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1 Introduction

N = 2 gauge theories in four-dimensions provide a seemingly inexhaustible source of results

in theoretical physics and geometry. The partition function of the gauge theory on the so-

called Omega background [1] with parameters ε1,2 gives the exact answer not only to the

prepotential of the theory, summing over all the instanton contributions, in the leading

behavior ε1,2 → 0, but also to the gravitational corrections included in finite ε terms. The
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introduction of the Omega background also enables us to concatenate N = 2 theories with

two-dimensional conformal field theories (CFT) [2] and quantum integrable systems [3].

In this paper we present a systematic study of these theories on the minimal resolution

Xp,q of the toric singularities C2/Γp,q with Γp,q ⊂ U(2) a finite group. We compute the full

Nekrasov partition function by reducing the problem to a diagrammatic algorithm related

to the fan of the toric variety. We then analyze the geometry of the low-energy effective

action and its modular properties, by studying the ε1,2 → 0 limit and by elucidating

their M-theory origin. We find that there are two types of contributions, being related

respectively to the regular and irreducible representations of Γp,q. The former is encoded

in the Seiberg-Witten curve Σ of the gauge theory on the flat space, up to an overall

volume factor. The twisted sector is encoded in suitable modular functions whose lattice is

determined by the intersection matrix of the Hirzebruch-Jung resolution of the singularity.

Indeed we show that the twisted sector contribution can be written in term of blow-up

equations which generalize the ones of [4–6] to the blow-up of singular points.

Let us observe that in general N = 2 theories can be formulated on any differentiable

four-manifold by using a twisting procedure [7]. A cautionary remark is in order here:

when Γ is a Kleinian subgroup of SU(2) the resolved manifold is an ALE space, which

displays an hyper-kahler structure. Then the original and the twisted theory share the same

energy-momentum tensor and are physically equivalent. For more general Γp,q subgroups

the resolved manifolds are only Kahler and preserve half of the supersymmetric charges

with respect to the ALE case. The energy-momentum tensor is in this case substantially

modified and only the twisted version of the theory preserves supersymmetry.

In section 2, the full partition function will be given and expanded in ε1,2 to see

the geometric properties. Remarkably, the partition function is a nested product of C2

partition functions with arguments shifted according to the Xp,q geometry. By studying

the leading orders in the expansion we show that the low-energy effective action is encoded

in the Seiberg-Witten curve and the intersection matrix of the resolved toric variety. We

also discuss next to leading orders including gravitational corrections and the Nekrasov-

Shatashvili limit of the full partition function.

In section 3, we consider the Nekrasov partition function on Xp,q at classical, one loop,

and instanton level, separately and we relate them with the blowup formula at each level.

In section 4, we provide a description of the system in terms of M5-branes on Xp,q ×C
where C is a punctured Riemann surface. We discuss how the modular properties of the

low-energy effective action are captured by the generalized elliptic index of the M5-brane

system in the far infrared, where the system reduces to a single M5-brane wrapping the

Seiberg-Witten curve Σ.

The M5-brane picture can be also used to gain some insights on the corresponding two-

dimensional CFT à la AGT [2]. Indeed, our result for the full Nekrasov partition function

indicates the emergence of representations of the algebra AN (Xp,q) given by direct sum of

Heisenberg plus WN algebrae with suitable central charges which can be computed from

the fan of the toric variety, see (5.2). On the other hand, the central charge of the candidate

two-dimensional CFT can be computed from the anomaly polynomial of the N M5-branes

wrapping C via equivariant integration over the four-dimensional space [8–10]. In section 5,

we check that this reproduces the overall central charge of the algebra AN (Xp,q).
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We conclude in section 6 with various discussions. In the appendices, we review the

properties of Xp,q spaces, collect useful formulae which are needed in the computation and

expansion of the partition function and we explicitly give the first terms in the expansion

of the instanton sum for the U(2) SYM theory on A2 ALE.

2 N = 2 gauge theories on toric singularities

The partition function of N = 2 U(N) gauge theories can be computed via equivariant

localization methods on a general toric manifoldX. Indeed, one exploits the (C∗)2+N action

on the moduli space of instantons on X, where (C∗)2 is the lift of space-time automorphisms

of X to the instanton moduli space while (C∗)N is the complexification of the Cartan torus

of the U(N) gauge symmetry. For compact toric rational surfaces this was studied in [11].

In this section we discuss open varieties focusing on the most general toric singularity

C2/Γp,q, with Γp,q ⊂ U(2) a finite group acting on local coordinates as z1 → e2πi/pz1 and

z2 → e2πiq/pz2, with (p, q) being coprime and q < p. More precisely we consider the minimal

resolution of this singularity Xp,q = C̃2/Γp,q, known as Hirzebruch-Jung resolution — see

appendix A for details. The N = 4 partition function for these geometries was calculated

in [12–15].

The general procedure to compute the N = 2 Nekrasov partition function is the

following: any toric variety is described in terms of a fan encoding its patching structure

as a complex manifold. In each patch the computation of the Nekrasov partition function

reduces to the standard one in C2 spanned by suitable variables which provide a basis of

invariants of the orbifold action Γp,q. One thus obtains a diagrammatic algorithm which

computes the full partition function from the weights of the (C∗)N+2-torus action in each

patch. Indeed, as it has been suggested in [16] and then shown in [17–19] for the blown-

up P2 and OP1(−2) cases, this description is particularly simple when one considers the

full N = 2 partition function including the classical and perturbative contributions. The

full partition function on the resolved toric singularity is simply given by the intertwined

product of the full partition functions in each patch. More precisely, we propose that the

N = 2 full Nekrasov partition function on Xp,q is given by the blowup formula

Z
Xp,q
full (~a, ε1, ε2) =

∑
{~k(`)}

L−1∏
`=0

ZC2

full(ε
(`)
1 , ε

(`)
2 ,~a(`))ξ

c
(`)
1
` , (2.1)

where ~a = {aα}, α = 1, . . . , N are the vev’s of the scalar field of the N = 2 vector multiplet,

a(`)
α = aα + k(`+1)

α ε
(`)
1 + k(`)

α ε
(`)
2 (2.2)

and k(0) = k(L) = 0.

The above formula (2.1) can be obtained as follows. As reviewed in appendix A, the

Xp,q variety is described in terms of L patches with local coordinates described in (A.2).

These local coordinates transform under the (C∗)2 torus action with weights
(
ε
(`)
1 , ε

(`)
2

)
whose explicit expression is given in (A.20). The fixed point data on Xp,q are described in

– 3 –
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terms of a collection of Young tableaux {~Y`}, and of rational numbers {~k(`)} ` = 0, . . . , L−1

describing respectively the (C∗)N+2-invariant point-like instantons in each patch and the

magnetic fluxes of the gauge field on the blown-up spheres which correspond to the first

Chern class c1(E) of the gauge bundle E. More explicitly, the homology decomposition of

the c1 reads

c1 = −
∑
α,`

k(`)
α ∆`, (2.3)

where {∆`} is a basis of H2(Xp,q). Since the c1 has an integer decomposition in the dual

cohomology basis

c1 =
∑
α,`

u(`)αω` , ~u(`) ∈ ZN(L−1), (2.4)

where ω` is a basis of H2−(Xp,q) normalized by the condition
∫

∆`
ωn = δ`n, we get that

~k = C−1~u where Ip,q ≡ −C is the intersection form of the resolved Xp,q variety displayed

in the appendix A, eq. (A.1). Therefore, the lattice summation in (2.1) is {~k(`)} ∈ (1lN ⊗
C−1)ZN(L−1).

Note also that we have multiplied ξ` factors in order to keep track of the first Chern

classes c
(`)
1 of the gauge bundle

c
(`)
1 =

N∑
α=1

u(`)α =

N∑
α=1

L−1∑
m=1

C`mk
(m)
α . (2.5)

In other words, we are considering the expectation value Z
Xp,q
full =

〈
e

1
2π

∑
` z`

∫
Tr(F )∧ω(`)

〉
with ξ` = e(C−1z)(`)

, rather than the partition function.

The shift in the Cartan parameters (2.2) can be computed by the patch-to-patch

relative shift of the (C∗)N weights which is induced by the non-trivial magnetic flux of the

gauge field on the blown-up spheres as explained in the following. We denote the α-th

gauge field on the north patch as (AN )(`)α while that on the south patch as (AS)(`)α in the

`-th blown up sphere (` = 1, · · · , L − 1). At the equator, they coincide up to the gauge

transformation

(AN )(`)α = (AS)(`)α + ∂φψ(`)α(φ) (2.6)

where φ is the coordinate along the equator. When we go around the equator, the phase

is identified up to a multiple of 2π:

ψ(`)α(φ+ 2π) = ψ(`)α(φ)− 2πu(`)α (2.7)

with u(`)α ∈ Z being the magnetic flux through the blown-up sphere ∆`

1

2π

∫
∆`

F(`)α = u(`)α. (2.8)

According to (2.6) and (2.7) the non-trivial flux through the `-th blown-up sphere

modifies the relative weights of the gauge U(1)N action a
(`)
α and a

(`−1)
α by a

(`)
α = a

(`−1)
α −

– 4 –
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u(`)αε
(`)
1 . In order to get (2.2) we parametrize the weights of the Cartan action as seen

from the first and last patches and impose consistency. The difference between a
(0)
α and aα

is proportional to ε
(0)
1 = pε1,

a(`)
α = aα + xε1 −

∑̀
m=1

u(m)αε
(m)
1 . (2.9)

Furthermore, the difference between a
(L−1)
α and aα is proportional to ε

(L−1)
2 = pε2. Hence-

forth, we obtain the condition

a(L−1)
α + yε2 = aα ⇒ xε1 −

L−1∑
m=1

u(m)αε
(m)
1 + yε2 = 0, (2.10)

which determine the coefficients x and y as

x = −
L−1∑
`=1

(pq` − qp`)u(`)α, y = −
L−1∑
`=1

p`u(`)α. (2.11)

By using this result one gets (2.2) as explained in detail at the end of appendix B.

Due to the asymmetric nature of the Γp,q orbifold, the usual symmetry ε1 ↔ ε2 ap-

pearing in the flat C2 case is now replaced by the invariance of the full partition function

under the simultaneous exchange q ↔ pL−1. This in turn is the reversal of the continuous

fraction [e1, . . . , eL−1] ↔ [eL−1, . . . , e1] and pictorially corresponds to reverse the order of

the chain of blown-up spheres.

2.1 Blowup formulae and theta functions

In this subsection, we discuss the behavior of the Nekrasov partition function on Xp,q in

the limit ε1,2 → 0. As we will show, this enables us to uncover the modular properties of

the N = 2 partition function and to derive a generalization of the blow-up equations for

the Donaldson polynomials [4, 6] to the case of toric singularities.

First of all, we expand the full partition function on C2 as

−ε1ε2 lnZC2

full(ε1, ε2,~a, q) ≡ FΩ(ε1, ε2,~a, q)

≡ F0(~a, q) + (ε1 + ε2)H(~a, q) + ε1ε2F1(~a, q) + (ε1 + ε2)2G(~a, q) +O(ε3). (2.12)

Note that these include the classical and the perturbative part. The leading part F0(~a, q)

is the prepotential and related to the IR effective gauge coupling constant as

(
τC

2

eff

)αβ
≡ ∂α∂βF0(~a, q). (2.13)

– 5 –
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By substituting the expansion (2.12) into each of the ZC2
factors in the blowup for-

mula (2.1), we obtain

− lnZC2

full(ε
(`)
1 , ε

(`)
2 ,~a+ ε

(`)
1
~k(`+1) + ε

(`)
2
~k(`))

=
1

ε
(`)
1 ε

(`)
2

F0(~a, q) +
ε
(`)
1 + ε

(`)
2

ε
(`)
1 ε

(`)
2

H(~a, q) +
ε
(`)
1 k

(`+1)
α + ε

(`)
2 k

(`)
α

ε
(`)
1 ε

(`)
2

∂αF0(~a, q)

+ F1(~a, q) +
(ε

(`)
1 + ε

(`)
2 )2

ε
(`)
1 ε

(`)
2

G(~a, q) +
(ε

(`)
1 + ε

(`)
2 )(ε

(`)
1 k

(`+1)
α + ε

(`)
2 k

(`)
α )

ε
(`)
1 ε

(`)
2

∂αH(~a, q)

+
(
τC

2

eff

)αβ (ε
(`)
1 k

(`+1)
α + ε

(`)
2 k

(`)
α )(ε

(`)
1 k

(`+1)
β + ε

(`)
2 k

(`)
β )

ε
(`)
1 ε

(`)
2

+O(ε3). (2.14)

Then, we need to sum over `. By using the identities in appendix B and by comparing

with original partition function on C2, we obtain the following result up to terms of order

one in ε1, ε2 in the exponential

Z
Xp,q
full (ε1, ε2,~a, q) '

(
ZC2

full(ε1, ε2,~a, q)
) 1
p

exp

[(
−L+

1

p

)
F1(~a, q) +NGG(~a, q)

]
(2.15)

×
∑
{~k(`)}

ξ
c
(`)
1
` exp

1

2

L−1∑
`,m=1

N∑
α,β=1

k(`)
α C`m

(
τC

2

eff

)αβ
k

(m)
β +

N∑
α=1

L−1∑
`=1

(e` − 2)k(`)
α ∂αH

 ,
where

NG =
pL−1 + q + 2

p
− 2L+

L−1∑
`=1

e`. (2.16)

pL−1 and e` are defined in appendix A.

The above result shows that the leading term in the ε1,2 → 0 limit is simply the same

as the gauge theory prepotential on C2 up to a factor p

Z
Xp,q
full = exp

(
− F0

pε1ε2
+ . . .

)
. (2.17)

This can be interpreted as follows: the low energy effective theory has a sector which is

described by the very same Seiberg-Witten curve Σ and differential λSW as the flat space.

However, the volume factor is rescaled by the order of the quotient group. This sector

corresponds to point-like instantons sitting in the regular representation of Γp,q. These

probe the whole quotient space Xp,q and their contribution is weighted by the equivariant

volume. Besides this sector, there is also the one of instantons in the irreducible repre-

sentation of the finite group. These are stuck at the invariant loci of the orbifold action,

namely on the blown-up spheres, and as such their contribution is independent on ε1, ε2.

This contribution is fully characterized by the intersection matrix of Xp,q as displayed in

the second line of (2.15). The subleading terms in the first and second lines of (2.15)

represent the gravitational couplings.

– 6 –



J
H
E
P
0
1
(
2
0
1
3
)
0
1
4

One can check that the same behavior holds in the NS limit ε2 → 0 with ε1 finite [3].

In particular, regular instantons contribute as follows

WXp,q(~a, ε1) ≡ − lim
ε2→0

pε2 lnZ
Xp,q
full =WC2

(~a, ε1), (2.18)

where we redefined the limit in terms of the equivariant volume of the orbifold. This can

be derived in the following way. In the full partition function (2.1) the only part which

contributes to this limit is the one with ` = L − 1, because the only possibility to get 1
ε2

behavior in the exponential is this case as can be seen from the explicit form of ε
(`)
1,2 (A.21).

Then, we see that ZC2

full(ε
(L−1)
1 , ε

(L−1)
2 ,~a(L−1)) = exp( 1

pε2
FΩ(ε1, 0,~a)), which leads to (2.18).

2.1.1 ALE space

In this subsection, we consider the expansion (2.15) in the case of the ALE space. The Ap
ALE space corresponds to Xp,p−1. In this case, we have

ZALE
full (ε1, ε2,~a, q) '

(
ZC2

full(ε1, ε2,~a, q)
) 1
p

exp

[(
−p+

1

p

)
F1(~a, q)

]

×
∑
{~k(`)}

ξ
c
(`)
1
` exp

1

2

p−1∑
`,m=1

N∑
α,β=1

k(`)
α C`m

(
τC

2

eff

)αβ
k

(m)
β

 , (2.19)

since e` = 2 for all ` and NG = 0.

For illustration, let us consider A1, where the expansion is

ZA1
full(ε1, ε2,~a, q) ' ZC2

full(ε1, ε2,~a, q)
1
2 e−3F1(~a,q)/2

∑
{~k}

ξc1 exp

 N∑
α,β=1

kα

(
τC

2

eff

)αβ
kβ

 . (2.20)

Note that in this case kα is integer or half-integer. So far, we did not specify which gauge

theory we were considering. Now, let us analyze N = 2∗ gauge theory with gauge group

U(2). We write F0 as

F0 = πiτcl
∑
i=1,2

a2
i + F̃0, (2.21)

where F̃0 includes the one-loop and instanton contributions, while the first term is the

classical one. Since F̃0 only depends on the difference a1 − a2 in this theory, we can write

the coupling constant term as

kαkβ(τC
2

eff )αβ = kαkβ∂
α∂βF0 = πiτclk

2
+ + πiτeffk

2
−, (2.22)

where k± = k1± k2 and we have defined τeff = τcl + 1
πi

∂2

∂a2
−
F̃0 with a± = a1± a2. Therefore

we can rewrite (2.20) as

ZA1
full ' (ZC2

full)
1
2 e−3F1/2

∑
{~k}

ξ2k+eπiτclk
2
+eπτeff ik

2
−

= (ZC2

full)
1
2 e−3F1/2

(
ϑ3(qcl; ξ

2)ϑ3(qeff ; 1) + ϑ2(qcl; ξ
2)ϑ2(qeff ; 1)

)
, (2.23)

– 7 –
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where qcl = eπiτcl and qeff = eπiτeff and

ϑ3(q;x) =
∑
n∈Z

qn
2
xn, ϑ2(q;x) =

∑
n∈Z

q(n−1/2)2
xn−1/2. (2.24)

It is interesting to consider the above results for fixed first Chern class. For even c1, the

first term of the r.h.s. of (2.23) contributes as

Zc1=even
full

(ZC2

full)
1/2
' q

c21
4

eff e
−3F1/2ϑ3(qeff). (2.25)

For odd c1, we get

Zc1=odd
full

(ZC2

full)
1/2
' q

c21
4

eff e
−3F1/2ϑ2(qeff). (2.26)

These provide blow-up formulae for singular points.

2.1.2 OP1(−p) space

We consider in this subsection the OP1(−p) space, that is Xp,1. Since in this case there are

two patches L = 2 and e = p as can be seen in appendix A, the expansion (2.15) becomes

Z
Xp,1
full (ε1, ε2,~a, q) '

(
ZC2

full(ε1, ε2,~a, q)
) 1
p

exp

[(
−2 +

1

p

)
F1(~a, q) +

(p− 2)2

p
G(~a, q)

]

×
∑
{~k}

ξc1 exp

p
2

N∑
α,β=1

kα

(
τC

2

eff

)αβ
kβ + (p− 2)

N∑
α=1

kα∂αH

 . (2.27)

Let us specify the above formula for the U(2) gauge theory where the manipulation of

the coupling constant term is the same as above. We find that in this case the second line

in (2.27) becomes

ϑ3

(
q

2/p
cl , ξ2x+

p

)
ϑ3

(
q

2/p
eff , x−p

)
+ ϑ2

(
q

2/p
cl , ξ2x+

p

)
ϑ2

(
q

2/p
eff , x−p

)
, (2.28)

where x±p ≡ exp
(

2(p−2)
p ∂a±H

)
. The above formulas generalize to OP1(−p) the results

in [17].

3 Classical, one-loop, and instanton partition functions

In this section, we separately compute the classical, the one-loop and the instanton con-

tributions for the Nekrasov partition function of the theory on Xp,q via consistency of the

blow-up formula. The classical and the one-loop parts are directly computed by orbifold

projection. By substituting these parts in the blow-up formula (2.1), we obtain the in-

stanton partition function. In this section, we concentrate on the U(N) SYM theory, but

all the following results can be easily generalized to the cases with hypermultiplets and to

quiver gauge theories.

– 8 –
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3.1 Classical partition function

As a starting point, let us consider the classical parts. These are given for C2 and Xp,q

cases as

ZC2

cl (ε1, ε2,~a) = exp

(
−πiτcl~a

2

ε1ε2

)
, Z

Xp,q
cl (ε1, ε2,~a) = exp

(
−πiτcl~a

2

pε1ε2

)
. (3.1)

We calculate the contribution from the classical part of the r.h.s. of (2.1), which is given by

exp

−πiτcl

L−1∑
`=0

N∑
α=1

a2
α + 2aα

(
ε
(`)
1 k

(`+1)
α + ε

(`)
2 k

(`)
α

)
+
(
ε
(`)
1 k

(`+1)
α + ε

(`)
2 k

(`)
α

)2

ε
(`)
1 ε

(`)
2

 . (3.2)

The summation over ` can be explicitly calculated by using (B.4) (B.6) and (B.9). Then,

the classical part of the blow-up formula gives

L−1∏
`=0

ZC2

cl

(
ε
(`)
1 , ε

(`)
2 ,~a+ ε

(`)
1
~k(`+1) + ε

(`)
2
~k(`)
)

= Z
Xp,q
cl (ε1, ε2,~a) q

1
2

∑
`,m,α k

(`)
α C`mk

(m)
α , (3.3)

where we have defined q = e2πiτ .

3.2 One-loop partition function

The one-loop partition function on C2 is given as follows:1

ZC2

1−loop(ε1, ε2,~a) =
N∏
α 6=β

exp [−γε1,ε2(aαβ)] , (3.4)

where aαβ ≡ aα − aβ and γε1,ε2 is the logarithm of the Barnes double gamma function:

γε1,ε2(x) ≡ log Γ(x|ε1, ε2). (3.5)

For the moment, we assume that ε1 > 0, ε2 < 0. In this case, the Barnes double gamma

function is represented as a regularized infinite product as

Γ(x|ε1, ε2) =
∏

m≥0, n≤−1

(x+mε1 + nε2). (3.6)

The one-loop contribution for Xp,q is obtained by projecting (3.6) on the part of the

spectrum which is invariant under the orbifold action. We note that the weights of the

torus action (C∗)2 on C2 are transformed by the Zp orbifold action as

ε1 → ε1 +
2π

p
, ε2 → ε2 +

2πq

p
. (3.7)

1Notice that here we need to specify the branch of the log appearing in the perturbative part. In order

to compare with the results of [17] on blow-up formulae, we use their same determination. This is different

from the one chosen in [2] to make comparison with DOZZ three-point functions of Liouville CFT. In

the zeta-function regularization scheme, the two choices are anyway related via analytic continuation from

ε1, ε2 > 0 to ε1, ε2 < 0 as γε1,ε2(x) = −πi
4

+ γε1,ε2(−x+ ε1 + ε2).
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The transformation of the weights aα of the Cartan torus (C∗)N under the orbifold action

depends on the magnetic fluxes through the blown-up spheres. These are specified by the

u(`) ≡ C`mk
(m) and are calculated by imposing that each weight ~a(`) of the Cartan torus

at the fixed points, given in (2.2), is invariant under the orbifold action. From (A.20) it

follows that

~a→ ~a+ 2π
(
q`~k

(`+1) − q`+1
~k(`)
)

(mod 2π). (3.8)

Since

2π
(
q`~k

(`+1) − q`+1
~k(`)
)
− 2π(q`−1

~k(`) − q`~k(`−1)) = 2πq`~u(`) (3.9)

from the explicit calculation, we see that (3.8) gives the consistent expression for arbitrary

`. In the following, we choose ` = 0, which simplifies (3.8) as

aα → aα − 2πk(1)
α (mod 2π). (3.10)

Note that fixing k
(1)
α determines the holonomy of the gauge field at infinity.

Therefore, the one-loop factor for the theory on Xp,q depends on k
(1)
αβ ≡ k

(1)
α −k(1)

β mod

Z, which divides the partition function into pN sectors. These are obtained by replacing

γε1,ε2(aαβ) in ZC2

1−loop by

γ̃ε1,ε2

(
aαβ, pk

(1)
αβ

)
≡

∑
m≥0, n≤−1

m+nq=pk
(1)
αβ

mod p

log(aαβ +mε1 + nε2)

=
∑

qn≤pm, n≤−1

(m,n)=(k
(1)
αβ

,0) mod Z2

log
(
aαβ +mε

(0)
1 + nε

(0)
2

)
, (3.11)

where ε
(0)
1 = pε1, ε

(0)
2 = −qε1 + ε2. That is,

Z
Xp,q
1−loop

(
~a, ε1, ε2, p~k

(1)
)

=
∏
α 6=β

exp
(
−γ̃ε1,ε2(aαβ, pk

(1)
αβ )
)
. (3.12)

We note that Z
Xp,q
1−loop depends on p~k(1) by mod p.

We calculate the contribution from the one-loop part of the r.h.s. of (2.1). Note that

if ε1 > 0, ε2 < 0, then ε
(`)
1 > 0, ε

(`)
2 < 0. This follows from the convexity of the dual fan,

which indicates p`/q` > p/q for 2 ≤ ` ≤ L. Therefore, we can use the expression (3.6) for

each one-loop factor.

The key identity to construct the blow-up formula at one-loop is

L−1∑
`=0

γ
ε
(`)
1 ,ε

(`)
2

(
a

(`)
αβ

)
= γ̃ε1,ε2

(
aαβ, pk

(1)
αβ

)
+
L−1∑
`=0

f (`)
p,q

(
a

(`)
αβ, ε

(`)
1 , ε

(`)
2 , k

(`)
αβ, k

(`+1)
αβ

)
, (3.13)
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where γ̃ε1,ε2(aαβ, k
(1)
αβ ) corresponds to the one-loop factor for Xp,q while f

(`)
p,q is the finite

sum

f (`)
p,q (a, e1, e2, µ, ν) ≡



∑
m≥0,n≤−1

p`(ν+m)≤p`+1(µ+n)

log (a+me1 + ne2) p`ν < p`+1µ

0 p`ν = p`+1µ∑
m≤−1,n≥0

p`(ν+m)≥p`+1(µ+n)

log (a+me1 + ne2) p`ν > p`+1µ

(3.14)

Note that the condition defining the f
(`)
p,q function weights differently the contributions

accordingly to the sign of −p`k(`+1) + p`+1k
(`), that is the sign of the coefficient of ε

(0)
2 in

ε
(`)
1 k

(`+1)
α + ε

(`)
2 k

(`)
α expanded using (3.16). By analytic continuation (3.13) and (3.14) are

valid for any complex values of ε1 and ε2.

The identity (3.13) can be understood pictorially when u(`) > 0 for ∀`, as depicted in

figure 1 for L = 4. In this figure, each points (m,n) corresponds to the factor

log(aαβ +mε
(0)
1 + nε

(0)
2 ). (3.15)

Since

ε
(`)
1 = −q`ε

(0)
1 − p`ε

(0)
2 , ε

(`)
2 = q`+1ε

(0)
1 + p`+1ε

(0)
2 , (3.16)

each of the summand in the left hand in (3.13) adds lattice points between the lines gener-

ated by the vectors (−q`,−p`) and (−q`+1,−p`+1) starting from the points corresponding

to a
(`)
αβ and a

(`+1)
αβ respectively. The first term in the r.h.s. corresponds to the points in the

region qn ≤ pm, n ≤ −1 by definition. The remaining term corresponds to the points in

the region surrounded by the bold lines in figure 1. It is remarkable that the boundary of

this region consists of the lines n = 0, qn = pm, and the generating vectors of the dual

fan, each of which length is proportional to the magnetic fluxes u
(`)
αβ ≡ u

(`)
α − u(`)

β . We also

note that the region is naturally divided into L − 1 regions, which is interpreted as the

contribution from each blown-up sphere. From (B.15) and (3.16), we see that the point

corresponding to a
(`)
αβ satisfies the condition

(m,n) = (k
(1)
αβ , 0) mod Z2, (3.17)

which is part of the condition for the summation in (3.11). Moreover, the basis ε
(`)
1 and

ε
(`)
2 generates the lattice points exactly the same as those generated by ε

(0)
1 and ε

(0)
2 be-

cause p`q`+1 − q`p`+1 = 1. Therefore, each term in (3.13) adds the points satisfying the

condition (3.17) inside its relative region as previously stated and this explains the iden-

tity (3.13).

By using the identity (3.13), we find that the blow-up formula for the one-loop part is

given by

L−1∏
`=0

ZC2

1−loop

(
ε
(`)
1 , ε

(`)
2 ,~a(`)

)
= `vector

(
ε1, ε2, {~k(`)}

)
Z
Xp,q
1−loop

(
ε1, ε2,~a, p~k

(1)
)
, (3.18)
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Figure 1. Pictorial rendering of the identity (3.13) for L = 4

where

`vector

(
ε1, ε2, {~k(`)}

)
=

L−1∏
`=0

∏
α 6=β

exp
(
−f (`)

p,q (a
(`)
αβ, ε

(`)
1 , ε

(`)
2 , k

(`)
αβ, k

(`+1)
αβ )

)
. (3.19)

3.3 Instanton partition function

The instanton partition function is obtained by combining the full blow-up formula (2.1)

with the results in section 3.1 and 3.2. Since the one-loop factor depends on ~k(1) mod Z,

the full partition function is written by the sum of these sectors,

Z
Xp,q
full (ε1, ε2,~a, {ξ`})

= Z
Xp,q
cl (ε1, ε2,~a)

p−1∑
I1=0

· · ·
p−1∑
IN=0

Z
Xp,q
1−loop

(
ε1, ε2,~a, ~I

)
Z
Xp,q
inst

(
ε1, ε2,~a, ~I, {ξ`}

)
(3.20)

where ~I = p~k(1) mod p parametrizes the holonomy class of the gauge field in the Car-

tan torus. Finally, by using the classical (3.3), the one-loop (3.18), and the full blow-up

formula (2.1), we obtain the instanton partition function as

Z
Xp,q
inst

(
ε1, ε2,~a, ~I, {ξ`}

)
=

∑
{~u(`)}∈Z

N(L−1)

p~k(1)=~I mod p

q
1
2

∑
`,m

~k(`)·C`m~k(m)

× `vector

(
ε1, ε2, {~k(`)}

)

×
L−1∏
`=0

ZC2

inst

(
ε
(`)
1 , ε

(`)
2 ,~a(`)

)
×
L−1∏
`=1

ξ
∑N
α=1 uα(`)

` , (3.21)

where uα(`) = C`mk
(m)
α .
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3.4 ALE space

In this subsection we explicitly consider the above formulae for the ALE case, namely

q = p−1. In this case, L = p, and p` = `. The classical partition function is given by (3.1).

The one-loop partition function is given as

ZALE
1−loop

(
ε1, ε2,~a, {~k(`)}

)
=

p−1∏
`=0

g(`)
(
a

(`)
αβ, ε

(`)
1 , ε

(`)
2 , k

(`)
αβ, k

(`+1)
αβ

) p−1∏
`=0

ZC2

1−loop

(
ε
(`)
1 , ε

(`)
2 ,~a(`)

)
(3.22)

with

g(`)(a, e1, e2, µ, ν) ≡



∏
m≥0,n≤−1

`(ν+m)≤(`+1)(µ+n)

(a+me1 + ne2) `ν < (`+ 1)µ

1 `ν = (`+ 1)µ

∏
m≤−1,n≥0

`(ν+m)≥(`+1)(µ+n)

(a+me1 + ne2) `ν > (`+ 1)µ

. (3.23)

Here a
(`)
α is defined in (2.2) and ε

(`)
1 , ε

(`)
2 are given in (A.20). Note that the dependence on

{~k(`)} actually reduces to the dependence on p~k(1) mod p. The instanton partition function

is given by

ZALE
inst

(
ε1, ε2,~a, ~I, {ξ`}

)
=

∑
{~u(`)}∈Z

N(p−1)

p~k(1)=~I mod p

q
1
2

∑
`,m

~k(`)·C`m~k(m)
p−1∏
`=0

g(`)
(
a

(`)
αβ, ε

(`)
1 , ε

(`)
2 , k

(`)
αβ, k

(`+1)
αβ

)
−1

×
p−1∏
`=0

ZC2

inst

(
ε
(`)
1 , ε

(`)
2 ,~a(`)

) p−1∏
`=1

ξ
∑N
α=1 uα(`)

` . (3.24)

We note that C is the Ap−1 Cartan matrix and ~I specifies the twisted sector:

~a→ ~a− 2π~I

p
. (3.25)

In appendix C we list the explicit first orders of the instanton partition function of U(2)

SYM theory on the A2 ALE space.

4 M-theory on toric singularities and blow-up formulae

In this section we discuss how the blow-up formulae in the ε1, ε2 → 0 limit of section 2 can

be derived from M-theory considerations. As we will shortly explain, these can be obtained

by considering the classical partition function of a single M5-brane on a suitable product

geometry. The ε-corrections should be calculable from the quantum contribution to the

– 13 –



J
H
E
P
0
1
(
2
0
1
3
)
0
1
4

M5-partition function at least in the ε1 + ε2 = 0 case via a generalization of [20], but we

will not discuss this issue in the present paper.

Let us recall that the low-energy effective theory of N = 2 four-dimensional gauge

theory is described by a single space-time filling M5-brane wrapping the Seiberg-Witten

curve [21], so that the appropriate six-dimensional manifold is the direct product M6 =

Σ × Xp,q. We will show that the M5-brane partition function can be computed in this

setting. Let us first quickly review the case of compact six-manifolds and then specify the

modifications relevant to the non-compact case.

The world-volume theory of the M5-brane is described by an anti-self-dual tensor

multiplet T minimally coupled with a three-form gauge field C3 by a term
∫
M6

T ∧C3. Let

us consider a symplectic basis EA = (ea, ẽb) for the middle cohomology H3(M6,Z) of the

six-manifold M6 ∫
M6

EA ∧ EB = JAB, (4.1)

namely ∫
M6

ea ∧ eb = 0,

∫
M6

ẽa ∧ ẽb = 0,

∫
M6

ea ∧ ẽb = δab , (4.2)

where JAB = 1l⊗
(

0 1

−1 0

)
. Then the period matrix Z = Z(1) + iZ(2) is defined by expanding

ẽa = Z
(1)
ab e

b + Z
(2)
ab ? e

b. (4.3)

The simplest way to get the M5-brane classical contribution is by computing the full

partition function of an abelian two-form potential T = dB in six dimensions. This holo-

morphically factorizes in chiral times anti-chiral blocks. The M5-brane partition function

is extracted as one of such chiral blocks, in the very same way as chiral partition functions

are obtained in two-dimensions [22–26]. The explicit form of this partition function is

given in terms of a theta function Θ(Z) with suitable characteristics and arguments. The

arguments of the theta function are related to the period matrix of the six-manifold and

the background value of the C-field.

This approach can be extended also to non-compact six-manifolds. In this case, one

should restrict to the L2 sector of the middle cohomology in order to count finite action

configurations only. In particular, let us consider M6 = Σ×Xp,q. In this case, the Künneth

decomposition of the middle cohomology reads

H3(Σ×Xp,q,Z) = H1(Σ,Z)⊗H2(Xp,q,Z). (4.4)

Let us choose a polarization given by a symplectic basis

eα(n) = [bα] ∧ ωn,
ẽα(m) = −[aα] ∧ Im`ω`, (4.5)

where [aα] and [bα] are the Poincaré duals of the a and b cycles on Σ and I satisfies

Im`
∫
Xp,q

ω` ∧ ωn = δnm . (4.6)
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The L2 sector of the middle cohomology of Xp,q coincides with the anti-selfdual part of

H2(Xp,q,Z) [27]. Therefore, in the subspace which is relevant to our computation, ?ωm =

−ωm and, by choosing the normalization
∫

∆`
ωn = δn` , we get that I = −C is nothing but

the intersection matrix of Xp,q homology cycles, see appendix A for details. In our notation

then b− (Xp,q) = L− 1.

To compute the period matrix, one can use the standard relation

[aα] = −τ (1)
αβ [bβ]− τ (2)

αβ ? [bβ]

which holds on a generic Riemann surface [28], where τ = τ (1) + iτ (2) is its period matrix.

Indeed one gets

ẽα(m) = [aα] ∧ Cmnωn =
{
−τ (1)

αβ [bβ]− Ω
(2)
αβ ? [bβ]

}
∧ Cmnωn

=
(
−τ (1)

αβ Cmn

)
eβ(n) +

(
τ

(2)
αβ Cmn

)
? eβ(n)

so that the complete period matrix relevant to finite action configurations is

Z = −C ⊗ τ̄ .

Another subtle feature arise in the non-compact case when considering the possible allowed

three- form fluxes. Let us show that the most natural condition in M-theory leads to the

correct lattice of four-dimensional gauge theory. First of all we expand the three-form

T ∈ H3(Σ×Xp,q) as

T = k̂α(m)e
α(m) + ĥα(m)ẽα(m) (4.7)

and compute its periods on generic compact 3-cycles as∫
Γa
T = k̂α(m)

∫
γi

[bα]

∫
∆n

ωm − ĥα(m)

∫
γi

[aα]

∫
∆n

ωlClm =

{
k̂α(m)(C

−1)mn if i = α;

ĥα(m) if i = g + α.

(4.8)

Here {Γa} =
{

∆n × γi
}

, where
{
γi
}

= {aα, bα} is our reference basis in H1(Σ,Z) and

{∆n} are the blown-up spheres in Xp,q.

The lattice of the relevant theta function is obtained by dualizing the lattice of the {ea}
sector [24], namely the first line in the r.h.s. of (4.8). Being this the lattice of fundamental

M-theory charges we assume that it is the integer one, namely
(
C−1 ⊗ 1

)
k̂ ∈ Zg(L−1).

Then its dual reads (C ⊗ 1) k ∈ Zg(L−1) so that finally

k ∈ (C−1 ⊗ 1)Zg(L−1) (4.9)

whose four-dimensional factor describes the magnetic fluxes of the gauge field on Xp,q.

Therefore, the relevant generalized Θ-function contribution is given by the anti-holomorphic

block which reads

Θ(C ⊗ τ |Q) =
∑

k∈(C−1⊗1)Zg(L−1)

eπi[k(C⊗τ)k+2Q(C⊗1)k] (4.10)
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where Q is a background for the three-form C-field which couples to the non-trivial c1 of

the four-dimensional gauge bundle. Indeed from the minimal coupling term we get∫
M6

C3∧T =

∫
Σ×Xp,q

C3∧
(
k̂α(m)e

α(m) + ĥα(m)ẽα(m)

)
=
∑
α(m)

(
Q̂α(m)k̂α(m) + Q̃α(m)ĥ

α(m)
)

(4.11)

where Q̂a and Q̃a are the components of the background C-field. After Poisson resum-

mation, one gets the linear term kQ in (4.10) which reproduces the term (ξm)Clmk
(m)
α

in the gauge theory θ-function. The complete background field is actually Qα(m) =
1

2πi ln ξm +Q
α(m)
grav whose first term describes, after the reduction, the coupling of an exter-

nal source to the first Chern class of the gauge bundle. The second term Qgrav has to be

set by considerations of anomaly cancellation conditions. In order to address this issue,

one should compute the full quantum mechanical contribution to the partition function in

the product geometry. The requirement of modular invariance then would correspond to

the anomaly cancellation conditions in the string theory engineering. In general there are

pure gravitational and mixed anomalies to cure. Fixing the pure gravitational part means

fixing the overall normalization of the M5-brane partition function, namely the coefficients

of the F1 and G terms in (2.15), while fixing the mixed anomalies corresponds to fix the

coefficients of the linear term in the k
(`)
α . This corresponds to fix the gravitational part of

the background C-field as Q
α(m)
grav = ∂αH(e` − 2). Although we don’t give an M-theoretic

detailed account for this assignment, let us notice that it measures an anomaly induced

the lack of the four manifold from being hyperkahler, that is from admitting a reduced

holonomy which would make the topologically twisted and the untwisted N = 2 gauge

theories equivalent.

It is then easy to recognize that, after the above background value is selected, (4.10)

coincides with the (SU(N) part of the) ϑ-function arising in the blow-up formulae of the

previous sections (2.15).

5 Two-dimensional CFT counterpart

In this section, we consider the relation between the gauge theories on toric singularities and

two-dimensional CFTs. The M-theory argument in the previous section gives a hint to this

relation: one side is the four-dimensional gauge theory on Xp,q obtained by compactifying

M5-branes on a punctured Riemann surface C. The other side is the two-dimensional

effective theory on C obtained after integration over the four-dimensional modes of the

M-theory. As it is well-known, the two-dimensional theory in the case of R4
ε1,ε2 turns out

to be the WN CFT [2, 29] with an extra U(1) free boson factor. The partition function

of the gauge theory can be related with the conformal block BW of WN -algebra, under a

proper identification of the parameters,

ZC2
= ZU(1)BW , (5.1)

where BW is defined in a specific marking of C which in turn corresponds to a particular

weak coupling description of the gauge theory. Non-trivial four-dimensional geometry
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should change the two-dimensional CFT algebra to AN (Xp,q). Indeed, it was found and

checked in [10, 18, 19, 30–35] that the U(N) gauge theory on the Ap−1 ALE space is

related to the product of the Heisenberg, affine ŝu(p)N and Zp para-WN algebras. In this

section, we study this relation by using the gauge theory partition function computed in

section 2 and the M-theory considerations presented in section 4, and investigate their

possible implications on the mysterious two-dimensional side.

The blowup formula (2.1) directly imply that the fixed points of the moduli space

of instantons on Xp,q provide a basis for the representation of L copies of Heisenberg

plus WN algebrae with suitable central charges related to the (ε
(`)
1 , ε

(`)
2 ) weights under the

(C∗)2-action

AN (Xp,q) ≡ ⊕L−1
`=0 (H⊕ `WN ) (5.2)

where the central charge of `WN is c` = (N − 1)
(
1 +Q2

`N(N + 1)
)
, Q2

` =
(ε

(`)
1 )2+(ε

(`)
2 )2

ε
(`)
1 ε

(`)
2

+ 2.

As we will see in a moment, the overall central charge of (5.2) coincides with the central

charge of the two-dimensional CFT that can be computed from M-theory compactification.

The result (5.2) suggest that in the ALE case q = p − 1 the conformal blocks of Zp
parafermionic WN algebra plus p copies of Heisenberg algebrae can be computed as p-

nested conformal blocks of the algebra (5.2) in terms of the blowup formula (3.24). This

has been shown in [18, 19, 35] in the p = 2 case, corresponding to the N = 1 super Virasoro

algebra whose conformal blocks are known. The conformal blocks for the general case are

instead unknown and the blowup formula (3.24) provides a natural candidate for them.

5.1 U(1) partition function and Frenkel-Kac construction

From the mathematical viewpoint, the above correspondence for the ALE case should be

viewed as a generalization to higher rank cases of the Frenkel-Kac construction discussed

in [36, 37] for Hilbert schemes, i.e. U(1) gauge group. In this subsection, we consider

the case of U(1) gauge theory and the relation with the Frenkel-Kac construction more

explicitly.

For the abelian case, the instanton partition function (3.24) reduces to

ZALE
inst =

∑
{u(`)}

q
1
2

∑
`,m u(`)(C

−1)`mu(m)

p−1∏
`=0

ZC2

inst

(
ε
(`)
1 , ε

(`)
2 , a(`)

) p∏
`=1

ξ
u(`)

` (5.3)

since kαβ = 0, and thus g(`) = 1. This is also the case when we consider N = 2∗ theory,

where ZC2

inst is replaced by the Nekrasov instanton partition function of the N = 2∗ theory

on C2. In the N = 4 limit, it further reduces to

ZALE
inst = η(τ)−p

∑
{u(`)}

q
1
2

∑
`,m u(`)(C

−1)`mu(m)

p∏
`=1

ξ
u(`)

` . (5.4)

which can also be written as

ZALE
inst = η−1(τ)

∑
Λ

χΛ(τ, ξ), (5.5)
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where χΛ is the character of the representations Λ of the affine ŝu(p)1 algebra, as found

in [38].

On one hand, one can see that (5.3) or (5.4) are related to the direct sum of p copies of

the Heisenberg algebra in the two-dimensional CFT side. On the other hand, (5.5) denotes

the relation with the algebraH⊕ŝu(p)1 as in [35]. These two different sets of algebras in the

two-dimensional CFT side can be understood as the Frenkel-Kac construction [36]: actually,

by this construction, ŝu(p)1 is expressed as the Heisenberg algebra of the type Ap−1:

[ai(`), aj(m)] = δi+j,0C`m, (5.6)

where C`m is the Cartan matrix for Ap−1. The corresponding CFT is the theory of free

bosons, whose Hamiltonian is given by

H =
∑
`,m

(
1

2
a0(`)(C

−1)`ma0(m) +

∞∑
i=1

a−i(`)(C
−1)`mai(m)

)
. (5.7)

From the viewpoint of M-theory, the two-dimensional CFT is obtained by reducing the

theory of self dual three-form on T 2 × C2/Zp onto T 2. Therefore, the target space of the

two-dimensional CFT is expected to be the integrable second cohomology of the ALE space

modulo integral elements and thus, the momentum lattice is given by that of Ap−1. The

partition function on a torus with the insertion of the fugacity z(`) for this theory, which

corresponds to the N = 4 theory in the gauge theory side, is given by

Tr〈qHe
∑
`(C
−1z)(`)a0(`)〉 = η(τ)−p+1

∑
{u(`)}

q
1
2

∑
`,m u(`)(C

−1)`mu(m)

p−1∏
`=1

ξ
u(`)

(`) , (5.8)

where the integers u(`) corresponds to the momenta. By multiplying by the partition

function η−1(τ) of one more free boson,2 which corresponds to the overall U(1) factor in

the gauge theory side, it exactly reproduces (5.4).

We expect that the factorization property in (5.8) holds even when we add one-point

insertion with finite conformal dimension. In this case, η−1 function is replaced by the one-

point function of the free boson on torus, which is known to coincide with the Nekrasov

partition function of the abelian N = 2∗ theory on C2 [39], which is consistent with (5.3).

The derivation of the U(1) instanton partition function easily generalizes to non-

hyperkahler Γp,q ⊂ U(2) quotients. The resulting partition function should correspond

to the sum of characters of a conjectural chiral algebra defined by the intersection ma-

trix. This however cannot be interpreted in terms of Kac-Moody algebrae since McKay

correspondence does not apply.

5.2 Central charges

Let us compute the central charge of the corresponding two-dimensional CFT from the

anomaly polynomial of the six-dimensional (2,0) theory [8–10]. Consider N M5-branes

2In the M-theory derivation one obtains this as the overall contribution of the remaining part of the

reduced selfdual multiplet.
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compactified on a four-manifold X. Under a suitable twist, the integrated anomaly eight-

form over X leads to the central charge of the remaining two-dimensional theory:

c = Nχ(X) +N(N2 − 1)(P1(X) + 2χ(X)). (5.9)

where χ(X) =
∫
X e(X) and P1(X) =

∫
X p1(X) are the equivariant Euler number and the

integrated first Pontryagin class respectively.

Let us focus on X = Xp,q, namely the blow up of a toric singularity C2/Γp,q. Since we

are working with the deformation ε1,2, χ(Xp,q) and P1(Xp,q) should be computed in the

equivariant sense. This gives the following results

χ(Xp,q) =

L−1∑
`=0

1 = L, P1(Xp,q) =

L−1∑
`=0

(ε
(`)
1 )2 + (ε

(`)
2 )2

ε
(`)
1 ε

(`)
2

, (5.10)

where L is the number of the fixed points of the torus action and ε
(`)
1,2 are given in (A.20).

By plugging these values into (5.9) we recover the central charge of the algebra (5.2). The

central charge can be easily expressed through NG defined in (2.16) as

c = NL+N(N2 − 1)

(
Q2

p
−NG

)
. (5.11)

Note that since ε1 and ε2 enter symmetrically in the above formula, also the coefficient

NG is also symmetric under the exchange q ↔ qL−1, following from the argument just

below (2.11).

Ap−1 ALE space. In the case of the blow up of C2/Zp (q = p − 1), the number of the

fixed points is p and the ε
(`)
1,2 are given in (A.9). Thus, we get

c = Np+
N(N2 − 1)Q2

p
, (5.12)

where we defined Q = b + 1/b with
√
ε1/ε2 = b. One can check that this is indeed the

sum of the central charges of the Heisenberg, affine ŝu(p)N and p-th para-WN algebras, as

found in [10]:

c = 1 +
N(p2 − 1)

N + p
+

(
p(N2 − 1)

N + p
+
N(N2 − 1)Q2

p

)
. (5.13)

OP1(−p) space. In the case of the OP1(−p) space (q = 1), the number of the fixed points

is 2 and the ε
(`)
1,2 are given in (A.6). Therefore, we obtain

c = 2N +
N(N2 − 1)

p

(
Q2 − (p− 2)2

)
. (5.14)

In the case of p = 2, this coincides with (5.12) with p = 2.

– 19 –



J
H
E
P
0
1
(
2
0
1
3
)
0
1
4

Other examples. For example, we can compute the first cases which are not of the two

types above. For Γ5,2 and Γ5,3, we get, due to the q ↔ pL−1 symmetry, the same result

c = 3N +
N(N2 − 1)

5

(
Q2 − 2

)
. (5.15)

For Γ7,2, we get

c = 3N +
N(N2 − 1)

7

(
Q2 − 8

)
. (5.16)

6 Conclusions and open issues

In this paper we started a systematic study of N = 2 gauge theories on toric singularities.

The results we obtained raise a number of issues that it would be interesting to further

study.

First of all, the blow-up formula (2.1) together with AGT correspondence implies

that the instanton partition function provides an analytic form for the conformal blocks

of the algebra AN (Xp,q) we discussed in section 5, see (5.2). Moreover, the one-loop

contribution should be interpreted as the three-point functions of the corresponding two-

dimensional CFT. These should be regarded as the structure constants of the OPE algebra

of primaries, whose spectrum is not known at the moment for general Xp,q varieties. It

would be interesting to investigate further this issue. In the ALE case a natural candidate

has been proposed in [10] as the Zp parafermionic WN theory, whose conformal blocks and

three-point functions are however not known in general. Our result can be regarded as a

proposal for their computation. Let us remark that for p = N = 2 this is verified both

for the conformal blocks [18, 30, 33, 35] and the three-point functions [19] and for p = 4,

N = 2 case in [32, 34]. In the ALE case and N = 2 one might compare our one-loop

formulas with the parafermionic Liouville three-point functions as given in [40].

Another interesting aspect that could help in elucidating the above problem is to

investigate the N = 4 limit of the partition function in the generic Γp,q case, which should

be expressed in terms of the characters of the full conformal algebra [19]. It could be useful

in this respect to study the level-rank duality properties of these partition functions in

full generality. Let us remark that the algebraic structure that we find in the ALE case

contains as a factor the Kac-Moody algebrae found in [41] and further discussed in [42–45].

Although we did not discuss two-dimensional CFT correlators, we expect that these

would arise by computing the N = 2 partition function on S4/Γp,q along the lines of [46].

It would be also interesting to study BPS observables in the gauge theory on toric singular-

ities, in particular surface operators and their possible relationship with degenerate fields

insertions in the two-dimensional CFT.

The results presented in this paper are obtained under some natural quantum field

theoretic assumptions, namely the patch-by-patch factorization of the full partition func-

tion. This is a well established result for some particular cases, and it would be relevant

to have a rigorous proof in general. This would amount to have a direct computation of

the `-factor in (3.19) from the localization formula in each topological sector of the theory.
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To this end a generalization of the ADHM of [47] to Γp,q orbifolds would also be welcome.

This could also help to extend the rigorous proof of the AGT correspondence of [48] to

instanton counting on toric singularities.

An open problem is the geometric engineering of these four-dimensional gauge theories,

which would shed light on the topological string description of their Nekrasov partition

function at least in the unrefined ε1 + ε2 = 0 case. This issue would naturally lead to a

comparison with the results of [49] where the holomorphic anomaly equation for the A1

ALE space is discussed.

Finally, the rôle of integrable systems in this whole story has to be elucidated. Our

result (2.1) again suggests the emergence of a quiver integrable system made of nested

copies of the systems relevant for the flat space, whose intertwining is dictated by the

intersection matrix of the Xp,q variety. For example for linear quivers we expect to obtain

nested copies of the Calogero-Sutherland system, which is the relevant one in the flat space

case [48, 50]. A more general view on the problem would be gained in terms of a suitable

generalization of the Hitchin system approach to Xp,q varieties.
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A Hirzebruch-Jung resolution

The (p, q) toric singularity is the quotient C2/Γp,q, where the action is in local coordinates

z1 → e2πi/pz1 and z2 → e2πiq/pz2, with (p, q) being coprime and q < p.

The Hirzebruch-Jung resolution of the above singularity is prescribed as follows. Let

p/q = [e1, . . . , eL−1] ≡ e1 − 1
e2− 1

e3−...
be the continuous fraction expansion of the ratio

p/q in terms of the finite sequence of positive integers {e1, . . . , eL−1}. The fan of the

resolved toric variety is given in terms of the set of vectors {v`}`=0,...,L in Z2 satisfying the

recursion relation v`+1+v`−1 = e`v` with boundary conditions v0 = (0, 1) and vL = (p,−q).
Each internal vector v`, ` = 1, . . . , L − 1 of the fan corresponds to a blown-up sphere ∆`.

Recalling that the intersection pairing of these spheres can be computed from the toric fan

as ∆` ·∆` = v`−1 ∧ v`+1 and ∆` ·∆`+1 = v` ∧ v`+1, we can compute the intersection matrix
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to be

Ip,q ≡ −C =



−e1 1 0 . . . 0

1 −e2
. . .

0
. . .

. . .
. . .

...
. . .

. . . 1

0 1 −eL−1


(A.1)

The cones of the fan are σ` = {v`, v`+1}, with ` = 0, . . . , L − 1, and those of the the dual

fan σ?` = {−v`τ2, v`+1τ2}, where τ2 =
(

0 1

−1 0

)
. The ring of holomorphic functions on the

toric variety can be described in terms of the dual cones as follows. Let us denote the

entries of the vectors of the dual fan as σ?` =
{

(s`, t`), (s̃`, t̃`)
}

. By using this notation, the

polynomial ring reads

⊕L−1
`=0 C[ws`1 w

t`
2 , w

s̃`
1 w

t̃`
2 ] = ⊕L−1

`=0 C[zps`−qt`1 zt`2 , z
ps̃`−qt̃`
1 z t̃`2 ], (A.2)

where we used the invariant variables w1 = zp1 and w2 = z2/z
q
1.

The torus action (C∗)2 on the singular variety (z1, z2)→ (eiε1z1, e
iε2z2) descends to a

torus action on the resolved variety whose weights can be obtained directly from (A.2) as

ε
(`)
1 = (ps` − qt`)ε1 + t`ε2,

ε
(`)
2 = (ps̃` − qt̃`)ε1 + t̃`ε2. (A.3)

Let us now consider some explicit examples that are relevant for the main text calculations.

A.1 OP1(−p) space

The resolution of the Γp,1 singularity is given by the total space of OP1(−p)-bundle. The

cones are

σ0 = {(0, 1), (1, 0)}, σ1 = {(1, 0), (p,−1)}, (A.4)

and the dual cones

σ?0 = {(1, 0), (0, 1)}, σ?1 = {(0,−1), (1, p)}. (A.5)

The weights of the torus action in the two patches are

ε
(0)
1 = pε1, ε

(0)
2 = ε2 − ε1,

ε
(1)
1 = ε1 − ε2, ε

(1)
2 = pε2. (A.6)

A.2 Ap−1 ALE space

The cones of the resolution of the Γp,p−1 singularity are

σ` = {(`, 1− `), (`+ 1,−`)} (A.7)

with ` = 0, . . . , p− 1. The dual cones are

σ?` = {(1− `,−`), (`, `+ 1)}. (A.8)

The weights of the torus action in the p patches are

ε
(`)
1 = (p− `)ε1 − `ε2, ε

(`)
2 = (−p+ `+ 1)ε1 + (`+ 1)ε2. (A.9)
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A.3 Γ5,2, Γ5,3 and Γ7,2 singularities

Let us consider other simple cases. For the Γ5,2 case, the cones are

σ0 = {(0, 1), (1, 0)}, σ1 = {(1, 0), (3,−1)}, σ2 = {(3,−1), (5,−2)}, (A.10)

and the dual cones

σ?0 = {(1, 0), (0, 1)}, σ?1 = {(0,−1), (1, 3)}, σ?2 = {(−1,−3), (2, 5)}. (A.11)

The weights of the torus action in the three patches are

ε
(0)
1 = 5ε1, ε

(0)
2 = ε2 − 2ε1,

ε
(1)
1 = 2ε1 − ε2, ε

(1)
2 = −ε1 + 3ε2,

ε
(2)
1 = ε1 − 3ε2, ε

(2)
2 = 5ε2. (A.12)

For the Γ5,3 case, the weights of the torus action in the three patches are

ε
(0)
1 = 5ε1, ε

(0)
2 = ε2 − 3ε1,

ε
(1)
1 = 3ε1 − ε2, ε

(1)
2 = −ε1 + 2ε2,

ε
(2)
1 = ε1 − 2ε2, ε

(2)
2 = 5ε2. (A.13)

Finally, for the Γ7,2 case, we get the weights of the torus action again in the three patches:

ε
(0)
1 = 7ε1, ε

(0)
2 = ε2 − 2ε1,

ε
(1)
1 = 2ε1 − ε2, ε

(1)
2 = −ε1 + 4ε2,

ε
(2)
1 = ε1 − 4ε2, ε

(2)
2 = 7ε2. (A.14)

A.4 Comment

In this section, we show a way to solve the relation v`+1 + v`−1 = e`v` explicitly. We define

the following two sets of sequences of integers:

p0 = 0, p1 = 1, (p2 = e1), p`+1 = e`p` − p`−1 (` ≥ 1), (A.15)

q0 = −1, q1 = 0, (q2 = 1), q`+1 = e`q` − q`−1 (` ≥ 1). (A.16)

By definition, they satisfy the same recursion relation as v`. It is known that p` and

q` are coprime to each other and that they are the numerator and the denominator of

[e1, · · · , e`−1] respectively:

[e1, · · · , e`−1] =
p`
q`
. (` ≥ 2) (A.17)

In particular, this means that pL = p and qL = q. It is also known that

p`q`+1 − q`p`+1 = 1. (A.18)
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Comparing the recursion relation and the boundary condition, we identify

s` = −q`, s̃` = q`+1, t` = −p`, t̃` = p`+1. (A.19)

In terms of (A.19) we have

ε
(`)
1 = −(pq` − qp`)ε1 − p`ε2,
ε
(`)
2 = (pq`+1 − qp`+1)ε1 + p`+1ε2. (A.20)

Explicitly,

ε
(0)
1 = pε1, ε

(0)
2 = −qε1 + ε2,

ε
(1)
1 = qε1 − ε2, ε

(1)
2 = (p− qe1)ε1 + e1ε2,

ε
(2)
1 = (−p+ qe1)ε1 − e1ε2, ε

(2)
2 = · · · ,

· · · · · ·

ε
(L−2)
1 = · · · ε

(L−2)
2 = −ε1 + pL−1ε2,

ε
(L−1)
1 = ε1 − pL−1ε2 ε

(L−1)
2 = pε2, (A.21)

where we have used (A.18) for ` = L− 1 to calculate ε
(L−2)
2 and ε

(L−1)
1 .

B Various summations of Omega deformation parameters

By construction, the Omega deformation parameters ε
(`)
1 and ε

(`)
2 are related by ε

(`)
1 =

−ε(`−1)
2 , and respectively satisfy the recursion relations

ε
(`−1)
1 + ε

(`+1)
1 = e`ε

(`)
1 , ε

(`−1)
2 + ε

(`+1)
2 = e`+1ε

(`)
2 . (B.1)

They satisfy the boundary condition ε
(0)
1 = pε1 and ε

(L−1)
2 = pε2.

It follows from (A.18) that

p`+1ε
(`)
1 + p`ε

(`)
2 = ε

(0)
1 . (B.2)

By using this identity and (A.20), we can show that

m∑
`=0

1

ε
(`)
1 ε

(`)
2

=
pm

ε
(0)
1 ε

(m)
2

, (B.3)

which for m = L− 1 is

L−1∑
`=0

1

ε
(`)
1 ε

(`)
2

=
p

ε
(0)
1 ε

(L−1)
2

=
1

pε1ε2
. (B.4)
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We list here other useful formulae used in section 2:

L−1∑
`=0

ε
(`)
1 + ε

(`)
2

ε
(`)
1 ε

(`)
2

=
ε1 + ε2
pε1ε2

, (B.5)

L−1∑
`=0

ε
(`)
1 k

(`+1)
α + ε

(`)
2 k

(`)
α

ε
(`)
1 ε

(`)
2

= 0, (B.6)

L−1∑
`=0

(ε
(`)
1 + ε

(`)
2 )2

ε
(`)
1 ε

(`)
2

=
(ε1 + ε2)2

pε1ε2
− pL−1 + q + 2

p
+ 2L−

L−1∑
`=1

e`, (B.7)

(
=

(ε1 + ε2)2

pε1ε2
+

2p− 2− pL−1 − q
p

+

L−1∑
`=1

(2− e`)
)

L−1∑
`=0

(ε
(`)
1 + ε

(`)
2 )(ε

(`)
1 k

(`+1)
α + ε

(`)
2 k

(`)
α )

ε
(`)
1 ε

(`)
2

=

L−1∑
`=1

(2− e`)k(`)α , (B.8)

(
= k(1)α + k(L−1)

α −
L−1∑
`=1

L−1∑
m=1

C`mk
(m)
α

)
L−1∑
`=0

(ε
(`)
1 k

(`+1)
α + ε

(`)
2 k

(`)
α )(ε

(`)
1 k

(`+1)
β + ε

(`)
2 k

(`)
β )

ε
(`)
1 ε

(`)
2

= −
p−1∑
`=1

p−1∑
m=1

k(`)α C`mk
(m)
β , (B.9)

Note that (B.7) respect the symmetry exchanging

pL−1 =
p

[eL−1, · · · , e1]
and q =

p

[e1, · · · , eL−1]
. (B.10)

Derivation of (2.2) from (2.11). From (2.11) we have

a(`)
α = aα −

L−1∑
`=1

(pq` − qp`)u(`)αε1 −
∑̀
m=1

u(m)αε
(m)
1 = aα −

∑̀
m=0

u(m)αε
(m)
1 , (B.11)

where we have defined

u(0)α ≡
L−1∑
`=1

pq` − qp`
p

u(`)α. (B.12)

Now, we are going to rewrite it in terms of k = C−1u. Note that

pq` − qp` = −p
(
C−1

)1`
(B.13)

for 1 ≤ ` ≤ L− 1. Therefore, (B.12) is rewritten as

u(0)α =
L−1∑
`=1

pq` − qp`
p

u(`)α = −
L−1∑
`=1

(
C−1

)1`
u(`)α = −k(1)

α (B.14)

and thus, (B.11) is rewritten as

a(`)
α = aα + k(1)

α ε
(0)
1 −

∑̀
m=1

u(m)αε
(m)
1 . (B.15)
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By considering the third term and taking into account that k(0) = k(L) = 0, we find

−
∑̀
m=1

u(m)αε
(m)
1 = −k(1)

α ε
(0)
1 + k(`+1)

α ε
(`)
1 + k(`)

α ε
(`)
2 , (B.16)

where we used (B.1). Therefore, we finally obtain the shift formula (2.2).

C U(2) SYM theory on A2 ALE

We give the explicit calculation for the A2 ALE instanton partition function. We expand

the instanton partition function (3.24) as

Zinst(ε1, ε2, a; ~I; c
(1)
1 , c

(2)
1 ) =

∑
c(1), c(2)

Z(c(1), c(2))(~I)ξ
c
(1)
1

1 ξ
c
(2)
1

2 , (C.1)

where a ≡ (a1−a2)/2 and Iα = 3k
(1)
α mod 3. We note that ~k(1) and c

(`)
1 are not independent

but are related as

c
(1)
1 − c

(2)
1 = −(I1 + I2) mod 3. (C.2)

We calculate the lowest order in instanton number for −1 ≤ c
(1)
1 , c

(2)
1 ≤ 1. The results are

given by

Z(0,0)(0, 0) = 1 + · · ·

Z(0,0)(1, 2)

=

[
−1

(2a− ε2)(2a+ ε1)
+

−1

(2a+ ε1)(2a+ 2ε1 + ε2)
+

−1

(2a− ε1 − 2ε2)(2a− ε2)

]
q

2
3 + · · ·

Z(0,0)(2, 1)

=

[
−1

(2a+ ε2)(2a− ε1)
+

−1

(2a− ε1)(2a− 2ε1 − ε2)
+

−1

(2a+ ε1 + 2ε2)(2a+ ε2)

]
q

2
3 + · · ·

Z(0,1)(2, 2) =

[
−1

(2a− ε1 − ε2)(2a)
+

−1

(2a)(2a+ ε1 + ε2)

]
q

2
3 + · · ·

Z(0,1)(0, 1) = q
1
3 + · · ·

Z(0,1)(1, 0) = q
1
3 + · · ·

Z(1,0)(1, 1) =

[
−1

(2a− ε1 − ε2)(2a)
+

−1

(2a)(2a+ ε1 + ε2)

]
q

2
3 + · · ·

Z(1,0)(0, 2) = q
1
3 + · · ·

Z(1,0)(2, 0) = q
1
3 + · · ·

Z(0,−1)(1, 1) =

[
−1

(2a− ε1 − ε2)(2a)
+

−1

(2a)(2a+ ε1 + ε2)

]
q

2
3 + · · ·

Z(0,−1)(0, 2) = q
1
3 + · · ·

Z(0,−1)(2, 0) = q
1
3 + · · ·
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Z(−1,0)(2, 2) =

[
−1

(2a− ε1 − ε2)(2a)
+

−1

(2a)(2a+ ε1 + ε2)

]
q

2
3 + · · ·

Z(−1,0)(0, 1) = q
1
3 + · · ·

Z(−1,0)(1, 0) = q
1
3 + · · ·

Z(1,1)(0, 0) =

[
−1

(2a− ε1 − ε2)(2a)
+

−1

(2a)(2a+ ε1 + ε2)

]
q

2
3

Z(1,1)(1, 2) = q + · · ·

Z(1,1)(2, 1) = q + · · ·

Z(−1,−1)(0, 0) =

[
−1

(2a− ε1 − ε2)(2a)
+

−1

(2a)(2a+ ε1 + ε2)

]
q + · · ·

Z(−1,−1)(1, 2) = q
2
3 + · · ·

Z(−1,−1)(2, 1) = q
2
3 + · · ·

Z(1,−1)(2, 2) =

[
−1

(2a− ε1 − ε2)(2a)
+

−1

(2a)(2a+ ε1 + ε2)

]
q

2
3 + · · ·

Z(1,−1)(0, 1) = q
1
3 + · · ·

Z(1,−1)(1, 0) = q
1
3 + · · ·

Z(−1,1)(1, 1) =

[
−1

(2a− ε1 − ε2)(2a)
+

−1

(2a)(2a+ ε1 + ε2)

]
q

2
3 + · · ·

Z(1,−1)(0, 2) = q
1
3 + · · ·

Z(1,−1)(2, 0) = q
1
3 + · · ·

These results coincide with the computation done using the orbifold projection method

of [51].
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