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In standard nucleation theory, the nucleation process is characterized by computing ��(V ), the
reversible work required to form a cluster of volume V of the stable phase inside the metastable
mother phase. However, other quantities besides the volume could play a role in the free energy of
cluster formation, and this will in turn affect the nucleation barrier and the shape of the nucleus. Here
we exploit our recently introduced mesoscopic theory of nucleation to compute the free energy cost
of a nearly spherical cluster of volume V and a fluctuating surface area A, whereby the maximum
of ��(V ) is replaced by a saddle point in ��(V,A). Compared to the simpler theory based on
volume only, the barrier height of ��(V,A) at the transition state is systematically larger by a few
kBT. More importantly, we show that, depending on the physical situation, the most probable shape
of the nucleus may be highly non-spherical, even when the surface tension and stiffness of the model
are isotropic. Interestingly, these shape fluctuations do not influence or modify the standard Classical
Nucleation Theory manner of extracting the interface tension from the logarithm of the nucleation
rate near coexistence. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866971]

I. INTRODUCTION

When in a first-order phase transition a thermodynamic
phase turns metastable, it may remain stuck for long in a state
of apparent equilibrium until a favorable fluctuation triggers
the formation of the truly stable phase. Nucleation concerns
the early stages of the phase transformation, which initially
occurs as an activated process.1 Despite many attempts to for-
mulate a quantitatively accurate theory of homogeneous nu-
cleation, the important problem of relating the nucleation rate
(the main experimentally accessible quantity) to the micro-
scopic features of the system still remains open. A less am-
bitious program is to find a simple statistical model where a
number of nucleation-related issues can find at least a partial
answer. In a pair of recent papers,2, 3 we focused on a meso-
scopic scale model of this sort, in the form of a field theory in
the surface of the nucleating cluster. While the classical nu-
cleation theory (CNT) envisages the cluster surface as sharp
and spherical with the same interface free energy as the bulk-
coexistence interface, the cluster of our theory can make ex-
cursions around a reference shape, with a cost expressed in
terms of the parameters of a Landau free energy. Within this
theory, two main results were obtained: (i) The cluster for-
mation energy shows, in addition to Landau-type corrections
reflecting the finite width of the cluster interface,4 a term log-
arithmic in the cluster volume V , with a numerical prefac-
tor whose magnitude and sign are only sensitive to the extent
of interface anisotropy; (ii) The subleading corrections to the
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CNT free energy can so much affect the steady-state nucle-
ation rate that the customary way of extracting the interface
tension from it, based on the standard CNT recipe may easily
lead to wrong results.

Here we pose another question, and give a detailed an-
swer still in terms of our theory, concerning the role of the
area A of the nucleation cluster. A central assumption in CNT
is that a single reaction coordinate (the cluster size or vol-
ume) is sufficient to describe the nucleation cluster. This is
so frequently and commonly adopted that it is not always ap-
preciated that such a hypothesis is actually only a convenient
approximation. To be sure, there exist many notable excep-
tions. In Refs. 5–11, microscopic attempts were described
that go beyond a single reaction coordinate, with impor-
tant additional insights into the actual mechanism of nucle-
ation. In atomistic simulations in particular, nucleation can be
monitored by means of convenient order parameters and the
nucleation landscape can be mapped out in terms of these
variables. A general finding is the extreme irregularity of clus-
ter shapes which, generally far from spherical, are neither
compact nor necessarily one-phase objects. However, atom-
istic studies are numerical in nature, and therefore intrinsi-
cally system-specific.

In this paper, we base on a generic field theory descrip-
tion a study of the modifications in the energetics of nucle-
ation when, besides the cluster volume, the surface area is in-
troduced as a reaction variable. Notwithstanding the simpler
and necessarily more abstract nature of our approach com-
pared with atomistic ones, we show that this additional vari-
able, the area, is in many cases irrelevant for the nucleation
process, but becomes important when the activation barrier
to nucleation is small. The instantaneous and average surface
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area of the nucleus are significantly larger than that of the
sphere of same volume. Moreover, the free-energy barrier cor-
responding to the nucleation process is systematically under-
estimated if one considers only the volume as a reaction vari-
able. We also provide a quantitative estimate of these effects
as a function of the model parameters, and inquire whether
the standard CNT procedure of extracting the interface free
energy from the logarithm of the nucleation rate is going to
be affected by an average cluster area larger than spherical.

The paper is organized as follows. In Secs. II and III,
we briefly recollect the features and main results of the field
theory at the basis of our calculations. Next, in Sec. IV, we
present data for the nucleation landscape as a function of vol-
ume and area of the cluster. The dependence of the critical
size and the barrier height on the model parameters are inves-
tigated in detail. In Sec. V, we address the issue how to extract
the interface tension from the measured nucleation rate in the
light of our new results. Final remarks and conclusions are
given in Sec. VI.

II. REVIEW OF THE MODEL

In Refs. 2 and 3, we introduced a model description of the
free energy of a homogeneous nucleation cluster as a function
of the cluster volume V . The theory goes beyond CNT, in that
it allows for fluctuations of the cluster surface � around its
mean shape. Two cases were considered, both amenable to
analytic treatment. A quasispherical cluster, corresponding to
an isotropic interface, and a cuboidal cluster, addressing the
opposite limit of strongly anisotropic interface tension. We
make use of the same theory here, to address the area de-
pendence of the cluster-free energy cost of a nearly spherical
cluster.

We first introduce the relevant thermodynamic frame-
work, slightly deviating from the notation used in Refs. 2
and 3. Let the metastable and stable phases be called, respec-
tively, 1 and 2 (for instance, supercooled liquid and solid close
to melting). If the basic variable, or reaction coordinate, is
chosen to be the volume V of the phase 2 cluster, then the ex-
ternal control parameters are the temperature T, the volume
Vtot of the vessel, and the chemical potential μ. Let further P1

and P2 be the equilibrium pressure values in the two infinite
phases for the given T and μ values. For example, slightly
below the coexistence temperature Tm and for μ = μm, the
chemical potential value at coexistence, �P ≡ P2 − P1 is
roughly equal to −Lm/(VtotTm)�T , where �T = T − Tm and
Lm is the heat of fusion. In a long-lived metastable 1 state
not far from coexistence, shape fluctuations of the 1-2 inter-
face in a cluster of phase 2 occur with a weight proportional to
the Boltzmann factor relative to a coarse-grained Hamiltonian
H[�] (here, a Landau grand potential), given by

H[�] = −P1(Vtot − V[�]) − P2V[�] + Hs[�], (2.1)

where V[�] is the cluster volume enclosed by � and Hs[�]
is the free-energy functional accounting for the cost of the
interface (note that, at this level of generality, it is not even
necessary that � be a connected surface).

For the Hs[�] in Eq. (2.1), we assume a Canham-
Helfrich form, containing spontaneous-curvature and

bending-energy terms in addition to interface tension, with
parameters derived from a more fundamental Landau free
energy. In detail, denoting by H the mean curvature of the
surface � of the cluster, the interface free-energy functional
reads

Hs[�] =
∫

�

dS
(
σm − 2σmδmH + 2λH 2

)
, (2.2)

where the system-specific quantities σ m, δm, and λ would gen-
erally depend on the local surface orientation (see the form of
these coefficients in Ref. 3).

As mentioned above, two limiting cases of Eq. (2.2) can
be studied analytically, those of isotropic and of extremely
anisotropic interfaces. In the isotropic case, σ m, δm, and λ are
constant parameters and the shape of the cluster is on average
spherical. Although the solid-liquid interface is notoriously
anisotropic, in many cases (hard spheres, Lennard-Jones fluid,
etc.) the anisotropy is small enough to be neglected as a first
step. When deviations from sphericity are small, the equation
for � can be expressed in spherical coordinates as R(θ , φ)
= R0[1 + ε(θ , φ)] with ε(θ , φ) � 1. Denoting by xl,m, the
Fourier coefficients of ε(θ , φ) on the basis of real spherical
harmonics, and discarding terms of order higher than the sec-
ond in these coefficients, the functional Hs takes the explicit
form:3

Hs = 4πσmR2
0 + σmR2

0

2

∑
l>0,m

(l2 + l + 2)x2
l,m − 8πσmδmR0

− σmδmR0

∑
l>0,m

l(l + 1)x2
l,m + 8πλ

+ λ

2

∑
l>1,m

l(l + 1)(l − 1)(l + 2)x2
l,m. (2.3)

III. NUCLEATION CLUSTER OF VOLUME V AND
AREA A: THE RESTRICTED GRAND POTENTIAL

The model described by Eqs. (2.1) and (2.2) assumes
that the relevant collective variable (CV) for describing the
process is the volume V of the nascent cluster. Under this
assumption, the relevant thermodynamic potential is the re-
stricted grand potential for a predominantly 1 system with an
inclusion of phase 2 of arbitrary shape but fixed volume V :

�1+2(V ) = − 1

β
ln

{
a3

∫
D� δ(V[�] − V )e−βH[�]

}
, (3.1)

where, on the right-hand side, β = (kBT)−1. In Eq. (3.1), a is a
microscopic length and D� is a dimensionless integral mea-
sure. For the same choice of eigenfunctions as in Eq. (2.3),
the integral measure reads3∫

D� =
∫ +∞

−∞

∏
l>0,m

(
S

s
dxl,m

)∫ +∞

0

dR0

a
, (3.2)

where S = (36π )1/3V 2/3 is the area of the spherical surface of
volume V and s = 4πa2. We emphasize that, due to the exis-
tence of a lower cutoff of a on interparticle distances, a l upper
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cutoff of lmax = √
S/a − 1 is implicit in Eq. (3.2). Hence, V

cannot take any values but only those related to lmax via

(36π )1/3V 2/3 = S = (lmax + 1)2a2, lmax = 2, 3, 4, . . . .

(3.3)
The grand potential of 1 is simply �1 = −P1Vtot, al-

though a different but equivalent expression is also possible,
considering that, by its very nature, phase 1 contains small
clusters of phase 2 in its interior. Denoting Vmax the maxi-
mum volume an inclusion of 2 can have without altering the
nature of 1, we can also write

�1 = − 1

β
ln

∫
V[�]<Vmax

D� e−βH[�] (3.4)

(the value of Vmax is close above the critical volume V ∗, i.e.,
the volume in the transition state).

The grand-potential excess ��(V ), providing the re-
versible/minimum work needed to form a 2-phase inclusion
of volume V within 1, is evaluated as

��(V ) ≡ �1+2(V ) − �1 = (P1 − P2)V

− 1

β
ln

{
a3

∫
D� δ(V[�] − V )e−βHs [�]

}
≡ −V �P + Fs(V ), (3.5)

Fs(V ) being the surface free energy. Equation (3.5) resem-
bles the free-energy barrier of CNT, with the key difference
that the CNT cost for the surface is only the leading term in
Fs(V ). Finally, there is a simple relation between ��(V ) and
the probability density of volume, defined as

ρ(V ) ≡
∫
D� δ(V[�] − V ) exp{−βH[�]}∫
V[�]<Vmax

D� exp{−βH[�]} . (3.6)

Using Eqs. (3.1) and (3.4), it promptly follows that

− 1

β
ln

{
ρ(V )a3

} = ��(V ), (3.7)

which provides a way to calculate �� numerically.12–14 Sim-
ulations show that, unless V is very small, an overwhelming
fraction of 2 particles is gathered in a single cluster, as indeed
expected from the arguments in Ref. 15. A connected 2-phase
inclusion within 1 is also a leading assumption of the theory
of Refs. 2 and 3.

With these stipulations, the free-energy cost of cluster
formation for large V turns out to be

��(V ) = −V �P + Ã V 2/3 + B̃ V 1/3 + C̃ − 7

9
kBT ln

V

a3
,

(3.8)

with Ã, B̃, C̃ explicit functions of σ m, δm, and λ given in
Ref 3. Equation (3.8) represents a step forward from
CNT, as confirmed by explicit simulations in the Ising
model.2, 3

Here we proceed to characterize the quasispherical clus-
ter by means of a coarse-grained free energy function where,
besides the volume, we use the area A of the cluster surface as
a second CV:

��(V,A)

= −kBT ln

{
a5

∫
D� δ(V[�] − V )δ(A[�] − A)e−βH[�]

}
≡ −V �P + Fs(V,A). (3.9)

The meaning of ��(V,A) is the cost of forming a solid clus-
ter of area A and volume V out of the liquid. The last term in
(3.9) (i.e., the surface free energy) is given by

e−βFs (V,A) = a5
∫

D� δ(V[�] − V )δ(A[�] − A)e−βHs ,

(3.10)
and the following sum rule holds:

∫ +∞

0

dA

a2
e−β��(V,A) = e−β��(V ), (3.11)

which provides a useful consistency check of the calculation.
We proceed as for the earlier computation of ��(V ) in

Ref. 3, by first carrying out the trivial integral over R0. The
result is

e−βFs (V,A)

= (36π )−2/3

(
V

a3

)−4/3

e−8πβλe8πβσmδm(3V/(4π))1/3
e−βσmA

×
∫ +∞

−∞

∏
l>0,m

(
S

s
dxl,m

)
exp

(
− 1

4π

∑
l>0,m

x2
l,m

)

× exp

(
−βλ

2

∑
l>1,m

l(l + 1)(l − 1)(l + 2)x2
l,m

)

× exp

(
βσmδm

(
S

4π

)1/2 ∑
l>1,m

(l2 + l − 2)x2
l,m

)

× δ

(
1+ 1

8π

∑
l>1,m

(l2+l−2)x2
l,m−(36π )−1/3V −2/3A

)
.

(3.12)

Note that the delta-function argument is strictly positive for
A < (36π )1/3V 2/3, yielding in this case Fs(V,A) = +∞.
This just expresses the well-known fact that the sphere has
the smallest surface area among all surfaces enclosing a given
volume. Hence, we take A > (36π )1/3V 2/3 in the following
and define the deviation from sphericity as

α ≡ (36π )−1/3V −2/3A − 1 > 0. (3.13)

Using the integral representation of the delta function, we
obtain
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e−βFs (V,A) = (36π )−2/3

(
V

a3

)−4/3

e−8πβλe8πβσmδm(3V/(4π))1/3
e−βσmA 1

2π

∫ +∞

−∞
dk e−iαk

×
∫ +∞

−∞

∏
l>0,m

(
S

s
dxl,m

)
exp

{
− 1

4π

∑
l>0,m

[1 + 2πβλ l(l + 1)(l − 1)(l + 2)

− 4πβσmδm

(
S

4π

)1/2

(l2 + l − 2) − i

2
(l2 + l − 2)k

]
x2

l,m

}

= (36π )−2/3

(
V

a3

)−4/3

e−8πβλe8πβσmδm(3V/(4π))1/3
e−βσmA

(
2πS

s

)∑lmax
l=1 (2l+1)

× 1

2π

∫ +∞

−∞
dx

e−iαx∏lmax
l=2

{
cl(S) − i

2 (l2 + l − 2)x
}(2l+1)/2 , (3.14)

where

cl(S) = 1 + 2πβλ l(l + 1)(l − 1)(l + 2)

− 4πβσmδm(l2 + l − 2)

(
S

4π

)1/2

. (3.15)

The last step in (3.14) is only justified when all cl(S) > 0. A
problem then occurs for δm > 0 since, above a certain value of
the volume, c2(S) becomes negative and Fs(V,A) ceases to be
defined. For lmax = 2, the integral in (3.14) can be evaluated
analytically (see Appendix A). In the other cases, this integral
is best converted into a real integral,∫ +∞

−∞
dx

e−iαx∏lmax
l=2

{
cl(S) − i

2 (l2 + l − 2)x
}(2l+1)/2

= 2
lmax∏
l=2

cl(S)−(2l+1)/2

×
∫ +∞

0
dx

cos
[
αx − ∑lmax

l=2
2l+1

2 arctan
(

l2+l−2
2

x
cl (S)

)]
∏lmax

l=2

[
1 +

(
l2+l−2

2
x

cl (S)

)2
](2l+1)/4 ,

(3.16)

which is easier to compute numerically. We used Eq. (3.16)
to evaluate ��(V,A) up to lmax = 14 for a number of combi-
nations of the model parameters.

IV. RESULTS

In Fig. 1, we plot the contour lines of ��(V,A) in the
(V, α) plane for a specific yet arbitrary choice of model pa-
rameters. A clear saddle point is seen on the free-energy sur-
face, marked by an asterisk in the lower panel of Fig. 1. The
transition state for nucleation is nothing but this free-energy
saddle, which is the “mountain pass” separating the basin of
attraction of the liquid (V = 0) from the region of (V,A)
points which, under the system dynamics, would flow down-
hill to the “solid” sink at V = +∞.

When averaged over many different dynamical trajec-
tories, the nucleation process can be described as following
the lowest-free-energy route since the Boltzmann weight is
highest at the bottom of the free-energy valley. However, due
to the statistical nature of nucleation, individual nucleation
events also involve some excursions up the walls of the val-
ley, which are more frequent on the high-α side because of the
far more numerous shapes available there for the cluster. In

FIG. 1. Quasispherical cluster: ��(V ) (top) and ��(V, A) (bottom) in
units of kBT, for a specific set of model parameters (β�P a3 = 1, βσma2

= 1, δm = 0.2 a, and βλ = 0.2). For these as well as other values of the pa-
rameters, we have checked by visual inspection that ��(V,A) is indeed a
concave function of V and a convex function of A (and of α as well). To have
a better view of the figure, the two-dimensional nucleation landscape has
been represented through the contour lines of ��(V,A) in the (V, α) plane.
The green solid line in the bottom panel marks the minimum-free-energy path
αmin(V ). The red asterisk marks the position of the saddle point of ��(V, A)
as computed through the interpolation procedure outlined in the text. In the
case considered, the critical volume increases by roughly 3% when the sec-
ond collective variable A is introduced, whereas the barrier height changes
from 17.368 to 19.343 (+11%). We checked numerically for lmax = 3, 4, 5
that Eq. (3.11) is exactly fulfilled (for lmax = 2 this is done analytically in
Appendix A).
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particular, uphill excursions on the free-energy surface away
from the saddle point along the A direction provide the cost of
fluctuations of the nucleus about its mean shape. Clearly, both
the most favorable nucleation pathway as well as the extent
of corrugations of the nucleus surface above its mean shape
vary with the theory parameters. For the case reported in
Fig. 1 (and in many other cases as well), the value of α along
the minimum-free-energy path increases very slowly with V ,
apparently approaching a finite value at infinity.

A non-zero saddle-point value of α implies that the
nucleus—which is spherical only on average—has ripples in
its surface. This is not particularly surprising, considering that
it is convenient for the cluster to deviate from perfect spheric-
ity in order to gain entropy from shape fluctuations—a finite-
size roughening. The perfect sphere exerts an entropic repul-
sion on the cluster shape, which is similar to the mechanism
at the origin of the free wandering of an interface away from
an attractive hard wall above the depinning temperature.16

In order to calculate the saddle-point coordinates
(V ∗, α∗) for given values of the parameters, we first computed
the minimum of �� as a function of α for each lmax; then, af-
ter extending lmax to a continuous variable, we maximized ��

along the lowest-free-energy route just determined and even-
tually converted the result in V units. In a few cases, including
the example in Fig. 1, we checked that this procedure gives
exactly the same saddle point as revealed by the contour plot.

The main message from Fig. 1 is that the critical vol-
ume V ∗ is larger when allowing for two CVs, (V,A), than for
V only. The same holds for ��∗. The latter result is true in
general as is seen in Fig. 2, which reports one- and two-CV
values of V ∗ and ��∗ in a wide range of δm, λ, and �P. The
underlying reason is that the nonlinear procedure of obtain-
ing ��(V ) from ��(V,A) by integrating out the A variable
(Eq. (3.11)) unavoidably corrupts the critical volume and the
barrier height causing both to appear artificially smaller than
their true value, unless the minimum free-energy path were
exceptionally parallel to the V axis. The impact on V ∗ and
��∗ of treating area as a collective variable besides volume
is stronger when the barrier is low, leading to barrier-height
increases as large as 15% in the cases plotted (but twice as
that for, e.g., δm = 0.1 a, βλ = 0.1, and β�Pa3 = 1.5). On the
other hand, in most cases the relative changes of V ∗ and ��∗

are only a few percent. This could explain why, in simula-
tions of the Ising model,5 cluster area was found to play only
a minor role in the dynamics of nucleation. As a side note, we
observe that the �P value at which ��∗ would extrapolate to
zero is larger in the two-CV case. This suggests that the spin-
odal threshold is always underestimated in a treatment where
only one reaction variable (V ) is considered.

Looking at Fig. 2, we see that the behavior of V ∗ and
��∗ is similar. They both increase with reducing δm and with
increasing λ, as may be expected from the form (2.2) of the
interface free-energy functional, which shows that in general
a larger cost should be paid for the interface when −δm and λ

are larger.
As coexistence is approached, the nucleus becomes ef-

fectively flatter, since the mean radial amplitude of the surface
ripples, growing as

√
ln(V ∗/a3) as expected for a thermody-

namically rough interface, becomes negligible in comparison

FIG. 2. Top: Ratio between values of the critical volume V ∗ obtained with
(V, A) as collective variables and those obtained with V only, plotted as
a function of the three model parameters δm, λ, and �P —one at a time.
Bottom: Same ratio, now between values of the barrier height ��∗. The crit-
ical volume and the barrier height are both systematically larger in the (V, A)
case. Observe that, for βλ = 0.2 and δm = 0.3 a (0.4 a), the maximum value
of lmax for which the integral in (3.14) still converges is 6 (respectively, 4),
i.e., too low to identify a saddle point on ��(V, A).

with the nucleus radius. Despite that, it is not a priori clear
what the critical area ratio α∗ should do in the coexistence
limit, where the critical nucleus volume diverges. Upon plot-
ting α∗ as a function of supersaturation for fixed values of
the other parameters, we see that α∗ increases slowly as �P
is reduced (see Fig. 3), apparently saturating to approach a fi-
nite value at coexistence. Hence, we conclude that the weak—
even if unlimited—growth of the interface width with volume
yields a quantitatively modest residual corrugation of the nu-
cleation cluster which is unable to change the scaling of clus-
ter area from V 2/3 to a higher power, and apparently even to a

FIG. 3. Quasispherical cluster: Saddle-point value of α, plotted as a function
of supersaturation, for βσma2 = 1 and βλ = 0.2 (blue crosses: δm = 0.1 a; red
triangles: δm = −0.1 a). Approaching coexistence, where surface roughening
ripples diverge, the ratio of the area of critical clusters to that of the equivalent
sphere remains finite (≈1.25).
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marginally faster increase such as V 2/3 ln(V/a3). This expec-
tation finds a confirmation in Appendix B, where the mean
area of a quasispherical cluster of fixed volume is shown to
scale exactly as V 2/3. Since α∗ is roughly equal to the value
of 〈A〉V /S − 1 for V = V ∗, we expect the same asymptotic
behavior for both quantities.

V. EXTRACTING THE INTERFACE TENSION FROM
THE NUCLEATION RATE

Finally, we consider whether employing one (V ) or two
CVs (V and A) could affect the time-honored CNT extraction
procedure of the interface tension at coexistence, σ∞, from
the rate of nucleation I. Assuming the standard transition-
state-theory (Arrhenius-like) expression of I for all supersat-
urations, i.e., I = I0exp {−β��∗}, the most important source
of I dependence on �P is the exponent, −β��∗. The latter
quantity is plotted in Fig. 4 for both one- and two-CV cases,
and for two different choices of parameters. We point out that
the near-coexistence slope of −β��∗ is expected to be the
same for both one- and two-dimensional surface free energy,
see our argument in Appendix C.

According to CNT, ln (I/I0) should be a linear function
of (�P)−2, with a slope proportional to σ 3

∞. In the fluctuating-
shape cluster model instead, ln (I/I0) is a concave function of
(�P)−2 (δm > 0) or a convex one (δm < 0), with the latter
case apparently applying for colloids (see, e.g., Fig. 7(b) of
Ref. 17). Hence, as was underlined in Ref. 2, the correct pro-
cedure of extracting the interface tension at coexistence en-
tails by necessity an extrapolation of the slope of ln (I/I0) at
vanishing undercooling, independently of whether we con-
sider only V or (V,A) as CVs.

FIG. 4. Quasispherical cluster for βσma2 = 1 and βλ = 0.2, and for two
opposite values of δm. We plot −β��∗ as a function of (�P)−2, which rep-
resents the leading �P dependence of ln I (blue squares: one-CV case; red
dots: two-CV case). The slope of ln (I/I0) is nearly constant (i.e., CNT-like)
only for very low supersaturations. In this limit the slope of ln (I/I0) appears
to be the same for both one- and two-CV cases (see text and Appendix C,
where a proof of this equivalence is provided). We observe that the direction
of bending of ln I as a function of (�P)−2 is a reliable marker of the sign of
the Tolman length.

Quantitatively, the rate of nucleation is sensitive to the
number of CVs employed in the calculation: with two vari-
ables instead of one, I is reduced by a few orders of magnitude
for low supersaturations.

Since the limiting slope of ln I is the same for both one
and two CVs, a one-CV description of nucleation is sufficient
when the only objective is to get σ∞ out of a model of the
nucleation cluster. It is useful here to restate that the “ther-
modynamical” (i.e., dressed by thermal fluctuations) surface
tension σ∞, rather than the “mechanical” surface tension τ

(see Appendix B), is what one obtains from a measurement of
the nucleation rate.

VI. CONCLUSIONS

In nucleation, the minimum free-energy cost �� for
making a cluster of the stable phase (e.g., solid) out of the
metastable parent phase (e.g., liquid) is the sum of two terms:
a negative volume term, representing the benefit for switch-
ing a region from liquid to solid, and a positive surface term,
Fs, which is the cost for creating the interface. A crucial as-
sumption of standard nucleation theories is that the surface
free energy Fs only depends on V , the cluster volume; at the
critical size, the reversible work of cluster formation reaches
a maximum value, which in turn determines the steady-state
nucleation rate for low enough undercooling.

Refining the standard description of the free energy of
nucleation, we have extended the theory of Refs. 2 and 3 us-
ing the area A of the cluster surface as a second collective
variable besides volume V . The transition state is now a sad-
dle point in the two-dimensional free-energy surface, and the
shape of the nucleus is that of a corrugated sphere whose area
relative to the equivalent sphere depends upon the model pa-
rameters. We found that the inclusion of area systematically
corrects the barrier height upwards by a few kBT, which in
relative terms may be important especially for low barriers.
Otherwise, the extrapolation procedure towards coexistence
required to extract the interface tension from the nucleation
rate remains exactly the same as for the volume-only case. In
closing, we also speculate that the effective rugosity, here sig-
naled by the parameter α, might be expected to play a role in
modifying the effective Stokes frictional force felt, e.g., by a
solid nucleation cluster drifting in a fluid flow.
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APPENDIX A: CALCULATION OF ��(V2, A)

We here consider in more detail the calculation of
��(V,A) for the case lmax = 2 (corresponding to S/a2 = 9
and V/a3 = 9/(2

√
π ) = 2.53885 . . .), which is perhaps the

only case allowing for an analytic treatment. Assuming
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c2 > 0, we should compute the following integral:∫ +∞

−∞
dx

e−iαx

(c2 − 2ix)5/2
= c

−3/2
2

∫ +∞

−∞
dx

e−ic2α x

(1 − 2ix)5/2

≡ c
−3/2
2 I (c2α), (A1)

where

I (α) =
∫ +∞

−∞
dx

e−iαx

(1 − 2ix)5/2
. (A2)

The integrand is a complex function of real variable which
does not show singularities on the integration path. Integrating
twice by parts, we obtain

I = α2

3

∫ +∞

−∞
dx

e−iαx

(1 − 2ix)1/2
. (A3)

In order to determine (A3), we consider the complex integral∮
�

dz
e−iαz

(1 − 2iz)1/2
(A4)

over a keyhole circuit � of the complex plane, see Fig. 5. The
circuit is so chosen as to avoid the singularity of the integrand
at z0 = −i/2. Since there are no poles inside �, the integral
(A4) simply vanishes. On the other hand, the same integral is
the sum of various contributions, one of which approaches I
in the L → +∞ limit.

Let �L denote the semicircumference with center in the
origin and radius L, lying in the half-plane Imz < 0, and �ε the
circumference of radius ε, centered in z0. We shall prove later
that the integrals over �L and �ε both vanish, respectively, in
the L → +∞ and ε → 0+ limits. As far as the integrals over
the segments AB and CD of Fig. 5 are concerned, they are
given by∫ −iL−δ

z0−δ

dz
e−iαz

(1 − 2iz)1/2
and

∫ z0+δ

−iL+δ

dz
e−iαz

(1 − 2iz)1/2
,

(A5)
δ being a small positive number.

FIG. 5. The integration path � that was considered in the evaluation of the
integral (A4).

Putting the branch cut of z1/2 on the semiaxis of negative
reals,

z1/2 = exp

{
1

2
ln[−π,π) z

}
= exp

{
1

2

(
ln |z| + i arg[−π,π) z

)}
,

(A6)

and taken z = −i/2 − it − δ, the first integral (A5) becomes

−ie−α/2
∫ L−1/2

0
dt

e−αt eiαδ

(−2t + 2iδ)1/2 , (A7)

where

(−2t + 2iδ)1/2

= exp

{
1

2
(ln | − 2t + 2iδ| + πi)

}
δ→0+−−−→ i(2t)1/2. (A8)

Hence∫ −iL−δ

z0−δ

dz
e−iαz

(1 − 2iz)1/2

δ→0+−−−→ − e−α/2
∫ L−1/2

0
dt

e−αt

(2t)1/2
.

(A9)

Similarly, since

(−2t − 2iδ)1/2

= exp

{
1

2
(ln |−2t−2iδ|−πi)

}
δ→0+−−−→ −i(2t)1/2, (A10)

we find∫ z0+δ

−iL+δ

dz
e−iαz

(1 − 2iz)1/2

δ→0+−−−→ e−α/2
∫ 0

L−1/2
dt

e−αt

(2t)1/2
, (A11)

which is the same as (A9). After letting L → +∞, we finally
obtain

I = α2

3

√
2e−α/2

∫ +∞

0
dt

e−αt

√
t

= 1

3
α
√

2πα e−α/2. (A12)

It remains to prove that the integrals over �L and �ε are irrel-
evant. As far as the former is concerned, it suffices to observe
that its modulus is bounded from above by

L

(2L − 1)1/2

∫ 2π

π

dθ eLα sin θ <
2L

(2L − 1)1/2

∫ 3π/2

π

dθ e2Lα(1−θ/π)

= π/α

(2L − 1)1/2
(1 − e−Lα), (A13)

where we used the inequality

sin θ <
2

π
(π − θ ), (A14)

valid for π < θ < 3π /2. Moreover, we have∣∣∣∣∫
�ε

e−iαx

(1 − 2ix)1/2

∣∣∣∣ ≤ 2πε
e−α/2

(2ε)1/2
, (A15)

which vanishes as ε goes to zero.
We checked numerically that the result (A12) is correct

by expressing I in the equivalent form

I = 2
∫ +∞

0
dx

cos
(
αx − 5

2 arctan(2x)
)

(1 + 4x2)5/4
(A16)
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and computing the integral numerically. Summing up, for lmax

= 2, we obtain∫ +∞

−∞
dx

e−iαx

(c2 − 2ix)5/2
= 1

3
α
√

2πα e−c2α/2 (A17)

and we get

e−βFs (V2,A) = (36π )−2/3

(
V2

a3

)−4/3

× e−8πβλe8πβσmδm(3V2/(4π))1/3
e−βσmA

(
2πS2

s

)8

× 1

3
√

2π
α3/2 e−c2α/2, (A18)

with S2 = 9a2, V2 = 9a3/(2
√

π ), and c2 = 1 + 48πβλ

− 24
√

πβσmδma.
It is now easy to check that Eq. (3.11) is fulfilled for lmax

= 2. From (A18), we get

e−β��(V2,A)

= (36π )−2/3

(
V2

a3

)−4/3

e−8πβλe8πβσmδm(3V2/(4π))1/3
eV2β�P−βσmS2

×
(

2πS2

s

)8 1

3
√

2π
α3/2 e−(α/2)(1+48πβλ−24

√
πβσmδma+2βσmS2),

(A19)

and we obtain

(36π )1/3

(
V2

a3

)2/3 ∫ +∞

0
dα e−β��(V2,A)

= (36π )−1/3

(
V2

a3

)−2/3

e−8πβλe8πβσmδm(3V2/(4π))1/3
eV2β�P−βσmS2

×
(

2πS2

s

)8 1

3
√

2π

×
∫ +∞

0
dα α3/2 e−(α/2)(1+48πβλ−24

√
πβσmδma+2βσmS2).

(A20)

Since

∫ +∞

0
dx x3/2 e−Kx = 3

√
π

4
K−5/2, (A21)

the final result is∫ +∞

0

dA

a2
e−β��(V2,A)

= (36π )−1/3

(
V2

a3

)−2/3

e−8πβλe8πβσmδm(3V2/(4π))1/3

× eV2β�P−βσmS2

(
2πS2

s

)8

× 1(
1 + 48πβλ − 24

√
πβσmδma + 2βσmS2

)5/2 , (A22)

which indeed is the value of exp{−β��(V2)} (cf.
Eq. (C16) of Ref. 3; note that, due to an oversight, a
term exp{βρs |�μ|V } was erroneously included in the
expression of Zs).

There is a more elegant way to obtain Eq. (A18). Upon
rewriting Eq. (3.12) as

e−βFs (V,A) = (36π )−2/3

(
V

a3

)−4/3

e−8πβλe8πβσmδm(3V/(4π))1/3
e−βσmA

(
2πS

s

)3

×
∫ +∞

−∞

∏
l>1,m

(
S

s
dxl,m

)
exp

(
− 1

4π

∑
l>1,m

cl(S)x2
l,m

)
δ

(
1

8π

∑
l>1,m

(l2 + l − 2)x2
l,m − α

)
, (A23)

one observes that, by a rescaling of the integration variables,
the integral in (A23) is converted to an integral over the sur-
face of a M-dimensional hypersphere, with M = (lmax + 1)2

− 4. We readily obtain

e−βFs (V,A)

= (36π)−2/3

(
V

a3

)−4/3

e−8πβλe8πβσmδm(3V/(4π))1/3
e−βσmA

(
2πS

s

)3

×
lmax∏
l=2

(
8π

l2 + l − 2

)l+1/2 (
S

s

)2l+1

× 1

2
√

α

∫
SM (

√
α)

dS exp

(
−

∑
l>1,m

2cl

l2 + l − 2
x2

l,m

)
, (A24)

where SM (
√

α) denotes the surface of the M-dimensional hy-
persphere of radius

√
α. The integral in (A24) is trivial for

lmax = 2, where we are again led to the result (A18). For lmax

> 2, the surface integral may still be evaluated numerically
by resorting to Monte Carlo sampling,18 but the computation
is feasible only when lmax is not too large.

APPENDIX B: MEAN AREA AND WIDTH
OF A QUASISPHERICAL CLUSTER OF FIXED
VOLUME

In this appendix, we establish a number of formulae for a
quasispherical cluster of fixed volume, which extend to spher-
ical geometry known properties of a rough planar interface.
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For a quasispherical interface of volume V , statisti-
cal averages are computed with a weight proportional to
exp{−βHs}δ(V[�] − V ) with Hs given by Eq. (2.3). In par-
ticular, using Eq. (C2) of Ref. 3, the average interface area
reads

〈A[�]〉V = S

(
1 + 1

4

lmax∑
l=2

(2l + 1)(l − 1)(l + 2)

bl

)
(B1)

with

bl = 1 + βσm

2
S(l2+l−2) − 4πβσmδm

(
S

4π

)1/2

(l2+l−2)

+ 2πβλ l(l + 1)(l − 1)(l + 2). (B2)

The large-V behavior of (B1) can be extracted by the Euler-
Mac Laurin formula, leading eventually to

〈A[�]〉V
S

= 1 + kBT

8πλ
ln

(
1 + 4πλ

σma2

)
+ 2

√
πδm

βσma2 + 4πβλ

1√
S

+ O(S−1) (B3)

(for example, the asymptotic value of 〈A[�]〉V /S for βσ ma2

= 1 and βλ = 0.2 is 1.249982...). A more elegant way to
derive (B3) is to observe that, by Eq. (3.5),

〈A[�]〉V = ∂Fs(V )

∂σm

∣∣∣∣
σmδm

. (B4)

Using Eq. (C21) of Ref. 3, we readily arrive at (B3). We suc-
cessfully checked Eq. (B3) in a few cases also by directly
computing the sum in (B1). In particular, 〈A[�]〉V /S indeed
approaches its limiting value from above when δm > 0.

The result (B3) is akin to

〈A〉
L2

∼ 1 + kBT

8πλ
ln

(
1 + λπ2

γ a2

)
, (B5)

which applies for a solid-on-solid interface with projected
area L2 and Hamiltonian

H[h] = γL2 + 1

2

∫
D

dx dy
[
γ (∇⊥h)2 + λ(∇2

⊥h)2
]
, (B6)

where ∇⊥ = ∂x x̂ + ∂y ŷ and the integral is extended over a
square (the domain D) of area L2. In Eq. (B5), the charac-
teristic length a arises from the lattice regularization of (B6),
which is a necessity if we are to avoid the divergence of the
partition function. Observe that the Gaussian interface de-
scribed by Eq. (B6) is always rough, since〈

(hx − hx′)2
〉 ∼ kBT

πγ
ln

|x − x′|
a

. (B7)

This latter result is easily translated to the sphere, by observ-
ing that the average square width of a quasispherical cluster
reads

1

4π

∫
d2� 〈(R(θ, φ) − R0)2〉V

= S

2

lmax∑
l=1

2l2 + l + 1

(2l + 1)bl

∼ kBT

3σm

ln

(
V

a3

)
. (B8)

Besides certifying that a quasispherical interface is techni-
cally rough, Eq. (B8) also indicates that the average size
of the deviation R/R0 − 1 = ε from sphericity scales as√

S−1 ln(S/a2) for large clusters; on the other hand, for the
smallest clusters the angular average of 〈ε2〉1/2

V can be as large
as 0.6 for typical values of the model parameters. Hence we
confirm that the quasispherical model is a near-coexistence
approximation only rigorously valid for small to moderate un-
dercooling.

We note in passing that the average cluster area can be
put in relation with the mechanical surface tension τ ,19 which
measures the elastic response of an interface to a change in
its projected area. In the planar case (B6), the stretching or
shrinking of the projected area is obtained by changing a, the
lattice spacing, at fixed number N of lattice sites. The result is

τ ≡ 1

N

∂Fs

∂(a2)
= γ

〈A〉
L2

− kBT

2a2
. (B9)

Similarly, in the quasispherical case τ can be obtained by
keeping the total number of (l, m) modes fixed while differ-
entiating Fs(V ) with respect to S. Calling N = (lmax + 1)2

= S/a2, we first rewrite Fs as (see Eq. (C18) in Ref. 3)

Fs = −2kBT ln N + σmNa2 + 8πλ

− 8πσmδm

(
Na2

4π

)1/2

+ 3kBT ln 2

+ kBT

2

lmax∑
l=2

(2l + 1)

(
−2 ln

N

2
+ ln bl

)
. (B10)

After simple algebra, we get

τ = σm

(
1 − δm

(
4π

S

)1/2
)

〈A[�]〉V
S

, (B11)

which nicely recalls Eq. (B9).

APPENDIX C: LARGE-SIZE LIMIT OF THE
TWO-DIMENSIONAL SURFACE FREE ENERGY

In Ref. 3, the V -dependent surface free energy of a qua-
sispherical cluster was written as Fs = σ (S)S, where in the
large-size limit σ (S) = σ (∞) + O(S−1/2) (see Eq. (C21) of
Ref. 3). Similarly, we are here interested in establishing the
behavior of Fs(V,A) in the limit where V → ∞ for fixed α

= A/S − 1. A likely possibility, suggested by the profiles of
Fs(V, α) for increasing V values (see Fig. 6), is that

βFs(V, α) = f (α)S + g(α)o(S), (C1)

denoting o(S) a quantity growing slower than S for S → ∞
and f, g two not further specified functions of α. Figure 6 in-
dicates that f(α) has a minimum value, fmin = f(αmin), falling
not far away from the asymptotic value of 〈A[�]〉V /S − 1.
By the same Fs data reported in Fig. 6 we infer that the first
subdominant term in (C1) is actually a

√
S term.

Assuming that (C1) holds, we now prove that fmin

= βσ (∞). Starting from Eq. (3.11), which we reshuffle as



094501-10 Prestipino, Laio, and Tosatti J. Chem. Phys. 140, 094501 (2014)

FIG. 6. Ratio of βFs (V, α) to S for increasing V values (V/a3 = (lmax
+ 1)3/

√
36π with lmax = 2, . . . , 14). Low V values are on top, and the red

curve refers to lmax = 14. Three sets of parameters were investigated: βσma2

= 1, βλ = 0.2, and δm = −0.1, 0, 0.1 (from left to right). Upon increas-
ing V , βFs (V, α)/S approaches a limiting profile whose minimum coincides
with βσ (∞) (the dashed line). For δm > 0, the approach to this limit is non-
monotonic.

− ln
∫ +∞

S

dA

a2
e−βFs (V,A) = βFs(V ), (C2)

we divide each side of (C2) by S and then bring the volume to
infinity:

− lim
V →∞

1

S
ln

∫ +∞

0
dα

S

a2
e−βFs (V,α) = βσ (∞). (C3)

Upon carrying the limit inside the integral (which is allowed
in so far as α is independent of V ), the left-hand side of (C3)
becomes

− lim
V →∞

1

S
ln

∫ +∞

0
dα e−f (α)S−g(α)o(S), (C4)

in turn equal to fmin by the Laplace (saddle-point) method.
Alternatively, we may also expand for large S both f and g to
second-order in the deviation of α from αmin. By matching
the two sides of Eq. (C2), we again find fmin = βσ (∞) and
moreover (by Eq. (C21) of Ref. 3)

g(αmin) = −2δm

√
π

[
2βσm + σm

4πλ
ln

(
1 + 4πλ

σma2

)]
. (C5)

The above result can be taken as the proof that the
slope of −β��∗ at vanishing undercooling is the same for
both one and two-CV descriptions of nucleation. In fact,
let it be assumed that �P is so low that we are authorized
to take βFs(V, α) = f (α)S. Then, the extremal point (sad-
dle point) of ��(V, α) = −V �P + Fs(V, α) is the unique
solution to

f ′(α) = 0 and − β�P + 2

3
(36π )1/3f (α)V −2/3 = 0,

(C6)

giving eventually

R∗ ≡
(

3V ∗

4π

)1/3

= 2σ (∞)

�P
and ��∗ = 16π

3

σ (∞)3

(�P )2
.

(C7)

These values of critical radius and barrier height are the same
occurring in CNT when the interface tension is chosen to be
σ (∞).
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