are no longer exact. However, itcan easily
be seen (García-Senz et al. 2012) that the gradient approx-
imation (22), obtained using Equations (24) and (26), is now
antisymmetric in the pair ij. Thus, the condition (25) in the new
scheme is crucial for ensuring exact conservation properties.
How well the approximation (25) is valid depends on the

particle distribution within the kernel radius. The validity of the
new scheme has been carefully tested (García-Senz et al. 2012;
Rosswog 2015) for several hydrodynamical problems, demon-
strating significant improvements in the accuracy of the results
with respect to standard SPH.
To summarize, the IA implies the replacement of  aWi ik[ ] in

the SPH equations according to the following prescriptions:

å  Da
b

ab bW h C i W r h, 27i ik i
ki

ik i[ ( )] ( ) ( ) ( )

and

å  Da
b

ab bW h C k W r h, , 28i ik k
ki

ik k[ ( )] ( ) ( ) ( )

where  = -1. In the following, the SPH formulation in which
gradients are estimated according to the numerical scheme
described here, will be referred to as the IA.

3. KERNELS

In this section, we briefly review some properties of the most
commonly used kernels in SPH. All of these kernels are
characterized by the property of having compact support and of
being continuous up to some degree.
A class of kernels thathas often been considered in SPH is

that of the B-spline functions (Price 2012a), which are
generated via the one-dimensional (1D) Fourier transform:

⎡
⎣⎢

⎤
⎦⎥òp

=
-¥

¥
M x h

kh

kh
kx dk,

1

2

sin 2

2
cos . 29n

n

( ) ( ) ( ) ( )

The degree of smoothness increases with n and the kernel
approaches the Gaussian in the limit  ¥n . The function Mn
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is a polynomial of degree -n 1 and its derivative is
continuously differentiable -n 2 times. By requiring in
SPH the continuity of the first and second derivative, the first
useful kernel is then M4 (cubic spline):

⎧
⎨
⎪⎪

⎩
⎪⎪





s
=

- - - <

- <w q
h

q q q

q q

q

2 1 0 1,

2 1 2,

0. 2,

30
D

1

4
3 3

1

4
3( )

( ) ( )

( ) ( )

where the kernel is non-zero for   z =q0 2 and ζ is the
truncation radius in units of hi. The normalization constant
takes the values s p p= 10 7 , 1 for D=2 and D=3,
respectively.

The B-splines in theorderinwhich have been considered
are M5 (z = 2.5) and M6 (z = 3); for a more detailed
description of these kernels, we refer the reader to Price
(2012a).

The stability properties of the Mn kernel family have been
investigated by a number of authors (Morris 1996; Børve
et al. 2004; Read et al. 2010; Dehnen & Aly 2012, V12). A
crucial result, which emerges from these analyses, is that all of
the B-splines suffer from pairing instability. The number of
neighboring particles for which the instability develops
depends on the kernel degree and in 3D lies in the range
between N 50n for M4 up to N 200n when the M6 kernel is
used (Dehnen & Aly 2012).

It has been suggested that particle clumping can be avoided
by modifying the kernel shape in order to have a non-zero
gradient at the origin. Examples of this family of kernels are the
core-triangle (Read et al. 2010) and the linear quartic (LIQ;
Valcke et al. 2010). However, such adjustments reflect
negatively on the density estimation ability of the kernels. By
introducing a non-zero central derivative, the kernel profile
becomes steeper and this in turn implies an overestimate of
density when compared with the corresponding B-spline (V12,
Rosswog 2015).

These attempts to fix the pairing instability by introducing
ad hoc modifications in the kernel shape have recently been
superseeded by a new class of kernels. It has been shown
(Dehnen & Aly 2012) that a necessary condition for avoiding
pairing instability is that of having kernels with non-negative
Fourier transforms. A class of kernels thatsatisfies this
property and has compact support are the Wendland (1995)
functions. An example in 3D of these functions is the
Wendland C4:

⎜ ⎟⎛
⎝

⎞
⎠p

= - + +w q q q q
495

32
1 1 6

35

3
, 316 2( ) ( ) ( )

where =w q 0( ) if >q 1. Hereafter,we will refer to this kernel
as W4. Other classes of Wendland kernels are C2 (W2) and C6

(W6). We refer to Table 1 of Dehnen & Aly (2012) for the
functional forms and normalization of these kernels. Finally,
García-Senz et al. (2014) proposed using the sinc functions as
another class of kernels which can be used to avoid pairing
instability.

The accuracy of density estimation in SPH for different
kernel families has been assessed by many authors (Dehnen &
Aly 2012; V12; Rosswog 2015; Zhu et al. 2015). Here we
measure the mean SPH density of =N 1283 particles using a
glass-like particle distribution inside a cube of sidelength unity
and total mass one. Figure 1 shows the mean SPH density of

the particles as a function of the neighbor number Nn for
different B-splines and Wendland kernels. The value of Nn

ranges in powers of two between Nn=32 and Nn=512, with
three distinct values of Nn being considered for each kernel
according to its order (see Figure 1). To avoid overcrowding in
the plot, standard deviation σʼs are not shown, but the general
tendency is of σ decreasing as Nn increases with s - 10 3 for
the largest value of Nn.
A number of conclusions can be drawn by examining, for

different kernels, the accuracy behavior depicted in Figure 1.
The best performances are given by M5 and M6, which for any
given number of neighbors Nn outperform all of the other
kernels. The cubic spline (M4) and the Wendland C2 (W2)
exhibit the worst performances, regardless of the value of Nn.
The Wendland kernels yield acceptable density estimates

only when large values of Nn are used ( N 250n ), withM5 and
M6 having better performances at any given Nn and stable
estimates already for Nn=128. The differences between the
two families reduce progressively as Nn is increased, with the
results becoming comparable only when Nn=512.
This behavior reflects the difference in shape between the

two families, with the Wendland kernels being more centrally
peaked than the B-splines and systematically overestimating
the density. This,in turn, is a direct consequence of the way in
which the Wendland kernels have been constructed in order to
avoid pairing instability and of their spectral properties.
It must be stressed that in making comparisons between the

error behavior of kernels of different families, it is only
meaningful to compare kernels with the same polynomial order
(Aguilar et al. 2011). In 3D, the Wendland equivalent of theM6

kernel is therefore W2.
This means that, in relative terms, the performances of the

Wendland kernels are not very good unless one is willing to
use a very large number of neighbors in the SPH simulations

Figure 1. Average SPH density calculated for a glass-like configuration of
1283 particles in a periodic box of unit length. The theoretical expected value is
r = 1 and the quantity plotted is r - -1 10 3( ) . Different symbols refer to
different kernels; for the sake of clarity, error bars are not shown. The symbol
W c4 refers the Wendland kernel W4, but with the self-correction term of
Dehnen & Aly (2012, Equation (18)) included.
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made with them. In this respect, it is now common practice to
use the Wendland kernels W4 (or even W6) setting N 200n .
However, even small errors in the densities can have a
significant impact on estimates of other hydrodynamic
variables (see the results for the Sod shock tube in V12).
Thus, in the case of using Wendland kernels, a conservative
lower limit on the neighbor number to be used in 3D SPH runs
should be N 400n .

To improve the performances of Wendland kernels, Dehnen
& Aly (2012, seetheir Equation (18)) proposed thesubtraction
of a fraction of the particleiself-contributionfrom the
SPH density estimate (1). The correction term depends on the
kernel order and neighbor number, with an impact thatde-
creases as one of the two increases. For the Wendland kernel
W4, in Figure 1, we show density estimated using the self-
correction term (W c4 ), which now brings the relative density
error down to ~ -10 4.

However, for the hydrodynamic tests presented here, the
numerical set-ups consist of particle positions arranged in
lattice- or glass-like configurations with densities of theorder
ofunity. This suggests that one can use the results of Figure 1
to assess density errors, which are already very small (~ -10 3)
without the use of such a correction term. Therefore, for the
considered runs, we expect a negligible impact of the self-
correction term on SPH densities, and it will not be
consideredin what follows.

These results hold for a glass-like configuration, butit is
difficult to assess the error behavior for a realistic
SPH distribution of particles. Zhu et al. (2015) put the
expected convergence rate between that found for a random
distribution set (s µ -Nn

0.5) and the one measured for a highly
ordered distribution (s µ -Nn

1), such as a glass-like configura-
tion. These findings strengthen the previous conclusions,
suggesting that when using Wendland kernels in SPH, the
number of neighbors should be kept as high as possible.

4. HYDRODYNAMIC TESTS

In the following, we analyze results from some test problems
aimed at assessing code performance of the new IA scheme. As
already outlined in the Introduction, the problems considered
here have been chosen with the specific aim of investigating
code behavior when subsonic flows are present in the
hydrodynamic tests.

This is motivated by the serious shortcomings thataffect
standard SPH in these regimes. We first discuss the Gresho–
Chan test, which, in this respect, presents severe challenges to
the SPH scheme, and then the others.

4.1. The Gresho–Chan Vortex Problem

The Gresho–Chan (Gresho & Chan 1990) vortex consists of
a fluid of uniform density in differential rotation, with
centrifugal forces balancing pressure gradients. The system is
stationary and any change in the azimuthal velocity profile that
arises during the integration is then due to numerical artifacts.

Because of sampling effects, errors in force accuracy lead to
noise in the velocity field, thus generating numerical viscosity
and hence particle disorder due to the spurious transport of
angular momentum. It is then particularly problematic for
standard SPH to successfully model this problem leaving
unaltered the velocity profile during the simulation, and in the
literature (Springel 2010; Dehnen & Aly 2012; Read &

Hayfield 2012; Kawata et al. 2013; Hu et al. 2014; Hop-
kins 2015; Rosswog 2015; Zhu et al. 2015) it has been widely
used to validate code performances.
We next describe our initial condition’s setup. We take a gas

with a uniform density ofr = 1 within the periodic domain
 <x y0 , 1, with zero radial velocity, azimuthal velocity

profile

⎧
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where = +r x y2 2 , g= -P M0
2 1( ) , g = 5 3 and M is the

Mach number. Here we have adopted the generalized
expression for the background pressure of Miczek et al.
(2015), so that we can consider subsonic shear flows with low
Mach numbers (Hu et al. 2014). The standard Gresho case is
recovered for = M 3 25 0.34, giving =P 50 .
Particle positions are initialized using an ´ ´N N 16 lattice

of particles (Zhu et al. 2015), N being the effective 1D
resolution. For the box thickness, we set =L N16z and we
always consider >N 32. Here we use a hexagonal-close-
packed (HCP) configuration for the particle coordinates. The
particle velocities and pressure are set according to
Equations (32) and (33). All of the simulations are run up to
a final time t M3f , using a fixed timestep
D =t t 800 64f ( · ), so as to ensure the same integration
accuracy in runs with different Mach numbers.
We quantify the convergence rate for different runs by using

the L1 error norm for the velocity (Springel 2010)

å= -f f fL v
N

v i v r1
1

, 34
b i

N

i

b

( ) ∣ ( ) ( )∣ ( )

where the summations is over Nb bins, we set a binsize of
D = 0.01 in the range of  R0 0.5 (Hu et al. 2014), fv i( ) is
the average azimuthal velocity of the particles,which lie in the
ith bin interval, and fv ri( ) is the analytic solution at the bin
radial coordinate.
Figure 2 shows the azimuthal velocity profiles for M=0.34

at t=1; the one-dimensional resolution is N=128 and each
panel refers to a different kernel. Within each panel, lines with
different color codes are for different neighbor numbers,
andthe standard run always refers to the lowest neighbor
number indicated in the panel. In this case, for the B-splines,
values of Nn are considered, which are below the pairing
instability threshold.
It is clear from all of the histograms that the IA scheme

outperforms the standard one for all of the kernels, with the
latter scheme being much more noisy. There is a tendency for
the standard scheme to improve as higher order kernels are
considered, but the error in the velocity profile is always
significant. These results are in agreement with previous
findings (Dehnen & Aly 2012; Read & Hayfield 2012; Hu
et al. 2014; Rosswog 2015) and clearly demonstrate how, for
the vortex test, inaccuracies in gradient estimates, i.e., the E0
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error, are the leading error sources. These errors are
significantly reduced when using the IA scheme, showing
how good that method is.

To quantify the performance of the IA approach, for the
same test case, we showatt=1 the velocity errorL1 as a
function of the 1D resolutionN in Figure 3. This ranges
between N=50 up to a maximum value of N=500. For any
given value of N,we considered different combinations of
kernel and neighbor number Nn; these are reported in the figure.
For the same combination of resolution, kernel shape, and
neighbor number, we performed a simulation according to the
IA formulation and a corresponding one using standard SPH.

In the case of the B-splines, we employed the highest
neighbor number that it is possible to use without having the
pairing instability. For the Gresho–Chan vortex test,the
convergence rate has already been estimated for a variety of
different SPH implementations, so that Figure 3 can be
compared with the corresponding rates already obtained by
various authors (Dehnen & Aly 2012; Read & Hayfield 2012;
Hu et al. 2014; Rosswog 2015; Zhu et al. 2015).

From Figure 3,it can be seen that there is a resolution
dependency of the L1 error on N. In the standard case, the
convergence behavior is in line with those found previously,
see for example Figure 10 of Dehnen & Aly (2012) or Figure 5
of Zhu et al. (2015). The dependency of M5 on resolution
parallels that of the W2 kernel and the same holds for the
kernels M W6 4, this is very similar to what is seen in Figure
10 of Dehnen & Aly (2012, we use the same neighbor number).
However,for the L1 norm, we obtained smaller errors here. For
example, in the M W6 4 case, we found that for N=400

´ -L1 7 10 3, whereas for the same test run their Figure 10
shows L1 0.015. The same is true for the W6 runs, for which
here = ´ -L N1 400 3 10 3( ) is about a factor three smaller
than in their corresponding run.

When passing from the standard scheme to the IA scheme,
there is a significant reduction in the amplitude of the L1
norms. The decrease in L1 is by a factor of between ∼5 and
∼10, with some dependency on resolution and adopted kernels.
For the =M N5 60n( ) kernel, the ratio between the norms
ranges from L IA L1 1 std 1 8( ) ( ) at N=50 down to~1 30
when Nn=500.

We now analyze the convergence rate of L1 in the IA
formulation. This depends on the adopted kernel, and for M5
we found µ -L N1 1.2. This is close to what was given by
Springel (2010) when using the moving-mesh code
Arepo ( µ -L N1 1.4).

To estimate the rate for the other kernels, we adopt a
conservative view and only include in the fit those points
with N 80. We then obtain µ -L N1 1, which is better
than that reported by Hu et al. (2014, µ -L N1 0.7) for their
pressure-entropy SPH formulation. The rate is also in
agreement with that shown by Rosswog (2015, Figure 10,
case F3: µ -L N1 1), who implemented an IA scheme using a
W6 kernel. Note, however, that the value of L1 at N=300
found there is a factor of approximately threehigher than that
found here ( ~ -L1 10 3).
Higher convergence rates have been obtained by Read &

Hayfield (2012, µ -L N1 1.4), who employed a modified
version of SPH with high-order dissipation switches, and by
Zhu et al. (2015). The latter investigated the convergence
behavior of standard SPH,showing that consistency in
numerical convergence is achieved when the conditions

 ¥   ¥N h N0 n are satisfied. In their varying Nn case
( =N N120 32n

1.2· ( ) ), for the Gresho–Chan vortex test, the

Figure 2. Azimuthal velocity profile of the Gresho–Chan vortex test for M=0.34 at t=1, with 1D resolution N=128. Each panel is for a different kernel and, in
each of them, lines of different color are for different neighbor number. For a given kernel in the standard run, the lowest neighbor number is used.

Figure 3. Convergence rate of the L1 velocity error for the Gresho–Chan
vortex test. The L1 error is shown vs. the 1D particle number for M=0.34 at
t=1. Dashed lines are for the standard formulation and solid lines refer to the
IA scheme. The symbols indicate different combinations of kernel and
neighbor number.
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authors report µ -L N1 1.2, a much faster rate than that obtained
by keeping Nn constant. The value of L1 in the N=500 case is
of the same order ( ´ -L1 3 10 3) as that obtained here for
the W6 standard run with the same resolution.

Finally, with the exception of the lowest order kernels (M5
and W2), a comparison of the L1 norms with those produced
using the moving-mesh code Arepo shows that the IA
formulation gives results thatare comparable or better than
those obtained with the mesh code (Springel 2010, Figure 29),
with L1 ranging here from ´ -L1 8 10 3 (N= 80) down to

-L1 10 3 (N= 500).
To further investigate the performance of the IA scheme, we

ran a suite of vortex tests with progressively lower Mach
numbers. These tests are particularly challenging since, at
constant velocity, the lower is the Mach number andthe higher
is the sound speed. This in turn implies an increase in the
viscous force. Errors in the momentum equation then become
progressively more important.

To aid comparison with the previous works, as in Hu et al.
(2014) we considered the following Mach numbers

=M 0.02, 0.05, 0.1,and M=0.34. We ran the simulations
using N=128 as 1D resolution. This is a factor of two lower
than that used by Hu et al. (2014) in their tests;however, the
results are not significantly affected by this choice. For the M6
kernel (Nn=180), we show the azimuthal velocity profiles of
the four test cases in Figure 4, so that the figure can be
compared with the corresponding histograms of Figure 2 of Hu
et al. (2014).

The profiles of the standard runs largely reproduce those of
Hu et al. (2014); however, a striking feature of the IA scheme,
which emerges from the histograms of Figure 4, is the close
proximity of the azimuthal velocity profiles to the analytical
solution. This occurs even when very low Mach numbers are
considered, as can be seen from theM=0.02 case. This shows

the effectiveness of the IA method for eliminating sampling
errors in SPH when subsonic flows are present.
Moreover, these findings are in agreement with previous

results (Read & Hayfield 2012; Hu et al. 2014) and
demonstrate that in SPH simulations of the Gresho–Chan test,
errors in force accuracy dominate over viscous effects.
For the considered tests, we have shown until now the mean

binned velocities. In order to assess the amount of noise present
in the various runs, it is useful to directly plot the azimuthal
particle velocities. To this end, we ran two tests with 1D
resolution N=128, Mach numbers M=0.34, and M=0.06,
respectively. In the latter case, we set a background pressure of

=P 500 . For each run performed using the time-dependent AV
scheme with settings AV2 (see Section 2.2 ), we also consider a
parent simulation in which the AV switch of Cullen & Dehnen
(2010)has been implemented.
The results are shown in Figure 5 at t=3, where for the two

test cases we plot the azimuthal velocities for a subset of all
particles. The velocity distributions can be compared directly
with those of the corresponding runs in Figures 4 and 5 of
Hopkins (2015). An important feature that emerges from the
plots of Figure 5 is that both AV methods show velocity
distributions that are evenly scattered around the analytic
solution, with the AV switch of Cullen & Dehnen (2010)
exhibiting a much smaller amount of noise. It is worth noting
how the IA method, even for very low Mach numbers, can
accurately follow the analytic solution also at the peak vortex
velocity. This behavior is much better than that seen for the
same test in the top panel of Figure 5 of Hopkins (2015).
Finally, it must be pointed out that the amount of thermal

diffusion due to the AC term is negligiblein these simulations
and we do not include such a term in the SPH equations. This
occurs because of the high sound speeds in the low Mach
number regime, so that the time evolution (19) of the ai

C

parameter is driven by the decaying rate t1 i
C, which

dominates over the source term SC
i . To better quantify this

issue, we use Equation (14) to estimate at time t the change in
thermal energy due to the AC term: D u t D uAC

AC 2( ).
The Laplacian of u has a maximum at r=0.2, where the

azimuthal velocity reaches its peak value. The diffusion
coefficient is then given by a a D r r h5 2 5 2i i

C
ij ij i

C
i

AC 2 ,
so that

a tD  = u h u t S h u t
5

2

5

2
, 35i

C
i i i

C
i
C

i iAC
2 2 2 2( ) ( )

where we have approximated ai
C with the equilibrium

solution a t  S h u c ueq 0.2 .i
C

i
C

i
C

i i i i
2 2( ) ( )

For M=0.34 at r=0.2 ~  ~u u15 2, 300 42 , ~c 3i
and hi can be easily computed because r = 1 so that

D ´u h t8.6 10 . 36iAC
3 4 ( )

For N 50 and t 3, this term is always much smaller than
u, regardless of the chosen kernel.

4.2. The KH Instability

The KH instability has been investigated by many authors
since it is a classic test in which SPH fails to properly model
the development of the instability (Price 2008; Cha et al. 2010;
Heß & Springel 2010; Junk et al. 2010; Read et al. 2010;
Valcke et al. 2010; Murante et al. 2011; McNally et al. 2012;
Valdarnini 2012; Kawata et al. 2013; Hu et al. 2014;
Hopkins 2015).

Figure 4. Velocity profiles of the Gresho–Chan vortex test for
=M 0.34, 0.1, 0.02, 0.05 (clockwise from top-left) at the final times
t M3f . The tests have been performed using N=128 and the M6 kernel

with Nn=180 neighbors. Solid lines are for the IA formulation, dotted–dashed
lines refer to the standard scheme. The dashed line in color is the analytical
solution. The figure can be compared with Figure 2 of Hu et al. (2014).
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The test consists of two fluid layers of different densities
sliding past each other with opposite shearing velocities, and a
small velocity perturbation is imposed in the direction
perpendicular to the contact surface. A fluid instability
develops, which is initially small and then becomes progres-
sively larger until nonlinearity is reached with the appearence
of KH rolls. For a sinusoidal perturbation of wavelength λ, a
linear timescale can be defined as

t
l r r
r r

=
+

v
, 37KH

1 2

1 2
1 2

( )
( )

( )

where r1 and r2 are the two fluid densities with a density ratio
ofc r r= 1 2 and = -v v v1 2 is the relative shear velocity.

To perform the test, the following conditions

⎧⎨⎩


r
r
r

=
-
- >

T v
T v y

T v y
, ,

, , 0.5 0.25

, , 0.5 0.25
38x

1 1 1

2 2 2

∣ ∣
∣ ∣

( )

are applied for a fluid with adiabatic index g = 5 3 in a two-
dimensional periodic domain with cartesian coordinates
Îx 0, 1{ }, Îy 0, 1{ }. We set here r = 12 , and c = 2 for

the density contrast.

The two layers are in pressure equilibrium with
= =P P 5 21 2 , so that the sound velocities in the two layers

are g r= =c P 2.042 2 2 and c= =c c 1.441 2 , respec-
tively. The Mach number of the high-density layer is
 M v c v0.71 1 1 and the KH timescale is t  v0.177KH 1.

We ran KH simulations with three different Mach numbers:
=M 0.05, 0.1 and M=0.35. For the latter value, the initial

condition setup was similar to that of Hopkins (2015,
Section 4.4.1).
The KH instability is triggered by adding in the proximity of

the layer boundaries a small single-mode velocity perturbation
along the y-direction

d p l=v v xsin 2 , 39y y
0 ( ) ( )( )

where d = ´ -v v2 10y
0 2

1
( ) , l = 1 6, and vy=0 if

s- >y 0.025∣ ∣ , where σ takes the values 0.25 and 0.75,
respectively. Note that for the amplitude of the initial velocity
perturbation dvy

0( ) we set here, unlike in previous runs (V12), a
relative constant amplitude with respect to the streaming
velocity. This was done in order to consistently compare,
between runs with different Mach numbers, the impact of
zeroth-order errors on µv My .
We performed the initial condition setup by arranging
=N 5122 2 equal mass particles inside the simulation box,

setting the particle coordinates according to an HCP config-
uration. The lattice spacing was smoothly adjusted at the fluid
interfaces so as to avoid density discontinuities; the details of
the whole procedure are given in V12. For each test case, the
IA simulations were then performed using the M5, W2,and the
W4 kernels with neighbor numbers Nn=50, Nn=72, and
Nn=162, respectively. For the M5 runs, we also considered
standard simulations. Finally, all of the simulations were
performed with the AC term of Section 2.3 switched on.
For the specified range of Mach numbers, we first show, in

Figure 6,density plots of the KH simulations at t=t KH. We
show maps extracted from the M5 runs, and contrast the IA
scheme against the standard SPH scheme. For M=0.35, both
of the methods are able to produce KH rolls. At lower Mach
numbers (M=0.1), the standard method completely fails the
KH test, whereas the IA scheme shows a degraded capability to
resolve KH rolls. At M=0.05, the rolls are absent and the
differences between the two schemes are no longer present.
The relative performances of the two methods can be

quantitatively assessed by measuring the E0 error (Read et al.
2010; Valcke et al. 2010, V12) for the various runs. Here we
first show the growth rate of the KH instability (Heß &
Springel 2010; Junk et al. 2010, V12), which allows one to
recognizethe differences between the KH results produced by
the two schemesin a more visual way. The growth rate is
measured by Fourier transforming, at different times, the
l = 1 6 growing mode of the vy velocity perturbation (Junk
et al. 2010, V12).
The growth rates are shown in Figure 7, and their relative

differences confirm the visual impressions derived from the
maps of Figure 6. For M=0.35, there are no significant
differences between the two methods and both are able to
follow the growth of the KH instability (Figure 6, right panel),
the rates of the different runs being in accordancewith the
analytic expectation. The results can also be compared with the
corresponding rates in Figure 18 of Hopkins (2015), taking care
to address the different timescales due to the different number

Figure 5. Plots at t=3 of the azimuthal particle velocities for two Gresho–
Chan vortex tests, both performed using a one-dimensional resolution of
N=128 and the M6 kernel with Nn=180 neighbors. The bottom panel is for
M=0.34 and the top panel for M=0.06 with =P 500 . The two plots can be
compared with the corresponding ones in Figures 4 and 5 of Hopkins (2015).
For the sake of clarity, we show velocities of a subset of randomly selected
particles. Open triangles are for the time-dependent AV scheme with settings
AV2 (See Section 2.2), open squares refer to the AV switch of Cullen &
Dehnen (2010).
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of modes used to seed the perturbation. Note that, unlike in
Hopkins (2015), the standard version here correctly follows the
development of the KH instability. We interpret this difference
as being due to the small neighbor number (∼32 in 3D) adopted
in his standard (PSPH) run.

As lower Mach numbers are considered, from the other
panels of Figure 7one can see a growing difficulty of the IA
scheme in following the KH instability, regardless of the kernel
employed in the simulation. This happens because, by reducing
the Mach number, the shear velocity is also reduced and in
turn, owing to the chosen settings, the initial velocity amplitude
is reduced as well. At a fixed resolution, the impact of gradient
errors, and the subsequent particle disorder, on the growth of
the KH instability is then higher as the Mach number decreases.

The E0 error of particle i is defined by (Read et al. 2010)

⎡
⎣
⎢⎢

⎤
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⎥⎥å 
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r
r

r
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= +E

m
h W , 40i

j

j
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i

j

j

i
i i ij

0 ¯ ( )

and we show in Figure 8 the mean binned distribution of the
particle errors versus y. The plots refer to the runs of Figure 6.
A key feature is the magnitude of the errors, which in proximity
of the interfaces for the IA runs are smallerthan the standard
ones by a factor of approximately five. This is in line with what
isexpected and isin accordance with what is seen in Figure 7,
with the growth rates of the IA runs exhibiting a better behavior
at low M. However, one can see from Figure 7 that, for
M=0.05, the KH instability is not correctly reproduced even
in the IA scheme. In such a case, gradient errors can be reduced
by increasing the simulation resolution.

We do not undertake here a resolution study aimed at
assessing the convergence rate to the KH solution in the very
low ( M 0.1) subsonic regime. We use instead a simple
argument to provide a rough estimate of the minimum number
of particles N2,which would be necessary to simulate the
M=0.05 KH test case.
An L1 error norm for the KH problem has been introduced

by Robertson et al. (2010) and, in analogy with their
Equation (11), we conjecture here for L1 a generic dependence
of the form

µ +a g-L N t1 1 , 41N2 ( ) ( )( )

on the particle number =N Np
2, and the simulation time t. We

have dropped the dependency on the bulk flow velocity,
present in their Equation (11), and for the power-law
dependencieswe generically assume the exponents α

and g N( ).
The simulations of Robertson et al. (2010) were performed

using the Eulerian mesh code ART (Kravtsov et al. 1997); note
however that their initial condition setup corresponds to the
M=0.35 KH test case here.
The ratio between the error norms of two different KH runs

is then

= + +a g gL L N N t t1 1 , 422 1 1 2
2

2 12 1( ) ( ) ( ) ( )

where we set t= t M0.124KH in order to consistently
compare the norms and g gº Ni i( ). We now assume as
areference run the = =M M0.35 1 test case, for
whichN=512 from Figure 7 can be considered an
adequate resolution up to = ~t t 0.351 . Therefore, for

Figure 6. Density maps at t=t KH for the 2D KH instability tests described in Section 4.2. The tests have been performed with a density contrast of c = 2 between
the two contact layers. From left to right, the different panels are for different Mach numbers: = =M M0.05, 0.1,and M=0.35. Each test case was run separately
with both the standard (bottom) and the IA (top) scheme. All of the maps have been extracted from simulations performed using the M5 kernel.
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= =M M0.05 72 1 ,the norm ratio is

= a g gL L N512 3.45 1.35 . 432 1 2
2 2 1( ) ( ) ( ) ( )

For the dependency on simulation resolution,Robertson
et al. (2010) report a = 1 for their Eulerian code. Here the
numerical convergence is likely to be shallower, with a < 1.
However, the results of Section. 4.1 indicate, for the vortex test,
a convergence rate of the IA scheme very close to that seen
using moving-mesh schemes (Springel 2010). We therefore
assume here a = 1 as a reasonable slope on resolution
convergence, thus putting a conservative lower limit on N2.

In Robertson et al. (2010), the time evolution of the error
norm has a weak dependency on numerical resolution:
g N N2 64 0.5( ) ( ) . This slope clearly depends on the adopted
numerical scheme and we simplify this dependency by
assuming g = 1i . The impact of this assumption on estimating

N2 is, however,relatively unimportant, withthe ratio between
the two time factors being in any case of theorder of unity and
closer to one as g < 1i . In fact, we further simplify the ratio
(43) by just removing the time factors.
Finally, an accuracy criterion for the simulations is set by

putting an upper limit on the error norm L L1 err 1( ), with
Lerr 1( ) being a given threshold. We now assume for Lerr 1( ) a

generic dependence on the initial velocity amplitude dvy
0( ) of the

form dµ bL verr 1 y
0( ) ( )( ) , with b 1. This lower limit on β is

justified by the requirement that lower values of dvy
0( ) must

correspond to lower values of Lerr 1( ). Then, for the ratio (43),
we have
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Setting b = 1,we thus obtain for N2 the lower limit
N 15002 . Note,however, that to achieve numerical conv-

ergence in a consistent way in SPH the number of neighbors Nn

must also increase when  ¥N and h 0 (Zhu et al. 2015).
For their Gresho–Chan vortex test, Zhu et al. (2015) adopt,
when Nn is allowed to vary, µN Nn p

1.2. In such a case, by
referring to the =M W0.35 4 run with Nn=162 neighbors,
we conclude that  =N 7 162 1134n · neighbors and

´N 2 10p
6 particles are the least necessary in order to

simulate the M=0.05 KH test case using the W4 Wendland
kernel.
Finally, it is worth noting that the difficulties of SPH to

follow the formation of KH instabilities depend not only on
velocity noise, but also on the LMI (Agertz et al. 2007;
Price 2008; Read et al. 2010; Valcke et al. 2010). This LMI
occurs because, in the presence of a density step, the entropy
conservation of SPH causes a pressure blip at the boundary.
These pressure discontinuities in turn lead to the presence of
shock waves, which then inhibit the growth of KH instabilities
(Valcke et al. 2010).
Different approaches have been taken to eliminate or reduce

the LMI: by introducing initial conditions with a smoothing of
the density step (Valcke et al. 2010), and/or adding an AC term
to give smooth entropies (Price 2008), or by reformulating the
SPH density estimate (Ritchie & Thomas 2001).

Figure 7. Growth rate of the l = 1 6 velocity amplitude as measured by making a Fourier transform of vy. The KH tests are for a density contrast c = 2 and three
different values of Mach number have been considered ( =M 0.05, 0.1, 0.35). For each KH test case, we ran IA simulations using the M5, W2,and the W4 kernels.
Additionally, for the M5 runs, we also performed a corresponding standard simulation. The solid line is the linear theory growth rate expectationµ tet KH, normalized
to the numerical amplitude at t=0.

Figure 8. Averaged binned distribution of the particle errors Ei
0∣ ∣ vs. y for the

KH runs of Figure 6. Different lines are for different Mach numbers. Thick red
(thin blue) lines refer to IA (standard) runs.
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Based on a suite of numerical tests, Valcke et al. (2010)
argued that for low Mach numbers ( M 0.2) the growth of
KH instabilities is still suppressed by the LMI. Although the
magnitude of the shocks induced by LMI has been greatly
reduced because of the initial density smoothing, Valcke et al.
(2010) found that for lowM the timescales tKH are much higher
than those set by the numerical shocks.

It is not trivial to remove from the simulations these residual
shocks. For instance, they can be eliminated by applying a
relaxing scheme to the initial conditions, but the growing KH
instabilities are then strongly suppressed by the induced
particle disorder (Valcke et al. 2010). A study on these effects
is beyond the scope of this paper.

As a final point, it must be stressed that the results of the KH
runs presented here have been obtained by using the AV
scheme of Section 2.2 with settings AV2. By replacing this
scheme with the AV switch of Cullen & Dehnen (2010), we
expect a significant reduction in the amount of AV present in
the simulations (see theresults of the previous and thenext
section). This, in turn, will result in a more inviscid behavior
and a better capacity of the code to follow the development of
the KH instabilities.

4.3. Subsonic Turbulence

Studies of driven isothermal subsonic turbulence (Bauer &
Springel 2012) have shown substantial differences in the
properties of the velocity power spectra extracted from mesh-
based simulations, when compared with those produced from
the same test runs using the standard formulation of SPH.

Although the use in standard SPH of a time-dependent AV
scheme alleviates the problem (Price 2012b), the discrepancies
are still present and their origin has been identified as being due
to large errors in the SPH gradient estimates (Bauer &
Springel 2012). These errors in turn imply the presence of
subsonic velocity noise, which is higher as lower Mach
numbers are considered. As a result, SPH simulations exhibit
spectra with a much smaller inertial range (i.e., Kolgomorov-
like) than the ones measured using mesh codes.

A faithful numerical modeling of subsonic turbulence is
particularly relevant in various astrophysical contexts (star
formation, intracluster medium, intergalactic medium), and it is
therefore important to investigate the capability of the IA
scheme to properly simulate this test problem.

To this end we set an HCP lattice of N3 particles with
initially zero velocities inside a periodic box of sidelength
L=1 and density r = 1. The gas was isothermal with g = 1
and cs=1. Turbulence in the gas was driven by adding to the
momentum Equation (3) of the particles an external stochastic
driving force astir. This was constructed in k-space according to
a procedure already used by previous authors (Price &
Federrath 2010; Bauer & Springel 2012; Price 2012b;
Hopkins 2013, 2015; Zhu et al. 2015)

The power spectrum of a k stir( ) varies as µ -P k k 5 3( ) and
the Fourier modes are non-zero in the range between

p=k L2min and =k k2max min . The phases of the stirring
field are drawn from an Ornstein-Uhlenbeck (UO) process for
which the random sequence at the step n is given by (Eswaran
& Pope 1988; Bartosch 2001)

s= + -+x fx f z1 , 44n n n1
2 ( )

where = -f dt texp s( ) is a decaying factor, zn is a Gaussian
random variable with unit variance and σ is the variance of the

UO process. The constructed sequence then has á ñ =x 0n

and sá ñ =+x x fn n1
2 .

In order to obtain a pure solenoidal driving, we apply
aHelmholtz decomposition in k space:

= - b ka k t b k t k k, , , 45i i i
2( ) ( ) ( · ) ( )

where the vector b k( ) is a complex vector-valued stochastic
process characterized at any given k by 6 UO random
sequences (44) and a is the solenoidal stirring field ( =a k 0· ).
The particle accelerations are calculated at each timestep by

updating the stochastic field according to the described
procedure, the summation in k space being performed by
summing directly at the particle positions. For the driving
parameters, we use the values of Bauer & Springel (2012,
Table 1). The power spectrum is normalized so that the rms
Mach number lies in the range of ~ -0.25 0.3 after the
simulations have reached the steady-state regime ( t 5).
We compared results extracted from subsonic simulations

performed with the standard and IA implementations of SPH.
We ran simulations with three different resolutions:

=N 64 , 1283 3 3,and =N 2563. For a given resolution, we
used in both of the schemes the same initial condition setup and
stirring force field. In all of the simulations, we ran up to t=50
and adopted the M5 kernel with Nn=50 neighbors. We
perform standard and IA runs by using the time-dependent AV
scheme of Section 2.2 with settings AV2. Additionally, we also
run a set of IA simulations by using the AV method of Cullen
& Dehnen (2010). In the following, we will refer to these IA
runs with the term IA-CD, while we will use the term IA-AV
when referring to the IA runs with AV settings AV2.
As in other works (Bauer & Springel 2012; Hopkins 2015),

we measure the spectral properties of the turbulent velocity
field to assess the performances of the two codes. The velocity
power spectrum is defined as

p=E k k k2 , 462( ) ( ) ( )

where º kk ∣ ∣, and  k( ) is the ensemble average velocity
power spectrum. This is given by

dá ¢ ñ = ¢ -u k u k k k k , 47D˜ ( ) ˜( ) ( ) ( ) ( )†

where u k˜( ) is the Fourier transform of the velocity field u x( ):

òp
= p-u k u x e d x

1

2
. 48k xı

3
2 3˜( )

( )
( ) ( )·

In the case of incompressible turbulence, the energy
spectrum follows the Kolgomorov scaling µ -E k k 5 3( ) . To
measure the energy spectrum, we first set inside the simulation
box a cube with =N N2g

3( ) grid points. From the particle
velocities u xi( ),we then estimate the grid velocity field u xg( )
at the grid points xg, using a triangular-shaped cloud function
interpolation scheme.
We then compute the discrete Fourier transforms of u xg( )

and the discrete power spectrum  = á ñu kkd d 2( ) ∣ ˜ ( )∣ is
evaluated by binning the quantity u kd 2∣ ˜ ( )∣ in spherical shells
of radius k and averaging in the bins. The energy density of
Equation (46) is then given, aside from a normalization factor,
by p=E k k k2 d2( ) ( ). Finally, for a given simulation, the
spectrum E(k ) is estimated by doing a time-average between
t=10 and t=25, with the spectrum being sampled each
D =t 0.08 time interval.

We show in Figure 9 the spectra E(k ) as measured from our
simulations. The spectral behavior of the standard runs is in
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broad agreement with previous findings (Bauer &
Springel 2012; Price 2012b; Hopkins 2013, 2015; Zhu
et al. 2015). The spectra are characterized by a very narrow
inertial range at low wavenumbers, with a significant decline at
higher k. The spectra reach a minimum at a wavenumber kturn,
which increases as higher resolutions are considered, followed
by a steep increase in the power at smaller scales k kturn.

The precise value of ~k 40 200turn – depends on N, but it is
still much smaller than the noise scale~ h2 max set by the kernel.
For incompressible turbulence,one can easily approximate hmax

with the value of h given by the average density, thus obtaining
p pz~h N L2 2 ( ) p ~N4 3 220n

1 3( ) N k N64 .turn( ) ( )
According to Price (2012b), the very limited capability of

standard SPH to develop a Kolgomorov-like spectrum is due to
the excess of numerical viscosity present in the scheme, which
can be reduced by adopting a time-dependent AV switch.3 In
contrast, Bauer & Springel (2012, Figure 6) showed that the
rise in power at small scales is mainly a result of the subsonic
velocity noise due to kernel gradient errors present in standard
SPH. For the same set of initial conditions and forcing
sequence, their spectra extracted from runs performed using the
moving-mesh code Arepo exhibit an inertial range, which
extends over more than a decade in k. Similar results were later
obtained by Hopkins (2015, theirFigure 27), by usinga
completely different code (Gizmo)for the same test problem.

A similar behavior is found here for the spectra of the IA-CD
runs depicted in Figure 9, which show a dramatic improvement
over the corresponding standard SPH runs. The spectra now
exhibit a much larger inertial range, which increases with
resolution and for the N=256 simulation it extends down

to ~k 200, close to the minimum scale p~k N2 5max
estimated by Hopkins (2015). The spectra are similar to the
corresponding ones shown in Figure 27 of Hopkins (2015), but
with fluctuations thatstay within a factor of approximatelytwo
for k kmax .
The velocity power spectra of the IA-AV runs exhibit

significant differences with respect tothose of the corresp-
onding IA-CD simulations. For the sake of clarity, in
Figure 9,we showonly the spectrum of the N=128 run.
This spectrum is characterized by a significant amount of noise,
with a departure from its parent IA-CD run,which already
begins at scales above the Nyquist frequency.
This sensitivity of the IA spectra on the adopted AV scheme

is at variance with what is seen in the SPH (TSPH and PSPH)
runs of Hopkins (2015), in which the impact of AV on spectral
behavior is not so significant. We interpret this strong
dependence of velocity power spectra on the AV scheme as
being due to the effectiveness of the IA method in removing
gradient errors. This in turn implies that AV, which was
previously subdominant (Bauer & Springel 2012), is now the
main source of noise. The level of noise seen in the IA-AV
spectra is then absent in the spectra of the IA-CD runs, because
of the limited amount of AV that is generated by the employed
AV switch.
Finally, in Figure 10,we show 2D maps of the density ρ,

velocity v,and  ´ v 2∣ ∣ extracted at t=50 from simulations
with a resolution of =N 1283 3 for both IA and standard
SPH runs. A visual comparison between the maps of the two
runs clearly indicates the presence in the IA simulation of well-
resolved small-scale features, which are absent in the
corresponding standard SPH map. These features of the IA
maps appear qualitatively very similar to those obtained, in
their tests on subsonic turbulence, by Bauer & Springel (2012,
theirFigure 4) and by Hopkins (2015, theirFigure 26).
These findings confirm that, in SPH simulations, kernel

gradient errors play a key role in the modeling of subsonic
turbulence, and demonstrate how the IA scheme can be
profitably used to overcome these difficulties, with results
thatcompare well with those obtained with other numerical
schemes recently proposed.

4.4. Keplerian Disk

The cold Keplerian diskproblem has been investigated by
many authors (Imaeda & Inutsuka 2002; Cartwright et al. 2009;
Cullen & Dehnen 2010; Hu et al. 2014; Hopkins 2015; Schaal
et al. 2015; Hosono et al. 2016; Pakmor et al. 2016). The test
consists of a gaseous diskorbiting around a point-like mass.
The diskhas negligible pressure and its self-gravity is
neglected; the diskis then in equilibrium with the centrifugal
forces being balanced by the gravity of the central mass.
Because of these conditions, the system is in a steady state and
the initial diskconfiguration should remain stable as a function
of time.
For SPH codes, this problem is very challenging, since even

a small amount of AV causes a transport of angular momentum
leading to particle disorder and diskbreak-up. The problem is
particularly severe in the inner part of the disk, where the
differential rotation causes strong shear flows.
In SPH, suppression of AV in the presence of shear flows is

regulated by the Balsara switch (8). Because of this, higher
order velocity gradient estimators must be adopted (Cullen &
Dehnen 2010) in order to prevent or delay the diskinstability

Figure 9. Time-averaged velocity power spectra of driven subsonic ( ~ 0.3)
isothermal turbulence. The spectra are compensated by k5 3 so that the
horizontal dotted line indicates the Kolgomorov scaling. We ran simulations
using the same driving routine with =N 64 , 1283 3 3 and =N 2563. Dashed
(black) lines are for the standard SPH runs, short-dash (blue) line is the

=N 1283 3 IA run with AV settings AV2 (Section 2.2), solid (red) lines are the
IA runs performed using the the AV switch of Cullen & Dehnen (2010).

3 We recall that with the term standard SPH, we refer here to the usual
SPH scheme of Section 2.1, but incorporating the time-dependent AV switch
described in Section 2.2.
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in SPH runs. Additionally, because pressure forces are very
small, zeroth-order errors in hydrodynamic forces can also play
a role in developing instabilities. It is therefore interesting to
investigate the performance of the proposed IA scheme with
the cold Keplerian diskproblem.

We implement our initial conditions in a manner similar to
that of previous authors (Hopkins 2015; Schaal et al. 2015).
More specifically, we set up the diskin a three-dimensional
periodic domain with boundaries defined by {−2.5, −2.5,
0}�x, y, z<{2.5, 2.5, 0.25}º L L L2, 2,x y z{ }. Within this
domain, the diskdensity satisfies

⎧⎨⎩
 r =

<
r

r
r

1 0.5 2
0 2 ,

49( ) ( )

where r is the cylindrical radius = +r x y2 2 .
Unlike in previous settings (Hopkins 2015; Schaal

et al. 2015),here the diskedges are unsmoothed, moreover,
we put in the x–y plane a small empty zone around the diskto
avoid border effects so as to mimic vacuum boundary
conditions. The gas initially has a very small constant pressure,
= -P 10 6, and index g = 5 3.
For the central point mass, we set GM=1 and the gas is

subject to a static gravitational acceleration = - Fa , where
F = - + -r2 2 1 2( ) is the softened potential. We introduce a

softening parameter,  = 0.25, to avoid diverging accelerations
for those particles that during the simulations escape the initial
diskconfiguration and approach the origin at r=0. The initial
particle rotational velocity is then = +f

-V r r2 2 3 4( ) and for

the Keplerian orbital period p=T r2 3 2,we choose as
reference value that at r=1. Hereafter, we express time in
units of p=T 2 .
We implement the initial condition setup according to the

following procedure. We first construct a uniform glass-like
distribution of ´256 162 particles inside a parallelepiped of side
lengths ´ ´4 4 0.25. This is done by creating 16×16 replicas
of a root unit cube of 163 glass-like particles along each x and y
axis. and then rescaling the parallelepiped. Finally, we only keep
those particles whose (x,y) coordinates satisfy the conditions
given in Equation (49). The final number of particles used in the
simulations is then p= ´ ~ ´N 16 256 4 8.2 102 5. The
velocities of the particles are initialized consistently with their
position. In all of the SPH runs,we use the same initial
conditions setup and the kernel (W4) with Nn=200 neighbors.
The simulations are evolved up to a maximum time oft=20.
It must be stressed that the capability of the code to follow

the diskorbits depends sensitively of how the initial particle
configuration has been chosen in order to minimize the growth
of numerical instabilities (Cartwright et al. 2009). In this
aspect, after several tests, it has been found that the most stable
disks are obtained when a glass-like particle distribution is used
to realize the density setup (49).
For some of the simulations performed, we show in Figure 11

density maps of the simulated disks at various times. The maps
are 2D slices calculated on an 800×800 grid located at
=z L 2z in the simulation domain.
We do not show here results from disksimulations

performed with the standard SPH implementation; these are
in line with previous findings and the diskis found to be
subject to disruption after a few orbits ( ~t 2 3– ). Introducing
the IA scheme significantly improves the code capability for
evolving the disk, which now can be followed up to ~t 15
before it begins to degrade (Figure 11, left and middle panels).
This SPH simulation (IA-AV5) was performed by setting

a a =l, , 0.01, 1.5, 1.0min max d{ } { } for the AV parameters, this
choice being indicated with the notation AV5 in previous
calibration tests (Valdarnini 2011). With respect to the set of
AV parameters adopted in the other tests performed here
(AV2), the setting AV5 is characterized by a very low floor
value (a = 0.01min ) and the shortest possible decay timescale
(ld=1.0). This choice of AV parameters in SPH runs,
improves the diskstability,though not in a significant way,
with diskbreak-up occurring at ~t 12 when the setting AV2

is used.
Moreover, it must be stressed that in the IA runs the velocity

divergence and vorticity are calculated from a velocity gradient
matrix, in accordance with the adopted IA scheme. The results
presented here are, however, still valid if a standard
SPH estimator is used in the calculation of the velocity
gradients, with diskstability being affected only marginally.
This shows that errors in hydrodynamic forces are dominant in
determining disk stability, with respect to low-order errors
affecting the shear viscosity limiter (8).
A significant improvement in disk stability is obtained by

replacing the time-dependent AV scheme of Section 2.2 with
the improved method proposed by Cullen & Dehnen (2010),
which is still based on the Morris & Monaghan (1997) scheme
but has a better shock indicator and a more accurate AV limiter.
An IA-SPH simulation (IA-CD) performed by incorporating

the new AV scheme shows that the small amount of AV, which
still affected disk evolution in the IA-AV5 run, is now removed

Figure 10. 2D maps of the density (bottom), velocity (middle), and enstrophy
(top) fields extracted from simulations of driven subsonic turbulence with
resolution =N 2563 3 and at the time t=25. The left column is for standard
SPH and the right column refers to the IA runs. The fields are evaluated on a
grid of 5122 points located at =z L 2; an SPH interpolation procedure is used
to compute field values from particle quantities at grid points.
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and the disk structure is now stable up to 20 orbits. The disk
density map of the IA-CD run is shown at t=20 in the right
panel of Figure 11, and can be compared with the corresp-
onding density maps shown in Figure 6 of Hopkins (2015).

A comparison between the two suites of simulations is
possible because we adopt here the same initial condition setup.
In previous papers (Hu et al. 2014; Beck et al. 2016),the
Gaussian ring version of the problem has been used to test new
versions of SPH, but we expect our conclusions to remain
unaffected by our choice of initial conditions.

To summarize, the results presented here for the Keplerian
disk problem demonstrate that for an SPH code both errors in
gradient accuracy and the level of AV contribute to disk
stability, with the former having a much greater impact.

5. CONCLUSIONS

In this paper, we have investigated the performance of an
improved version of the standard SPH formulation, in which an
integral approach is used to strongly reduce zeroth-order errors
in gradient estimates.

The IA method has been proposed and tested in a variety of
hydrodynamical test problems (García-Senz et al. 2012; Ross-
wog 2015), but its most significant applications are in the
simulation of subsonic flows. In the low Mach number regime,
the difficulties of standard SPH have been found to be
particularly severe (Bauer & Springel 2012; Dehnen &
Aly 2012; García-Senz et al. 2012; McNally et al. 2012;
Valdarnini 2012; Hopkins 2015) and gradient accuracy is a key
prerequisite for accurately modeling the fluid dynamics.

Given the advantages of a numerical hydrodynamical
scheme based on a Lagrangian formulation (for instance its
natural resolution adaptativity) it is therefore crucial to assess
the capability of the proposed IA-SPH scheme to handle
subsonic flows. Moreover, the IA method retains the fully
conservative nature of the Lagrangian SPH scheme, unlike
previous attempts aimed at removing zeroth-order gradient
errors present in SPH.

To evaluate code performance, we have analyzed results
from a suite of simulations of hydrodynamical test problems,

performed using both the IA and standard SPH formulations.
We also contrast the accuracy of the results with that produced
by new numerical schemes (Springel 2010; Bauer &
Springel 2012; Hopkins 2015), against which standard
SPH has been found clearly inadequate. Our main conclusions
are as follows.
For the Gresho–Chan vortex problem, it is well known

(Dehnen & Aly 2012; Read & Hayfield 2012; Hu et al. 2014;
Hopkins 2015) that standard SPH is heavily affected by the E0

error and the code performances are very poor. On the contrary,
the IA formulation leads to much better behavior, with the
results of Section 4.1 being in line with those obtained by other
numerical schemes (Springel 2010; Hopkins 2015).
The resolution study displayed in Figure 3 shows for the L1

velocity error a gain in accuracy by a factor ∼10 over standard
SPH. Moreover, the validity of the approach is confirmed even
in the regime of very cold flows. This is demonstrated by the
velocity profiles of Figure 4, in which the code is shown to be
able to reproduce the analytic solution for the azimuthal
velocity down to M=0.02.
The results of Section 4.2 on KH tests also indicate how

zeroth-order errors present in SPH affect the growth of KH
instabilities and the effectiveness of the IA scheme in reducing
these errors. Nonetheless, in the very low subsonic regimes, the
IA method shows, at a fixed resolution, a progressively reduced
capability to follow the development of the instability. This is
not surprising since, for the chosen settings, by reducing the
Mach number the perturbation amplitude is also reduced and it
becomes progressively more challenging, keeping the resolu-
tion fixed, to simulate the KH instability when M 0.1.
In this respect, the heuristic arguments used in Section 4.2 to

derive the necessary resolution give a lower limit for N,which,
in any case, should be taken with caution, with the required
value probable being much higher. In fact, to the author’s
knowledge, KH simulations with very low Mach numbers
( M 0.1) have not previously been undertaken in the literature
and it would be interesting to compare the findings of
Section 4.2 with the behavior of a mesh-based code in these
regimes.

Figure 11. For some of the SPH runs, we here show at various times (in units of p=T 2 ), 2D density maps of the Keplerian disk. All of the SPH simulations
incorporate the IA scheme, the code velocity divergence and vorticity being calculated in accordance with the scheme. Left: initial configuration for an SPH simulation
thatuses the AV setting a a =l, , 0.01, 1.5, 1.0min max d{ } { } (see Section 2.2). Middle: the same simulation but at t=14. Right: here we show at t=20 the
diskdensity for an SPH run in which the AV scheme being used is that of Cullen & Dehnen (2010). To better discriminate diskstructure in this run, the size of the
computational domain has been reduced to = =L L 4.5x y .
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The good performances of the IA formulation are confirmed
by the results of Section 4.3 on simulations of driven subsonic
turbulence, for which the failure of standard SPH to properly
model this problem has been debated by various authors (Bauer
& Springel 2012; Price 2012b; Hopkins 2013, 2015; Zhu
et al. 2015). Simulations performed employing the new scheme
produce velocity spectra in better agreement with the
Kolgomorov law and exhibit an inertial range thatnow covers
nearly a decade (Figure 9). Here again we see how the results,
for the same initial setting and resolution, do not differ
significantly from those produced by other codes (Bauer &
Springel 2012; Hopkins 2015).

In the Keplerian disk problem, suppression of numerical
viscosity is a critical factor for achieving stable evolution.
However, the results of Section 4.4 also show errors in
hydrodynamical forces having a significant impact on disk
stability. This suggests that the instabilities leading to disk
disruption are sourced by a combination of these two factors.
To successfully simulate this test problem, an SPH code must
then be necessarily based on both the IA scheme and the
improved AV switch of Cullen & Dehnen (2010).

The use of an IA scheme within an SPH framework also
raises the issue of revisiting the choice of the kernel in
SPH simulations. As discussed in Section 3, the introduction of
Wendland kernels stems from the necessity of avoiding pairing
instability. However,this problem arose from the need to
reduce zeroth-order errors present in standard SPH, which are
absent or very small in the IA scheme. Therefore, if one adopts
the IA-SPH framework, one can resort to the use of the M5 or
M6 splines in place of the Wendland kernels. This choice is
motivated, for the same number of neighbors, by the better
accuracy of the B-splines in estimating densities, when
contrasted against the Wendland kernels (see Section 3).

To summarize, the results of our tests demonstrate that by
incorporating the IA method in standard SPH, the zeroth-order
errors in the momentum equations are drastically reduced, with
significant improvements in the performance of the new code.

These results are particularly significative given the
importance of subsonic flows in many astrophysical problems.
For example, in galaxy clusters subsonic turbulence adds a
contribution to the intracluster medium pressure, thus biasing
cluster mass estimates and in turn affecting the use of clusters
as cosmological probes (Brüggen & Vazza 2015, and
references cited therein).

We thus conclude that the new IA-SPH scheme, being based
on a Lagrangian formulation, can be profitably used in those
simulations of subsonic astrophysical flows in which the
shortcomings of standard SPH prevented the full exploitation
of its resolution adaptativity and conservation properties.
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