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We study the ionization energy, electron affinity, and the π → π∗ (1La) excitation energy of the
anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a
Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular
orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such
as the HOMO→ LUMO one, which underlies the 1La excited state. We present a QMC optimization
scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a con-
strained minimization with projectors built upon symmetry selected MOs. We show that this approach
leads to stable energy minimization and geometry relaxation of both ground and excited states,
performed consistently within the correlated QMC framework. Geometry optimization of excited
states is needed to make a reliable and direct comparison with experimental adiabatic excitation
energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where
there is a strong interplay between low-lying energy excitations and structural modifications, playing
a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these
effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral
1La excited state, while they are of the order of 0.1 eV in electron addition and removal processes.
Significant modifications of the ground state bond length alternation are revealed in the QMC excited
state geometry optimizations. Our QMC study yields benchmark results for both geometries and
energies, with values below chemical accuracy if compared to experiments, once zero point energy
effects are taken into account. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922048]

I. INTRODUCTION

The peculiar low-lying excited-states properties of the π-
conjugated hydrocarbons (πCH) are at the heart of funda-
mental biochemical processes, which govern phenomena
such as photo-synthesis and vision. The πCHs spectrum is
commonly peaked in the energy range of visible light, which
makes the πCH-based compounds photo-active. They are thus
natural knobs for complex processes driven by the interaction
of photons with matter. For instance, πCHs are major actors
in light harvesting and energy transfer mechanisms and are
functional building blocks of carotenoids,1 green fluorescent
chromophores,2 and retinal proteins such as rhodopsin.3

Moreover, in technological applications, πCH-based dyes
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have been effectively used to improve the power-conversion
efficiency of dye-sensitized solar cells.4,5

An interesting and fundamental aspect behind the func-
tional role played by the πCHs is the interplay between the
electronic states and their geometries. A π-conjugated elec-
tronic structure typically leads to the so-called bond length
alternation (BLA) in the carbon-carbon distance of the linear
or cyclic molecular geometries. However, important structural
changes may happen upon photo-excitation, with a significant
modification of the BLA.6 An illuminating example is pro-
vided by the rhodopsin photochromic interconversion respon-
sible of the twilight vision of vertebrates. BLA changes be-
tween the S0 and photo-excited S1 states, and highly modulates
the π-bond destruction and reconstruction, allowing an effi-
cient and ultra-fast (∼100 fs) photoisomerization between the
rhodopsin and bathorhodopsin, its trans analog,7 via a conical
intersection.

In order to understand and model these fundamental pro-
cesses, a very robust theoretical framework is necessary, able
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to resolve not only energy differences with an accuracy below
0.1 eV but also to describe structural modifications across
excited states. Photo-driven excitations in πCHs, such as the
π → π⋆ transitions, are particularly challenging, as a highly
correlated theory is usually needed. Indeed, post-Hartree Fock
(HF) methods, such as multi-reference perturbation theory
(CASPT2), symmetry-adapted cluster-configuration interac-
tion (SAC-CI),8 and quantum Monte Carlo (QMC) methods,2,9

have been used to compute π → π⋆ vertical excitations and
compare their outcome against cheaper but less accurate time
dependent density functional theory (TDDFT), including a
large variety of functionals. The disagreement between theo-
ries can be as large as 0.5 eV8 and strongly dependent on
the reference geometry.1 If compared to experiment, TDDFT
is affected by substantial errors, showing up in the π → π⋆

excitation energies, particularly for long π-conjugated chains.
Indeed, a well known TDDFT failure is the 1La (HOMO-
LUMO) excitation in linear oligoacenes, polycyclic aromatic
hydrocarbons (PAH) characterized by a zig-zag edge. The
TDDFT discrepancy with respect to the experiment gets larger
as the number of rings in the chain increases,10 owing to
a poor description of charge-transfer energies. Moreover, a
direct comparison with experiments is also limited by struc-
tural relaxation effects between the ground and excited states.
These lead to sizable differences between vertical and adia-
batic excitations of up to a few tenths of eV. Relaxation ener-
gies are usually computed at the density functional theory
(DFT) level, as in post-HF methods ionic gradients are time
consuming and not readily available for the highest levels
of theory. A quite strong dependence of the quality of the
BLA on the DFT functional choice has been pointed out in
Ref. 1.

In this paper, we present a QMC approach which is able
to provide not only accurate energies but also precise relaxed
geometries in both ground and excited states, at the variational
level. The possibility to obtain optimal geometries of excited
states in a highly correlated framework is an appealing and
promising feature of our method, which allows us to take
into account non-trivial structural modifications across the
electron excitations and to compare our results to experimental
adiabatic excitation energies. Very recently, a similar route
has been taken by Guareschi and Filippi,9 who assessed the
quality of QMC optimized geometry in the excited states
of small organic molecules. Their method, however, differs
significantly from ours. Indeed, their work is based on a
many-body wave function written as a linear combination
of symmetry-adapted configuration state functions (CSFs)—
which is the most general form—while the determinantal
part of our variational wave function is constrained to take
a symmetry-adapted antisymmetrized geminal power (AGP)
form. On one hand, the AGP allows one to exploit its effi-
cient determinant evaluation and some peculiar features of
the geminal expansion in atomic orbitals, such as its locality
properties. On the other hand, optimizing the AGP at chosen
molecular orbital (MO) configurations requires a fixed-rank
projection of the geminal function in order to have a stable and
accurate energy minimization of ground and excited states.

We apply our QMC approach to study one of the
simplest molecules in the oligoacene family, i.e., the three-ring

anthracene molecule, which retains all the difficulties of PAHs,
and more generally of πCHs, while being a strict test case for
any new theory, as accurate benchmark data are available both
experimentally11–15 and theoretically.10,16–19 Indeed, from the
theoretical point of view, the small size of the molecule allows
for an accurate extrapolation on both theory (up to the coupled
cluster single double (triple) (CCSD(T)) level) and basis set (up
to aug-cc-pVQZ), at a given frozen geometry.16,17 Moreover,
high-quality X-ray diffraction data are available for the ground
state geometry20—although in the crystal condensed phase—
while information on structural modifications across the 1La

transition is provided by ultrahigh-resolution spectroscopy,14

probing the rotovibrational spectrum in the gas phase. We
show that the quality of the electronic QMC wave function
is of crucial importance to get accurate ionic equilibrium
positions. The possibility to relax the geometry in both ground
and excited states is in turn necessary to reach the chemical
accuracy for adiabatic excitation energies.

Beside its importance as benchmark molecule, anthracene
is interesting also because it belongs to the acene PAH group,
which has quite strong correlation effects, and shows non-
conventional features as a function of the chain length, such
as a strong multiradical character.21 The presence of many
competing states in the long length limit could trigger the
formation of an open-shell singlet ground state22 and shrink the
spin-triplet gap.23,24 Moreover, in this context, a quite interest-
ing link can be made with the physics of graphene nanoribbons,
where a spin polarized edge should appear in the zig-zag
configuration.25

The paper is organized as follows. In Sec. II A, we
describe the Jastrow correlated antisymmetrized geminal po-
wer (JAGP) wave function used throughout our work, and in
Sec. II B, we report the computational details of our calcula-
tions. In Sec. II C, we present the method employed to mini-
mize the energy and optimize the geometry within a molecular
orbital framework, useful to treat both ground and excited
states by QMC. In Sec. III, we show our results for the
anthracene ground state (Sec. III A), its ionization energy
(IE) (Sec. III B), electron affinity (EA) (Sec. III C), and the
low-lying 1La neutral excited state (Sec. III D). Finally, we
close the section by a thermodynamic comparison of the zig-
zag anthracene molecule with phenanthrene, its armchair-like
analog (Sec. III E). The conclusions and perspectives of this
work are drawn in Sec. IV.

II. METHODS

A. Pseudopotentials, wave function, basis set

All the calculations are carried out for a first-principles
Hamiltonian with core electrons replaced by pseudopotentials.
The carbon atom is described by a HF energy consistent pseu-
dopotential with scalar relativistic corrections by Burkatzki
et al.,26 while the Coulomb singularity of the hydrogen elec-
tron-ion potential has been replaced by a short-range non-
diverging pseudopotential obtained within the same HF
energy-consistent framework.27 The HF energy-consistent
pseudopotentials are particularly suited for correlated quantum
chemistry calculations.
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The quantum Monte Carlo variational ansatz which mini-
mizes the energy of the first-principles Hamiltonian is the
JAGP wave function (ΨJAGP = JΨD), applied so far to a large
variety of systems, and described in length elsewhere.28–31 It
yields very accurate variational energies and structural prop-
erties, by providing a correct description of dynamical and
static correlations.

The AGP part has the determinantal form ΨD = det(Ai j).
Given a system with N ↑ up-spin electrons, and N ↓ down-spin
electrons (with the convention of N ↑ ≥ N ↓), A is a matrix with
symmetric entries Ai j = Φ(r↑i ,r↓j) for 1 ≤ i,j ≤ N ↓, and Ai j

= Φ j(r↑i ) for the unpaired electrons with N ↓+1 ≤ i ≤ N ↑, where
{rσi } are the electron spatial coordinates. Φ is called geminal,
or pairing function, while Φ j are the unpaired orbitals. In our
formulation, Φ can be either expanded on a localized basis set
Gi, taking a valence bond (VB) representation, or developed
on MOs φMO

k
, within the framework of a MO picture,

Φ(r,r′) =
Nbasis
i, j=1

λi j Gi(r)Gj(r′) =
NMO
k=1

λ
MO
k φMO

k (r)φMO
k (r′),

(1)

where Nbasis is the full basis set size, comprising the local
orbitals centered on all atoms, and NMO (= Nbasis) is the total
number of MOs. One can easily pass from the VB to the MO
picture by diagonalizing the VB λi j representation, yielding
λMO
k

as eigenvalues and φMO
k

as eigenvectors, and from the MO
back to the VB picture, by expanding the MOs in their local
basis set components, φMO

k
=
Nbasis

i=1 αk
i Gi. Analogously, the

unpaired orbitals Φ j are expressed in the same local basis as
Φ j =

Nbasis
i=1 β

j
i Gi. It is worth noting that the AGP ansatz is

not restricted to symmetric matrices λi j, but can be extended to
generic real matrices λ. In the latter case, the diagonalization
is performed via a singular eigenvalue decomposition having
the spin-down (spin-up) MOs as left (right) eigenvectors (see
Sec. II C). In this work, however, we are dealing with restricted
spin-symmetric states; therefore, the geminal is a singlet, and
the λ’s are always symmetric.

In the case NMO < Nbasis, the relation in Eq. (1) is only
approximated. However, taking the MOs with the largest |λMO

k
|

is usually enough to have very accurate wave functions, with
a significant reduction in the total number of orbitals.

The minimum number of MOs is NMO = N ↓, namely, the
rank of λ is exactly equal to the number of opposite-spin pairs
in the system, and the AGP ansatz reduces to a single Slater
determinant. On the other hand, NMO > N ↓ gives larger ranks,
where excited state orbitals can contribute to lower the ground
state energy, particularly in the situation of near-degenerate
electronic shells, or perfect orbital degeneracy due to sym-
metry constraints. The system is then “resonating” between
different configurations, and the ansatz, correlated by the Jas-
trow factor, is the ab initio representation of the resonating
valence bond (RVB) picture proposed by Pauling in the context
of aromatic molecules,32 and by Anderson in the framework of
spin models and superconductivity.33

In this paper, we show that by playing with the orbital
weights, related to their occupations, given by the λMO

k
in

Eq. (1), the AGP wave function allows not only for an accurate
description of the ground state but also of excited states, as one

can promote electrons from occupied MOs (for k ≤ NHOMO) to
empty ones (for k ≥ NLUMO) in the geminal expansion. This
flexibility will be used, for instance, to compute the 1La (π
→ π⋆) excitation in the anthracene (see Sec. III D).

The localized basis set Gi is made of Gaussian type
orbitals (GTOs). The GTO primitive basis is (10s8p4d) for
carbon and (8s4p) for hydrogen. The initial αk

i , which define
the starting MOs, are obtained by DFT calculations in the
local density approximation (LDA),34 performed within the
same GTO basis set. The GTO exponents, MOs, and un-
paired orbitals are then optimized in the QMC framework,
after applying the Jastrow correlating factor to the AGP wave
function.

The Jastrow factor is decomposed in one-, two-, and three-
four body parts, J = J1J2J3−4.

The two-body Jastrow term reads

J2(r1, . . . ,rN) = exp *.
,

N
i< j

u(ri j)+/
-
, (2)

with N = N ↑ + N ↓, and ri j = |ri − r j | the distance between
the i-th and j-th electrons. The function u in Eq. (2) is u(r)
= 0.5r/(1 + γr), with γ a variational parameter. It is a homoge-
neous function (translationally invariant), correlating pairwise
the electrons. This allows one to fulfill the antiparallel-spin
cusp conditions. We neglect the parallel-spin cusp conditions,
which are of less importance because of Pauli repulsion. This
avoids spin contamination induced by the use of spin depen-
dent Jastrow factors, and the wave function is an eigenstate of
both S2 and Sz operators.35

The three-four body Jastrow term is defined as

J3−4(r1, . . . ,rN) = exp *.
,

N
i< j

Φ
J(ri,r j)+/

-
, (3)

where ΦJ(ri,r j) =
N J

basis
l,m=1

glm GJ
l
(ri)GJ

m(r j). The development

of the function ΨJ on the GTO basis set GJ
l

of size N J
basis is

formally equivalent to the one in Eq. (1) for the determinantal
part. At variance with Eq. (2), the J3−4 factor is inhomo-
geneous, as it depends on the nuclear positions through the
Jastrow GTO basis GJ

l
. We distinguish between a purely 3-

body contribution, when both GJ
l

and GJ
m are centered on the

same atom, from terms in the sum involving different atoms
and different ions, thus called 4-body contributions.

Finally, the one-body term is

J1(r1, . . . ,rN) = exp
*..
,

N
i=1

N J
basis
l=1

hl G
J
l (ri)

+//
-
, (4)

which involves one electron and one ion at the time. The
GJ
l

basis set is the same as the one of the 3-4 body term in
Eq. (3). Note that Eq. (4) does not have any cusp, as there
is no singularity in the electron-ion potential of the ab initio
Hamiltonian, thanks to the use of non-diverging pseudopoten-
tials.26,27 The one-body term takes care of keeping the electron
density optimal, because the density needs to be readjusted
when affected by the many-body correlations introduced by
Eqs. (2) and (3).
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In the present calculations, we used a GTO basis set GJ
l

made of (2s2p1d)/[1s1p1d] contractions for carbon and (2s
2p)/[1s1p] contractions for hydrogen. We combine two dif-
ferent radial functions for each contracted Gaussian, namely,
αeZ1|r−R|2 + β |r − R|eZ2|r−R|2 times the angular dependence,
where R is the Gaussian ionic center, and α, β, Z1, and
Z2 are variational parameters per contraction. We found that
combining these two radial dependencies in the contracted
basis set (CBS) helps to get a better Jastrow factor, with lower
energy and variance. The exception is represented by the
s Gaussian of carbon, based on the standard contraction
of two GTOs with the same radial dependence, namely,
αeZ1|r−R|2 + βeZ2|r−R|2.

B. Computational details

The initial ground state geometry of both the anthracene
and phenanthrene molecules has been relaxed in plane-waves
DFT calculations with the Perdew, Burke, and Ernzerhof
(PBE) functional,36 using the QUANTUM ESPRESSO pack-
age37 and ultrasoft pseudopotentials for carbon and hydrogen
atoms. We used a Gaussian smearing of 10−4 Ry and an energy
cutoff of 60 Ry in a periodic box large enough to get converged
results.

The PBE-DFT optimal geometries are the starting struc-
tural guess for further QMC calculations, performed with the
TurboRVB package.38 The initial φMO

k
MOs are obtained by

LDA-DFT calculations carried out by the TurboRVB DFT
driver with the same GTO basis set and HF energy-consistent
pseudopotentials as the ones in the subsequent QMC analysis
(see Sec. II A for details on basis set and pseudopotentials).

Once the determinantal part ΨD (Eq. (1)) is initialized,
the Jastrow factor is first optimized by changing the linear
coefficients glm and hl, with the contracted basis set GJ

l
frozen

and the 2-body parameter γ set to 0.5. This QMC energy
minimization step is done with the stochastic reconfiguration
(SR) method,28,39,40 which is very cheap and efficient, as it
requires only the calculation of the wave function derivatives
with respect to the variational parameters. The energy minimi-
zation is very stable as the linear Jastrow coefficients are the
easiest to optimize.

In the second QMC optimization step, all Jastrow parame-
ters (linear coefficients, γ, and basis set exponents) are relaxed
by means of the so-called “linear method” (LM),41 which
requires the calculations of some Hessian matrix elements to
improve the convergence rate and the stability of the minimi-
zation.41–43

In the third step, also the determinantal orbitals are opti-
mized by LM: αk

i linear coefficients, βki for the unpaired or-
bitals (if any), and Gaussian exponents, together with the fully
relaxed Jastrow factor. The MOs evolve according to the algo-
rithm devised in Ref. 30 and recalled in Sec. II C, driven by
the wave function derivatives with respect to λi j, under the
constraint of fixed-rank AGP.

Finally, in the fourth step, we perform the geometry relax-
ation, where the structural parameters are displaced by the
ionic forces according to the steepest descent algorithm. The
QMC ionic forces are computed with finite variance estimators
and analytic derivatives, as described in Ref. 44. The electronic

structure is changed on the fly in such a way that the ions follow
the Born-Oppenheimer energy surface.

For the anthracene, we compute not only the ground state
but also some selected excited states: the electron addition
and removal excitations and the difficult case of the 1La excited
state, i.e., the π → π⋆ (HOMO → LUMO) transition. For the
ionic wave functions, we set N ↑ = N ↓ + 1. For the ground
state, anion, and cation, we set NMO = N ↑, namely, we use a
single Slater determinant in the antisymmetric part of the wave
function. For the 1La excited state instead, NMO = N ↑ + 1,
and the wave function is obtained by mixing the HOMO
and LUMO obtained from DFT in a procedure described in
Sec. III D. The starting geometry for all excited states is the
optimal QMC one for the ground state. This allows us to
compute both vertical and adiabatic excitation energies, once
the excited state geometry is also relaxed.

Additional PBE, B3LYP, and CCSD(T) calculations (en-
ergy and geometry optimization) have been performed in a
triple zeta Gaussian basis set (pVTZ) for anthracene and phen-
anthrene ground states with the carbon pseudopotential by
Burkatzki et al.,26 by using the Molpro ab initio quantum
chemistry package.45

C. Excited states and their geometry relaxation
by QMC methods

In Ref. 30, some of us introduced for the first time the
JAGP ansatz developed on MOs, together with an efficient way
to optimize them, constraining the rank of the geminal matrix λ
during the QMC total energy minimization. The computational
scheme devised there allows one to optimize both the Jastrow
factor and the AGP in the MO representation, with the aim
at reaching the closest variational wave function to the true
ground state.

It is notorious that the QMC excited states are harder
to compute and optimize than the ground state. Indeed, one
needs to enforce some orthogonality conditions not to fall
to the lowest variational state during the optimization. For
wave functions belonging to different spin or particle num-
ber sectors, this is trivial, as the orthogonality is automati-
cally imposed by construction, and the task reduces to find
the lowest state within that particular sector. Thus, the same
minimization algorithm used for the ground state can be
applied also there. Things get more challenging when one
looks for excited states with fixed spin and particle number,
but with electronic part belonging to different irreducible
representations of the same molecular point group. Indeed, a
variational Monte Carlo (VMC) algorithm which optimizes
also the determinantal orbitals by energy minimization is
potentially capable to flip from one irreducible representa-
tion to another at lower energy. It is worth noting that it is
precisely the determinantal part of the QMC wave function
which sets the spatial symmetry of the many-body state, as the
Jastrow term is a fully symmetric bosonic factor, and thus A1g
symmetry invariant. Therefore, optimizing the determinantal
part by preserving its symmetry is of paramount importance
if one would like to compute accurate excited state prop-
erties. Usually, the determinantal part is developed in terms of
spin-adapted CSFs, which are built according to the selected
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symmetry of the excited states and then multiplied by a com-
mon Jastrow factor.2,46,47

In recent years, an important progress has been done in this
direction.2,9,46,48 Energy minimization algorithms have been
devised to optimize CSFs linear coefficients, single particle
orbitals, and Jastrow factor all together. The LM has been
effectively extended to fully optimize excited states with the
lowest energy of a given symmetry.2,47 This approach shows
the same stability and robustness as the ground state mini-
mization. Instead, getting the partial or full spectrum of a
given symmetry is a more difficult and challenging case. How-
ever, even in this harder situation, significant methodological
advancements have been made. The main route taken so far
follows the idea that the orthogonality between different solu-
tions can be enforced by a simultaneous QMC optimization
of all excited states spanning a given manifold, an approach
which keeps track of the overlap between them. The orbital
optimization is then performed in a state-average framework,
where one minimizes a global energy estimator summed over
the exited states taken into account with appropriate weights.2

In this case, the MC sampling is carried over a global fictitious
distribution which is devised to have a finite overlap with all
excited states in the manifold. Thus, reweighting is needed to
compute single excited state properties, but this can become
less efficient than a state-specific optimization. Moreover, the
parameters are then stationary with respect to the weighted
state-average and not to each single excited state. This breaks
the zero-variance principle for each individual state. Despite
these drawbacks, this approach has led to important results for
the accurate description of chromophores and photolumines-
cence in biochemistry.

In this paper, we take a different route to compute excited
state properties. Instead of dealing with a linear combination
of symmetry-adapted CSFs, the determinantal part of our wave
function is a symmetry-adapted AGP. Its form is of course less
general than the former, and not all exited states could be repro-
duced within this ansatz. However, its interest is twofold. First,
the multideterminant expansion implied by the AGP is eval-
uated at a computational cost of a single Slater determinant.
Second and more importantly, the AGP expansion in terms of
atomic orbitals allows one to exploit its locality properties by
dramatically reducing the number of independent λi j parame-
ters. Indeed, the λi js depend implicitly on the ion-ion distance,
through the orbital index and its corresponding nucleus, such
as λi j = λi j(Ri − R j). On one side, the point group of the
molecular geometry is used to reduce the independent λi js,
as commonly done in any quantum chemistry code. On the
other side, the λi js are explicitly optimized only below a given
cutoff radius (∀i, j such that |Ri − R j | < Rcutoff), as introduced
in Ref. 49, while the “long-range” λi js are initialized according
to the starting DFT orbitals. In the case of anthracene and phen-
anthrene molecules presented in this work, Rcutoff = 2.86 Å,
i.e., the explicitly optimized λi js live in the nearest and next-
nearest neighbor shells. This locality approach is supposed to
be more and more effective as the system size increases. Three-
ring PAHs have already a size where locality can play a critical
role.

The flexible AGP atomic expansion is symmetry-adapted
in its MO representation, and its energy minimization is con-

strained, based on the AGP-MO optimization scheme detailed
in Ref. 30, which turns out to be useful not only to minimize the
ground state energy but also to optimize excited states which
belong to the same spin sector and different spatial irreducible
representations. Under certain conditions, the method is sup-
posed to provide the lowest variational energy within a given
spin and spatial symmetry. In the parameter space, the excited
state can be either a local minimum or a saddle point. While the
former case is the easiest, the latter is not trivial, as the QMC
noise can make the minimization to drift from the targeted
symmetry. Our method, which is based on a constrained fixed-
rank optimization of the AGP wave function, has proven to be
stable with absent or insignificant symmetry contamination of
the starting excited state symmetry.

Let us assume to work with the most general AGP, ex-
pressed in the VB representation (Eq. (1)) by means of an
arbitrary non-symmetric λ matrix, which can be written as

λi j =

NMO
k=1

λ
MO
k αk

i ᾱ
k
j , (5)

where we have defined the spin-down MOs as φ̄MO
k
=
Nbasis

i=1
ᾱk
i Gi, while for the spin-up, we use the same definition as

the one introduced in Sec. II A. Both spin-up and spin-
down MOs are orthonormal, i.e., ⟨φMO

k
|φMO

k′ ⟩ = ⟨φ̄MO
k

|φ̄MO
k′ ⟩

= δkk′. The derivation carried on here holds for orthonormal
and non-orthonormal basis sets Gi. In the case of non-
orthonormal basis set, as the GTO one in our calculations, the
overlap matrix

σi j = ⟨Gi | Gj⟩ (6)

must be computed and used whenever necessary, whereas for
orthonormal basis sets, σ reduces to the identity. By introduc-
ing the extended 2Nbasis × 2Nbasis symmetric matrices

M = *
,

0 λ

λ
† 0

+
-

and S = *
,

σ 0
0 σ

+
-
, (7)

the spin-up and spin-down MOs and their related coefficients
λMO
k

are obtained from the generalized eigenvalue equation,

SMSψk
± = ±λMO

k Sψk
±, (8)

where the pair of eigenvectors ψk
± read in the vector notation,

ψk
± =

*
,

αk

±ᾱk
+
-
. (9)

Therefore, as already mentioned in Sec. II A, one can always go
from the VB to the MO representation, diagonalizing Eq. (8)
and keeping the first NMO MOs with the largest eigenvalues
|λMO

k
|. In that case, the λmatrix, as written in Eq. (5), has clearly

rank NMO.
In order to minimize the variational energy of the JAGP

wave function containing the λi j entries as variational parame-
ters, the energy derivatives ∂E/∂λi j are computed in the QMC
framework, where E = ⟨ΨJAGP|Ĥ |ΨJAGP⟩/⟨ΨJAGP|ΨJAGP⟩ is the
expectation value of the Hamiltonian Ĥ on the variational
wave function ΨJAGP. According to the SR or LM algorithm,
and based on the derivatives information, the λmatrix evolves
into λ′ = λ + δλ after an optimization step. One would like λ′
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to have the same rank as λ to preserve the correlation level
and symmetry of the wave function, while reducing the varia-
tional energy. As proven in Ref. 30, a necessary and sufficient
condition for λ′ to have rank NMO up to the first order in the
parameters’ variations is

(Î − P̂↑)δλ̂(Î − P̂↓) = 0, (10)

where δλ̂ =
Nbasis

i, j=1 | Gi⟩δλi j ⟨Gj | is the variation of the geminal
operator, Î =

Nbasis
i, j=1 | Gi⟩σ−1

i j ⟨Gj | is the identity in the non-
orthogonal basis set, and P̂↑ =

NMO
k=1 |φMO

k
⟩ ⟨φMO

k
| and P̂↓

=
NMO

k=1 |φ̄MO
k

⟩ ⟨φ̄MO
k

| are the projectors on the manifold
spanned by the spin-up and spin-down MOs, respectively. In
order to satisfy the condition in Eq. (10), λ′must be accordingly
projected as

λ̂
′ − (Î − P̂↑)λ̂′(Î − P̂↓) = P̂↑λ̂′ + λ̂′P̂↓ − P̂↑λ̂′P̂↓, (11)

namely, those λ′ components which leak outside the starting
manifold on both spin-up and spin-down channels have to
be filtered out, in order to be consistent with a rank NMO
optimization.

Imagine now that one is working with an initial λ̂ belong-
ing to a given spatial irreducible representation of the molec-
ular point group. This is set by initializing the single particle
MOs occupations via a proper combination of λMO

k
with start-

ing MOs which fulfill the spatial symmetries of the molecule.
For instance, the starting MOs can be taken from DFT, such
as in our case, or from whatever other theory which provides
MOs without breaking the symmetries of the appropriate point
group. After a step of energy minimization and fixed rank
projection (Eq. (11)), the new geminal operator λ̂′ is such that
the variation with respect to the starting λ̂ is

δλ̂ =

k

�|φk⟩λk ⟨δφ̄k | + |δφk⟩λk ⟨φ̄k | + |φk⟩δλk ⟨φ̄k |� . (12)

By diagonalizing Eq. (12) via the generalized eigenvalue prob-
lem in Eq. (8), one obtains new NMO MOs with eigenvalues
λMO
k

of order 1 and further states with eigenvalues λMO
k
∝ O(ϵ2)

for k > NMO, where the order ϵ is set by the parameters varia-
tion δλ, tunable in the SR and LM minimization algorithms. We
found that for ϵ (i.e., the parameter variation) properly tuned
and for a large enough statistics, the evolved wave function
never leaves the given starting manifold, and within the present
scheme, one can successfully carry out constrained energy
minimizations.

A caveat is in order here. In the case of degenerate states,
one has to ensure that all states in the given degenerate mani-
fold are included in the P̂↑ and P̂↓ projection operators, other-
wise the diagonalization of the M ′ matrix could bring the
new solution out of the starting manifold. As the AGP has a
multi-reference character, all the degenerate manifold can be
effectively and consistently included in the AGP expansion.

Here, we detailed the optimization algorithm that we have
implemented, which is made of the following five iterative
steps:

0. by DFT (or other lower-level method), generate the start-
ing {φMO

k
}k=1,NMO and {φ̄MO

k
}k=1,NMO MOs for the spin-up

and spin-down sectors, respectively, which belong to the
targeted symmetry representation;

1. compute the derivatives ∂E/∂λi j for the currentΨJAGP vari-
ational wave function, with the AGP part developed on
{φMO

k
}k=1,NMO and {φ̄MO

k
}k=1,NMO MOs which give the cur-

rent λ matrix in Eq. (5);
2. constrain the derivatives of local energy and wave function

by applying the condition in Eq. (10), namely,

I∂E
∂λi j

=
∂E
∂λi j

− (I − P↑) ∂E
∂λi j

(I − P↓), (13)

after constructing the projectors P̂↑ =
NMO

k=1 |φMO
k

⟩ ⟨φMO
k

|
and P̂↓ =

NMO
k=1 |φ̄MO

k
⟩ ⟨φ̄MO

k
|;

3. apply the SR or LM algorithm to find the corresponding
variation δλ, and update the AGP matrix as λ′ = λ + δλ;

4. diagonalize the λ′ matrix as in Eq. (8) to find the new
{φMO

k
}k=1,NMO and {φ̄MO

k
}k=1,NMO MOs, by keeping only

the first largest NMO eigenvalues, and reconstruct the new λ
matrix according to Eq. (5);

5. go back to point 1. and iterate till convergence in the varia-
tional energy.

The steps devised above for the MOs optimization (involv-
ing λMO and α) of ground and excited states can be combined
with the optimization of other wave function parameters that
do not change the rank NMO of the matrix λ, such as all the
ones corresponding to the Jastrow factor, but also the basis set
exponents and the contraction coefficients. Indeed, in the SR or
LM method, the variation of those parameters enters in the SR
or Hessian matrix as additional degrees of freedom, which are
treated on the same footing, via SR or Hessian inversion based
on their related energy derivatives ∂E/∂a and local operators
∂ logΨ/∂a, where a is a generic wave function parameter.
Therefore, in this generalized optimization method, in step (1),
more derivatives are computed without any projection, and in
step (3), the new set of parameters comprises more components
than the ones related to the MOs.

This flexibility allows one to include also the ionic coor-
dinates as additional parameters, implying that a structural
relaxation is possible even for excited states. The difficulty of
dealing with force estimators with finite variance and being
efficiently computed has been recently overcome, thanks to a
constant development in the field.29,44,50–55 Therefore, we have
been able to perform a complete optimization of the excited
states, in both electronic structure and geometry, which yields
vertical and adiabatic excitation energies within the JAGP level
of theory.

III. RESULTS

A. Ground state energies and geometry

As explained in Sec. II B, the ground state QMC wave
function has been initialized starting from the PBE geometry
and LDA MOs. We take NMO = N ↑ MOs, i.e., we deal with a
single Slater determinant. In the first QMC step, the Jastrow
factor is optimized with geometry and DFT Slater determinant
frozen. At the second stage, a larger fraction of correlation en-
ergy is recovered by optimizing the Jastrow and MOs together.
The MOs are evolved by following the algorithm presented
in Sec. II C, where the energy gradient ∂E/∂λi j is calculated
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TABLE I. Ground state energy and variance (σ2) for the neutral anthracene
molecule obtained by various levels of QMC optimization, with contracted
and uncontracted basis sets (CBS and UBS, respectively). In the last row,
both orbitals and geometry are optimized (“opt.”) at the QMC level, by using
an uncontracted basis set (UBS) for the determinant. The last but one row
shows the intermediary step where only the determinant is optimized with the
UBS with the geometry frozen at the level where it was optimized using the
contracted basis step (CBS).

Orbitals/geometry VMC (Ha) σ2 (Ha2) LRDMC (Ha)

LDA/PBE −85.4417(5) 1.446(5) . . .
Opt. CBS/PBE −85.4580(5) 1.341(5) . . .
Opt. CBS/opt. CBS −85.4620(5) 1.344(4) −85.6252(5)
Opt. UBS/opt. CBS −85.4651(5) 1.320(2) −85.6260(8)
Opt. UBS/opt. UBS −85.4677(5) 1.310(4) −85.6275(8)

on a contracted atomic basis set (one contraction per angular
momentum channel), which dramatically reduces the size of
the derivative matrix, and makes the convergence in energy
faster. Unless otherwise specified, the results presented in this
section are always obtained in the CBS.

In practice, the variation of the AGP δλ is performed in a
reduced Hilbert space (defined by the contractions), while the
starting DFT MOs are defined in the full GTO primitive basis
set ((10s8p4d) for carbon and (8s4p) for hydrogen). The new
MOs are then obtained by diagonalizing the matrix λ′ updated
in the primitive basis set, solving the generalized eigenvalue
problem in Eq. (8). The gain in energy yielded by the MOs
optimization is significant (160 mHa), as reported in Table I.
Also the variance is significantly reduced, as the variational
wave function gets closer to the true ground state.

In the final optimization step (at the fixed contracted basis
set), we relax the geometry, following the ionic forces accord-
ing to the steepest descent algorithm. During the geometry
relaxation, the electronic part of the wave function stays nearly
optimal at each ionic configuration, as the electronic param-
eters evolve according to the linear method. Once the equi-
librium geometry is reached, the energy is slightly lower than
the VMC one at the LDA structure (by 40 mHa). This small
energy change has, however, a large impact in the final QMC
geometry, which gets closer to the experimental structure.

To check whether our VMC geometry is converged with
respect to the basis set, we performed an additional optimiza-
tion within an uncontracted basis set (UBS) for the electronic

TABLE II. Carbon-carbon bond lengths for the anthracene molecule. For
comparison, we report also the B3LYP/pVTZ and PBE/pVTZ results obtained
for the same carbon pseudopotential. The bond label conventions are drawn
in Fig. 1.

Bond label Expt.20 (Å) QMC (Å) B3LYP/pVTZ (Å) PBE/pVTZ (Å)

1-2 1.356(9) 1.3570(3) 1.362 1.371
2-3 1.430(6) 1.4243(4) 1.424 1.425
3-4 1.400(9) 1.3899(4) 1.393 1.399
7-8 1.410(10) 1.4218(6) 1.420 1.421
3-12 1.435(7) 1.4328(4) 1.438 1.445

parameters. In this case, at variance with the former calcu-
lations, ∂E/∂λi j has been evaluated directly in the primitive
basis set, which was chosen to be (9s8p4d) for carbon and
(8s4p) for hydrogen, without use of contractions, and thus
having a much larger flexibility. The corresponding VMC and
lattice regularized diffusion Monte Carlo (LRDMC)56 energies
are reported at the last row of Table I. When we relax both
the electronic and ionic parts in UBS, the energy lowers by 57
and 23 mHa in the VMC and LRDMC, respectively. Also the
variance is further reduced, with respect to the CBS reference.
After these calculations in the primitive basis set, we can safely
conclude that our best VMC geometries are unbiased with
respect to sizable basis set errors.

As one can see in Table II and Fig. 2, the QMC equilibrium
geometry reproduces very well the experimental bond mini-
mum (“1-2”) and maximum (“3-12”) elongations. In between
the shortest and the largest bond lengths, their values fluctuate
on the molecular zig-zag edge, as shown in Fig. 2. This so-
called BLA is a characteristic feature of aromatic compounds
and π-conjugated molecules. It depends on the π weight in
the carbon-carbon double bond, whose strength is set by the
superposition of allowed resonating structures, as predicted
by Clar’s theory.57 It turns out that the JAGP wave function
reproduces very accurately this feature, which plays a key
role in many important biochemical processes, such as the
conformers photo-activation in rhodopsin.7

For comparison, we performed also B3LYP and PBE DFT
structural relaxation calculations in the pVTZ basis set with the
Molpro package.45 This improves upon previously published
B3LYP geometries, obtained in smaller basis sets (cc-pVDZ58

and 6-311G⋆⋆59). Our calculations have been carried out for

FIG. 1. Carbon site labels and QMC bond length in Å for the anthracene ground state.
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FIG. 2. Anthracene ground state experimental (Ref. 20), QMC, B3LYP
/pVTZ, and PBE/pVTZ bond lengths. All theoretical values are obtained in
the present work. The bond label conventions are reported in Fig. 1. We plot
the error bars for both the experimental results and the QMC geometries. In
the latter case, the error bars magnitude is comparable with the line thickness.

the same carbon pseudopotential as the one in QMC calcula-
tions. The B3LYP/pVTZ geometry is the closest to the QMC
one, and this confirms the quality of the B3LYP functional
in providing accurate structures. The PBE/pVTZ is systemati-
cally poorer than B3LYP/pVTZ if we take the QMC geometry
as reference (see Fig. 2). The B3LYP itself has a slight ten-
dency to overestimate the bond length, as already pointed out
elsewhere,60 but it is almost on top of the QMC results.

We conclude this section by saying that the experimental
Ref. 20, so precious for validating the reliability of different
theoretical methods to predict the ground state geometry, has
a quite large error bar and is not completely bias-free either.
Indeed, it comes from X-ray diffraction results obtained from
various samples of anthracene crystal. The effect of the crys-
tal environment could slightly affect the measured molecular
equilibrium geometry with respect to the gas phase. On the
other hand, we believe that Ref. 20 provides one of the best
experimental estimates of the anthracene geometry, as it is
an average over a quality selected ensemble of as many as
68 different samples, compiled from the Cambridge Structural
Database.

B. Ionization energy

The ionization (or electron removal) potential is a spectro-
scopic property of paramount importance to benchmark new
theoretical methods and characterize electro-optically active
materials. In the anthracene, it involves an electron mainly
taken from the π HOMO orbital, with a concomitant charge
redistribution due to the partial change of bond character be-
tween carbons.

We compute the vertical IE by removing an electron from
the ground state and optimizing the electronic part in the con-
tracted basis set at frozen VMC ground state geometry. The
VMC and LRDMC results are shown in Table III.

By relaxing the geometry, the gain in energy is quite large,
about 0.1 eV. The equilibrium structure is reported in Table IV
and plotted in Fig. 2. The impact of the electron removal on the

TABLE III. Vertical and adiabatic ionization energies (IE) for the anthracene
molecule by VMC and LRDMC calculations. We report also the results
of Ref. 18, obtained at the B3LYP/6-311++ G(d,p) level, and the benchmark
(nominally “exact”) calculations based on the focal point analysis (FPA)
of Ref. 16. The vertical and adiabatic “exact” FPA results do not include the
zero point energy (ZPE).

IE VMC (eV) LRDMC (eV)

Vertical QMC 7.440(17) 7.476(22)
Adiabatic QMC 7.338(14) 7.385(20)

Expt. 7.415 eV11

Vertical B3LYP 7.16 eV18

Adiabatic B3LYP 7.09 eV18

Vertical “exact” (FPA) 7.47 eV16

Adiabatic “exact” (FPA) 7.40 eV16

geometry is significant, with the shortest bond (“1-2”) which
gets looser in the ionic state, and with a milder BLA. Also these
features can be qualitatively explained within Clar’s theory,
as the number of resonance configurations is smaller, due to
one electron less, and so there is less room to modulate the π
weights of the carbon-carbon bonds.

The projective LRDMC has a tendency of yielding larger
IE than VMC, for both vertical and adiabatic excitations. Both
LRDMC IE values are in better agreement with the focal
point analysis (FPA) performed in Ref. 16, which provides
benchmark quantum chemistry results for vertical and adia-
batic ionization energies by extrapolating to both complete
basis set (up to 1070 basis set elements for anthracene) and
theory (up to the CCSD(T) level). The slight improvement of
LRDMC with respect to the VMC results, if compared to the
FPA benchmark, could be due to a weak residual basis set bias
in VMC. This effect is gone in LRDMC, because it is basis set
insensitive.

Our best vertical IEs are in a reasonable agreement with
the experimental value, although slightly underestimated, by
75 and 30 meV at VMC and LRDMC levels, respectively.
These differences are almost of the order of the error bar in
LRDMC calculations. LRDMC confirms the tendency of a
0.1 eV reduction of IE after geometry relaxation. According
to Ref. 18, B3LYP calculations significantly underestimate
the IE, by more than 0.3 eV. The B3LYP relaxation energy
of 0.07 eV is however in quite good agreement with respect
to the QMC estimates. The residual energy difference be-
tween the QMC and experimental values can be related to
the additional zero point energy (ZPE) effect, which leads
to a weak correction of 16 meV, according to B3LYP/pVTZ
estimates.16

TABLE IV. Carbon-carbon bond lengths for the anthracene molecule in the
ground and exited states, considered in this paper.

Bond label Ground state (Å) Cation (Å) Anion (Å) 1La state (Å)

1-2 1.3570(3) 1.3750(5) 1.3816(7) 1.3929(7)
2-3 1.4243(4) 1.4104(8) 1.4148(5) 1.4028(5)
3-4 1.3899(4) 1.3960(5) 1.3994(6) 1.4055(17)
7-8 1.4218(6) 1.4008(5) 1.3988(6) 1.3853(7)
3-12 1.4328(4) 1.4328(14) 1.4418(21) 1.4338(14)
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TABLE V. Vertical and adiabatic electronic affinities (EAs) for the an-
thracene molecule by VMC and LRDMC. In the last two row, we report
benchmark calculations carried out in Ref. 17 with a focal point analysis
(FPA). FPA are “exact” only for the electronic part, as they do not include
zero point energy effects.

EA VMC (eV) LRDMC (eV)

Vertical QMC 0.139(18) 0.260(22)
Adiabatic QMC 0.260(14) 0.352(22)

Expt. 0.53 eV12

Vertical “exact” (FPA) 0.279 eV17

Adiabatic “exact” (FPA) 0.382 eV17

C. Electron affinity

The electron affinity in the anthracene molecule is ex-
tremely sensitive to correlation. Indeed, the EA computed at
the HF level is negative, namely, the electron attachment is
not stable. On the other hand, the experimental EA is positive
(0.53 eV12); therefore, the stabilization energy mainly comes
from electron correlation. As a consequence, the ab initio EA
estimate strongly depends on the level of theory and on the
ability of the method to treat correlation effects. This has been
pointed out in Ref. 17, which provides one of the most accu-
rate vertical EAs (reported in Table V), through a FPA-based
extrapolation in both basis set and theory. Anthracene is also
the smallest PAH to show a stable electron attachment, being
the measured EA of benzene (single ring) and naphthalene
(two rings) both negative. For longer PAH, the EA is always
positive and increases with the PAH length. Thus, the quite
weak EA in anthracene results from a subtle combination of
correlation and electron delocalization along the three ring
chains, which places the molecule close to a critical behavior
for electron addition processes.

Our QMC results are reported in Table V. The VMC
underestimates both vertical and adiabatic EAs by 0.1 eV. The
LRDMC improves upon the VMC values and brings them in
agreement with the vertical and adiabatic EA benchmarks. The
remaining difference between the adiabatic LRDMC results
and the experiment can be accounted for by a ZPE effect.
Indeed, B3LYP calculations of the zero point motion in the
anion and ground state give a ZPE difference of 0.144 eV,
which is one order of magnitude larger than the calculated ZPE
difference between the cation and the ground state. This could
be related to a significant softening of the carbon-carbon bond
in the anion. Fig. 3 shows that the BLA is milder in the anion
than in the ground state, with the same behavior as in the cation.
However, in the anion, the carbon-carbon bond length is always
larger than that in the cation, which signals that the bond is
globally softened by the electron attachment. The QMC bond
lengths are reported in Table IV.

By adding the zero point energy contribution to the
LRDMC best estimate, one gets a total adiabatic EA of
0.496(22) eV, in agreement with the experimental value of
0.530 eV.

D. 1La excited state

Linear PAHs present spectral properties with similar fea-
tures across the whole family. They have been intensively stud-

FIG. 3. QMC geometries for the positive ion, the negative one, and the 1La

state compared to the QMC neutral ground state.

ied since the pioneering work by Clar, Klevens, Platt, Jones,
and others, in the late 1940s.61–64 The lowest lying singlet
excitations are characterized by two transitions denoted by
Platt as 1La and 1Lb. The 1La band is intense and polarized
transversally with respect to the molecular longest symmetry
axis, whereas the 1Lb band is very weak and polarized longi-
tudinally. 1Lb is lower than 1La in benzene and naphthalene,
while they switch their order with increasing ring number.
The 1La becomes the singlet lowest energy excitation starting
from anthracene and is one of the most challenging excita-
tions in organic chemistry and photo-chemistry. It is a singlet
HOMO-LUMO transition, which excites the 1Ag ground state
to a 1B+2u (1La) state in the D2h point group (Platt’s) nota-
tions.64 It is a low-lying π → π⋆ excitation, which involves
a promotion of one electron from a π bonding to a π⋆ anti-
bonding orbital. This singlet-singlet transition can be described
by our JAGP, replacing one HOMO b3g orbital (plotted in
Fig. 4(a)) by a LUMO b1u single-particle state (see Fig. 4(b))
in the AGP 1Ag expansion, in such a way that the resulting
1B+2u AGP is a symmetric function under the r↑↔ r↓ swap.
The latter condition implies a singlet state, as the antisym-
metry under particle exchange must then come from the spin
sector of the geminal. Therefore, the AGP for the 1B+2u state
reads

Φ
1B2u(r↑,r↓) =

HOMO−1
k=1

λkφk(r↑)φk(r↓)

+ ϵφHOMO(r↑)φLUMO(r↓)
+ ϵφLUMO(r↑)φHOMO(r↓), (14)

where {λk = 1}k=1, ...,HOMO−1, and ϵ ≪ 1 is an arbitrary small
prefactor, which makes the weights of double excited states
with (LUMO)2 occupations vanishing, i.e., of order ϵ2, negli-
gible with respect to the dominant O(ϵ) contributions. This
construction is necessary, as det(Φ(r↑i ,r↓j)) takes into account
all possible N-particle states made of N/2 pairs included in
the expansion Φ, with relative weights given by the product of
λk, where k runs over the N/2 pairs of each allowed N-particle
state. Double excitations are therefore weighted as ϵ2 in det(Φ),
while at first (leading) order in ϵ , det(Φ) is represented by two
Slater determinants each one made by the HOMO → LUMO
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FIG. 4. (a) HOMO orbital for the anthracene molecule calculated in DFT LDA for the ground state; (b) LUMO DFT orbital for the anthracene molecule
calculated in DFT LDA for the ground state; (c) molecular natural orbitals obtained from the 1B2u AGP diagonalization process encoding the HOMO-LUMO
transition, as described in the text.

transition in the spin-down and spin-up sectors, respectively. ϵ
has been further relaxed by energy minimization as additional
variational parameter, and its optimal value is about 10−3. From
this analysis, it is thus clear that the 1B+2u state as described by
the AGP ansatz is multideterminant, with (mainly) two deter-
minants equally weighted, and all single determinant methods
fail in computing this excitation.

However, this is not the only difficulty in dealing with the
1B+2u state. Indeed, associated to its multideterminant character,
there is a strong charge transfer along the short symmetry axis
(the y axis in our geometry notations), which leads to a large
polarization along the same direction. To understand this, let
us diagonalize the AGP in Eq. (14). We get the equivalent AGP
representation, expressed in terms of “natural orbitals,”
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Φ
1B2u(r↑,r↓) =

HOMO−1
k=1

λkφk(r↑)φk(r↓)

+ ϵφleft(r↑)φleft(r↓)
− ϵφright(r↑)φright(r↓), (15)

where φleft = (φHOMO + φLUMO)/
√

2 and φright = (φHOMO

− φLUMO)/
√

2 are the “left” and “right” MOs depicted in
Fig. 4(c). The “left” (“right”) MO breaks the reflection sym-
metry with respect to the x axis, and it has lobes more localized
to the left (right) side of the molecule. Those are prototypical
edge states. Equation (15) makes the physical interpretation
transparent. The 1B+2u AGP, in its natural orbital representation,
is a resonance between two states, where a singlet electron
pair is localized on one of the two edges of the molecule. The
pair localization is related to a strong charge transfer from the
ground state arrangement. The point group symmetry is
restored by the linear combination of the “left” and “right”
states, with a net large polarization of the resulting multi-
reference wave function. Early analysis in the VB framework
soon highlighted the ionic character of the 1B+2u state. However,
the underlying N − 2 electrons are not simple spectators,
but they react to the charge transfer taking place at the HOMO-
LUMO level of energy. Indeed, the remaining electrons
contribute to screen this charge fluctuation, a process which is
dubbed as “σ-π correlation” in organic chemistry. Accurately
describing this kind of correlation is a challenge for every
quantum chemistry method.

The results of our JAGP QMC calculations for the 1La en-
ergy excitations are reported in Table VI. The geometry optimi-
zation performed at the VMC level gives relaxation energies of
300(24) meV and 553(24) meV, in CBS and UBS, respectively.
These values are systematically reduced by further LRDMC
calculations—performed at frozen optimal VMC geometry—
which give 216(38) meV and 340(50) meV, in CBS and UBS.
Despite the reduction, these values are still slightly larger then
previous TDDFT-B3LYP estimates, which give a relaxation
energy of 0.22 eV.10

UV spectral data are available for this transition. The
early value of 3.38 eV,13 used as benchmark in many subse-
quent theoretical calculations, was obtained in solution after

TABLE VI. Vertical and adiabatic 1La excitation energies for the anthracene
molecule by VMC and LRDMC, with both contracted (CBS) and uncon-
tracted basis set (UBS) optimization. The best QMC results are obtained for
the adiabatic calculations in the UBS. We report also recent calculations and
experimental results extrapolated to the gas phase,13 or directly performed in
the gas phase.14

1La excitation energy VMC (eV) LRDMC (eV)

Vertical (CBS) QMC 4.078(17) 3.97(3)
Vertical (UBS) QMC 4.193(17) 4.00(4)
Adiabatic (CBS) QMC 3.778(17) 3.754(27)
Adiabatic (UBS) QMC 3.640(17) 3.66(3)

Expt. 3.38 eV,13 3.43 eV14

Vertical TDDFT(B3LYP) 3.21 eV10,18

Vertical CVDFT 3.68 eV19

Vertical CC2 3.69 eV10

Vertical CIS(D) 4.05 eV18

applying a solvent correction. A more recent experiment14

studied the 1La energy spectrum directly in the gas phase, by
means of ultrahigh-resolution spectroscopy. This gives a value
of 3.43 eV, which is thus the best experimental reference up to
now. However, as shown in Table VI, our adiabatic excitation
energies of 3.778(16) eV and 3.754(27) eV, at VMC-CBS
and LRDMC-CBS levels, respectively, are not quite consistent
with experiment.

A possible bias can come from the CBS, as polariza-
tion effects usually require a very flexible basis. To check
this hypothesis, we performed further QMC calculations in a
Gaussian primitive basis set (UBS) of (9s8p4d) for carbon and
(8s4p) for hydrogen. These results are reported in Table VI
as well. Optimizing both the electronic and ionic parts in the
UBS lowers the energy of the excited state, and yields a VMC
value of 3.640(16) eV, which is closer to experiment. LRDMC
calculations carried out at the frozen optimal VMC geometry in
the UBS confirm this excitation energy, but with a twice larger
statistical error bar.

The remaining discrepancy between VMC and experi-
ment can be due to vibronic effects, i.e., the ZPE. Indeed,
phonon calculations performed in Ref. 14 at the CASSCF(4,4)
level of theory give a zero-point energy of the ground state
larger than the 1B+2u one by 0.151 eV. This difference would
push the 00

0 spectral band to smaller values than the wall-to-
wall estimates, and would explain the remaining mismatch
found in VMC. In fact, the VMC-UBS value corrected by
the ZPE yields a 00

0 spectral band located at 3.489(17) eV,
3.5 sigma further from the experimental value. Therefore, our
VMC value of 3.640(16) eV can be taken as the newest most
accurate theoretical benchmark for the wall-to-wall excitation.

Interestingly enough, if one adds the vibronic (0.151 eV)
and geometry relaxation (≈0.3 eV) contributions to the most
recently measured 00

0 excitation (3.43 eV), one finds a vertical
excitation energy of 3.88 eV. This is significantly larger than
the commonly used reference (3.60 eV) for the vertical 1La

transition. The correct vertical excitation reference falls in be-
tween previous CIS(D)18 and CC210 calculations and partially
resumes the reliability of the high level CIS(D) results65 for this
particular case. In this perspective, the TDDFT results obtained
with the B3LYP functional10,18 look even worse than before.
As already pointed out, the TDDFT failure for this excitation
is severe, probably due to the adiabatic approximation in the
time dependent functional which is particularly rough in case
of strong charge fluctuation and polarization. The use of con-
stricted variational DFT seems to improve over the TDDFT
results already at the LDA level.19

The recent ultrahigh-resolution spectroscopy allows us to
compare with experiment not only the transition energies but
also the structural changes across the excitation. Indeed, from
the analysis of the spectral fine structure, one can get precious
information on the rotovibrational spectrum in the initial and
final states, and from that one can measure the rotational con-
stants and moments of inertia along the main rotational axes
of the molecule. Those are global probes, as they depend on
the sum over all ionic positions in the molecular structure.
Nevertheless, they reveal the major structural changes, when
an electron is excited, added, or removed from the molecular
ground state.
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TABLE VII. Relative difference in rotational constants across the 1La exci-
tation of the anthracene molecule as measured by ultrahigh-resolution spec-
troscopy and computed from the VMC relaxed geometries. A, B, andC are the
GS rotational constants related to moments of inertia axes oriented along the x,
y, and z directions, respectively, where the Cartesian frame is taken according
to the conventions adopted to draw the (x, y) coordinates in Fig. 1, with the
z axis pointing outwards. We present results for both contracted (CBS) and
uncontracted (UBS) basis set to underline the importance of having an accurate
wave function to obtain a good description of structural changes.

Rotational constants variation

∆α/α =
(α(1La)−α(GS))

α(GS) Expt.14 VMC (CBS) VMC (UBS)

∆A/A 0.0108 0.0064(4) 0.0112(5)
∆B/B −0.0136 −0.0116(10) −0.0132(2)
∆C/C −0.0099 −0.0085(9) −0.0091(2)

Table VII shows the rotational constants relative differ-
ence between the 1La and 1Ag states. Both experimental and
VMC values are reported. The VMC rotational constants are
computed as α = ~/4πcIα, where Iα is the moment of inertia
along one of the three main rotational axes of the molecule. Iα
is evaluated according to the optimal VMC structure, obtained
in UBS, and with H and C masses based on their natural
isotope partitioning. The relative variation of the rotational
constants is well reproduced by QMC, signaling that the
global structural deformation the molecule undergoes through
the electronic excitation is correctly described by the VMC
geometry relaxation.

It is interesting to see that the 1La structural change is
indeed significant. In Fig. 3, the bond alternation clearly pres-
ent in the 1Ag GS is gone in the 1La excited state. This is another
consequence of the strong ionic character of the excitation,
which destroys the VB resonance structure, mainly covalent in
nature, of the GS. As we have discussed, adiabatic and vibronic
effects are important to quantitatively reproduce the experi-
mental 00

0 band of the UV spectrum. The reason appears now
clear as both the equilibrium positions and their vibrations are
related to the very different nature of the two electronic states.

E. Zig-zag versus armchair edge: A comparison
with phenanthrene

Beside the oligoacenes, which are characterized by a
zig-zag edge, another important class of PAH is the one

of phenacenes, based on the fusion found in phenanthrene
(see Fig. 5), namely, leading to an armchair border. For
each oligoacene member, there is a corresponding one in the
phenacenes, having the same number of rings, but different
arrangements. The edge shape has a dramatic impact on the
electronic properties of the PAH. The oligoacenes have a
tendency toward metallicity in the infinite chain limit, with
low-lying excitations,23,24 such as the singlet-triplet, whose
gap shrinks as the PAH length increases,21 and the possible
formation of an open-shell singlet ground state.22 On the other
hand, the phenacenes spectra show a gap which is weakly
dependent on the molecular size. Similar features have been
found in graphene nanoribbons. They share the same structures
as oligoacenes and phenacenes except for their width, which
is usually much larger than one ring unit. The armchair
graphene nanoribbons are semiconductors, while theoretical
ab initio predictions for the zig-zag nanoribbons yield a small
gap insulator, spin polarized at the edges, which becomes a
half-metal in case a strong in-plane electric field is applied,
leading to very peculiar spintronic properties.25

The isomeric analog of anthracene is the phenanthrene
molecule. Studying the differences between anthracene and
phenanthrene, and how they are captured by ab initio methods,
is fundamental to assessing the accuracy of those methods in
these simplest chemical systems with the aim at validating their
use in larger PAHs and in graphene nanoribbons. In this sec-
tion, we report the ground state study of phenanthrene carried
out by VMC and LRDMC with the same procedure (basis set,
PBE starting geometry, and wave function) as the one used for
anthracene. Both the wave function and geometry have been
fully relaxed in the VMC framework, giving the ground state
equilibrium geometry shown in Fig. 6 and Table VIII. From
the figure, it is apparent that the BLA is no longer present in
phenanthrene, as the molecule is less symmetric than anthra-
cene. Nevertheless, there is still a strong carbon-carbon bond
length variation, ranging from 1.3510 Å to 1.4458 Å, roughly
the same bond stretching found in anthracene. The comparison
with B3LYP/pVTZ and PBE/pVTZ geometries reveals that
PBE is poorer than B3LYP, and the latter is almost on the top
of the QMC geometries, a systematic behavior already found
for anthracene in Sec. III A.

The reference experimental geometries66 are obtained
from X-ray crystallographic data. We would like to stress once

FIG. 5. Carbon site labels and QMC
bond lengths in Å for the phenanthrene
ground state.
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FIG. 6. Phenanthrene ground state experimental (Ref. 66), QMC,
B3LYP/pVTZ, and PBE/pVTZ bond lengths. All theoretical values are ob-
tained in the present work. The bond label conventions are reported in Fig. 5.
The error bars are plotted for both experimental results and QMC geometries.

again that the equilibrium geometry measured in the crystal
could differ from the gas phase one, due to a possible bias
provided by the crystalline environment.

A key property which depends on the edge shape is the
relative thermochemical stability of the PAH species. It is well
known that the oligoacenes are very reactive due to their multi-
radical character.21 This is reflected by the chemical instability
of zig-zag mono-hydrogenated and unreconstructed graphene
nanoribbons, which prevents them from being synthesized
and measured. The armchair nanoribbons are instead stable
and widely analyzed experimentally. Recent PBE-DFT based
ab initio calculations showed that indeed zig-zag graphene
nanoribbons are thermally unstable over a very large range of
experimental conditions.67 A related situation happens for the
phenanthrene and anthracene molecules. The former shows
a lower enthalpy of formation than the latter, according to
experimental Ref. 15. Therefore, the armchair edge has a
larger thermochemical stability than the zig-zag one. Those
data can be directly compared to the total energy differences
between anthracene and phenanthrene computed by QMC
at their corresponding VMC equilibrium geometries. In this
case, the total energy difference does not need to be corrected
by the zero-point energies, which are basically the same in
the isomeric compounds.68 The VMC and LRDMC energy

TABLE VIII. Carbon-carbon bond lengths for the phenanthrene molecule.
For comparison, we report also the B3LYP/pVTZ and PBE/pVTZ results for
the same carbon pseudopotential. The bond label conventions are drawn in
Fig. 5.

Bond label Expt.66 (Å) QMC (Å) B3LYP/pVTZ (Å) PBE/pVTZ (Å)

12-13 1.412(4) 1.4060(5) 1.408 1.412
13-14 1.377(4) 1.3707(5) 1.373 1.380
14-1 1.390(18) 1.3982(5) 1.401 1.405
1-2 1.352(7) 1.3727(5) 1.375 1.382
2-3 1.396(10) 1.4062(5) 1.408 1.411
3-4 1.454(10) 1.4458(5) 1.452 1.452
4-9 1.416(7) 1.4143(5) 1.420 1.427
9-10 1.426(8) 1.4291(5) 1.429 1.429
10-11 1.338(10) 1.3510(5) 1.351 1.361

TABLE IX. Energy differences between the anthracene and phenanthrene
molecules, obtained in this work with various methods, and compared to the
experiment. This shows the stability of the armchair edge with respect to the
zig-zag one in the three-ring PAHs.

Eanthra−Ephena (kJ/mol)

PBE/pVTZ 18.6
B3LYP/pVTZ 20.8
CCSD(T)/pVTZ 25.0
VMC 26.8(1.8)
LRDMC 24.4(3.0)

Expt. 24.7(2.9)15

differences are reported in Table IX. They both agree with
experiment within chemical accuracy, as they lay within one
error bar (<1 kcal/mol) from the experimental value. CCSD(T)
calculations in the pVTZ basis set performed at the QMC
geometries with the Molpro implementation are in very good
agreement with the QMC energy differences. B3LYP and PBE
energy differences, also reported in Table IX and computed
at their corresponding relaxed geometries (see Tables II and
VIII), slightly underestimate the stability of phenanthrene with
respect to anthracene, a behavior which is more apparent in
PBE.

IV. CONCLUSIONS

In this paper, we have shown that the variational QMC
framework based on the JAGP is capable to accurately repro-
duce not only the ground state properties but also the excited-
state energies and geometries.

We described an algorithm, already used in the ground
state molecular orbital energy minimization, which has proven
to be stable also in the excited state electronic optimization, and
in the full geometry relaxation at a given excited state config-
uration. It is based on a constrained (fixed-rank) minimization
of the geminal expansion, followed by an eigenvalue selection
of the determinant density matrix spectrum. In practice, after
the constrained variation of the geminal matrix λ, one keeps the
target number of natural orbitals by selecting those with largest
eigenvalues. This method gives new molecular orbitals which
largely lay in the same symmetry sector of the wave function
as in the former iteration. The statistics and parameters accel-
eration which guarantee this stable behavior do not differ from
those of a regular ground state optimization.

We have applied this scheme to study the anthracene addi-
tion and removal spectrum, and the difficult case of the π
→ π⋆ neutral excitation. Anthracene is an ideal test case, as
it is one of the simplest PAH, which retains all the complexity
of larger or more general aromatic hydrocarbons. Moreover,
the PAHs represent a very interesting family to study, as their
spectral properties are appealing and nowadays exploited in
many photo-chemistry applications and devices.

The anthracene ground state energy and geometry turn
out to be well described by our QMC framework. It correctly
captures the resonance between singlets responsible of the
chemical bond stabilization in the aromatic rings, because the
bond alternation is well reproduced. Moreover, the energy
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difference with phenanthrene, which shares the same number
of rings but in an armchair arrangement, is in agreement with
thermochemistry data.

In anthracene, we proved the importance of performing
geometry relaxation to get excitation energies in better agree-
ment with the experiment. Indeed, the difference between the
vertical and adiabatic excitations can be sizable, and strongly
dependent on the type of transition, leading to corrections of up
to 0.2-0.3 eV. Relaxing the geometry in the excited state elec-
tronic configuration is, therefore, very important. We showed
that the present QMC approach is able to carry the double task
of dealing with non-trivial excited states and optimizing their
geometry, both performed within the same JAGP framework.
Good agreement with experiment is finally obtained by the
QMC adiabatic excitation energies. The remaining gap be-
tween QMC and experimental values can be related to the zero
point energy variation, that we have not addressed in this paper.
However, the possibility to efficiently evaluate ionic forces also
in the excited states by QMC allows one to reliably compute
phonon properties as well, as already reported elsewhere for
the electronic ground state of small molecules.69

The computational cost of our JAGP-QMC calculations
for the three-ring PAH analyzed here is moderate. The VMC
calculations took 4 h (wall time) on 64 cores (Intel Xeon-Curie
supercomputer thin nodes) to get an error of 12 meV in the total
energy, the geometry relaxations took about 20 wall time hours
on 256 cores to converge, while the LRDMC cost (with a lattice
space of 0.25 a.u.) is about 12 wall time hours on 512 cores
to yield a 24 meV error in the fixed-node total energy. Given
the QMC favorable scaling (N3-N4) with the system size, it is
therefore possible to perform large scale calculations on larger
PAH, at the same accuracy as the one obtained here.

To conclude, in this paper, we reported benchmark calcu-
lations of the ground state properties, ionization energy, elect-
ron affinity, and neutral singlet HOMO-LUMO excitations in
anthracene. The interplay between electronic and structural
modifications in the excited states is deeply explored within
the same QMC framework. This opens the way to new appli-
cations in a large variety of chemical systems. Our scheme
is promising also for further studies on larger PAH, where
the tight competition between low-lying energy states can
give rise to new peculiar structural and chemical properties
of the hydrocarbon chain, such as the occurrence of an open-
shell singlet ground state, and strong diradical or multiradical
character.
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