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1 Introduction

N = 2 supersymmetric gauge theories are a source of many interesting results in the theory

of Integrable Systems (both classical [1–3] and quantum [4]) and more recently in Conformal

Field Theory in two dimensions [5] and integrable quantum hydrodynamics [6–11].

These results are mainly due to the application of equivariant localization to the su-

persymmetric path integral which reduces its evaluation to a combinatorial problem. The

results obtained so far concern few examples of four-manifolds as C2 [12, 13], C2/Γ [14–20],

S4 [21, 22] and S2 × S2 [23].

On the other hand, it is known since the seminal paper [24] that twisted N = 2

supersymmetric gauge theories can be formulated on any Riemannian four-manifold and

– 1 –



J
H
E
P
0
7
(
2
0
1
6
)
0
2
3

their observables realise many interesting topological invariants such as Donaldson invari-

ants [25] and knot invariants [26, 27]. A refinement of these invariants can be provided on

four-manifolds admitting isometries by considering their equivariant extension, which in

physical language corresponds to turning on the Ω-background [12]. However, few explicit

calculations are availble in this case.

The aim of this paper is to apply the supersymmetric localization technique to a

suitable class of compact four manifolds. In [23] (see also [28]) Killing spinor solutions

implementing an equivariant extension of the Witten twist were found on any Riemannian

four manifold admitting a U(1) action and this was used to study the case of S2×S2. In this

paper we discuss more general toric complex surfaces and perform explicit computations

in the case of P2 as a testing ground.

An important difference between compact and non-compact four-manifolds is obviously

related to the issue of boundary conditions. For N = 2 gauge theories on non-compact

manifolds the partition function depends on the v.e.v. of the scalars aρ sitting in the vector

multiplet. The presence of this v.e.v. is indeed crucial in order to localize to isolated fixed

points in the instanton moduli space and reduces the evaluation of the partition function to

a combinatorial problem. In this context, aρs represent the equivariant weights associated

to the action of the Cartan torus of the gauge group.

On the other hand, on compact manifolds, in order to have exact smooth instanton so-

lutions one sets aρ = 0 [24]. The supersymmetric fixed-locus in this case is given by the full

instanton moduli space. However, the contribution to the evaluation of 1/2 BPS observ-

ables in N = 2 theories is fully captured by singular gauge field configurations sitting at the

boundary of the instanton moduli space [29, 30]. A suitable (partial) compactification and

desingularization of this space is provided by considering the moduli space of torsion free

sheaves on the four-manifold, which locally corresponds to turning on a non-commutative

deformation [31]. The boundary is in this case provided by ideal sheaves, which correspond

to copies of point-like U(1) non-commutative instantons.

The strategy we follow is then to use the equivariant twisted supersymmetry of [23] to

directly localize the path integral to point-like instantons sitting at the zeroes of the vector

field generating the U(1) action. The contribution of each of these points is given by a

Nekrasov partition function on the corresponding affine patch ∼ C2. In this context, the

equivariant parameters aρ are intended as classical solutions to the fixed point equations

and as such have to be integrated over. This result is in agreement with a proposal made

by Nekrasov [32] for the calculation of the N = 2 partition function on compact toric

manifolds.1

Let us notice that another important issue arising in the study of N = 2 supersymmet-

ric gauge theories on compact manifolds is the appearance of extra gaugino zero modes. As

we will show in the following, a proper treatment of these modes provides the prescription

for the contour integration on the Coulomb branch parameters aρ.

On the mathematical side, the difference between the non-compact and compact cases

is that in the former one has to consider the moduli space of framed instantons and corre-

1N = 2 theories on toric Kähler manifolds have been recently analyzed also in [33].
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spondingly of framed torsion-free sheaves for its compactification, while in the latter there

is no framing. We recall that the framing correspond to a trivialization of the fiber at a

point, which implies that the moduli space includes global gauge transformations acting on

the framing. Framed instanton moduli spaces are hyperkähler and have deep links to repre-

sentation theory of infinite dimensional Lie algebrae and Geometric Invariant Theory [34].

They are much more amenable to equivariant localization than the corresponding unframed

moduli spaces. On the other hand, the latter bring important information, as for example

Donaldson invariants are formulated via intersection theory on them. In [32] Nekrasov

conjectured that the integration over the Coulomb branch parameters in the N = 2 parti-

tion function over compact toric surfaces produces precisely the corresponding Donaldson

invariants. In this paper we will prove this conjecture for U(2) gauge theories on P2 by

specifying the integration contour and by spelling out the conditions imposed on the fixed

point data by the stability conditions on the equivariant sheaves. For U(2) gauge theory

the contour integral evaluation corresponds to taking the residue at aρ = a1 − a2 = 0, in

line with Witten’s arguments [24]. We will find that for odd first Chern class the N = 2

generating function of local and surface observables indeed calculate the equivariant Don-

aldson invariants obtained in [35]. This follows by comparing our formula (3.43) with the

results of theorem 6.15 in [35] as explained in detail in section 3.5. Let us underline that

our approach holds also in presence of reducible connections, which contribute for even

first Chern class, where the method of [35] does not apply. We calculate the equivariant

Donaldson polynomials in this case too and we match their non-equivariant limit with the

SU(2) Donaldson polynomials computed in [36]. Let us remark that the pure partition

functions are expected to count the zero dimensional components of the instanton moduli

space [24]. Our findings are in full agreement with this expectation implying non trivial

cubic identities on the Nekrasov partition functions.

We also consider N = 2∗ gauge theory, that is Super-Yang-Mills theory in presence of a

hypermultiplet of mass M . This theory interpolates between pure N = 2 in the decoupling

limit M →∞ and N = 4 for M → 0. In the latter case the partition function is expected

to be the generating function of the Euler characteristics of the moduli space of unframed

sheaves. We provide a check of this for U(2) gauge theories on P2. For odd first Chern

class we get results in agreement with [37], and for even first Chern class we compare with

the results obtained by Yoshioka using finite field methods [38, 39].

The paper is organised as follows. In section 2 we discuss the general features of

N = 2 gauge theories on complex four-manifolds and discuss equivariant observables. We

then specialise to compact toric surfaces discussing the supersymmetric fixed points and

the contour integral formula obtained by properly treating the fermionic zero-modes. The

master formula for the generating function of local and surface observables is presented in

equation (3.9), specialising to U(2) gauge theories on P2. In section 3 we focus on U(2)

Super Yang-Mills on P2. We study in detail the analytic structure of the integrand by

making use of Zamolodchikov’s recursion relations for Virasoro conformal blocks. We then

evaluate explicitly the contour integral. Our main results are equation (3.43) and (3.70) for

odd and even first Chern class respectively. We then proceed to the non-equivariant limit

ε1, ε2 → 0 and compare with the results in the mathematical literature. In subsection 3.8
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we discuss the calculation of the pure partition function on P2 which implies remarkable

cubic identities for the Nekrasov partition function. In section 4 we study the N = 2∗

theory and discuss the zero mass limit which we find to calculate the generating function

of Euler characteristics of moduli spaces of rank-two sheaves. Our main result is (4.20)

which includes also the contribution of strictly semi-stable sheaves. We finally discuss the

(mock-)modular properties of the N = 4 partition function. Section 5 contains a discussion

on open problems and appendix A describes the relation between the supersymmetric fixed

point data and Klyachko’s classification of semi-stable equivariant sheaves.

2 N = 2 gauge theories on complex surfaces and Hermitian Yang Mills

bundles

In this section we discuss U(N) N = 2 gauge theories on complex surfaces and specify the

results of [23] to toric surfaces.

Four dimensional N = 2 gauge theories can be considered on any orientable four

manifold M upon a proper choice of the R-symmetry bundle [24]. The sum over the

physical vacua contributing to the supersymmetric path-integral depends of course on the

specific gauge group at hand. In the case of SU(N) gauge theories, these are completely

described in terms of anti-selfdual connections F+ = 0, once the orientation on M is

chosen. In the U(N) case extra contributions arise from gauge bundles with non trivial

first Chern class. Indeed, beyond anti-instantons, one has to consider gauge bundles with

first Chern class aligned along H+(X,Z). This led in [23] to consider the gauge fixing of the

supersymmetric path-integral in a split form, where the U(1) sector is treated separately.

If M is an hermitian manifold, an equivalent procedure is given by gauge fixing the path-

integral to Hermitian-Yang-Mills (HYM) connections

F (2,0) = 0

gīFī = λ1l
(2.1)

where F (2,0) is the (2, 0) component of the gauge curvature in a given complex structure,

g is the hermitian metric on M and λ is a real parameter.

If the manifold M is Kähler, then (2.1) reads

F (2,0) = 0

ω ∧ F = λω ∧ ω1l
(2.2)

where λ =
2π
∫
M c1(E)∧ω

r(E)
∫
M ω∧ω = 2πµ(E)∫

M ω∧ω and µ(E) is the slope of the vector bundle. Here

r(E) = N is the rank of E and c1(E) = 1
2πTrFE its first Chern class.

In the rest of the paper we consider Kähler four manifolds admitting a U(1) action

with isolated fixed points. In this case, as shown in [23], one can improve the supersym-

metric localization technique by making it equivariant with respect to such a U(1) action

and localize on point-like instantons. The resulting partition function is obtained by a

suitable gluing of Nekrasov partition functions which includes the sum over fluxes and the

integration over the Coulomb parameters.
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In the twisted variables, the supersymmetry reads as

QA = Ψ, QΨ = iιV F +DΦ, QΦ = iιV Ψ,

QΦ̄ = η, Qη = i ιVDΦ̄ + i[Φ, Φ̄],

Qχ+ = B+, QB+ = iLV χ+ + i[Φ, χ+].

(2.3)

In (2.3) ιV is the contraction with the vector field V and LV = DιV + ιVD is the covariant

Lie derivative. On a Kähler four manifold self-dual forms split as

χ+ = χ(2,0) ⊕ χ(0,2) ⊕ χω and B+ = B(2,0) ⊕B(0,2) ⊕ b ω. (2.4)

Let us notice that the supercharge (2.3) manifestly satisfies Q2 = iLV +δgauge
Φ . Consistency

of the last line implies that the V -action preserves the self-duality of B+ and χ+, that is

LV ? = ?LV , where ? is the Hodge-? and LV = dιV +ιV d is the Lie derivative. This condition

coincides with the requirement that V generates an isometry of the four manifold.

The supersymmetric Lagrangian we consider is

L =
iτ

4π

(
TrF ∧ F − cTrF ∧ TrF

)
+ γ ∧ TrF +QV (2.5)

where c is a constant,2 τ is the complexified coupling constant, γ ∈ H2(M) is the source

for the c1 of the vector bundle and V is a gauge invariant localizing term, chosen in order

to implement the Hermitean-Yang-Mills equations, namely

V = −Tr
[
iχ(0,2) ∧ F (2,0) + iχ (ω ∧ F − λω ∧ ω1l) + Ψ ∧ ?(QΨ)† + η ∧ ?(Qη)†

]
. (2.6)

The integration over B(0,2) and b in (2.5) implies the Hermitean Yang-Mills equa-

tions (2.2) as delta-gauge conditions. In particular, the path integral over the field b

ensures the semi-stability of the bundle.3 Recall that [43] a bundle E is said to be (slope)

semistable if for every proper sub-bundle G ⊂ E, the slope of the bundle µ(E), defined

below (2.2), is greater or equal than the slope of the sub-bundle µ(G). If it is stricly greater

E is said to be stable. If the bundle E admits a sub-bundle G, then the b field has an

integration mode proportional to the projector onto G, namely ib0ΠG. The connection

splits as

AE =

(
AG n

n† ?

)
(2.7)

and the curvature accordingly as

FE =

(
FG + n ∧ n† ?

? ?

)
. (2.8)

2Different values of c in (2.5) produce different expansion in the final formula. The usual choice is

c = 0, which produces an expansion in the instaton number, or equivalently in the second Chern character

ch2 = c22 − 1
2
c21 of the bundle. The choice c = 1 produces an expansion in the second Chern class c2 and

the choice c = 1
2

produces an expansion on the discriminant D of the bundle. In comparing the result of

the paper with the literature we will use the last two choices.
3The semi-stability of the bundle and HYM condition are actually equivalent. This is the so called

Hitchin-Kobayashi correspondence, that was proven in [40–42].
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Let us focus on the integral along the above integration mode. The corresponding term in

the action comes from ∫
M

Tr [b (ω ∧ FE − λω ∧ ω1lE)] (2.9)

and reads

ib0

∫
M

Tr [ΠG (ω ∧ FE − λω ∧ ω1lE)] = ib0

[
2πr(G) (µ(G)− µ(E)) +

∫
M
|n|2

]
(2.10)

Therefore the path integral includes the term∫
db0e

ib0[2πr(G)(µ(G)−µ(E))+
∫
M |n|

2] ∼ δ
(

2πr(G) (µ(G)− µ(E)) +

∫
M
|n|2

)
(2.11)

which, because of
∫
M |n|

2 ≥ 0, implies that the partition function is supported on vector

bundles E such that

µ(E) ≥ µ(G) (2.12)

for any sub-bundle G, that is on semi-stable vector bundles. Notice that this condition

depends on the point in the Kähler cone defining the polarization ω.

2.1 Equivariant observables

In this subsection we discuss equivariant observables in the topologically twisted gauge

theory. These are obtained by the equivariant version of the usual descent equations.

The scalar supercharge action can be written as the equivariant Bianchi identity for

the curvature F of the universal bundle as [44]

DF ≡ (−Q+D + iιV ) (F + ψ + Φ) = 0, (2.13)

where D is the covariant derivative. Therefore, for any given ad-invariant polynomial P
on the Lie algebra of the gauge group, we have

QP(F) = (d+ iιV )P(F) (2.14)

and the observables are obtained by intersection of the above with elements of the equiv-

ariant cohomology of the manifold, Ω ∈ H•V (M) as

O (Ω,P) ≡
∫

Ω ∧ P(F). (2.15)

As far as the U(N) gauge theory is concerned, we can consider the basis of single trace

observables Pn(x) = 1
n Trxn with n = 1, . . . N .

The equivariant cohomology splits in even and odd parts which can be discussed sep-

arately. We focus on the relevant observables corresponding to the even cohomology. The

two cases to discuss in the U(2) theory are n = 1, 2. The first
∫
M Tr F ∧ Ω is the source

term for the first Chern class and for the local observable Tr Φ(P ), where P is a fixed point

of the vector field V . The second is

1

2

∫
M

Ω[even] ∧ Tr F2 (2.16)

This generates

– 6 –
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• the second Chern character of the gauge bundle
∫
M Tr(F ∧F ) for Ω = 1 (the Poincaré

dual of M),

• surface observables for Ω = ω+H, where ω is a V-equivariant element in H2(M) and

H a linear polynomial in the weights of the V-action satisfying dH = ιV ω. Namely∫
M
ω ∧ Tr

(
ΦF + Ψ2

)
+H Tr(F ∧ F ) (2.17)

• for Ω = (ω+H)∧ (ω′+H ′) +K, with ω+H and ω′+H ′ as in the previous item and

K a quadratic, coordinate independent, polynomial in the weights of the V-action,

we get∫
M
ω ∧ ω′Tr Φ2 + (ωH ′ +H ′ω) ∧ Tr

(
ΦF +

1

2
Ψ2

)
+ (HH ′ +K) Tr(F ∧ F ) (2.18)

• local observables at the fixed points Tr Φ2(P ), for Ω = δP the Poincaré dual of any

fixed point P under the V -action.

Let us remark that local observables in the equivariant case depend on the insertion

point via the equivariant weights of the fixed point. This is due to the fact that the

equivariant classes of different fixed points are distinct. From the gauge theory viewpoint

one has

Tr Φ2(P )− Tr Φ2(P ′) =

∫ P

P ′
ιV Tr

(
ΦF +

1

2
Ψ2

)
+Q[. . .] (2.19)

so that the standard argument of point location independence is flawed by the first term

in the r.h.s.

Indeed the set of equivariant observables is richer than the set of non-equivariant ones.

Also the observables in (2.18) reduce in the non equivariant limit to local observables up

to a volume factor.

The mathematical meaning of these facts is that the equivariant Donaldson polyno-

mials give a finer characterization of differentiable manifolds. The physical one is that the

Ω-background probes the gauge theory via a finer BPS structure.

2.2 Gluino zero modes and contour integral prescription

An issue that we have not analyzed till now is the existence of gluino zero modes and its

consequences in the evaluation of the path integral.

The fermionic fields are the scalar η, the 1-form Ψ and the selfdual 2-form χ+. The

number of zero modes is given by the respective Betti numbers b0 = 1, b1 = 0 and b+2 = 1

times the rank of the gauge group.4 Specifically, the χ+ zero mode is proportional to the

Kähler form ω.

The discussion on the integration on the zero-modes for the complete U(N) theory

is naturally split in the U(1) sector and the SU(N) sector. Actually, the two sectors are

different in nature. The first is related to a global symmetry of the theory while the

second to the structure of the moduli space at the fixed points of the supercharge of the

microscopic theory.

4We remind the reader that b+2 = 1 for all toric surfaces.
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2.2.1 The zero modes in the U(1) sector

The zero modes in the U(1) sector come as a quartet of symmetry parameters of the whole

twisted super-algebra. The c-number BRST charge implementing this shift symmetry is

given by
qA = 0, qΨ = 0, qΦ = κΦ1l, qκΦ = 0,

qΦ̄ = κΦ̄1l, qκΦ̄ = 0, qη = κη1l, qκη = 0,

qχ = κχω1l, qκχ = 0, qB = 0,

(2.20)

and the action of Q on the c-number parameters above is given by

QκΦ = 0, QκΦ̄ = −κη, Qκη = 0, Qκχ = 0, (2.21)

so that {Q, q} = 0. The κ-ghosts have to be supplemented by their corresponding anti-

ghosts κ̄I and Lagrange multipliers λI , with I ∈
{

Φ, Φ̄, η, χ
}

and qκ̄I = λI and qλI = 0.

It is needless to say that Qκ̄I = 0 and QλI = 0.

Notice that qV = 0. The gauge fixing fermion for the U(1) zero modes then reads

ν =
∑
I

κ̄I

∫
M

Tr(I)eω (2.22)

so that the gauge fixing action (Q + q)ν gives a suitable measure to integrate out these

modes as a perfect quartet.

The only U(1) zero mode who survives is that of the B field which is still playing as a

Lagrange multiplier for the HYM equations.

2.2.2 Zero modes in the SU(N) sector and integration contour prescription

In this subsection we show that by correctly treating the issue of gaugino zero modes in

the SU(N) sector we get precise instructions about the integration on the leftover N − 1

Cartan parameters aρ = aα − aβ .

The presence of gaugino zero modes implies a ghost number anomaly that has to be

compensated by the insertion of appropriate supersymmetric terms which cancel the ghost

number excess and soak-up the fermionic zero modes. The path integral as it stands is

indeed undefined and its measure has to be improved. In order to do this we add to the

localizing action the further term

Sgauginos = sQ
∫
M

Tr Φ̄0χ0ω = s

∫
M

Tr
{
η0χ0ω + Φ̄0b0ω

}
. (2.23)

where s is a complex parameter and only the zero modes of the fields enter. The final

result does not depend on the actual value of s as long as s 6= 0. The first term in the

r.h.s. of (2.23) contributes to the ghost number anomaly by one insertion per element in

the Cartan subalgebra of su(N). Once the integral over the N − 1 couples of gluino zero

modes (η0, χ0) is taken, we stay with an insertion of b-field zero mode per su(N) Cartan

element as ∏
ρ

(∫
da dā db0 (sω) esāb0ω

)
ρ

eQV (2.24)

– 8 –
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where ρ spans the su(N) Cartan subalgebra. By renaming ā→ ā/s and letting s→∞ we

then get ∏
ρ

(∫
da dā

∂

∂ā

∫
db0
b0

eāb0ω
)
ρ

eQV|ā=0 . (2.25)

Similar arguments appeared in the evaluation of the low-energy effective Seiberg-Witten

theory [45]. The integrals over the N − 1 zero modes of b are taken by evaluating at b = 0

by Cauchy theorem. This implies that the leftover integral over the Cartan parameters is

a total differential in the Φ̄ zero-mode variables, namely in āρ, so that it gets reduced to

a contour integral along the boundary of the moduli space of solutions of the fixed points

equations that will be discussed in the next subsection.

Let us notice that the way in which we have soaked up the (η, χ) fermionic zero modes

in (2.23) implies that the path integral localizes on configurations satisfying a more general

condition than the Hermitian Yang-Mills equation. This is due to the fact that the b-

field zero modes along the Cartan of su(N) are not playing the role of Lagrange multipliers

anymore. Therefore the gauge fixing condition results to be F+ = ωt, where t is a constant

Cartan element in u(N), instead of (2.2). The former is indeed the condition satisfied by

the supersymmetric fixed points that we will discuss in the next subsection.

2.3 Localization onto the fixed points

The localization proceeds as follows: by setting the fermions to zero, the fixed points of

the supercharge read

ιVDΦ̄ + [Φ, Φ̄] = 0,

iιV F +DΦ = 0,
(2.26)

and their integrability conditions

ιVDΦ = 0,

LV F = [F,Φ].
(2.27)

By using the reality condition for the scalar fields Φ̄ = −Φ† and the first of (2.27), the first

of (2.26) splits in two, that is

ιVDΦ̄ = 0 and [Φ, Φ̄] = 0 (2.28)

which imply that Φ and Φ̄ lie in the same Cartan subalgebra. By reasoning in an analogous

way on the second equation in (2.27), we get that the gauge curvature too is aligned along

the Cartan subalgebra.

We now describe the solution in detail for compact toric manifolds. These latter are

described by their toric fan [46]. The supersymmetry algebra is equivariant with respect

to the maximal torus U(1)N+2, where the first factor is the Cartan torus of the gauge

group and the second is the isometry V of the four manifold.5 In components, labeled by

5We remind the reader that for toric surfaces V generates a (C∗)2-action, which correspond to a com-

plexification of the Ω-background parameters.
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Figure 1. Toric fan of P2. σ` labels the cone of dimension two relative to the `-th C2 coordinates

patch.

α = 1, . . . , N , we have

(F + Φ)α = F point
α + aα +

∑
`

k(`)
α ω(`) (2.29)

that is, F +Φ is the U(1)N+2 equivariant curvature of the bundle. The aα parameters gen-

erate the U(1)N -action. Moreover ω(`) ∈ H2
V (M) is the V -equivariant two-form Poincaré

dual of the equivariant divisor D` corresponding to the `-th vector of the fan (see figure 1).

Let us denote by H(`) the zero-form part of ω(`). We get

Φα = aα +
∑
`

k(`)
α H(`) . (2.30)

The values of Φα at each fixed point P(κ) will be denoted by

a(κ)
α ≡ Φα

(
P(κ)

)
. (2.31)

In (2.29), F point is the contribution of point-like instantons located at the fixed points of

the U(1)2-action. For each of these fixed points we have then an independent contribution

given by the Nekrasov partition function associated to the affine patch where the fixed

point is sitting. In this framework, the contribution of point-like instantons correspond to

the one of ideal sheaves on C2 supported at the fixed points of the U(1)2-action, labeled

by Young diagrams
{
Y

(`)
α

}
.6 We remind the reader that the Chern classes of the point-like

instantons are given by

c
(`)
1 =

N∑
α=1

k(`)
α ,

ch
(`)
2 =

N∑
α=1

∣∣Y (`)
α

∣∣. (2.32)

Summarizing, we find that the localization procedure implies that the partition function is

written as a product of copies of the Nekrasov partition function in the appropriate shifted

variables glued by the integration over the Cartan parameters {aαβ}.
6Locally this compactification can be regarded as a non-commutative deformation in the affine patch

of M .
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The integration contour is specified according to the discussion in the previous sub-

section as follows. Solving the fixed point equations we bounded the field theory phase

to the deep Coulomb branch by declaring Φ and Φ̄ to lie at a generic point in the Car-

tan subalgebra where the gauge symmetry is maximally broken as U(N) → U(1)N . This

implies the integral over (a, ā) to be in CN−1 \ T where T is a tubular neighborhood of

the hyperplanes set ∆ = {aα − aβ = 0}. This choice guarantees maximal gauge symmetry

breaking. Henceforth, by using Stokes theorem in formula (2.25), we find that the complete

partition function is given by a contour integral around the above regions of the leftover

terms in the path integral evaluation. In particular, for N = 2 we find a single contour

integral around the origin in C.

Moreover, the stability condition on the equivariant unframed sheaves induces con-

straints on the allowed values of the fixed points data
{
k

(`)
αβ := k

(`)
α − k

(`)
β

}
. We will

describe in section 3 the details of all this for U(2) gauge theories on P2.

3 Exact partition function on P2 and equivariant Donaldson invariants

Let us denote the homogeneous coordinates of P2 by [z0 : z1 : z2]. The (C∗)2 torus

action, generated by the vector,7 acts on homogeneus coordinates as [z0 : eε1z1 : eε2z2].

In local coordinates (x(`), y(`)) in the three coordinates patches (z` 6= 0) the action is

(eε
(`)
1 x(`), eε

(`)
2 y(`)) with weights

` ε
(`)
1 ε

(`)
2

0 ε1 ε2
1 ε2 − ε1 −ε1
2 −ε2 ε1 − ε2

(3.1)

ordered so that ε
(`)
1 = −ε(`+1)

2 . The fixed points under the V -action are denoted by

P(0) = [1 : 0 : 0], P(1) = [0 : 1 : 0], P(2) = [0 : 0 : 1]. (3.2)

The generators of the global gauge transformation (C∗)N are denoted by ~a = {aα}, α =

1, . . . , N . The v.e.v. of the scalar field Φ is given by specifying (2.30) and (2.31) to P2. The

equivariant extensions of the Fubini-Study two-form ω = i∂∂̄ log(|z0|2 + |z1|2 + |z2|2) are

ω(0) = ω +
ε1|z0|2 + (ε1 − ε2)|z2|2

|z0|2 + |z1|2 + |z2|2

ω(1) = ω +
ε2|z0|2 + (ε2 − ε1)|z1|2

|z0|2 + |z1|2 + |z2|2

ω(2) = ω +
−ε1|z1|2 − ε2|z2|2

|z0|2 + |z1|2 + |z2|2

(3.3)

and satisfy (ιV − d)ω(`) = 0. So that

a(`)
α = aα + k(`)

α ε
(`)
1 + k(`+1)

α ε
(`)
2 (3.4)

7In local coordinates x(0) = z1/z0, y
(0) = z2/z0 in the patch z0 6= 0 the vector has the following expression

V = iε1(x(0)∂x(0) − x̄
(0)∂̄x̄(0)) + iε2(y(0)∂y(0) − ȳ

(0)∂̄ȳ(0)).
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and, setting k
(0)
α ≡ k(3)

α = pα, k
(1)
α = qα and k

(2)
α = rα, we have explicitly, by (3.4) and (3.1)

~a(0) = ~a+ ~pε1 + ~qε2

~a(1) = ~a+ ~q(ε2 − ε1) + ~r(−ε1)

~a(2) = ~a+ ~p(ε1 − ε2) + ~r(−ε2).

(3.5)

The fixed point data on P2 are described in terms of a collection of Young diagrams

{~Y`}, and of integer numbers {~k(`)} ` = 0, 1, 2 describing respectively the (C∗)N+2-invariant

point-like instantons in each patch and the magnetic fluxes of the gauge field, which cor-

respond to the first Chern class c1 as prescribed by (2.32).

The explicit expression at the three fixed points P(`) of the V -equivariant local and

surface observables introduced in section 2.1 is given as follows. By calling for brevity

α = ω +H, p = α′ ∧ α′′ +K (3.6)

where H was defined in formula (2.17), we can write the most general equivariant extension

α as

α = ω +
h|z0|2 + (h− ε1)|z1|2 + (h− ε2)|z2|2

|z0|2 + |z1|2 + |z2|2
, (3.7)

where ω is the Fubini-Study form of P2 and h a linear, coordinate independent, polynomial

in the weights of the V -action. The evaluation at the fixed points of the observables α, p,

with fugacities z, x is8

ı∗P(0)
(zα+ xp) = zh+ xK̃

ı∗P(1)
(zα+ xp) = z(h− ε1) + x(K̃ − h̃ε1 + ε21)

ı∗P(2)
(zα+ xp) = z(h− ε2) + x(K̃ − h̃ε2 + ε22).

(3.8)

The full U(2) partition function on P2 is given by

ZP2

full

(
q, x, z, y ; ε1, ε2

)
=

∑
{k(`)
α }|semi-stable

∮
∆
da

2∏
`=0

ZC2

full

(
q(`) ; a(`), ε

(`)
1 , ε

(`)
2

)
yc

(`)
1 (3.9)

where q = exp(2πiτ) is the exponential of the gauge coupling and q(`) = q e
ı∗P(`)

(αz+px)
is

the one shifted by the observable (3.8) evaluated at the fixed points P(`) of P2. Finally

y is the source term corresponding to the Kähler form tω with t the complexified Kälher

parameter, so that y = e2πt.

The integration in (3.9) realizes an isomorphism between the fixed points of the un-

framed moduli space of equivariant rank two sheaves on P2 and copies of the fixed points

of the framed moduli space on P2. Details of this isomorphism are presented in the explicit

computation below and, in the case of odd c1, reproduce exactly the results of [35].

8We defined h̃ = h′ + h′′, K̃ = K + h′h′′ some new, coordinate independent, polynomial in ε1, ε2 of

degree one and two respectively.
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The stability conditions constraining the fixed point data
{
k

(`)
α

}
’s are obtained by

mapping these latter to the data describing unframed equivariant sheaves in terms of

filtrations as in [47]. More details are provided in appendix A.

The factors appearing in (3.9) are the Nekrasov full partition functions

ZC2

full(q ; a, ε1, ε2) = ZC2

class(q ; a, ε1, ε2)ZC2

1-loop(a, ε1, ε2)ZC2

inst(q ; a, ε1, ε2) (3.10)

whose explicit expressions we report below.

In the following we will compute the integral (3.9) with x = z = 0 (so q(`) = q)

and y = 1. The case with x, z 6= 0, y 6= 1 is a straightforward modification of the calcula-

tions below. In particular if one keeps x, z 6= 0 the result of the integration will give the

generating function for equivariant Donaldson invariants for P2.

3.1 Classical action

The classical part of the partition function coming from (3.10) is given by evaluating (2.5)

on the supersymmetric minima (2.29)

ZP2

class(q ;~a, ε1, ε2)=
2∏
`=0

ZC2

class(q ;~a(`), ε
(`)
1 , ε

(`)
2 )=

2∏
`=0

exp

[
−πiτ

∑2
α=1

(
a

(`)
α

)2−c(∑2
α=1a

(`)
α

)2
ε
(`)
1 ε

(`)
2

]
.

(3.11)

Inserting the values of the equivariant weights (3.1) and (3.5) we obtain

ZP2

class(q ;~a, ε1, ε2) = exp

−πiτ
 2∑
α=1

(pα + qα + rα)2 − c

(
2∑

α=1

pα + qα + rα

)2
 . (3.12)

Since q = exp[2πiτ ] we have

ZP2

class(q ;~a, ε1, ε2) = q
− 1

2

(∑2
α=1(pα+qα+rα)2−c(

∑2
α=1 pα+qα+rα)

2
)

= q−
1
4((1−2c)c21+(p+q+r)2)

(3.13)

where we defined

p = p1 − p2, q = q1 − q2, r = r1 − r2, (3.14)

and c1 =
∑

(`) c
(`)
1 with c

(`)
1 defined in (2.32).

The sum in front of the full partition function can be rewritten as∑
{~p,~q,~r}∈(Z2)3

=
∑
c1∈Z

∑
{p,q,r}∈Z3

p+q+r+c1=even

(3.15)

where we have performed a zeta function regularization of the sum over two integers, since

the full partition function will depend only on p, q, r, c1. Moreover is enough to consider

only the cases c1 = {0, 1}, because we are considering a rank two bundle, therefore the

moduli spaces of two bundles with both c1 = 0 (or 1) mod 2 are isomorphic after the twist

by a line bundle.9

9The case c1 = 0 or equivalently c1 = even hides some subtleties since the bundle can be reducible and

the moduli space becomes singular [48]. We will in fact treat this case separately.
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As discussed in section 2 the Hermitian-Yang-Mills equation implies semi-stability of

the bundle. This in turn consists in some restrictions on the integers {k} in the summation

of (3.9) which will be discussed in subsections 3.5, 3.6 and in the appendix A.

3.2 One-loop contribution

The one-loop contribution in (3.9) is given by

ZP2

1-loop(~a, ε1, ε2) =
2∏
`=0

ZC2

1-loop(~a(`), ε
(`)
1 , ε

(`)
2 ) =

2∏
`=0

exp

[
−
∑
α 6=β

γ
ε
(`)
1 ,ε

(`)
2

(a
(`)
αβ)

]
(3.16)

where aαβ := aα − aβ and the double gamma-function is defined as

γε1,ε2(x) =
d

ds

∣∣∣
s=0

1

Γ(s)

∫ ∞
0

dt ts−1 e−tx

(1− eε1t)(1− eε2t)
, (3.17)

with Re(ε1) and Re(ε2) positive. We have aαβ = {a12, a21} =: {a,−a} and similarly

pαβ =: {p,−p} etc.10 Inserting the values of the equivariant weights (3.1), (3.5) and using

the definition of γε1,ε2 (3.17) we can write

ZP2

1-loop =
∏
±

exp

[
− d

ds

∣∣∣∣
s=0

1

Γ(s)

∫ ∞
0

dt ts−1e−t(±a) x±(q+r)y±(p+r)

(1− x)(1− y)(x− y)
P±(x, y)

]
, (3.18)

where we defined11 x := eε1t and y := eε2t , and P±(x, y) is a rational function in x and y

P±(x, y) = x∓Ny∓N (x− y) + x∓Ny2(1− x)− x2y∓N (1− y) (3.19)

with N := p + q + r an integer with the same parity of c1 (3.15). The values of P±(x, y)

on x = 1, y = 1 and x = y are zero, this means that in those points P±(x, y) has zeros

which cancel the denominators (1− x)−1, (1− y)−1, (x− y)−1 in (3.18). Making use of the

identity

xN − yN = (x− y)

N−1∑
i=0

xiyN−1−j (3.20)

we arrive at the following expression for P±(x, y):

• N ≥ 0.

P+(x, y) = x−Ny−N (1− x)(1− y)(x− y)
N∑
i=0

yi
N−i∑
j=0

xj ,

P−(x, y) =



(1− x)(1− y)(x− y) N = 0

0 N = 1, 2

xN−1yN−1(1−x)(1−y)(x− y)

N−3∑
i=0

y−i
N−3−i∑
j=0

x−j N > 2

(3.21)

10Note that this differs from the usual convention aαβ =: {2a,−2a}.
11This choice of analytic continuation implies that γε1ε2(x) has a branch cut for x > 0.
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• N < 0.

P+(x, y) =


0 N = −1,−2

x|N |−1y|N |−1(1− x)(1− y)(x− y)

|N |−3∑
i=0

y−i
|N |−3−i∑
j=0

x−j N < −2

P−(x, y) = x−|N |y−|N |(1− x)(1− y)(x− y)

|N |∑
i=0

yi
|N |−i∑
j=0

xj .

(3.22)

Inserting this result back in (3.18) and using the definition of the Gamma function:

Γ(s) =

∫ ∞
0

dt ts−1e−t (3.23)

we obtain for ZP2

1-loop of (3.16) the following results

• N = 0

ZP2

1-loop = −
(
a+ pε1 + qε2

)2
(3.24)

• N > 0

ZP2

1-loop =

N∏
i=0

N−i∏
j=0

(
a+ (p− j)ε1 + (q − i)ε2

)
·

N−3∏
i=0

N−3−i∏
j=0

�

−
(
a+ (p− 1− j)ε1 + (q − 1− i)ε2

) (3.25)

• N < 0

ZP2

1-loop =

|N |∏
i=0

|N |−i∏
j=0

−
(
a+ (p+ j)ε1 + (q + i)ε2

)
·

|N |−3∏
i=0

|N |−3−i∏
j=0

�(
a+ (p+ 1 + j)ε1 + (q + 1 + i)ε2

) (3.26)

where the symbols � over the products in the second lines of formulas (3.25), (3.26) mean

that those products are equal to 1 if |N | < 3. The only relevant case is actually that with

p, q, r ∈ Z≥0. This can be seen by a direct computation which shows that the final result

does depend on the absolute values of p, q, r only. Therefore from now on we assume N ≥ 0.

3.3 Instanton contribution

The instanton contribution in (3.9) is given by

2∏
`=0

ZC2

inst(q ;~a(`), ε
(`)
1 , ε

(`)
2 ) (3.27)
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where ZC2

inst is the Nekrasov partition function defined as follows. Let Y = {λ1 ≥ λ2 ≥ . . . }
be a Young diagram, and Y ′ = {λ′1 ≥ λ′2 ≥ . . . } its transposed. λi is the length of the i-

column and λ′j the length of the j-row of Y . For a given box s = {i, j} we define respectively

the arm and leg length functions

AY (s) = λi − j, LY (s) = λ′j − i. (3.28)

Note that these quantities can also be negative when s does not belong to the diagram

Y . The fixed points data for each patch are given by a collection of Young diagrams
~Y (`) = {Y (`)

α }, and the instanton contribution is [12, 13, 49]

ZC2

inst(q ;~a, ε1, ε2) =
∑
{Yα}

q|
~Y |zvec(~a, ~Y , ε1, ε2) (3.29)

where q = exp(2iπτ) and

zvec(~a, ~Y , ε1, ε2) =
N∏

α,β=1

∏
s∈Yα

(
aβα − LYβ (s)ε1 + (AYα(s) + 1)ε2

)−1

×
(
aαβ + (LYβ (s) + 1)ε1 −AYα(s)ε2

)−1
.

(3.30)

3.4 Analytic structure of the integrand

In order to integrate the full partition function (3.9) along a we need to study the analytic

structure of the integrand.

The instanton partition function (3.29) has simple poles at

a ≡ a12 = mε1 + nε2, m, n ∈ Z , m · n > 0. (3.31)

This behavior can be displayed explicitly by the Zamolodchikov’s recursion relation [50]

which was analyzed for gauge theories in [51]. In the evaluation of the integral it will be

very useful to write it as

Zinst

(
q; a, ε1, ε2

)
= 1−

∞∑
m,n=1

qmnRm,n Zinst (q;mε1 − nε2, ε1, ε2)(
a−mε1 − nε2

)(
a+mε1 + nε2

) (3.32)

where

Rm,n = 2
m∏

i=−m+1

n∏
j=−n+1︸ ︷︷ ︸

(i,j) 6={(0,0),(m,n)}

1(
iε1 + jε2

) . (3.33)

Therefore the product of the three instanton partition functions coming from the three

patches

Zinst

(
q; a(0), ε1, ε2

)
Zinst

(
q; a(1),−ε2, ε1 − ε2

)
Zinst

(
q; a(2), ε2 − ε1,−ε1

)
(3.34)

displays a polar structure as depicted in figure 2. The lattice12 (x, y) = (iε1, jε2) i, j ∈ Z
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3

1

111

1

1

(−p,−q)

(−p, p+ r)

(q + r,−q)

ε2

ε1

simple pole1

triple pole3

no pole/zero

Figure 2. Poles of instanton partition function.

is separated in seven regions by three straight lines

x = −p, y = −q, y = −x+ r. (3.35)

In the interior of the triangle TI = {(−p,−q), (q+r,−q), (−p, p+r)} formed by these three

lines there are triple poles. Along the three lines there are simple poles only in the segment

strictly contained between two vertices of the triangle. In all the other points of the lattice

there are simple poles.

In the analysis of the one-loop contribution one can see13 that the only relevant case

is N > 0. Looking at (3.25) one can see that this contributes with double zeros in the

interior of the triangle TI (which cancel the multiplicity of the poles of the instanton part)

and simple zeros along the perimeter of TI (which cancel the simple poles of the instanton

part on the edges of the triangle).14 The positions of the zeroes of the one-loop part is

described in figure 3. The overall polar structure of the full partition function is drawn in

figure 4: there are simple poles in all the points of the lattice that are not along the three

straight lines (3.35). This implies that the integration of Zfull will be given by the sum of

the residues of simple poles inside the contour of integration ∆ = ∂C given in (3.9)∮
∂C
Zfull(q ; a, ε1, ε2)da ∝

∑
(i,j)∈C

Res
(
Zfull(q; a, ε1, ε2)

∣∣a = iε1 + jε2
)

=
∑

(i,j)∈C

lim
a→iε1+jε2

(a− iε1 − jε2)Zfull(q; a, ε1, ε2),
(3.36)

and from the discussion in section 2.2.2 the only residue to evaluate is the one relative to

the pole at the origin.

12We consider ε1, ε2 to be incommensurable.
13Indeed in the case N = 0 the integrand in (3.9) does not display any pole at the origin.
14Of course if N < 3 there is none interior of the triangle, so only simple poles.

– 17 –



J
H
E
P
0
7
(
2
0
1
6
)
0
2
3

-2 -1

(−p,−q)

(−p, p+ r)

(q + r,−q)

ε2

ε1

simple zero-1

double zero-2

no pole/zero

Figure 3. Poles of one-loop partition function.

1

1

111

1

1

-1

-1

-1
(−p,−q)

(−p, p+ r)

(q + r,−q)

ε2

ε1

simple pole1

simple zero-1

no pole/zero

Figure 4. Poles of the full partition function.

3.5 Exact results for odd c1

Now we can perform the integration by residues evaluation as anticipated in (3.36). We are

focusing on the case with c1 = 1, the other case c1 = 0 is more subtle and will be studied

in a separate section.

From the analysis of the previous section we know that the full partition function has

a pole at the origin only if the integers p = p12, q = q12, r = r12 are strictly positive.

Moreover we have to impose the stability conditions, which are discussed in the appendix,

see (A.13). These, together with p+ q + r + c1 = even imply that the integers p, q, r have
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to satisfy strict triangle inequalities, namely

p+ q > r > 0, p+ r > q > 0, q + r > p > 0. (3.37)

Using the expressions for the classical (3.13), one-loop (3.25) and instanton (3.32) partition

functions, we can put all together (details are given in section 3.5.1) obtaining as the final

result of the integration

ZP2

N=2(q ; ε1, ε2)
∣∣
c1=1

=

= q−
1
4

(1−2c)
∑
{p,q,r}

q−
1
4

(p2+q2+r2−2pq−2pr−2qr)
∏
{(i,j)}

1

iε1 + jε2

Zinst

(
q; a(0)

res , ε1, ε2
)
Zinst

(
q; a(1)

res , ε2 − ε1,−ε1
)
Zinst

(
q; a(2)

res ,−ε2, ε1 − ε2
) (3.38)

where

• the sum is over positive integers p, q, r satisfying the triangle inequality (3.37) and

also p+ q + r = odd,

• the product is over the points of the lattice (i, j) ∈ (D(p,q,r) ∩ Z2) \ (0, 0); where the

regions D(p,q,r) are the intersections of two triangles T1 and T2, one of side p+ q + r

and the other of side p+ q + r − 3:

T1 = {(−p,−q), (q + r,−q), (−p, p+ r)},
T2 = {(p− 1, q − 1), (−q − r + 2, q − 1), (p− 1,−p− r + 2)}.

(3.39)

T1 is delimited by the three straight lines

x = −p, y = −q, y = −x+ r. (3.40)

T2 is delimited by the three straight lines

x = p− 1, y = q − 1, y = −x− r + 1. (3.41)

• we used the following notation

a(0)
res = pε1 − qε2,

a(1)
res = q(ε2 − ε1)− r(−ε1),

a(2)
res = r(−ε2)− p(ε1 − ε2).

(3.42)

We can compare the expression (3.38) with theorem 6.15 in [35]. Indeed, (3.38) coincide

with the formula in [35] with x, z set to zero. Indeed the region D(p,q,r) defined above

coincides with the one in Lemma 6.12 of [35].

To reproduce the full generating function of equivariant Donaldson invariant in [35]

one should repeat the computation and the integration of ZP2

full with x, z 6= 0 in (3.9). This

implies a light modification in the calculations, namely one should replace q with q(`) in

every copy of ZC2

full, with q(`) defined below (3.9). Moreover we need to expand in the
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discriminant of the bundle (see (A.9) in appendix A), that is choosing c = 1
2 in (2.5). The

result in this case is

ZP2

N=2(q, x, z, ε1, ε2)
∣∣
c1=1

=

=
∑
{p,q,r}

q−
1
4

(p2+q2+r2−2pq−2pr−2qr) exp

(
− 1

4

2∑
`=0

(a
(`)
res)2 ı∗P(`)

(αz + px)

ε
(`)
1 ε

(`)
2

) ∏
{(i,j)}

1

iε1 + jε2

Zinst

(
q(0); a(0)

res , ε1, ε2
)
Zinst

(
q(1); a(1)

res , ε2 − ε1,−ε1
)
Zinst

(
q(2); a(2)

res ,−ε2, ε1 − ε2
)

(3.43)

where sum and product are the same of (3.38). Since q = Λ4, formula (3.43) matches

completely with the theorem 6.15 of [35].15

3.5.1 Proof of (3.38)

We evaluate the residue of Zfull at a = 0, namely

a(0) = pε1 + qε2

a(1) = q(ε2 − ε1) + r(−ε1)

a(2) = p(ε1 − ε2) + r(−ε2).

(3.44)

We know from section 3.4 that p, q, r are strictly positive. Therefore we see from (3.31)

and (3.34) that the three instanton partition functions have a simple pole each, which

identifies the region with triple poles in figure 2. Moreover

p, q, r ≥ 1 ⇒ N = p+ q + r ≥ 3 (3.45)

so we get a double zero from the one-loop part. Using (3.32) the instanton part is

ZP2

inst =

1−
∞∑

m,n=1

qmnR
(0)
m,n Zinst (q;mε1 − nε2, ε1, ε2)(

a(0) −mε1 − nε2
)(
a(0) +mε1 + nε2

)


·

1−
∞∑

m,n=1

qmnR
(1)
m,n Zinst (q;m(ε2 − ε1)− n(−ε1), ε2 − ε1,−ε1)(

a(1) −m(ε2 − ε1)− n(−ε1)
)(
a(1) +m(ε2 − ε1) + n(−ε1)

)


·

1−
∞∑

m,n=1

qmnR
(2)
m,n Zinst (q;m(−ε2)− n(ε1 − ε2),−ε2, ε1 − ε2)(

a(2) −m(−ε2)− n(ε1 − ε2)
)(
a(2) +m(−ε2) + n(ε1 − ε2)

)


(3.46)

where similarly to (3.33)

R(`)
m,n = 2

m∏
i=−m+1

n∏
j=−n+1︸ ︷︷ ︸

(i,j) 6={(0,0),(m,n)}

1(
iε

(`)
1 + jε

(`)
2

) . (3.47)

15To be meticulous in [35] there is also an extra factor Λ−3 because that is a generating function in

the dimension of the moduli space of unframed instantons, that for a generic metric is precisely dim =

2pq + 2pr + 2qr − p2 − q2 − r2 − 3.
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2p− 1

2q
−

1

U0

(p, q)

ε2

ε1

2p− 1

2
r
−

1

U2

(p,−p− r)

ε2

ε1

2r − 1

2q
−

1

U1

(−q − r, q)

ε2

ε1

Figure 5. Regions U`.

The triple pole is obtained by picking respectively from the three sums the terms (m =

p, n = q), (m = q, n = r), (m = r, n = p) giving

ZP2

inst = − 1

a3
qpq+pr+qr R̃(0)

p,q R̃
(1)
q,r R̃

(2)
r,p ZRes +O

(
1

a2

)
(3.48)

where

R̃(`)
m,n =

1

a(`) +mε
(`)
1 + nε

(`)
2

R(`)
m,n (3.49)

and we defined

ZRes =Zinst

(
q; pε1 − qε2, ε1, ε2

)
Zinst

(
q; q(ε2 − ε1)− r(−ε1), ε2 − ε1,−ε1

)
Zinst

(
q; r(−ε2)− p(ε1 − ε2),−ε2, ε1 − ε2

)
.

(3.50)

Note that ZRes is equal to the last line of (3.38).

When calculated at the point a = 0 the three factors R̃(`) can be rewritten as

R̃(`) =
∏

(i,j)∈U`\(0,0)

1(
iε1 + jε2

) , (3.51)

where the three regions U` are depicted in figure 5 and are defined as:

• U0 is a rectangle 2p− 1× 2q − 1 delimited by the four straight lines

x = −p+ 1, x = p, y = −q + 1, y = q. (3.52)

• U1 is a parallelogram delimited by the four straight lines

y = −q + 1, y = q, y = −x− r, y = −x+ r − 1. (3.53)

• U2 is a parallelogram delimited by the four straight lines

x = −p+ 1, x = p, y = −x− r, y = −x+ r − 1. (3.54)
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N = p+ q + r

V1

(p, q)

(p,−p− r)

(−q − r, q)

ε2

ε1

N − 3

V2

(−p+ 1,−q + 1)

(−p+ 1, p+ r − 2)

(q + r − 2,−q + 1)

ε2

ε1

Figure 6. Regions V1, V2.

Since N ≥ 3 (3.45), from (3.25) we get for the one-loop part

ZP2

1-loop =
N∏
i=0

N−i∏
j=0

(
a+(p−j)ε1+(q−i)ε2

)N−3∏
i=0

N−3−i∏
j=0

−
(
a+(p−1−j)ε1+(q−1−i)ε2

)
. (3.55)

The double zero in a = 0 is hidden in the products

ZP2

1-loop = −a2
N∏
i=0

N−i∏
j=0︸ ︷︷ ︸

(i,j) 6=(q,p)

(
a+(p−j)ε1+(q−i)ε2

) N−3∏
i=0

N−3−i∏
j=0︸ ︷︷ ︸

(i,j) 6=(q−1,p−1)

−
(
a+(p−1−j)ε1+(q−1−i)ε2

)
.

(3.56)

When evaluated in a = 0 the two products in (3.56) can be rewritten as∏
(i,j)∈V1\(0,0)

(
iε1 + jε2

) ∏
(i,j)∈V2\(0,0)

(
iε1 + jε2

)
(3.57)

where V1, V2 are two triangles depicted in figure 6 and defined as:

• V1 is the triangle with vertices {(p, q), (−q− r, q), (p,−p− r)}. It is delimited by the

three straight lines

x = p, y = q, y = −x− r. (3.58)

• V2 is the triangle with vertices {(−p+1,−q+1), (q+r−2,−q+1), (−p+1, p+r−2)}.
It is delimited by the three straight lines

x = −p+ 1, y = −q + 1, y = −x+ r − 1. (3.59)

The residue evaluation is therefore

Res
(
Zfull(q; a, ε1, ε2)

∣∣a = 0
)

= lim
a→0

aZfull(q; a, ε1, ε2) (3.60)

= q−
1
4

(1−2c)q−
1
4

(p+q+r)2
∏

(i,j)∈V1\(0,0)

(
iε1 + jε2

) ∏
(i,j)∈V2\(0,0)

(
iε1 + jε2

)
· qpq+pr+qr

∏
(i,j)∈U0\(0,0)

1(
iε1 + jε2

) ∏
(i,j)∈U1\(0,0)

1(
iε1 + jε2

) ∏
(i,j)∈U2\(0,0)

1(
iε1 + jε2

)ZRes(q).
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Comment: it is simple to verify that the number of points different from (0, 0) in the

regions U` ∩ Z2 and V1,2 ∩ Z2 sum together to an even number. This means that the total

product over these regions in (3.60) is invariant under the reflection (i, j)→ (−i,−j).
The final result (3.38) is recovered by imposing the stability conditions (3.37) on (3.60).

The detailed derivation of these conditions is performed in appendix A. Due to the strict

triangle inequality we have

U0 ∩ U1 ∩ U2 = U0 ∩ U1 = U0 ∩ U2 = U1 ∩ U2 = V1 ∩ V2; (3.61)

and

(U0 ∪ U1 ∪ U2) ∩ Z2 = (V1 ∪ V2) ∩ Z2. (3.62)

This means that (3.60) reduces to

Res
(
Zfull(q; a, ε1, ε2)

∣∣a = 0
)

= q−
1
4

(1−2c)− 1
4

(p2+q2+r2−2pq−2pr−2qr)
∏

(i,j)∈[(V1∩V2)∩Z2]\(0,0)

1

(iε1 + jε2)
ZRes(q) (3.63)

Moreover we see from (3.39), (3.40), (3.41) and (3.58), (3.59) that V1 = T 1, V2 = T 2

where the bar indicates the reflection of the two axis highlighted above. Therefore the

intersection V1 ∩ V2 is precisely the region D(p,q,r) mirrored through the origin, and from

the above comment this means that (3.63) is equal to (3.38) once summed over all the

(proper) integers p, q, r.

Finally we show (3.61) (3.62). Eq.(3.61) comes directly from the construction of the

five regions. Indeed each Ui shares a couple of “delimitation” parallel straight lines with

another Uj and the other parallel couple with the remaining Uk. Moreover each Ui shares

a couple of consecutive non-parallel lines with one Vi and the other couple with the other

Vj . See figure 7. In formulae, we define the region 〈ri, rj , rk . . . 〉 as the convex hull of the

intersection points of all the straight lines ri, rj , rk . . . and call

r1 = {x = −p+ 1}, r2 = {x = p},
r3 = {y = −q + 1}, r4 = {y = q},
r5 = {y = −x+ r − 1}, r6 = {y = −x− r}.

(3.64)

Then we have

U0 = 〈r1, r2, r3, r4〉, U1 = 〈r3, r4, r5, r6〉, U2 = 〈r1, r2, r5, r6〉,
V1 = 〈r2, r4, r6〉, V2 = 〈r1, r3, r5〉,

(3.65)

from which (3.61) directly follows.

We will now show that (3.62) is equivalent to the triangle inequality. Indeed in general

(V1∪V2)∩Z2 can exceed (U0∪U1∪U2)∩Z2, (causing the appearance of terms (iε1 +jε2)+1

in (3.63)). This does not happen if the following three conditions are satisfied:

1. the segment between the vertex (p,−q + 1) of U0 and the vertex (p, r − p− 1) of U2

has distance strictly less than 2 (so that it cannot contain points of the lattice), so

− q + 1− (r − p− 1) < 2 ⇐⇒ −q − r + p+ 2 < 2 ⇐⇒ q + r > p; (3.66)

see figure 8.
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ε2

ε1U0 ∩ U1 ∩ U2

= V1 ∩ V2

r4

r3

r2r1
r6

r5

Figure 7. Intersections of the regions U`, V1, V2.

ε2

ε1

(p,−q + 1)

(p, r − p− 1)

!
< 2

Figure 8. The union V1 ∪ V2 exceed the union U0 ∪ U1 ∪ U2 iff the strict triangle inequality is not

satisfied.

2. the distance between the vertex (−p+ 1, q) of U0 and the vertex (r − q − 1, q) of U1

must be strictly less than 2

− p+ 1− (r − q − 1) < 2 ⇐⇒ −p− r + q + 2 < 2 ⇐⇒ p+ r > q; (3.67)
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3. the distance between the vertex (−p+ 1,−r+ p− 1) of U2 and the vertex (−r+ q −
1,−q + 1) of U1 must be strictly less than 2

√
2

− p+ 1− (−r + q − 1) < 2 ⇐⇒ −p− q + r + 2 < 2 ⇐⇒ p+ q > r. (3.68)

3.6 Exact results for even c1

The case with even first Chern class is subtle because it allows for reducible connections.

Namely the bundle can be written as a direct sum of line bundles, and the presence of this

kind of connections makes the moduli space singular ([48] section 4.2).

Indeed one can saturate one of the three inequalities, and so define a strict semi -stable

bundle, only if the sum of the three integers p, q, r is even

p+ q ≥ r, p+ r ≥ q, q + r ≥ p, (3.69)

e.g. p+ q = r. From the discussion about the supersymmetric fixed point locus of section 2

we know that we should consider also this kind of configurations in the construction of the

partition function.

Technically nothing changes in the calculation since we already noticed that the full

partition function ZP2

full has a pole at the origin only if p, q, r > 0. We have only to add

the contribution saturating (3.69). These kind of configurations have non trivial automor-

phism group, that is the action of a Z2-group.16 Therefore in counting gauge invariant

configurations one has to divide by the order of the automorphism group, namely ]Z2 = 2.

This appears as a coefficient 1/2 on the sum over stricly semi-stable configurations in the

final result. Henceforth the gauge theoretical conjecture for the generating function of

equivariant Donaldson invariants reads,17

ZP2

N=2(q, x, z, ε1, ε2)
∣∣
c1=0

=

( ∑
{p,q,r}

strictly stable

+
1

2

∑
{p,q,r}

strictly semi-stable

)
q−

1
4

(p2+q2+r2−2pq−2pr−2qr)

exp

(
− 1

4

2∑
`=0

(a
(`)
res)2 ı∗P(`)

(αz + px)

ε
(`)
1 ε

(`)
2

) ∏
(i,j)∈V1\(0,0)

(
iε1 + jε2

) ∏
(i,j)∈V2\(0,0)

(
iε1 + jε2

)
∏

(i,j)∈U0\(0,0)

(
iε1 + jε2

)−1
∏

(i,j)∈U1\(0,0)

(
iε1 + jε2

)−1
∏

(i,j)∈U2\(0,0)

(
iε1 + jε2

)−1

Zinst

(
q(0); a(0)

res , ε1, ε2
)
Zinst

(
q(1); a(1)

res , ε2 − ε1,−ε1
)
Zinst

(
q(2); a(2)

res ,−ε2, ε1 − ε2
)

(3.70)

where p + q + r = even, a
(`)
res are defined in (3.42), (i, j) ∈ Z2 and the regions U, V are

defined in (3.52)–(3.53) and (3.58), (3.59). As (3.43), expression (3.70) is obtained taking

c = 1
2 in (2.5). For the stricly stable configurations the products in (3.70) can be rewritten

16A reducible U(2)-bundle splits in the sum of two line bundles as E = L1 ⊕ L2. There is a Z2 gauge

symmetry exchanging the two line bundles as
(

0 1

−1 0

)(
L1 0

0 L2

)(
0 −1

1 0

)
=

(
L2 0

0 L1

)
.

17To obtain the partition function on P2 is enough to put to zero x and z in (3.70) so that also q(`) → q.
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as the product over the regions D(p,q,r) described below (3.43), but this is no more true for

the strictly semi-stable ones (see the discussion at the end of subsection 3.5.1).

The result (3.70) provides a conjecture for equivariant SU(2) Donaldson invariants.

These are not known in the mathematical literature. In the next section we show that in

the limit ε1, ε2 → 0 the formula (3.70) reproduces the SU(2) Donaldson invariants for P2.

Let us underline that imposing the stability condition is crucial in order to get a finite

ε1, ε2 → 0 limit for the gauge theory partition function. Indeed we checked that removing

the stability condition from (3.43) and (3.70) would produce partition functions which are

diverging in that limit.

3.7 Non equivariant limit

In this section we will compare our results in the limit ε1, ε2 → 0 with Donaldson invariants.

We start with the example of formula (3.43), that is known [35] to be the generating

function of equivariant Donaldson invariants in the case of U(2)-bundle with c1 = 1. This

bundle can be reduced to a projective unitary group bundle PU(2) = SU(2)/Z2 = SO(3).

Therefore, in the limit ε1, ε2 → 0 (3.43) should produce SO(3)-Donaldson invariants on P2.

Indeed expanding (3.43) in series, before in q and then in x, z, and performing the limit18

ε1, ε2 → 0, we obtain

lim
ε1,ε2→0

ZP2

full(q, x, z, ε1, ε2)
∣∣
c1=1

=

= 1 + q
1

16

(
19
x2

2!
+ 5

xz2

2!
+ 3

z4

4!

)
+ q2 1

32

(
85
x4

4!
+ 23

x3z2

2! 3!
+ 17

x2z4

2! 4!
+ 19

xz6

6!
+ 29

z8

8!

)
+ q3 1

4096

(
29557

x6

6!
+ 8155

x5z2

2! 5!
+ 6357

x4z4

4! 4!
+ 7803

x3z6

3! 6!
+ 12853

x2z8

2! 8!
+

+26907
xz10

10!
+ 69525

z12

12!

)
+O(q4) (3.71)

this result is in perfect agreement with the literature [36] Theorem 4.4.

In the case c1 = 0 we obtained expression (3.70), in this case the U(2)-bundle can be

reduced to the SU(2)-bundle. With the same procedure as before we can check that the

limit ε1, ε2 → 0 produces SU(2)-Donaldson invariants on P2. Indeed we get

lim
ε1,ε2→0

ZP2

full(q, x, z, ε1, ε2)
∣∣
c1=0

=

= q

(
−3

2
z

)
+ q2

(
−13

8

x2z

2!
− xz3

3!
+
z5

5!

)
+ q3

(
−879

256

x4z

4!
− 141

64

x3z3

3! 3!
− 11

16

x2z5

2! 5!
+

15

4

xz7

7!
+ 3

z9

9!

)
+ q4

(
−36675

4096

x6z

6!
− 1515

256

x5z3

5! 3!
− 459

128

x4z5

4! 5!
+

51

16

x3z7

3! 7!
+

159

8

x2z9

2! 9!
+ 24

xz11

11!
+ 54

z13

13!

)
+ q5

(
−850265

32768

x8z

8!
− 143725

8192

x7z3

7! 3!
− 3355

256

x6z5

6! 5!
− 5

16

x5z7

5! 7!
+

2711

64

x4z9

4!9!
+

+
2251

16

x3z11

3! 11!
+

487

2

x2z13

2! 13!
+ 694

xz15

15!
+ 2540

z17

17!

)
+O(q6) (3.72)

18The limit sets to zero also h, h̃, K̃ in (3.8), being these polynomials in ε1, ε2.
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and we again have agreement with the literature [36] Theorem 4.2. This show that for-

mula (3.70) is indeed a good candidate for the generating function of equivariant Donaldson

invariants for an SU(2)-bundle, even in the cases where reducible connections are present.

3.8 Remarkable identities from the evaluation of the partition function

In this subsection we specify our computation to the partition functions without any inse-

rion of observables.

It was noticed in [24] that the partition function of twisted N = 2 Super Yang-Mills

theory on a differentiable oriented four manifold is vanishing, due to the presence of ψ-

zero modes. These span the tangent space of the instanton moduli space. Therfore the

only case in which the partition function is non vanishing correspondes to zero-dimensional

components of the moduli space. The partition function is a topological invariant count-

ing, with signs dictated by their relative orientation, the number of the above connected

components.

By inspecting our results on the pure partition functions, we obtain results in agreement

with the above observation. This in turn implies some remarkable cubic identities on the

Nekrasov partition function that we display below.

More explicitly, by computing the coefficients of the power series in q of the partition

function (i.e. formula (3.38) for c1 = 1 and formula (3.70) in the limit x, z → 0 for c1 = 0),

one can see that they are almost all equal to zero! Actually only one term survives, namely

p = q = r = 1 that contributes to the c1 = 1 case. So we can rewrite the partition function

for the pure N = 2 theory as

ZP2

N=2(q)
∣∣
c1=1

= q(1+c)/2, ZP2

N=2(q)
∣∣
c1=0

= 0. (3.73)

This result is in full agreement with the expected behavior of the equivariant partition

function in the limit ε1, ε2 → 0. In this limit the partition function is expected to be

a finite function of the gauge coupling. Indeed, looking at (3.38) at fixed power in the

expansion in q, all the dependence on ε1, ε2 appears in the product and in the Z
(`)
inst, the

latter depending on ε1, ε2 in the denominators only. So, to obtain a finite limit for ε1, ε2 → 0,

these terms should sum up to zero but for the term p = q = r = 1 in which case both the

product and the instanton partition functions contribute as 1. A similar argument holds

for the case with c1 = 0. As expected, the non zero term is the contribution of the zero

dimensional moduli space components, since dimM = D− 3 (where the discriminant D is

given in (A.9)).

These results imply the following cubic identities for the Nekrasov partition function

q−
3
4

∑
{p,q,r}

strictly stable

[
q−

1
4

(p2+q2+r2−2pq−2pr−2qr)
∏
{(i,j)}

1

iε1 + jε2
× Zinst

(
q; pε1 − qε2, ε1, ε2

)

Zinst

(
q; q(ε2 − ε1) + rε1, ε2 − ε1,−ε1

)
Zinst

(
q;−rε2 − p(ε1 − ε2),−ε2, ε1 − ε2

)]
= 1

(3.74)
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and ∑
{p,q,r}

strictly stable

+
1

2

∑
{p,q,r}

strictly semi-stable


[
q−

1
4

(p2+q2+r2−2pq−2pr−2qr)
∏
{(i,j)}
{(k,l)}

iε1 + jε2
kε1 + lε2

× Zinst

(
q; pε1 − qε2, ε1, ε2

)
(3.75)

× Zinst

(
q; q(ε2 − ε1) + rε1, ε2 − ε1,−ε1

)
Zinst

(
q;−rε2 − p(ε1 − ε2),−ε2, ε1 − ε2

)]
= 0

where the product on {i, j} and {k, l} in (3.74) and (3.75) can be read from (3.38) and (3.70)

respectively.

4 N = 2? theory and Euler characteristics

In this section we extend our results to the presence of a hypermultiplet in the adjoint

representation with mass M , namely to the so-called N = 2? theory. In the limit M → 0,

one gets N = 4 gauge theory whose partition function is the generating function of the

Euler characteristics of the moduli spaces of unframed semi-stable equivariant torsion free

sheaves [39].

In the following we will compute the full U(2) partition function of the N = 2? theory

on P2 and, after an integration over the v.e.v. of the scalar field, analogous to the one

performed in the previous section, we will take the massless limit checking the relation

with the Euler characteristics computed in [37–39]. The insertion of the hypermultiplet

modifies both the one-loop and the instanton part of the partition function. The one-loop

partition function has the extra factor

ZP2

1-loop,hyp(~a,M, ε1, ε2) =

2∏
`=0

exp

[∑
α 6=β

γ
ε
(`)
1 ,ε

(`)
2

(a
(`)
αβ +M)

]
. (4.1)

Following the same steps as in section 3.2, and assuming again N > 2 as in (3.45), we

obtain similarly to (3.55)

ZP2

1-loop,hyp(~a,M, ε1, ε2) =
N∏
i=0

N−i∏
j=0

(
a+M + (p− j)ε1 + (q − i)ε2

)−1×

N−3∏
i=0

N−3−i∏
j=0

−
(
a−M + (p− 1− j)ε1 + (q − 1− i)ε2

)−1
,

(4.2)

where N = p + q + r with p, q, r defined in (3.14). For the instanton part we should

consider the appropriate recursion relation in the presence of an adjoint hypermultiplet

that generalizes (3.32). The instanton partition function on C2 (3.29) in the presence of

an adjoint hypermultiplet becomes

ZC2

inst,adj(q; a,M, ε1, ε2) =
∑
{Yα}

q|
~Y |zadj(a,M, ~Y , ε1, ε2) (4.3)
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where q = exp(2iπτ) and

zadj =

2∏
α,β=1

∏
s∈Yα

(
aβα−M−LYβ (s)ε1+(AYα(s)+1)ε2

) (
aαβ−M+(LYβ (t)+1)ε1−AYα(t)ε2

)∏
s∈Yα

(
aβα − LYβ (s)ε1 + (AYα(s) + 1)ε2

) (
aαβ + (LYβ (t) + 1)ε1 −AYα(t)ε2

) .

(4.4)

A recursion relation for (4.4) similar to (3.32) is also reported in [51], and has the form

ZC2

inst,adj(q; a,M, ε1, ε2) =
(
η̂(q)

)−2
(M−ε1)(M−ε2)

ε1ε2 H(q; a,M, ε1, ε2), (4.5)

where η̂(q) =
∏∞
n=1(1− qn) and

H(q; a,M, ε1, ε2) = 1−
∞∑

m,n=1

qmnRadj
m,nH (q; mε1 − nε2,M, ε1, ε2)(

a−mε1 − nε2
)(
a+mε1 + nε2

) (4.6)

with

Radj
m,n = 2

 m∏
i=−m+1

n∏
j=−n+1

(
M − iε1 − jε2

) /

(
m∏

i=−m+1

n∏
j=−n+1︸ ︷︷ ︸

(i,j) 6={(0,0),(m,n)}

(
iε1 + jε2

))
. (4.7)

The instanton partition function for P2 is obtained by multiplying (4.5) over the three

patches

ZP2

inst,adj(q; a,M, ε1, ε2) =

2∏
`=0

ZC2

inst,adj(q; a(`),M, ε
(`)
1 , ε

(`)
2 )

=
(
η̂(q)

)−6
2∏
`=0

1−
∞∑

m,n=1

qmnR
adj,(`)
m,n H

(
q; mε

(`)
1 − nε

(`)
2 ,M, ε

(`)
1 , ε

(`)
2

)
(
a(`) −mε(`)1 − nε

(`)
2

)(
a(`) +mε

(`)
1 + nε

(`)
2

)
 .

(4.8)

Before discussing the limit M → 0 let us make a preliminary comment. First of all notice

that, where zadj (4.4) is regular, we have

lim
M→0

zadj(a,M, ~Y , ε1, ε2) = 1. (4.9)

Since ∑
{Yα}

q|
~Y | =

(
η̂(q)

)−2
(4.10)

we get from (4.3), (4.9) and (4.5) that

lim
M→0

H (q; mε1 − nε2,M, ε1, ε2) = 1, (4.11)

because in a = mε1 − nε2 we are away from the poles of H.

We will now compute the residue of Zfull in the origin as we did in section 3.5. We

assume M > 0 and, since we want to take eventually the massless limit, M small enough

not to meet poles of Z1loop,hyp. We recall that

ZN=2?

full = Zclass Z1loop Z1loop,hyp Zinst,adj (4.12)

with components reported in (3.13), (3.55), (4.2) and (4.8) respectively. At the origin:
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• Zclass and Z1loop,hyp have neither poles nor zeros,

• Z1loop has a double zero,

• Zinst,adj has a triple pole.

Indeed we can write

ZP2

1-loop(a, ε1, ε2) = a2
∏

(i,j)∈V1\(0,0)

(a+ iε1 + jε2)
∏

(i,j)∈V2\(0,0)

(−a+ iε1 + jε2).

ZP2

1-loop,hyp(a,M, ε1, ε2) =
∏

(i,j)∈V1

(a+M + iε1 + jε2)−1
∏

(i,j)∈V2

(−a+M + iε1 + jε2)−1.
(4.13)

where the region V1 and V2 are described in (3.58) and (3.59) respectively. Similarly

to (3.48)

ZP2

inst,adj =
(
η̂(q)

)−6 1

a3
qpq+pr+qr R̃adj,(0)

p,q R̃adj,(1)
q,r R̃adj,(2)

r,p HRes(q;M) +O

(
1

a2

)
(4.14)

where

R̃adj,(`)
m,n =

1

a(`) +mε
(`)
1 + nε

(`)
2

Radj,(`)
m,n (4.15)

and

HRes(q;M) =H
(
q; pε1 − qε2,M, ε1, ε2

)
H
(
q; q(ε2 − ε1)− r(−ε1),M, ε2 − ε1,−ε1

)
×H

(
q; r(−ε2)− p(ε1 − ε2),−ε2,M, ε1 − ε2

)
.

(4.16)

By calculating the factors Radj,(`) in a = 0 we get

R̃(`) =

∏
(i,j)∈U`(M − iε1 − jε2)∏
(i,j)∈U`\(0,0)(iε1 + jε2)

, (4.17)

with U` defined in (3.52), (3.54), (3.53).

All in all, ZN=2?

full has a simple pole located at the origin whose residue is19

M−1Res
(
ZN=2?

full (q; a,M, ε1, ε2)
∣∣a = 0

)
= M−1 lim

a→0
aZN=2?

full (q; a,M, ε1, ε2)

= M−1q−
1
4

(1−2c)c21q−
1
4

(p+q+r)2

×
∏

(i,j)∈V1\(0,0)

(
iε1 + jε2

) ∏
(i,j)∈V2\(0,0)

(
iε1 + jε2

) ∏
(i,j)∈V1

(
M + iε1 + jε2

)−1
∏

(i,j)∈V2

(
M + iε1 + jε2

)−1

×M3
∏

(i,j)∈U0\(0,0)

(
M − iε1 − jε2

)(
iε1 + jε2

) ∏
(i,j)∈U1\(0,0)

(
M − iε1 − jε2

)(
iε1 + jε2

) ∏
(i,j)∈U2\(0,0)

(
M − iε1 − jε2

)(
iε1 + jε2

)
×
(
η̂(q)

)−6
qpq+pr+qrHRes(q;M).

(4.18)

19We normalize the integrated partition function with M−1 to get dimensionless quantities.
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Taking the limit M → 0, and using the fact that from (4.11) HRes(q;M)→ 1, we obtain

lim
M→0

1

M
Res
(
ZN=2?

full (q; a,M, ε1, ε2)
∣∣a = 0

)
=
(
η̂(q)

)−6
q−

1
4
c21q−

1
4

(p2+q2+r2−2pq−2pr−2qr),

(4.19)

where 6 = χ(P2) · rank (U(2)).

The complete result holds with both c1 = 0, 1, once the contribution of the stricly

semi-stable bundles (the ones allowing for reducible connections) are weighed with the

factor 1/2 as in (3.70)

ZP2

N=4(q)=
(
η̂(q)

)−6
∑
c1=0,1

( ∑
{p,q,r}

strictly stable

+
1

2

∑
{p,q,r}

strictly semi-stable

)
q−

1
4

(1−2c)c21q−
1
4

(p2+q2+r2−2pq−2pr−2qr)

(4.20)

where p, q, r are positive integers with p+ q + r + c1 = even, and they satisfy respectively

strict triangle inequalities in the stable case and large triangle inequalities in the semi-

stable one. In the case with only strictly stables configurations this result reduce to the

one computed by Kool in [37] when we take the expansion in the second Chern class c2

(c = 1).

Moreover we have checked up to high orders in the power series that for both c1 =

0, 1 (4.20) is in agreement with the mock-modular form of [39]

Z0(q) =
(
η̂(q)

)−6
∞∑
n=0

3H(4n)qn c1 = 0

Z1(q) =
(
η̂(q)

)−6
∞∑
n=0

3H(4n− 1)qn c1 = 1

(4.21)

where H(n) is the Hurwitz class number [52].

5 Discussion

Let us discuss some further directions and open issues. The next natural step to take is

to analyse in detail a general compact toric surface M . The conjectural master formula

arising from the supersymmetric localisation discussed in section 2 reads

ZM
(
q, x, z, y ; ε1, ε2

)
=

∑
{k(`)
α }|semi-stable

∮
∆
d~a

χ(M)∏
`=1

ZC2

full

(
q(`) ;~a(`), ε

(`)
1 , ε

(`)
2

)
yc

(`)
1 (5.1)

where q(`) = q e
ı∗P(`)

(αz+px)
. Equation (5.1) has to be supplemented by suitable stability

conditions constraining the sum over k
(`)
α s. Notice that for b+2 = 1, the partition function

exhibits the wall crossing phenomenon which one should evaluate from the gauge theory

path integral and compare with the known results in mathematics, see [35] for the rank two

case. Indeed we remind the reader that for manifolds with b+2 = 1 Donaldson invariants are

only piece-wise metric independent. Their behavior is described by a chamber structure in
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H2(M,R) with walls located at H2(M,Z) ∩H2,−(M,R). A common strategy to calculate

Donaldson invariants is then given by identifying a vanishing chamber and then compute

the invariants in the other chambers via wall crossing. In these cases, our formulas for rank

two should reproduce the wall crossing terms as computed in [35]. Notice that for M = P2

there is a single chamber and the above procedure is not available. Moreover, it is neither

possible to deform to N = 1 supersymmetry with mass terms as in [25]. This makes this

case particularly interesting since it has to be computed directly and we focused on it in

this paper.

Let us also notice that E-strings BPS state counting in terms of elliptic genera can

be realized as twisted N = 4 partition functions [53–55]. These partition functions enjoy

interesting and non-trivial modular properties [56]. It would be useful to explore if and

how these properties are realized for non-vanishing mass M 6= 0.

The AGT correspondence relates the partition function of N = 2 four dimensional

SU(2) gauge theories on S4 with the correlation functions of primary fields in Liouville

conformal field theory [5]. In particular, the instanton contributions are realized to be

conformal blocks of the Virasoro algebra with central charge20 c = 1 + 6 (ε1+ε2)2

ε1ε2
. This cor-

respondence has been extended to other four dimensional manifolds M the central charge

being computed from the reduction of the M5-brane anomaly polynomial by compactifi-

cation on M [57, 58]. Explicit examples are provided by toric singularities C2/Γ with Γ a

discrete subgroup in SU(2), whose most studied case is Γ = Z2. The conformal field theory

of the latter case has been shown to be N = 1 SuperLiouville theory [59–63].

Another case which has been studied is that of S2 × S2 whose gauge theory partition

function is build out of chiral copies of Liouville gravity conformal blocks and three point

functions [23]. In the same spirit one can try to find a general pattern for this correspon-

dence in the partition function of the N = 2 four dimensional SU(2) gauge theories on

a general compact toric manifold. Our result suggests to read the gauge theory partition

function in terms of a chiral CFT whose sectors are in one-to-one correspondence with the

toric patches. The contribution of each sector to the correlation number is given by a copy

of Virasoro conformal block with central charge c(`) = 1 + 6

(
ε
(`)
1 +ε

(`)
2

)2

ε
(`)
1 ε

(`)
2

in the `-th sector

and three point functions related to the corresponding one-loop contributions of the gauge

theory. The change of (ε
(`)
1 , ε

(`)
2 ) under change of patch is related to the intersection of the

corresponding divisors. Investigations in similar directions for Hirzebruch surfaces have

been pioneered in [64].

Let us underline the relevance of the cubic identities we obtained in subsection 3.8.

These are remarkable identities on the Nekrasov partition function and therefore, via AGT

correspondence, on Virasoro conformal blocks. It would be very interesting to understand

their interpretation in two dimensional Conformal Field Theory and their generalization

to other toric geometries and in higher rank.

Let us notice that a crucial tool for the evaluation of the contour integral appearing

in the supersymmetric partition function is Zamolodchikov’s recursion relation for the

20In the round S4 metric ε1 = ε2 = 1
r
, r being the S4 radius [21]. The case of arbitrary independent real

values is obtained by squashing the four sphere [22].
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Virasoro conformal blocks which, via AGT correspondence, allows to locate the poles of

the integrand and to compute the integral for all instanton numbers. On the other hand, an

extension of the gauge theory results to higher rank would provide hints on an analogous

recursion relation for W-algebrae. Moreover, this should give a computational tool for

Donaldson invariants in higher rank where wall-crossing formulas are notoriously difficult.

We finally remark that we expect that our approach can be uplifted to BPS state

counting of gauge theories in higher dimensions, for example by considering supersym-

metric gauge theories on five-manifolds given by circle fibrations over toric surfaces. A

noticeable example is S5, whose study is expected to provide information about the M5-

brane superconformal index [65–67].
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A Stability conditions for equivariant vector bundles

In this appendix we make a dictionary between Klyachko’s classification of semi-stable

equivariant vector bundles on P2 [47] (for a review see [43], section 4) and the gauge theory

fixed point data we sum over in the partition function, in order to discover the constraints to

be imposed because of the stability conditions. Klyachko’s main result is that equivariant

vector bundles on P2 can be completely described by sets of decreasing filtrations of vector

spaces E`(i), one filtration for each open subset of the standard cover U` (` = 0, 1, 2).

Explicitly

E = E`(I`) ) E`(I` + 1) ⊃ · · · ⊃ E`(I` + n`) ) E`(I` + n` + 1) = 0 (A.1)

where E ' CN is the fiber of the bundle (N is the rank of the bundle) at the `-th point and

E`(i) = E, ∀i ≤ I` and E`(i) = 0, ∀i > I` + n`. The explicit form of the vector subspaces

E`(i) in the filtration (A.1) for a given equivariant bundle is reported in [47]. Starting from
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the filtration (A.1) it is possible to compute the Chern classes of the vector bundle by the

following formulae

c1(E) =
2∑
`=0

∑
i

i dim
(
E`(i)/E`(i+ 1)

)
,

ch2(E) ≡ c2 −
1

2
c2

1 = −1

2

2∑
`=0

∑
i

i2 dim
(
E`(i)/E`(i+1)

)
−
∑
`<`′

∑
i,j

ij dimE[``′](i, j),

(A.2)

where

E[``′](i, j) := E`(i) ∩ E`′(j)/
(
E`(i+ 1) ∩ E`(j) + E`(i) ∩ E`(j + 1)

)
. (A.3)

Let us consider in detail the case of N = 2. The relevant steps of the filtration are the ones

where the dimension of the subspaces jumps. In the rank two case these are two of them:

i = I` in which the dimension jumps from 2 to 1, and i = I` + n` when it jumps from 1 to

0. In particular n` = ]{i| dimE`(i) = 1}. We then obtain

c1(E) =

2∑
`=0

(2I` + n`),

ch2(E) ≡ c2 −
1

2
c2

1 = −1

2

2∑
`=0

(
I2
` + (I` + n`)

2
)
−
∑
` 6=`′

I`(I`′ + n`′).

(A.4)

To compare with the gauge theory it is more convenient to use the discriminant D, that

for N = 2 is

1

4
D(E) := c2 −

1

4
c2

1 ≡ ch2 +
1

4
c2

1 = −1

4

(
2∑
`=0

n2
` −

∑
`<`′

2n`n
′
`

)
. (A.5)

Actually this quantity D has a more fundamental geometric interpretation, indeed it com-

pletely determines the isomorphism class of the moduli space M(c1, c2) of the equivariant

bundles with given Chern classes c1 and c2. In the gauge theory parametrization the first

Chern class is

c1(E) =
2∑
`=0

2∑
α=1

k(`)
α . (A.6)

To extract the ch2 for unframed sheaves E0 we just expand

Zfull = qch2(E0) ×
(
· · ·
)

(A.7)

so that ch2(E0) can be directly obtained from (3.60)

ch2(E0) =

2∑
`=0

|~Y (`)| − 1

4

( 2∑
`=0

k
(`)
1 + k

(`)
2

)2

+

2∑
`=0

(k(`))2 −
∑
`<`′

2k(`)k(`′)

 ,
=

2∑
`=0

|~Y (`)|+ ch2(E) (A.8)
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where k(`) := k
(`)
1 − k

(`)
2 and we isolated in the second line the vector bundle contribution

from the one of the ideal sheaves. The discriminant of the vector bundle E is then

1

4
D(E) := ch2(E) +

1

4
c1(E)2 = −1

4

(
2∑
`=0

(k(`))2 −
∑
`<`′

2k(`)k(`′)

)
. (A.9)

Comparing (A.2) and (A.5) with (A.6) and (A.9) is immediately clear what the dictionary

between gauge theory and Klyachko’s parameters is

I` = min(k
(`)
1 , k

(`)
2 ), I` + n` = Max(k

(`)
1 , k

(`)
2 ), n` = k(`) = |k(`)

1 − k
(`)
2 |. (A.10)

Namely the k
(`)
α are labeling the positions of the jumps in the filtration. Then by making

use of Weyl symmetry one can always assume k
(`)
1 ≥ k

(`)
2 , which we used in the main text.

By using the dictionary (A.10) it is possible to finally read the stability conditions for

the equivariant vector bundles directly from the following

Theorem (Klyachko [47]). The equivariant vector bundle on P2 defined by the filtra-

tions (A.1) is slope-stable iff for any proper subspace 0 ( F ( E one has for ı̃� 0

2∑
`=0

∑
i>ı̃

dim(E`(i) ∩ F )

dimF
<

2∑
`=0

∑
i>ı̃

dim(E`(i))

dimE
. (A.11)

The slope-semi-stable case has a large inequality in (A.11).

We work out explicitly the case of N = 2. The three filtrations for P2 are of this form

E = C2 )W` ⊃ · · · ⊃W` ) 0 (A.12)

for each ` = 0, 1, 2. Here W` is a line in C2, so W` ∈ Gr(1, 2) ' P1 and appears n` time in

the filtration since n` = ]{i| dimE`(i) = 1}.
We can assume that all W` (` = 0, 1, 2) are distinct21 and also that n` > 0, ∀`. Indeed

it turns out that this is the only relevant case for stability. Either if two or more W` are

equal, or if at least one n` = 0, the bundle described by such a filtration does not admit

stability, i.e. the strict inequalities (A.11) are mutually incompatible.

Finally we apply the theorem ∀F ( E = C2. The relevant conditions come from

the choices F = W`, ` = 0, 1, 2. The only contribution in (A.11) that is not equal on the

r.h.s. and l.h.s. of the inequality is the one relative to the one-dimensional n` subspaces

W` of the filtrations. Eventually we obtain conditions on n0, n1, n2, namely they have to

satisfy strict triangle inequalities

n` + n`′ > n`′′ , for all the choices {`, `′, `′′} = {0, 1, 2}. (A.13)

The dictionary (A.10) implies that the gauge parameters k(0), k(1), k(2) (often called p, q, r

in the main text) have to satisfy the same inequalities.

21We have actually used this assumption when computing (A.4).
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[36] G. Ellingsrud and L. Göttsche, Wall-crossing formulas, Bott residue formula and the

Donaldson invariants of rational surfaces, alg-geom/9506019.

[37] M. Kool, Euler characteristics of moduli spaces of torsion free sheaves on toric surfaces,

Geom. Ded. 176 (2015) 241 arXiv:0906.3393.

[38] K. Yoshioka, The Betti numbers of the moduli space of stable sheaves of rank 2 on a ruled

surface, J. Reine Angew. Math. 453 (1994) 193.

[39] C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3

[hep-th/9408074] [INSPIRE].

[40] S.K. Donaldson, Anti-self-dual Yang-Mills connexions over complex algebraic surfaces and

stable vector bundles, Proc. Lond. Math. Soc. 50 (1) (1985) 1.

[41] K. Uhlenbeck and S.T. Yau, On the existence of Hermitian Yang-Mills connections in stable

vector bundles, Commun. Pure Appl. Math. 39 (1986) 257.

[42] K. Uhlenbeck and S.T. Yau, A note on our previous paper: On the existence of Hermitian

Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math. 42 (1989) 703.

[43] A. Knutson and E.R. Sharpe, Sheaves on toric varieties for physics, Adv. Theor. Math. Phys.

2 (1998) 865 [hep-th/9711036] [INSPIRE].

[44] L. Baulieu, G. Bossard and A. Tanzini, Topological vector symmetry of BRSTQFT and

construction of maximal supersymmetry, JHEP 08 (2005) 037 [hep-th/0504224] [INSPIRE].

[45] A. Losev, N. Nekrasov and S.L. Shatashvili, Issues in topological gauge theory, Nucl. Phys. B

534 (1998) 549 [hep-th/9711108] [INSPIRE].

[46] W. Fulton, Introduction to Toric Varieties, Annals of mathematics studies, Princeton

University Press, Princeton U.S.A. (1993).

[47] A.A. Klyachko, Moduli of vector bundles and numbers of classes, Funct. Anal. Appl. 25

(1991) 67.

[48] S.K. Donaldson and P.B. Kronheimer, The Geometry of Four-manifolds, Oxford

Mathematical Monographs, Clarendon Press, Oxford U.K. (1997).

[49] R. Flume and R. Poghossian, An Algorithm for the microscopic evaluation of the coefficients

of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176]

[INSPIRE].

[50] A. Zamolodchikov, Conformal Symmetry in two-dimensions: an explicit Recurrence Formula

for the Conformal Partial Wave Amplitude, Commun. Math. Phys. 96 (1984) 419.

[51] R. Poghossian, Recursion relations in CFT and N = 2 SYM theory, JHEP 12 (2009) 038

[arXiv:0909.3412] [INSPIRE].

[52] H. Cohen, Graduate Texts in Mathematics. Vol. 138: A course in computational algebraic

number theory, Springer-Verlag, Berlin Germany (1993).

[53] J.A. Minahan, D. Nemeschansky, C. Vafa and N.P. Warner, E strings and N = 4 topological

Yang-Mills theories, Nucl. Phys. B 527 (1998) 581 [hep-th/9802168] [INSPIRE].

[54] G. Bonelli, The Geometry of the M5-branes and TQFTs, J. Geom. Phys. 40 (2001) 13

[hep-th/0012075] [INSPIRE].

– 38 –

http://arxiv.org/abs/math/0606180
http://inspirehep.net/search?p=find+EPRINT+math/0606180
http://arxiv.org/abs/alg-geom/9506019
http://dx.doi.org/10.1007/s10711-014-9966-2
http://arxiv.org/abs/0906.3393
http://dx.doi.org/10.1016/0550-3213(94)90097-3
http://arxiv.org/abs/hep-th/9408074
http://inspirehep.net/search?p=find+EPRINT+hep-th/9408074
http://dx.doi.org/10.1002/cpa.3160390714
http://dx.doi.org/10.1002/cpa.3160420505
http://arxiv.org/abs/hep-th/9711036
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711036
http://dx.doi.org/10.1088/1126-6708/2005/08/037
http://arxiv.org/abs/hep-th/0504224
http://inspirehep.net/search?p=find+EPRINT+hep-th/0504224
http://dx.doi.org/10.1016/S0550-3213(98)00628-2
http://dx.doi.org/10.1016/S0550-3213(98)00628-2
http://arxiv.org/abs/hep-th/9711108
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711108
http://dx.doi.org/10.1007/BF01090685
http://dx.doi.org/10.1007/BF01090685
http://dx.doi.org/10.1142/S0217751X03013685
http://arxiv.org/abs/hep-th/0208176
http://inspirehep.net/search?p=find+EPRINT+hep-th/0208176
http://dx.doi.org/10.1007/BF01214585
http://dx.doi.org/10.1088/1126-6708/2009/12/038
http://arxiv.org/abs/0909.3412
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.3412
http://dx.doi.org/10.1016/S0550-3213(98)00426-X
http://arxiv.org/abs/hep-th/9802168
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802168
http://dx.doi.org/10.1016/S0393-0440(01)00010-9
http://arxiv.org/abs/hep-th/0012075
http://inspirehep.net/search?p=find+EPRINT+hep-th/0012075


J
H
E
P
0
7
(
2
0
1
6
)
0
2
3

[55] B. Haghighat, From strings in 6d to strings in 5d, JHEP 01 (2016) 062 [arXiv:1502.06645]

[INSPIRE].

[56] J. Manschot, Sheaves on P2 and generalized Appell functions, arXiv:1407.7785 [INSPIRE].

[57] G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett.

B 691 (2010) 111 [arXiv:0909.4031] [INSPIRE].

[58] L.F. Alday, F. Benini and Y. Tachikawa, Liouville/Toda central charges from M5-branes,

Phys. Rev. Lett. 105 (2010) 141601 [arXiv:0909.4776] [INSPIRE].

[59] V. Belavin and B. Feigin, Super Liouville conformal blocks from N = 2 SU(2) quiver gauge

theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [INSPIRE].

[60] G. Bonelli, K. Maruyoshi and A. Tanzini, Instantons on ALE spaces and Super Liouville

Conformal Field Theories, JHEP 08 (2011) 056 [arXiv:1106.2505] [INSPIRE].

[61] G. Bonelli, K. Maruyoshi and A. Tanzini, Gauge Theories on ALE Space and Super Liouville

Correlation Functions, Lett. Math. Phys. 101 (2012) 103 [arXiv:1107.4609] [INSPIRE].

[62] A. Belavin, V. Belavin and M. Bershtein, Instantons and 2d Superconformal field theory,

JHEP 09 (2011) 117 [arXiv:1106.4001] [INSPIRE].

[63] L. Hadasz and Z. Jaskólski, Super-Liouville-Double-Liouville correspondence, JHEP 05

(2014) 124 [arXiv:1312.4520] [INSPIRE].

[64] M. Bershtein, B. Feigin and A. Litvinov, Coupling of two conformal field theories and

Nakajima-Yoshioka blow-up equations, Lett. Math. Phys. 106 (2016) 29 [arXiv:1310.7281]

[INSPIRE].

[65] J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D

Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008]

[INSPIRE].

[66] G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative

Topological Strings, arXiv:1210.5909 [INSPIRE].

[67] H.-C. Kim, S. Kim, S.-S. Kim and K. Lee, The general M5-brane superconformal index,

arXiv:1307.7660 [INSPIRE].

– 39 –

http://dx.doi.org/10.1007/JHEP01(2016)062
http://arxiv.org/abs/1502.06645
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06645
http://arxiv.org/abs/1407.7785
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.7785
http://dx.doi.org/10.1016/j.physletb.2010.06.027
http://dx.doi.org/10.1016/j.physletb.2010.06.027
http://arxiv.org/abs/0909.4031
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4031
http://dx.doi.org/10.1103/PhysRevLett.105.141601
http://arxiv.org/abs/0909.4776
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4776
http://dx.doi.org/10.1007/JHEP07(2011)079
http://arxiv.org/abs/1105.5800
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5800
http://dx.doi.org/10.1007/JHEP08(2011)056
http://arxiv.org/abs/1106.2505
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2505
http://dx.doi.org/10.1007/s11005-012-0553-x
http://arxiv.org/abs/1107.4609
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.4609
http://dx.doi.org/10.1007/JHEP09(2011)117
http://arxiv.org/abs/1106.4001
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4001
http://dx.doi.org/10.1007/JHEP05(2014)124
http://dx.doi.org/10.1007/JHEP05(2014)124
http://arxiv.org/abs/1312.4520
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.4520
http://dx.doi.org/10.1007/s11005-015-0802-x
http://arxiv.org/abs/1310.7281
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.7281
http://dx.doi.org/10.1007/JHEP08(2012)157
http://arxiv.org/abs/1206.6008
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6008
http://arxiv.org/abs/1210.5909
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.5909
http://arxiv.org/abs/1307.7660
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.7660

	Introduction
	N=2 gauge theories on complex surfaces and Hermitian Yang Mills bundles
	Equivariant observables
	Gluino zero modes and contour integral prescription
	The zero modes in the U(1) sector
	Zero modes in the SUN sector and integration contour prescription

	Localization onto the fixed points

	Exact partition function on P*2 and equivariant Donaldson invariants
	Classical action
	One-loop contribution
	Instanton contribution
	Analytic structure of the integrand
	Exact results for odd c(1)
	Proof of (3.38) 

	Exact results for even c(1)
	Non equivariant limit
	Remarkable identities from the evaluation of the partition function

	N=2** theory and Euler characteristics
	Discussion
	Stability conditions for equivariant vector bundles

