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1. Introduction

A fundamental problem in high energy physics is the computation of non–perturbative quan-
tities in four–dimensional non–Abelian gauge theories coupled to arbitrary matter. Unfortunately,
the present state of the art leads to exact computations only if the gauge theory has enough super-
symmetry. In this respect N = 2 supersymmetry is a natural laboratory in which the low–energy
physics may be exactly computed [1, 2].

The main question in the non–perturbative physics of 4d N = 2 QFT’s is the determination
of the spectrum of BPS particles as a function of the various parameters of the theory [3]-[22].
From refs. [23]- [30] it follows that there is a large class of 4d N = 2 QFT’s (‘almost all’) for
which the computation of the BPS mass spectrum is mapped into the Representation Theory (RT)
of associative algebras.

This map is however quite peculiar. Virtually all (non–perturbative) aspects of the QFT can be
rephrased in the language of algebras [28]; it appears that we have a complete dictionary between
the two subjects. What is peculiar, is that the map works like a kind of ‘trivial/deep duality’ in
the sense that, using the dictionary, very elementary QFT statements will map into quite deep and
sophisticated results in RT, some of which — for the very simplest QFT’s — are known theorems
in mathematics which require full books to be proven, while dually totally trivial RT statements get
mapped into quite deep non–perturbative results in the QFT side. Thus we can generate many deep
results in both subjects just by applying the dictionary to the trivial results of the other one.

The purpose of this introductory is to describe the N = 2 QFT ↔ RT correspondence and
give some general consequence. More details may be found in the references.

This note covers part of the material presented at the 7th International Conference on Mathe-
matical Methods in Physics at CBPF in Rio de Janeiro, April 16–20, 2012. I thank the organizers
for the invitation.

2. Associative Algebras

Let us start by reviewing the RT side. The relevant algebras are associative, unital, and defined
over an algebraically closed field which we take to be C. Most of the mathematical statements
require the algebra to be finite–dimensional; although it is not true that all algebras relevant for
N = 2 QFT’s are finite–dimensional, for the physical questions tipically they behave as they were
finite–dimensional.

Given such an algebra A , one is interested in its representations, that is, in its left (or right)
modules which form an Abelian category modA . A general module is the direct sum of inde-
composable ones, hence it suffices to study the indecomposable modules up to isomorphism. The
module categories of two Morita equivalent algebras are equivalent, and hence it suffices to study
the ‘simplest’ algebra in each Morita equivalence class. In facts, each such equivalence class con-
tains precisely one basic algebra [31] which is the simplest one in the class. Instead of giving their
formal definition, I present a general construction of the basic algebras.

2.1 Quivers and their representations

A (finite) quiver Q = (Q0,Q1,s, t) is given by two (finite) sets — the set of ‘nodes’ Q0, and
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the set of ‘arrows’ Q1 — together with two maps s, t : Q1→ Q0 which specify for each arrow a its
source and target nodes, s(a) and t(a). A quiver is drawn as an oriented graph, e.g.

1
a1 // 2

a2

''

a3
��

3a4
oo

a5
ww4 5a6
oo

a7
)) 6

a8

ii

Q0 = {1,2,3,4,5,6}
Q1 = {a1,a2,a3,a4,a5,a6,a7,a8}.

Given a quiver Q, we can consider its path algebra CQ. A path in Q of length n is an oriented
concatenation of arrows of the form ai1ai2 · · ·ain with s(aik) = t(aik+1) for all k = 1, . . . ,n−1. The
underlying vector space of the algebra CQ has a basis consisting of all paths in Q of lenght n ≥ 1
together with the trivial paths of length zero at each vertex v, ev (called the ‘lazy’ path at v). CQ
is an associative algebra, with the product of two paths given by their concatenation, if this makes
sense, and zero otherwise; the sum of all lazy paths then is a multiplicative identity. The set Q≥1 of
all paths of lenght ≤ 1 is a bilateral ideal of CQ, called the arrow ideal. A theorem by Gabriel [31]
says that each (finite–dimensional) basic algebra is isomorphic to a quotient algebra of the form
CQ/I, where the bilateral ideal I is contained in (Q≥1)

2 = Q≥2 and contains (Q≥1)
m = Q≥m for

some m≥ 2.
Thus it is enough to study the algebras arising from (finite) quivers. The category of modules

over such an algebra is equivalent to the category of representations of the quiver (satisfying the
relations of I); a representation X of Q is the assignement of a vector space Xv for each vertex
v ∈ Q0 and a linear map Xa : Xs(a)→ Xt(a) for each arrow a ∈ Q1. These linear maps are required
to satisfy the relations in I.

Given a representation X , its dimension vector is defined

dimX = (dimX1,dimX2, · · · ,dimX|Q0|) ∈ N|Q0|. (2.1)

2.2 Jacobian algebras

A particularly important class of basic algebras are the Jacobian ones — originally inspired
by work in supersymmetric QFT’s, and then understood mathematically. In the original physical
framework, one fixes the dimension vector to be (N1,N2, · · ·), so that the linear maps Xa may be
seen as Nt(a)×Ns(a) matrices, which physicists interpret as Higgs fields in the (Nt(a),Ns(a)) bi–
fundamental representation of the ‘gauge group’ U(Nt(a))×U(Ns(a)). In physics such a theory, if
supersymmetric, is also equipped with a super–potential W which is a gauge invariant polynomial
in the Higgs fields Xa; the simplest possibility is a linear combination of traces of the products of
the Higgs fields associated to the closed oriented cycles α(`) = a(`)1 a(`)2 · · ·a

(`)
m` in Q

W = ∑
`

λ` tr
(
X

a(`)1
X

a(`)2
· · ·X

a(`)m`

)
λ` ∈ C. (2.2)

In a supersymmetric state the Higgs field should satisfy the F–flatness condition

∂XaW = 0 ∀a ∈ Q1. (2.3)

3



P
o
S
(
R
i
o
 
d
e
 
J
a
n
e
i
r
o
 
2
0
1
2
)
0
0
5

N = 2 SUSY & Representation Theory Sergio Cecotti

In mathematics (and on our physical applications) one does not fix dimX , and hence one sees
W more abstractly as a sum of the closed oriented cycles1 in Q with complex coefficients λ` .
One defines a cyclic derivative ∂ of W (which corresponds to the one in (2.3)) and considers the
bilateral ideal (∂W ) generated by the relations ∂W = 0. The Jacobian algebra of the pair (Q,W )

is then the basic algebra2 CQ/(∂W ).

3. BPS states in 4d N = 2 QFT

In a 4D N = 2 theory, the BPS particles are those whose mass M and central charge Z ≡
εαβ εAB{QA

α ,Q
A
β
} saturate the Bogomolny bound, M = |Z|. A BPS state preserves (i.e. it is invariant

under) 4 supercharges. If we consider the world–line theory of a particle, we get a 1D theory
with (at most) 4 supercharges; such a theory looks like N = 1 supersymmetry in 4D, the chiral
superfields taking value in some Kähler manifold. A particle is BPS precisely if it is described by
a 1D state which preserves 4 supercharges, that is, if it is a SUSY vacuum of the world–line theory.
Typically, the 1D theory is a quiver theory specified by a quiver Q and a superpotential W . A
classical SUSY vacuum is a solution to the equations

Da = 0, Fk = ∂kW = 0. (3.1)

The equation ∂kW = 0, precisely corresponds to the Jacobian relations on the Higgs fields. The
equation Da = 0 is a momentum map condition, which by Geometric Invariant Theory is equiva-
lent to the condition of stability, see [32]. To define stability, we have to make more precise the
dictionary between physics and quiver representations.

3.1 From N = 2 QFT to RT

Given a 4D N = 2 QFT we consider the set of all conserved charges (both local and topolog-
ical) which are linearly realized in a generic point in the Coulomb branch/parameter space3. The
charges are quantized, and hence take values in some lattice Γ. In Γ there is an integral skew–
symmetric form

〈·, ·〉Dirac : Γ×Γ→ Z,
〈γ,γ ′〉Dirac =−〈γ ′,γ〉Dirac, γ,γ ′ ∈ Γ,

(3.2)

given by the Dirac electric/magnetic pairing. Mutually local charges have zero pairing, and flavor
charges (that is, charges which are neither electric nor magnetic) correspond to the radical of the
form 〈·, ·〉Dirac, that is f is a flavor charge iff 〈 f ,γ〉Dirac = 0 for all γ ∈ Γ.

The central charge Z, being conserved, is a linear combination of the above quantized charges,
and hence may be seen as a group homomorphism Z : Γ→ C. A BPS particle of charge γ ∈ Γ will

1 In W we identify cycles which differ by a cyclic permutation of the arrows: a1a2 · · ·am ≡ a2a3 · · ·ama1.
2 (∂W )⊂ (Q1)

2 is automatic for us since all our quivers are 2–acyclic, that is, they do not have oriented cycles of
lenght ≤ 2. The condition (∂W ) ⊃ (Q1)

m for some m is also automatic if the algebra is finite–dimensional; otherwise
we have the subtleties alluded at the beginning of section 2.

3 Tipically the microscopic symmetry algebra is generically broken down to its Cartan subalgebra and our conserved
charges commute pairwise. At particular points in the paramenter space we may have non–Abelian enhancements of
this Abelian symmetry.
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Figure 1: The central charge complex plane. The red vectors are the central charges of BPS states. By
convention, we call ‘particles’ the ones in the upper half–plane, and ‘anti–particles’ their PCT conjugates in
the lower half–plane. This defines the positive cone of ‘particles’ inside the charge lattice Γ (whose image
in the Z–plane is the blue region in the figure).

then have central charge Z(γ) and mass |Z(γ)|. In most (but not all!) cases the set Θ of all angles
θ such that there is a BPS particle of charge γ with θ = argZ(γ) is not everywhere dense in the
unit circle. In particular, if the QFTs has ‘enough’ mass deformation, we may arrange the masses
so that there is an angle θ0 which is not in Θ. By a change of conventions we may assume θ0 = 0.
Then we have the situation in figure 1.

We use this figure to distinguish — conventionally — ‘particles’ vs. ‘antiparticles’ [25, 26].
The charges of ‘particles’ define a positive cone Γ+ in Γ. In a theory of the class described in
[25, 26] Γ+ is generated by rankΓ generators which we call ei, i = 1,2, . . . ,m = rankΓ. More
precisely, one has

Γ =
⊕

i

Zei, Γ+ =
⊕

i

Z+ ei. (3.3)

We shall show that the BPS particle whose central charge is the leftmost (resp. rightmost) one in
the upper half–plane has a charge vector equal to a generator ei of the positive cone.

3.1.1 Quivers and their Seiberg duality (DWZ mutations)

Given the data Γ, 〈·, ·〉Dirac, and Γ+, we can construct a candidate quiver Q as follows: the node
set Q0 is identified with the set of positive generators {ei}, and we draw 〈ei,e j〉Dirac arrows from
node ei to node e j, where a negative number stands for arrows in the opposite direction ei ← e j.
Note that the resulting quivers are always 2–acyclic: all arrows between any two given nodes point
in the same directions, and we have no pairs of opposite arrows � nor loops (i.e. arrows which
start and end at the same node). To complete the description of the Jacobian algebra one also needs
the superpotential W . Its construction in terms of the 4D QFT is not easy in general, but it can be
done explicitly for large classes of models, including all which have a Lagrangian formulation (e.g.
using the techniques of [28]).

The essential observation is that the pair (Q,W ) is not unique. Indeed there was some arbitrary
choice (as the angle θ0) in the definition of the positive cone Γ+, and different choices lead to
different pairs (Q,W ) which mus be physically equivalent. From the 1D QFT on the world–line
the ambiguity is related to Seiberg duality [33]: two pairs (Q,W ) and (Q′,W ′) are related by such
a duality. Mathematically, we get a mutation class of quiver with (super)potential as defined by
Derksen–Weyman–Zelevinsky [34].
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3.1.2 Stability and quantum numbers

From this construction we see that the positive cone Γ+ ≡ {∑i Niei}, is identified with the set
of possible dimension vectors dimX of representations X of the quiver Q. Under the identifica-
tion of the physical charge vectors with dimension vectors, we may define the central charge of a
representation of Q (≡ a left module of CQ/(∂W )) as

Z(X)≡ Z(dimX) = ∑
i

dimXi Z(ei) ∈H ⇒ 0 < argZ(X)< π. (3.4)

Both physicists and mathematicians define X to be stable (w.r.t. the stability function Z(·)) iff for
all non–zero proper subrepresentations Y of X

argZ(Y )< argZ(X). (3.5)

One can show that this is equivalent to the SUSY vacuum condition Da = 0 [26]. Therefore, if X is
a stable object in modCQ/(∂W ), the corresponding 1D Higgs field configuration satisfies both the
D– and F–flatness condition and hence is a classical supersymmetric vacuum, and thus a BPS state
of the 4D theory with charges (quantum numbers) dimX . More precisely, those classical vacua
come, in general, in continuous families of gauge–inequivalent ones. In the mathematical language,
they are continuous families of pairwise non–isomorphic stable representations. Physically, the
family coordinates are ‘global coordinates’ which we should quantize; their quantization produces
the last quantum number of the particle, namely its spin. A (complex) dimension d family produces
a BPS supermultiplet whose highest spin is

higher spin = d+1
2 . (3.6)

So d = 0 (X rigid) corresponds to hypermultiplets, and d = 1 to vector multiplets.
In conclusion, for a quiver N = 2 theory, to get the full BPS spectrum (masses and quantum

numbers of all BPS particles) one has to determine the set of stable representations of a certain
associative algebra. This is the canonical problem of Representation Theory.

3.1.3 Chambers, wall–crossing, derived category

Of course, stability depends on Z(·), that is on the rankΓ complex numbers Z(ei), which are
functions of all the physical parameters of the theory; changing the parameters may lead to dif-
ferent BPS spectra. These correspond to different BPS chambers, and the spectra on two different
chambers are related by the Kontesevich–Soibelman wall–crossing formula [35]-[43].

As we already mentioned, our distinction of the states into ‘particles’ and ‘antiparticles’
is rather unphysical. A more satisfactory, totally invariant formulation exists: one replaces the
Abelian category of modules of the Jacobian algebra by the corresponding derived category

D(modCQ/(∂W )).

There is a more intrinsic definition of stability at the derived category level, see [44], which reduces
to the above one in our more elementary treatment.

6
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3.1.4 Bricks and stability

One shows [32] that a necessary condition for a module X to be stable for some choice of the
central charge4 Z(·) is that X is a brick, i.e. that it has a trivial endomorphism ring, EndX = C. We
claim that the brick condition is also sufficient [28]. To show this, we consider the forgetful functor
F : modCQ/(∂W )→ modCQ defined by forgetting that our modules satisfy the the relations
∂W = 0. X and F(X) have the same central charge, and X is a brick iff F(X) is a brick. Y is
a submodule of X , implies that F(Y ) is a submodule of F(X). Then, if F(X) is stable for some
choice of Z(·), X is also stable. We consider the family of central charges Zt(·)

Zt(·) = Z0(·)+ t
(
〈·,dimF(X)〉E −〈dimF(X), ·〉E

)
, t→+∞. (3.7)

where 〈·, ·〉E is the Euler form of the quiver Q and

〈γ,γ ′〉Dirac = 〈γ ′,γ〉E −〈γ,γ ′〉E . (3.8)

The fact that F(X), assumed to be a brick, is stable as t→+∞ is equivalent to the characterization
of the dimension vectors of bricks, see [45]. Notice that as t → +∞, the states which remain light
are precisely those mutually local with respect to X .

3.1.5 First consequences and remarks

A simple representation S has no non–trivial subrepresentions, and the stability requirement
(3.5) is empty, hence automatically satisfied. If the Jacobian algebra is finite–dimensional, the only
simple representations are the Si, i ∈ Q0, with (dimSi) j = δi j, that is, the ones whose dimension
vector is a generator ei of the positive cone Γ+. These simple representations are rigid, hence
correspond to hypermultiplets which are stable in all the BPS chambers covered by the particular
quiver in the mutation class. From this observation we learn a few general results:

1. Not all N = 2 theories may have a quiver formulation. A necessary condition for the exis-
tence of a finite quiver is that the closure of the BPS phase set Θ 6= S1; moreover, the phase
of each boundary component of Θ, which correspond to the generators of minimal/maximal
argZ(ei), should correspond to a single BPS hypermultiplet, and not to a higher spin BPS
multiplet or to many distinct hypermultiplets. This is not always true: for instance, if we
consider N = 4, seen as a particular instance of N = 2, the particles organize themselves
in N = 4 supermultiplets which decompose in a plurality of N = 2 ones: this is not con-
sistent with a quiver. However, breaking N = 4→N = 2 by giving a mass to the adjoint
hypermultiplet we get a quiver theory;

2. In all BPS chambers, a quiver N = 2 theories must have a BPS spectrum which contains
at least rankΓ hypermultiplets (with linearly independent charges) corresponding to the Si’s.
We may say that a chamber with just this BPS spectrum — rankΓ hypermultiplets — is a
minimal chamber. A natural question is: ‘Which 4d N = 2 theories do have a minimal
chamber?’ The answer is given in the next subsection.

4 Such that ImZ(ei)> 0 for all i, to be consistent with our splitting of ‘particles’ vs. ‘antiparticles’.
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3.2 Not all pairs (Q,W ) correspond to consistent QFTs

One may ask whether all mathematically consistent pairs (Q,W ) correspond to consistent
QFT. The answer is no. In [23] a (conjectural) characterization was given in the physical language.
That characterization leads to a necessary condition which is easy to state in RT terms: there should
exist a finite–dimensional basic algebra B, having global dimension at most 2, with the properties

1. K0(modB)'Γ and the minimal Jacobian algebra containing B (as a subalgebra) is CQ/(∂W );

2. the Coxeter element of B has spectral radius 1 and Jordan blocks of size at most 3.

For the particular case of hereditary algebras, that is, for pairs of the form (Q,0) (equivalently,
algebras of global dimension at most 1) — which contain all cases in which Q has no closed
oriented loop — a theorem of Ringel [46] gives the full classification of the algebras satisfying
the necessary condition of [23]. They are the path algebras of quivers which are orientations of
either the ADE Dynkin graphs of the affine (Euclidean) Dynkin graphs ÂD̂Ê, in the case Ân the
orientation producing a closed oriented loop must be excluded (this quiver also corresponds to a
consistent QFT, but only if equipped with a superpotential equal to the oriented cycle; the pair
(Ân
∣∣
cycl.,a1a2 · · ·an+1) is then Seiberg equivalent to the one associated to the Dn+1 Dynkin quiver).

Except for the Ân case, all possible orientations of these Dynkin quivers are Seiberg duality
equivalent, and hence correspond to the same N = 2 theory; for Ân two orientations are equiv-
alent iff they have the same number of arrows in the clockwise direction, we write the class as
Â(p,q) with p≥ q≥ 1, where p and q are, respectively the number of arrows in the clockwise and
anticlockwise direction. This corresponds to the fact that for all finite–dimensional or affine Kac–
Moody algebras whose Dynkin graph is a tree all Coxeter elements belong to the same conjugacy
class, while for Â the conjugacy classes depend on an extra datum which may be identified with
the number of positively oriented links in a orientation of the graph.

We shall see the physics of these Dynkin and affine Dynkin models below. Here we just state
a consequence of Ringel’s theorem

Fact. The class of models with pair (Q,0), where Q is an acyclic orientation of a finite–
dimensional or affine ADE Dynkin graph, coincides with the class of N = 2 models having a
minimal BPS chamber.

3.3 Vector–less theories and Gabriel theorem

Theories whose BPD spectrum consists of finitely many hypermultiplets in all chambers are
called vector–less theories. One shows that this class contains just the theories associated to the
Dynkin quivers (however, in their mutation classes we have many pairs (Q,W ) with Q not an ori-
entation of a Dynkin graph). These N = 2 theories have an ADE classification and are called
Argyres–Douglas theories. They have no Lagrangian formulation (expect for A1 and D2 which are
free) but may be constructed e.g. using the 6d (2,0) SCFT or Type IIB superstring. We may limit
to consider quivers in the Dynkin form (they cover everything); then the BPS states are described
by Gabriel theorem [31]. There is a maximal chamber where all the bricks of the hereditary al-
gebra CQ are stable BPS states. By Gabriel theorem they are precisely the positive roots of the

8
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corresponding algebra as

dimX = ∑
i

ni ei ≡∑
i

ni αi, Γ≡ Γroot via ei↔ αi (simple roots). (3.9)

The minimal chamber has only the BPS states associated with the simple roots, and all other cham-
bers are in between these two.

3.4 Complete theories

The theories whose quiver mutation class is finite (with the exception of the k–Kronecker
quivers with k ≥ 3) are called complete. They have many nice properties

• all choices of the central charge Z(·) may be physically realized as a UV complete QFT;

• in all chambers the BPS states have at most spin 1;

• the WKB BPS spectrum is exact;

• the gauge group is SU(2)k in all S–duality frames.

Mathematically, the corresponding Jacobian algebras are tame. These N = 2 models have been
fully classified [24]: they consist on all generalized Gaiotto A1 theories [19] (where ‘generalized’
means that irregular punctures of any order are allowed) together with 11 exceptional models.

3.5 Lie algebraic aspects

The simplest class of complete gauge theories are those associated to an affine ADE quiver.
The situation is totally similar to the one described by Gabriel theorem for the finite–dimensional
ADE Dynkin quivers, and the extension of the Gabriel theorem to this case is given by a theorem
by Kac [47].

The new ingredient is that in the affine case we have two kinds of roots: real roots with5

(α,α) = 2 and imaginary roots with (α,α) = 0. We have a simple formula for the dimension of
the moduli space

dimM (X) = 1− 1
2(dimX ,dimX). (3.10)

Since (·, ·) is positive semi–definite, we see that from eqn.(3.6) that a representation X which cor-
responds to an hypermultiplet has a dimension vector (charge) which is a real root under the iden-
tification Γ ' Γroot, while if it is a vector–multiplet dimX is a imaginary root, and no spin > 1 is
possible.

However, a state may be stable only if the corresponding representation is a brick. An in-
decomposable with dimension δ , the minimal imaginary root, is always a brick, which we may
identity with the W–boson in the Higgs breaking SU(2)→U(1). This gives us the possibility of
defining the magnetic charge

m(·) : Γ→ Z (3.11)

m(X) = 1
2 〈dimX ,δ 〉Dirac (3.12)

5 (·, ·) is the quadratic form on the root lattice given by the Cartan matrix.

9
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a quantity which is known in mathematics as the Dlab–Ringel defect [48]. Then

Theorem [49]. An indecomposable representation X of an acyclic affine quiver is a brick iff
one of the following hold:

1. dimX is a root and m(X) 6= 0;

2. dimX is a root m(x) = 0 and dimX ≤ δ .

In the maximal BPS chamber — corresponding to weak coupling gYM ∼ 0 — all bricks corre-
spond to stable BPS particles (in the minimal chamber, corresponding to strong coupling6, we have
only the simple rep. Si). Hence, in the maximal chamber, we get two infinite towers of hypermulti-
plets dyons, corresponding to the real roots with m(X)> 0 and m(X)< 0, and finitely many states
of zero magnetic charge, with just one vector multiplet, corresponding to the unique W–boson.

This shows that an affine quiver corresponds to SU(2) SYM coupled to matter in the funda-
mental rep. The dyons have masses of O(1/g2), and as g→ 0 we get the ‘perturbative spectrum’.
In the decoupling limit the matter separates from the SYM sector. One sees that it corresponds
to a bunch of Argyres–Douglas systems of type–Dr, which have a global SU(2) symmetry which
may be gauged. In facts, the affine quiver correspond to SU(2) SYM coupled to Argyres–Douglas
matter of type Dr (D2 being the free hypermultiplet doublet) such that the beta–function of the YM
coupling remains negative, so that the theory is asymptotically free (where the coupling of a Dr

Argyres–Douglas system reduces the leading coefficient of β by 2(1−1/r) [24, 28]).

3.5.1 SCFT: SU(2) SQCD with N f = 4

In the language above this corresponds to SU(2) SYM coupled to four copies of the D2

Argyres–Douglas. The coefficient of β is 4− 4× 1 = 0 and the model is conformal and hence
it cannot be described by any affine Dynkin quiver. Does the relation between the Representation
Theory of Lie algebras and the BPS spectra break down?

Certainly not. One has simply to enlarge the set of relevant Lie algebras. This conformal
model corresponds to the toroidal Lie algebra D(1,1)

4 [50, 51]. There is a natural action of the
modular group SL(2,Z) on the root lattice of this algebra which preserves the isotropic imaginary
roots. Physically this automorphism of the toroidal root lattice is the S–duality group, see [28].

3.5.2 Conformal SU(2) quiver theories

The above result generalizes to all SU(2) quiver SCFTs. These are the A1 Gaiotto theories

• defined by genus–zero surface with p≥ 4 punctures if the quiver is a A–type Dynkin graph.
The gauge group has (p− 3) SU(2) factors, represented by circles in figure 2 A) (boxes
represent flavor SU(2)’s associated to fundamental hypers and edges bifundamental ones);

• genus–one surfaces with p ≥ 1 punctures if the underlying graph of the quiver is an affine
A–type graph. The gauge group is SU(2)p; each SU(2) factor is represented by a circle in
figure 2 B);

6 For affine D, E there exists also submaximal weak coupling chambers in which the dyons with magnetic charge
|m|> 1 have being decayed to fundamental dyons with |m|= 1.

10



P
o
S
(
R
i
o
 
d
e
 
J
a
n
e
i
r
o
 
2
0
1
2
)
0
0
5

N = 2 SUSY & Representation Theory Sergio Cecotti

A) 2 2 2 2 · · · 2 2

B)

2

2 2 2 · · · 2

Figure 2: A) the Dynkin quiver corresponding to the Gaiotto theory on the genus–zero surface with p punc-
tures; B) the affine quiver corresponding to the Gaiotto theory on the genus–one surface with p punctures.

Note that the first models in these classes correspond, respectively, to SU(2) SQCD with
N f = 4 (§. 3.5.1) and the SU(2) N = 2∗ theory.

One can show that the spectrum of the first class of theories is captures by the extended affine
Lie algebra [52] of type D2(p−2) and nullity p−2

D(1,1,1,··· ,1)
2(p−2) ,

(
#{1’s}= p−2

)
(3.13)

while the second one by the extended affine Lie algebra of type A2p−1 and nullity p+1

A(1,1,1,··· ,1)
2p−1) ,

(
#{1’s}= p+1

)
(3.14)

Note that for p = 4 (resp. p = 1) we get back the ‘classical’ result of §. 3.5.1 (the know result for
N = 2∗).
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