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Abstract: After the successful determination of the reactor neutrino mixing angle

θ13 ∼= 0.16 6= 0, a new feature suggested by the current neutrino oscillation data is a size-

able deviation of the atmospheric neutrino mixing angle θ23 from π/4. Using the fact that

the neutrino mixing matrix U = U †eUν , where Ue and Uν result from the diagonalisation of

the charged lepton and neutrino mass matrices, and assuming that Uν has a i) bimaximal

(BM), ii) tri-bimaximal (TBM) form, or else iii) corresponds to the conservation of the

lepton charge L′ = Le − Lµ − Lτ (LC), we investigate quantitatively what are the mini-

mal forms of Ue, in terms of angles and phases it contains, that can provide the requisite

corrections to Uν so that θ13, θ23 and the solar neutrino mixing angle θ12 have values com-

patible with the current data. Two possible orderings of the 12 and the 23 rotations in Ue,

“standard” and “inverse”, are considered. The results we obtain depend strongly on the

type of ordering. In the case of “standard” ordering, in particular, the Dirac CP violation

phase δ, present in U , is predicted to have a value in a narrow interval around i) δ ∼= π

in the BM (or LC) case, ii) δ ∼= 3π/2 or π/2 in the TBM case, the CP conserving values

δ = 0, π, 2π being excluded in the TBM case at more than 4σ.
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1 Introduction

Understanding the origin of the patterns of neutrino masses and mixing, emerging from

the neutrino oscillation, 3H β-decay, etc. data is one of the most challenging problems in

neutrino physics. It is part of the more general fundamental problem in particle physics of

understanding the origins of flavour, i.e., of the patterns of the quark, charged lepton and

neutrino masses and of the quark and lepton mixing.

At present we have compelling evidence for the existence of mixing of three light

massive neutrinos νi, i = 1, 2, 3, in the weak charged lepton current (see, e.g., [1]). The

masses mi of the three light neutrinos νi do not exceed approximately 1 eV, mi . 1 eV,

i.e., they are much smaller than the masses of the charged leptons and quarks. The three

light neutrino mixing we will concentrate on in the present article, is described (to a good

approximation) by the Pontecorvo, Maki, Nakagawa, Sakata (PMNS) 3×3 unitary mixing

matrix, UPMNS. In the widely used standard parametrisation [1], UPMNS is expressed

in terms of the solar, atmospheric and reactor neutrino mixing angles θ12, θ23 and θ13,

respectively, and one Dirac — δ, and two Majorana [2] — α21 and α31, CP violation

(CPV) phases:

UPMNS ≡ U = V (θ12, θ23, θ13, δ)Q(α21, α31) , (1.1)

where

V =

 1 0 0

0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13eiδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 , (1.2)

Q = diag(1, eiα21/2, eiα31/2) , (1.3)
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Parameter Best fit 1σ range 2σ range 3σ range

sin θ13 0.155 0.147–0.163 0.139–0.170 0.130–0.177

sin2 θ12 0.307 0.291–0.325 0.275–0.342 0.259–0.359

sin2 θ23 (NH) 0.386 0.365–0.410 0.348–0.448 0.331–0.637

sin2 θ23 (IH) 0.392 0.370–0.431 0.353–0.484 ⊕ 0.543–0.641 0.335–0.663

δ (NH) 3.39 2.42–4.27 — —

δ (IH) 3.42 2.61–4.62 — —

Table 1. Summary of the results of the global fit of the PMNS mixing angles taken from [13] and

used in our analysis. The results on the atmospheric neutrino angle θ23 and on the Dirac CPV

phase δ depend on the type of neutrino mass hierarchy. The values of sin2 θ23 and δ obtained in

both the cases of normal hierarchy (NH) and inverted hierarchy (IH) are shown.

and we have used the standard notation cij ≡ cos θij , sij ≡ sin θij with 0 ≤ θij ≤ π/2,

0 ≤ δ ≤ 2π and, in the case of interest for our analysis, 0 ≤ αj1 ≤ 2π, j = 2, 3 (see,

however, [3]). If CP invariance holds, we have δ = 0, π, and [4–6] α21(31) = 0, π.

The neutrino oscillation data, accumulated over many years, allowed to determine the

parameters which drive the solar and atmospheric neutrino oscillations, ∆m2
21, θ12 and

|∆m2
31| ∼= |∆m2

32|, θ23, with a high precision.1

Furthermore, there were spectacular developments in the last 1.5 years in what con-

cerns the angle θ13 (see, e.g., [1]). They culminated in a high precision determination of

sin2 2θ13 in the Daya Bay experiment with reactor ν̄e [7, 8]:

sin2 2θ13 = 0.089± 0.010± 0.005 . (1.4)

Similarly the RENO, Double Chooz, and T2K experiments reported, respectively, 4.9σ,

2.9σ and 3.2σ evidences for a non-zero value of θ13 [9–12], compatible with the Daya Bay

result. The high precision measurement on θ13 described above and the fact that θ13
turned out to have a relatively large value, have far reaching implications for the program

of research in neutrino physics (see, e.g., [1]). After the successful measurement of θ13,

the determination of the absolute neutrino mass scale, of the type of the neutrino mass

spectrum, of the nature — Dirac or Majorana, of massive neutrinos, as well as getting

information about the status of CP violation in the lepton sector, are the most pressing

and challenging problems and the highest priority goals of the research in the field of

neutrino physics.

A global analysis of the latest neutrino oscillation data presented at the Neutrino

2012 International Conference, was performed in [13]. The results on sin2 θ12, sin2 θ23 and

sin2 θ13 obtained in [13], which play important role in our further discussion, are given in

table 1. An inspection of table 1 shows that, in addition to the nonzero value of θ13, the

new feature which seems to be suggested by the current global neutrino oscillation data is

1The most recent data on the neutrino masses, mixing and neutrino oscillations were reviewed recently

in several presentations at Neutrino 2012, the XXV International Conference on Neutrino Physics and

Astrophysics (June 4–10, 2012, Kyoto, Japan), available at the web-site http://neu2012.kek.jp.
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a sizeable deviation of the angle θ23 from the value π/4. This trend is confirmed by the

results of the subsequent analysis of the global neutrino oscillation data performed in [14].

Although θ13 6= 0, θ23 6= π/4 and θ12 6= π/4, the deviations from these values are small,

in fact we have sin θ13 ∼= 0.16� 1, π/4− θ23 ∼= 0.11 and π/4− θ12 ∼= 0.20, where we have

used the relevant best fit values in table 1. The value of θ13 and the magnitude of deviations

of θ23 and θ12 from π/4 suggest that the observed values of θ13, θ23 and θ12 might originate

from certain “symmetry” values which undergo relatively small (perturbative) corrections

as a result of the corresponding symmetry breaking. This idea was and continues to be

widely explored in attempts to understand the pattern of mixing in the lepton sector (see,

e.g., [15–37]). Given the fact that the PMNS matrix is a product of two unitary matrices,

U = U †e Uν , (1.5)

where Ue and Uν result respectively from the diagonalisation of the charged lepton and

neutrino mass matrices, it is usually assumed that Uν has a specific form dictated by a

symmetry which fixes the values of the three mixing angles in Uν that would differ, in

general, by perturbative corrections from those measured in the PMNS matrix, while Ue
(and symmetry breaking effects that we assume to be subleading) provide the requisite

corrections. A variety symmetry forms of Uν have been explored in the literature on the

subject (see, e.g., [38]). In the present study we will consider three widely used forms.

i) Tribimaximal Mixing (TBM) [39–43]:

UTBM =


√

2
3

√
1
3 0

−
√

1
6

√
1
3

√
1
2√

1
6 −

√
1
3

√
1
2

 ; (1.6)

ii) Bimaximal Mixing (BM) [44–48]:

UBM =


1√
2

1√
2

0

−1
2

1
2

1√
2

1
2 −

1
2

1√
2

 ; (1.7)

iii) the form of Uν resulting from the conservation of the lepton charge L′ = Le−Lµ−Lτ
of the neutrino Majorana mass matrix [49] (LC):

ULC =


1√
2

1√
2

0

− cν23√
2

cν23√
2

sν23
sν23√
2
− sν23√

2
cν23

 , (1.8)

where cν23 = cos θν23 and sν23 = sin θν23.

We will define the assumptions we make on Ue and Uν in full generality in section 2.

Those assumptions allow us to cover, in particular, the case of corrections from Ue to the

three widely used forms of Uν indicated above. We would like to notice here that if Ue = 1,

1 being the unity 3× 3 matrix, we have:

– 3 –
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i) θ13 = 0 in all three cases of interest of Uν ;

ii) θ23 = π/4, if Uν coincides with UTBM or UBM, while θ23 can have an arbitrary value

if Uν is given by ULC;

iii) θ12 = π/4, for Uν = UBM or ULC, while θ12 = sin−1(1/
√

3) if Uν = UTBM.

Thus, the matrix Ue has to generate corrections

i) leading to θ13 6= 0 compatible with the observations in all three cases of Uν considered;

ii) leading to the observed deviation of θ12 from π/4 in the cases of Uν = UBM or ULC.

iii) leading to the sizeable deviation of θ23 from π/4 for Uν = UTBM or UBM, if it is

confirmed by further data that sin2 θ23 ∼= 0.40.

In the present article we investigate quantitatively what are the “minimal” forms of

the matrix Ue in terms of the number of angles and phases it contains, that can provide

the requisite corrections to UTBM, UBM and ULC so that the angles in the resulting PMNS

matrix have values which are compatible with those derived from the current global neu-

trino oscillation data, table 1. Our work is a natural continuation of the study some of us

have done in [22] and earlier in [18–21].

The paper is organised as follows. In section 2 we describe the general setup and we

introduce the two types of “minimal” charged lepton “rotation” matrix Ue we will consider:

with “standard” and “inverse” ordering. The two differ by the order in which the 12 and 23

rotations appear in Ue. In the same section we derive analytic expressions for the mixing

angles and the Dirac phase δ of the PMNS matrix in terms of the parameters of the charged

lepton matrix Ue both for the tri-bimaximal and bimaximal (or LC) forms of the neutrino

“rotation” matrix Uν . In sections 3 and 4 we perform a numerical analysis and derive,

in particular, the intervals of allowed values at a given C.L. of the neutrino mixing angle

parameters sin2 θ12, sin2 θ23 and sin2 θ13, the Dirac phase δ and the rephasing invariant

JCP associated with δ, in the cases of the standard and inverse ordering of the charged

lepton corrections. A summary and conclusions are presented in section 5. Further details

are reported in two appendices. In appendix A we illustrate in detail the parametrisation

we use for the standard ordering setup. Finally, in appendix B we describe the statistical

analysis used to obtain the numerical results.

2 General setup

While neutrino masses and mixings may or may not look anarchical, the hierarchy of

charged lepton masses suggests an ordered origin of lepton flavour. Given the wide spec-

trum of specific theoretical models, which essentially allows to account for any pattern

of lepton masses and mixings, we would like to consider here the consequence for lepton

mixing of simple, general assumptions on its origin. As we have indicated in the Introduc-

tion, we are interested in the possibility that the θ13 mixing angle originates because of the

contribution of the charged lepton sector to lepton mixing [15–30]. The latter assumption

– 4 –
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needs a precise definition. In order to give it, let us recall that the PMNS mixing matrix

is given by

U = U †eUν , with Ue, Uν defined by
mE = U∗ecm

diag
E U †e

mν = U∗νm
diag
ν U †ν ,

(2.1)

wheremE andmν are respectively the charged lepton and neutrino Majorana mass matrices

(in a basis assumed to be defined by the unknown physics accounting for their structure)

and mdiag
E and mdiag

ν are diagonal with positive eigenvalues.

We will assume that the neutrino contribution Uν to the PMNS matrix U has Uν13 = 0,

so that the PMNS angle θ13 vanishes in the limit in which the charged lepton contribution

Ue can be neglected, Ue = 1. This is a prediction of a number of theoretical models. As a

consequence, Uν can be parameterized as

Uν = ΨνR23(θ
ν
23)R12(θ

ν
12)Φν , (2.2)

where Rij(θ) is a rotation by an angle θ in the ij block and Ψν , Φν are diagonal matrices

of phases. We will in particular consider specific values of θν12 and, in certain cases, of θν23,

representing the predictions of well known models.

The above assumption on the structure of Uν is not enough to draw conclusions on

lepton mixing: any form of U can still be obtained by combining Uν with an appropriate

charged lepton contribution Ue = UνU
†. However, the hierarchical structure of the charged

lepton mass matrix allows to motivate a form of Ue similar to that of Uν , with U e13 = 0, so

that we can write:2

Ue = ΨeR
−1
23 (θe23)R

−1
12 (θe12)Φe . (2.3)

In fact, the diagonalisation of the charged lepton mass matrix gives rise to a value of

U e13 that is small enough to be negligible for our purposes, unless the hierarchy of masses is

a consequence of correlations among the entries of the charged lepton mass matrix or the

value of the element (mE)31, contrary to the common lore, happens to be sizable. In such

a scheme, with no 13 rotation neither in the neutrino nor in the charged lepton sector, the

PMNS angle θ13 is generated purely by the interplay of the 23 and 12 rotations in eqs. (2.2)

and (2.3).

While the assumption that U e13 is small, leading to eq. (2.3), is well motivated, textures

leading to a sizeable U e13 are not excluded. In such cases, it is possible to obtain an “inverse

ordering” of the R12 and R23 rotations in Ue:

Ue = ΨeR
−1
12 (θe12)R

−1
23 (θe23)Φe . (2.4)

In the following, we will also consider such a possibility.

2.1 Standard ordering

Consider first the standard ordering in eq. (2.3). We can then combine Uν and Ue in

eqs. (2.2) and (2.3) to obtain the PMNS matrix. When doing that, the two 23 rotations, by

2The use of the inverse in eqs. (2.3) and (2.4) is only a matter of convention. This choice allows us to

lighten the notation in the subsequent expressions.

– 5 –
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the θν23 and θe23 angles, can be combined into a single 23 rotation by an angle θ̂23. The latter

angle is not necessarily simply given by the sum θ̂23 = θν23 + θe23 because of the possible

effect of the phases in Ψν , Ψe (see further, eq. (A.3)). Nevertheless, the combination

R23(θ
e
23)Ψ

∗
eΨνR23(θ

ν
23) entering the PMNS matrix is surely a unitary matrix acting on the

23 block and, as such, it can be written as ΩνR23(θ̂23)Ωe, where Ων,e are diagonal matrices

of phases and θ̂23 ∈ [0, π/2]. Moreover, we can write ΩνR23(θ̂23)Ωe = Ω′νΦR23(θ̂23)Ω
′
e,

where Φ = diag(1, eiφ, 1) and Ω′ν,e are diagonal matrices of phases that commute with the

12 transformations and either are unphysical or can be reabsorbed in other phases. The

PMNS matrix can therefore be written as [22]

U = PR12(θ
e
12)ΦR23(θ̂23)R12(θ

ν
12)Q , (2.5)

where the angle θ̂23 can have any value, P is a diagonal matrix of unphysical phases, Q

contains the two Majorana CPV phases, and Φ = diag(1, eiφ, 1) contains the only Dirac

CPV phase. The explicit relation between the physical parameters θ̂23, φ and the original

parameters of the model (θν23, θ
e
23, and the two phases in Ψ = Ψ∗eΨν) can be useful to

connect our results to the predictions of specific theoretical models. We provide it in

appendix A.

The observable angles in the standard PMNS parametrisation are given by

sin θ13 = |Ue3| = sin θe12 sin θ̂23 ,

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
= sin2 θ̂23

cos2 θe12

1− sin2 θe12 sin2 θ̂23
,

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=
| sin θν12 cos θe12 + eiφ cos θν12 cos θ̂23 sin θe12|2

1− sin2 θe12 sin2 θ̂23
.

(2.6)

The rephasing invariant related to the Dirac CPV phase, which determines the magnitude

of CP violation effects in neutrino oscillations [50], has the following well known form in

the standard parametrisation:

JCP = Im
{
U∗e1U

∗
µ3Ue3Uµ1

}
=

1

8
sin δ sin 2θ13 sin 2θ23 sin 2θ12 cos θ13 . (2.7)

At the same time, in the parametrisation given in eq. (2.5), we get:

JCP = −1

8
sinφ sin 2θe12 sin 2θ̂23 sin θ̂23 sin 2θν12 . (2.8)

The relation between the phases φ and δ present in the two parametrisations is obtained

by equating eq. (2.7) and eq. (2.8) and taking also into account the corresponding formulae

for the real part of U∗e1U
∗
µ3Ue3Uµ1. To leading order in sin θ13, one finds the approximate

relation δ ' −φ (see further eqs. (2.19), (2.20) and eqs. (2.24) and (2.25) for the exact

relations).

In this work we aim to go beyond the simplest cases considered already, e.g., in [22],

where the charged lepton corrections to neutrino mixing are dominated only by the angle

θe12 and θ̂23 is fixed at the maximal value θ̂23 = π/4, and consider the case in which θ̂23 is

– 6 –
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0.1 0.2 0.3 0.4 0.5
sin Θ13

0.35
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0.45

0.50

0.55

0.60

0.65
sin 2

Θ23

Figure 1. The thick red line corresponds to the relation in eq. (2.9). The black and green lines

show the 1σ, 2σ, 3σ contours (solid, dashed and dotted lines, respectively) for sin θ13 and sin2 θ23,

as obtained in [13] (see table 1).

essentially free. A deviation of θ̂23 from π/4 can occur in models in which θν23 = π/4 (BM,

TBM) because of the charged lepton contribution to θ̂23, or in models in which θν23 itself

is not maximal (LC). This choice allows to account for a sizeable deviation of θ23 from

the value π/4, which appears to be suggested by the data [13]. If we keep the assumption

θ̂23 = π/4, the atmospheric mixing angle would be given by

sin2 θ23 =
1

2

1− 2 sin2 θ13

1− sin2 θ13
∼=

1

2
(1− sin2 θ13) , where sin θ13 =

1√
2

sin θe12 . (2.9)

This in turn would imply that the deviation from maximal atmospheric neutrino mixing

corresponding to the observed value of θ13 is relatively small, as shown in figure 1. As for

the neutrino angle θν12, we will consider two cases:

• bimaximal mixing (BM): θν12 =
π

4
(as also predicted by models with approximate

conservation of L′ = Le − Lµ − Lτ );

• tri-bimaximal mixing (TBM): θν12 = sin−1
1√
3

.

Since in the approach we are following the four parameters of the PMNS matrix (the three

measured angles θ12, θ23, θ13 and the CPV Dirac phase δ) will be expressed in terms of

only three parameters (the two angles θe12, θ̂23 and the phase φ), the values of θ12, θ23, θ13
and δ will be correlated. More specifically, δ can be expressed as a function of the three

angles, δ = δ(θ12, θ23, θ13), and its value will be determined by the values of the angles. As

a consequence, the JCP factor also will be a function of θ12, θ23 and θ13, which will allow us

to obtain predictions for the magnitude of the CP violation effects in neutrino oscillations

using the current data on sin2 θ12, sin2 θ23 and sin θ13.

We note first that using eq. (2.6) we can express sin2 θ23 in terms of sin2 θ̂23 and sin2 θ13:

sin2 θ23 =
sin2 θ̂23 − sin2 θ13

1− sin2 θ13
, cos2 θ23 =

cos2 θ̂23

1− sin2 θ13
. (2.10)

– 7 –
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It follows from these equations that θ̂23 differs little from θ23 (it is somewhat larger).

Further, using eqs. (2.6) and (2.10), we can express sin2 θ12 in terms of θν12, θ23, θ13 and φ:

sin2 θ12 = (1− cos2 θ23 cos2 θ13)
−1
[

sin2 θν12 sin2 θ23 + cos2 θν12 cos2 θ23 sin2 θ13

+
1

2
sin 2θν12 sin 2θ23 sin θ13 cosφ

]
. (2.11)

As we have already indicated, we will use in the analysis which follows two specific values

of θν12 = π/4 (BM or LC); sin−1(1/
√

3) (TBM). Equation (2.11) will lead in each of the

two cases to a new type of “sum rules”, i.e., to a correlation between the value of θ12 and

the values of θ23, θ13 and φ. In the case of bimaximal and tri-bimaximal θν12, the sum rules

have the form:

BM : sin2 θ12 =
1

2
+

1

2

sin 2θ23 sin θ13 cosφ

1− cos2 θ23 cos2 θ13
(2.12)

∼=
1

2
+ cot θ23 sin θ13 cosφ

(
1− cot2 θ23 sin2 θ13 +O(cot4 θ23 sin4 θ13)

)
,

(2.13)

TBM : sin2 θ12 =
1

3

(
2 +

√
2 sin 2θ23 sin θ13 cosφ− sin2 θ23

1− cos2 θ23 cos2 θ13

)
(2.14)

∼=
1

3

[
1 + 2

√
2 cot θ23 sin θ13 cosφ (1− cot2 θ23 sin2 θ13)

+ cot2 θ23 sin2 θ13 +O(cot4 θ23 sin4 θ13)
]
. (2.15)

The expressions for sin2 θ12 in eqs. (2.12) and (2.14) are exact, while those given in

eqs. (2.13) and (2.15) are obtained as expansions in the small parameter cot2 θ23 sin2 θ13.

The latter satisfies cot2 θ23 sin2 θ13 . 0.063 if sin2 θ23 and sin2 θ13 are varied in the 3σ in-

tervals quoted in table 1. To leading order in sin θ13 the sum rule in eq. (2.13) was derived

in [19].

We note next that since θ12, θ23 and θ13 are known, eq. (2.11) allows us to express cosφ

as a function of θ12, θ23 and θ13 and to obtain the range of possible values of φ. Indeed, it

follows from eqs. (2.12) and (2.14) that

BM : cosφ = −cos 2θ12 (1− cos2 θ23 cos2 θ13)

sin 2θ23 sin θ13
, (2.16)

TBM : cosφ =
(3 sin2 θ12 − 2) (1− cos2 θ23 cos2 θ13) + sin2 θ23√

2 sin 2θ23 sin θ13
. (2.17)

Taking for simplicity for the best fit values of the three angles in the PMNS matrix sin2 θ12 =

0.31, sin2 θ23 = 0.39 and sin θ13 = 0.16 (see table 1), we get:

cosφ ∼= −0.99 (BM); cosφ ∼= −0.20 (TBM). (2.18)

Equating the imaginary and real parts of U∗e1U
∗
µ3Ue3Uµ1 in the standard parametrisa-

tion and in the parametrisation under discussion one can obtain a relation between the

– 8 –
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CPV phases δ and φ. We find for the BM case (θν12 = π/4):

sin δ = − sinφ

sin 2θ12
, (2.19)

cos δ =
cosφ

sin 2θ12

(
2 sin2 θ23

sin2 θ23 cos2 θ13 + sin2 θ13
− 1

)
. (2.20)

Since, as can be easily shown,

sin 2θ12 =

(
1− 4

cot2 θ23 sin2 θ13 cos2 φ

(1 + cot2 θ23 sin2 θ13)2

)1
2

, (2.21)

we indeed have to leading order in sin θ13, sin δ ∼= − sinφ and cos δ ∼= cosφ.

The expressions for sin δ and cos δ in eqs. (2.19) and (2.20) are exact. It is not difficult

to check that we have sin2 δ + cos2 δ = 1. Using the result for cosφ, eq. (2.16), we can

get expressions for sin δ and cos δ in terms of θ12, θ23 and θ13. We give below the result

for cos δ:

cos δ = − 1

2 sin θ13
cot 2θ12 tan θ23 (1− cot2 θ23 sin2 θ13) . (2.22)

Numerically we find for sin2 θ12 = 0.31, sin2 θ23 = 0.39 and sin θ13 = 0.16:

sin δ ∼= ±0.170 , cos δ ∼= −0.985 . (2.23)

Therefore, we have δ ' π. For fixed sin2 θ12 and sin θ13, | cos δ| increases with the in-

creasing of sin2 θ23. However, sin2 θ23 cannot increase arbitrarily since eq. (2.12) and the

measured values of sin2 θ12 and sin2 θ13 imply that the scheme with bimaximal mixing

under discussion can be self-consistent only for values of sin2 θ23, which do not exceed a

certain maximal value. The latter is determined taking into account the uncertainties in

the values of sin2 θ12 and sin θ13 in section 3, where we perform a statistical analysis using

the data on sin2 θ23, sin2 θ12, sin θ13 and δ as given in [13].

In a similar way we obtain for the TBM case (θν12 = sin−1(1/
√

3)):

sin δ = −2
√

2

3

sinφ

sin 2θ12
, (2.24)

cos δ =
2
√

2

3 sin 2θ12
cosφ

(
− 1 +

2 sin2 θ23

sin2 θ23 cos2 θ13 + sin2 θ13

)
+

1

3 sin 2θ12

sin 2θ23 sin θ13

sin2 θ23 cos2 θ13 + sin2 θ13
. (2.25)

The results for sin δ and cos δ we have derived are again exact and, as can be shown,

satisfy sin2 δ+cos2 δ = 1. Using the above expressions and the expression for sin2 θ12 given

in eq. (2.14) and neglecting the corrections due to sin θ13, we obtain sin δ ' − sinφ and

cos δ ' cosφ. With the help of eq. (2.17) we can express sin δ and cos δ in terms of θ12, θ23
and θ13. The result for cos δ reads:

cos δ =
tan θ23

3 sin 2θ12 sin θ13

[
1 + (3 sin2 θ12 − 2) (1− cot2 θ23 sin2 θ13)

]
. (2.26)
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For the best fit values of sin2 θ12 = 0.31, sin2 θ23 = 0.39 and sin θ13 = 0.16, we find:

sin δ ∼= ±0.999 , cos δ ∼= −0.0490 . (2.27)

Thus, in this case δ ' π/2 or 3π/2. For sin2 θ23 = 0.50 and the same values of sin2 θ12 and

sin2 θ13 we get cos δ ∼= −0.096 and sin δ ∼= ±0.995.

The fact that the value of the Dirac CPV phase δ is determined (up to an ambiguity

of the sign of sin δ) by the values of the three mixing angles θ12, θ23 and θ13 of the PMNS

matrix, eqs. (2.22) and (2.26), are the most striking predictions of the scheme considered

with standard ordering and bimaximal and tri-bimaximal mixing in the neutrino sector.

For the best fit values of θ12, θ23 and θ13 we get δ ∼= π and δ ∼= π/2 or 3π/2 in the cases

of bimaximal and tri-bimaximal mixing, respectively. These results imply also that in

the scheme with standard ordering under discussion, the JCP factor which determines the

magnitude of CP violation in neutrino oscillations is also a function of the three angles θ12,

θ23 and θ13 of the PMNS matrix:

JCP = JCP

(
θ12, θ23, θ13, δ(θ12, θ23, θ13)

)
= JCP(θ12, θ23, θ13) . (2.28)

This allows to obtain predictions for the range of possible values of JCP using the current

data on sin2 θ12, sin2 θ23 and sin θ13. We present these predictions in section 3. The

predictions we derive for δ and JCP will be tested in the experiments searching for CP

violation in neutrino oscillations, which will provide information on the value of the Dirac

phase δ.

We would like to note that the sum rules we obtain in the BM (LC) and TBM cases,

eqs. (2.22) and (2.26), differ from the sum rules derived in [51, 52] using van Dyck and

Klein type discrete symmetries (S4, A4, A5, etc.), and in [53] on the basis of SU(5) GUT

and S4, A4 and ∆(96) symmetries. More specifically, for the values of sin2 θ12, sin2 θ23
and sin2 θ13, compatible with current global neutrino oscillation data, for instance, the

predictions for the value of the CPV phase δ obtained in the present study differ from

those found in [51–53]. The same comment is valid also for the possible ranges of values of

sin2 θ12 and sin2 θ23 found by us and in [51, 52]. Our predictions for δ agree with the ones

reviewed in [53] in the context of charged lepton corrections, once we take the particular

case θ̂23 = θν23.

2.2 Inverse ordering

As anticipated, we also study for completeness the case where the diagonalisation of the

charged lepton mass matrix gives rise to the inverse ordering in eq. (2.4). The PMNS

matrix, in this case, can be written as [18]

U = R23(θ̃
e
23)R12(θ̃

e
12)ΨR23(θ

ν
23)R12(θ

ν
12)Q̃ , (2.29)

where unphysical phases have been eliminated, Q̃ contains the two Majorana phases, and

Ψ = diag(1, eiψ, eiω). Unlike in the case of standard ordering, it is not possible to combine

the 23 rotation in the neutrino and charged lepton sector and describe them with a single

parameter, θ̂23. After fixing θν23 and θν12, we therefore have, in addition to the Majorana
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phases, four independent physical parameters, two angles and two phases, one more with

respect to the case of standard ordering. In particular, it is not possible anymore to write

the mixing matrix in terms of one physical Dirac CPV phase only. Thus, in this case

the four parameters of the PMNS matrix (the three angles θ12, θ23 and θ13 and the Dirac

CPV phase δ) will be expressed in terms of the four parameters of the inverse ordering

parametrisation of the PMNS matrix, eq. (2.29). We have for sin θ13, sin θ23 and sin θ12:

sin θ13 = s̃e12s
ν
23 ,

sin θ23 = sν23
|(tν23)−1s̃e23 + ei(ψ−ω)c̃e12c̃

e
23|√

1− (s̃e12s
ν
23)

2
,

sin θ12 = sν12
|c̃e12 + eiψ(tν12)

−1s̃e12c
ν
23|√

1− (s̃e12s
ν
23)

2
.

(2.30)

Given that the expressions for θ23 and θ13 do not depend on the value of θν12, they will be

the same for bimaximal and tri-bimaximal mixing (in both cases θν23 = π
4 ):

sin θ13 =
sin θ̃e12√

2
, (2.31)

sin2 θ23 =
1

2

1 + sin 2θ̃e23
√

cos 2θ13 cosω′ − 2 sin2 θ13 cos2 θ̃e23
cos2 θ13

(2.32)

∼=
1

2

(
1 + sin 2θ̃e23 cosω′ − cos 2θ̃e23 sin2 θ13 +O(sin4 θ13)

)
, (2.33)

where the phase ω′ = ψ − ω. The expression (2.33) for sin2 θ23 is approximate, the correc-

tions being of the order of sin4 θ13 or smaller.

For each value of the phase ψ, any value of θ13 and θ23 in the experimentally allowed

range at a given C.L., can be reproduced for an appropriate choice of ω′, θe12 and θe23. This

is not always the case for the solar neutrino mixing angle θ12, as we will see in section 4.

Using eqs. (2.31), sin2 θ12 can be expressed in terms of θ13 and ψ as follows:

• bimaximal mixing (BMIO), θν12 =
π

4
:

sin2 θ12 =
1

2 cos2 θ13

(
1 + 2 sin θ13

√
cos 2θ13 cosψ − sin2 θ13

)
(2.34)

' 1

2
+ sin θ13 cosψ +O(sin5 θ13) ; (2.35)

• tri-bimaximal mixing (TBMIO), θν12 = sin−1 1√
3
:

sin2 θ12 =
1

3 cos2 θ13

(
1 + 2

√
2 sin θ13

√
cos 2θ13 cosψ

)
(2.36)

' 1

3
(1 + sin2 θ13) +

2
√

2

3
sin θ13 cosψ +O(sin4 θ13) . (2.37)

The expressions for sin2 θ12 in eqs. (2.34) and (2.36) are exact, while those given in (2.35)

and (2.37) are obtained as expansions in sin2 θ13 in which the terms up to O(sin4 θ13)
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and O(sin3 θ13), respectively, were kept. Note that the corrections to the approximate

expressions for sin2 θ12 are negligibly small, being O(sin4 θ13). This together with eq. (2.35)

and the 3σ ranges of allowed values of sin2 θ12 and sin θ13 quoted in table 1 suggests that

the bimaximal mixing scheme considered by us can be compatible with the current (3σ)

data on sin2 θ12 and sin θ13 only for a very limited interval of negative values of cosψ close

to (−1).

It follows from eqs. (2.34) and (2.36) that the value of cosψ is determined by the values

of the PMNS angles θ12 and θ13. At the same time, sin2 θ23 depends on two parameters:

ω′ and θe23. This implies that the values of ω′ and θe23 are correlated, but cannot be fixed

individually using the data on sin2 θ23.

It is not difficult to derive also the expressions for the JCP factor in terms of the inverse

ordering parameters in the two cases of values of θν12 of interest:

BM : JCP ' −
sin θ13

4

(
sinψ cos 2θ̃e23 + sinω′ cosψ sin 2θ̃e23

)
+O(sin2 θ13) , (2.38)

TBM : JCP ' −
sin θ13

3
√

2

(
sinψ cos 2θ̃e23 + sinω′ cosψ sin 2θ̃e23

)
+O(sin2 θ13) . (2.39)

We have not discussed here the LC case (conservation of the lepton charge L′ =

Le − Lµ − Lτ ) as it involves five parameters (θe23, θ
e
12, θ

ν
23, and two CPV phases). At the

same time, the “minimal” LC case with θe23 = 0 is equivalent to the standard ordering case

with BM mixing (i.e., with θν12 = π/4) analised in detail in the previous subsection.

As in the case of the standard ordering, to obtain the CPV phase δ of the standard

parametrisation of the PMNS matrix from the variables of these models, that is the function

δ = δ(ψ, ω, θ̃e23, θ13), we equate the imaginary and real parts of U∗e1U
∗
µ3Ue3Uµ1 in the two

parametrisations.

3 Results with standard ordering

In the numerical analysis presented here, we use the data on the neutrino mixing parameters

obtained in the global fit of [13] to constrain the mixing parameters of the setup described

in section 2. Our goal is first of all to derive the allowed ranges for the Dirac phase δ,

the JCP factor and the atmospheric neutrino mixing angle parameter sin2 θ23. We will also

obtain the allowed values of sin2 θ12 and sin2 θ13. We start in this section by considering

the standard ordering setup, and in particular the two different choices for the angle θν12:

θν12 = π/4 (BM and LC), θν12 = sin−1(1/
√

3) (TBM).

We construct the likelihood function and the χ2 for both schemes of bimaximal and tri-

bimaximal mixing as described in appendix B, using as parameters for this model sin θ13,

sin2 θ23 and δ, and exploiting the constraints on sin2 θ12, sin2 θ23, sin2 θ13 and on δ obtained

in [13].

In figure 2 we show the contours of Nσ =
√
χ2 in the (sin2 θ23, δ) plane, where the value

of sin θ13 has been marginalized. The blue dashed lines represent the contours of constant

JCP (in units of 10−2). In figures 3 and 4, starting from the same likelihood function,

we show the bounds on the neutrino mixing parameters and JCP in each scheme, both
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Standard Ordering — Normal Hierarchy
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Figure 2. Contour plots for Nσ =
√
χ2 in the standard ordering setup and normal hierarchy of

neutrino masses. The value of the reactor angle θ13 has been marginalized. The solid, dashed and

dotted thick lines represent respectively the 1σ, 2σ and 3σ contours. The dashed blue lines are

contours of constant |JCP| in units of 10−2.

for normal and inverted neutrino mass hierarchy. These bounds are obtained minimizing

the χ2 in the parameter space of the model, keeping as a constraint the value of the

corresponding parameter. To make a direct comparison of the bounds obtained in the

scheme considered by us with the general bounds obtained in the global fit in [13], we show

the results from [13] with thin dashed lines. Thus, the thin dashed lines in figure 4 are the

bounds on JCP obtained using directly the results of the global fit [13] and eq. (2.7), and

represent the present status of our knowledge on this observable assuming the standard

3-neutrino mixing setup.3 The thick solid lines represent the results obtained in the scheme

with standard ordering considered. The blue and red color lines correspond respectively to

the cases of normal and inverted neutrino mass hierarchy; in the case when the two bounds

are essentially identical we used purple color lines.

From figures 2 and 3 we see that both the tribimaximal and bimaximal cases are well

compatible with data. The 1σ difference between the minimum of Nσ in the two cases is

due to the fact that the bound on δ obtained in [13] favours values of δ ∼ π (see table 1),

3More refined bounds on JCP in the standard parametrisation of the PMNS matrix could be obtained

by the authors of [13], using the full likelihood function.
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Figure 3. Nσ as a function of each mixing angle for the TBM and BM models in the standard

ordering setup. The dashed lines represent the results of the global fit reported in [13] while the

thick ones represent the results we obtain in our setup. Blue lines are for normal hierarchy while

the red ones are for inverted hierarchy (we used purple when the two bounds are approximately

identical). These bounds are obtained minimizing the value of Nσ in the parameter space for fixed

value of the showed mixing angle.

which is indeed the value needed in the bimaximal mixing (or LC) scheme to lower the

value of θ12 from θν12 = π/4, while the tri-bimaximal mixing scheme prefers | cos δ| � 1

(see subsection 2.1).

The results we obtain for sin2 θ12, sin2 θ23 and sin2 θ13 (i.e., the best fit values and

the 3σ ranges) in the case of tri-bimaximal mixing are similar to those given in [13]. In

contrast, our results for the Dirac phase δ and, correspondingly, for the JCP factor, are

drastically different. For the best fit values and the 3σ allowed ranges4 of δ and JCP we

4These ranges are obtained imposing:
√

∆χ2 =
√
N2
σ − (Nmin

σ )2 ≡ 3.
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Figure 4. Nσ as a function of δ and JCP for the TBM and BM models in the standard ordering

setup. The dashed lines represent the results of the global fit reported in [13] while the thick ones

represent the results we obtain in our setup. Blue lines are for normal hierarchy while the red ones

are for inverted hierarchy. These bounds are obtained minimizing the value of Nσ in the parameter

space for a fixed value of δ (left plots) or JCP (right plots).

find (see also table 2):

NH : δ ∼= 4.64 ∼=
3π

2
, 1.38 . δ . 1.97 , or (3.1)

4.29 . δ . 4.91 , (3.2)

IH : δ ∼= 4.64 ∼=
3π

2
, 1.39 . δ . 2.17 , or (3.3)

4.04 . δ . 4.93 , (3.4)
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Best fit 3σ range

JCP (NH) −0.034 −0.039÷−0.028⊕ 0.028÷ 0.039

JCP (IH) −0.034 −0.039÷−0.026⊕ 0.027÷ 0.039

δ (NH) 4.64 1.38÷ 1.97⊕ 4.29÷ 4.91

TBM δ (IH) 4.64 1.39÷ 2.17⊕ 4.04÷ 4.93

sin θ13 0.16 0.13÷ 0.18

sin2 θ23 (NH) 0.39 0.33÷ 0.64

sin2 θ23 (IH) 0.39 0.34÷ 0.66

sin2 θ12 0.31 0.25÷ 0.36

JCP 0.00 −0.027÷ 0.026

δ (NH) 3.20 2.35÷ 3.95

δ (IH) 3.27 2.37÷ 3.94

BM sin θ13 0.16 0.13÷ 0.18

sin2 θ23 (NH) 0.38 0.33÷ 0.47

sin2 θ23 (IH) 0.39 0.34÷ 0.50

sin2 θ12 0.31 0.28÷ 0.36

Table 2. Best fit and 3σ ranges in the standard ordering setup. When not explicitly indicated

otherwise, the result applies both for normal hierarchy and inverted hierarchy of neutrino masses.

NH : JCP
∼= −0.034 , 0.028 . JCP . 0.039 , or (3.5)

−0.039 . JCP . −0.028 , (3.6)

IH : JCP
∼= −0.034 , 0.027 . JCP . 0.039 , or (3.7)

−0.039 . JCP . −0.026 . (3.8)

The 3σ intervals of allowed values of δ (JCP) in eqs. (3.1) and (3.3) (eqs. (3.5) and (3.7))

are associated with the local minimum at δ ∼= π/2 (JCP
∼= 0.034) in figure 4 upper left

(right) panel, while those given in eqs. (3.2) and (3.4) (eqs. (3.6) and (3.8)) are related to

the absolute minimum at δ ∼= 3π/2 (JCP
∼= −0.034).

The results we have obtained, reported in figures 2 and 4, and in eqs. (3.1)–(3.8), are

quasi-degenerate with respect to JCP → −JCP, or δ → (2π − δ). This stems from the fact

that the phase φ enters into the expressions for the mixing angles only via its cosine, see

eqs. (2.12) and (2.14). This symmetry is slightly broken only by the explicit bound on δ

given in [13], which is graphically represented in figure 4 by the asymmetry of the dashed

lines showing that negative values of JCP are slightly favored.

As figures 2 and 4 show, in the case of tri-bimaximal mixing, the CP conserving values

of δ = 0;π; 2π is excluded with respect to the best fit CP violating values δ ∼= π/2; 3π/2 at

more than 4σ. Correspondingly, JCP = 0 is also excluded with respect to the best-fit values

JCP ' (−0.034) and JCP ' 0.034 at more than 4σ. It follows from eqs. (3.1)–(3.8) (see

also table 2) that the 3σ allowed ranges of values of both δ and JCP form rather narrow

intervals. These are the most striking predictions of the scheme with standard ordering

and tri-bimaximal mixing under investigation.
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We obtain different results assuming bimaximal mixing in the neutrino sector. Al-

though in this case the best fit values of sin2 θ12, sin2 θ23, sin2 θ13 and δ practically coincide

with those found in [13], the 3σ allowed intervals of values of sin2 θ12 and especially of

sin2 θ23 and δ differ significantly from those given in [13].

For the best fit values and the 3σ intervals of sin2 θ12 and sin2 θ23 we get (see also

table 2):

sin2 θ12 ∼= 0.31 , 0.28 . sin2 θ12 . 0.36 ; (3.9)

NH : sin2 θ23 ∼= 0.38 , 0.33 . sin2 θ23 . 0.47 ; (3.10)

IH : sin2 θ23 ∼= 0.39 , 0.34 . sin2 θ23 . 0.50 . (3.11)

As in [13], we find for the best fit value of δ and JCP: δ ∼= π and JCP
∼= 0. However, the

3σ range of δ and, correspondingly, of JCP, we obtain differ from those derived in [13]:

NH : 2.35 . δ . 3.95 ; −0.027 . JCP . 0.026 . (3.12)

IH : 2.37 . δ . 3.94 ; −0.027 . JCP . 0.026 . (3.13)

We see, in particular, that also in this case the Dirac CPV phase δ is constrained to lie in

a narrow interval around the value δ ' π. This and the constraint sin2 θ23 . 1/2 are the

most important predictions of the scheme with standard ordering and bimaximal neutrino

mixing.

4 Results with the inverse ordering

The case of inverse ordering is qualitatively and quantitatively different from the case of

standard ordering. For given values of θν12, θ
ν
23, the number of parameters is the same as

in the PMNS matrix. Still, not all values of U can be obtained, as we shall see.

The constraints on the reactor and atmospheric neutrino mixing angles are the same

for bimaximal and tri-bimaximal mixing and can be derived directly from eq. (2.31). For

any given value of the phase ψ, any values of θ13 and θ23 in the ranges

0 ≤ sin θ13 ≤
1√
2
,

0 ≤ sin2 θ23 ≤
cos 2θ13
cos4 θ13

' 1 +O(sin2 θ13) ,

(4.1)

can be obtained by an appropriate choice of ω′, θe12 and θe23. Clearly, the range of values

allowed for θ13 and θ23 covers the full experimentally allowed range. The solar neutrino

mixing angle can now be expressed in terms of θ13 and ψ as in eq. (2.31). Any value of θ12
in the interval

BMIO :

1

2

1− 2 sin θ13
√

cos 2θ13 − sin2 θ13
cos2 θ13

≤ sin2 θ12 ≤
1

2

1 + 2 sin θ13
√

cos 2θ13 − sin2 θ13
cos2 θ13

, (4.2)

TBMIO :

1

3

1− 2
√

2 sin θ13
√

cos 2θ13
cos2 θ13

≤ sin2 θ12 ≤
1

3

1 + 2
√

2 sin θ13
√

cos 2θ13
cos2 θ13

, (4.3)
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can then be obtained for an appropriate choice of ψ. At leading order in sin θ13 these

bounds become

BMIO :
1

2
− sin θ13 . sin2 θ12 .

1

2
+ sin θ13 ,

TBMIO :
1

3
− 2
√

2

3
sin θ13 . sin2 θ12 .

1

3
+

2
√

2

3
sin θ13 .

(4.4)

Given the experimental bounds on the PMNS angles found in the global fit [13], see table 1,

one can immediately notice that while the tri-bimaximal case is perfectly compatible with

the data, the bimaximal case has a ∼ 2σ tension in the prediction of the solar neutrino

mixing angle parameter sin2 θ12.

As was done for the standard ordering case, we construct the likelihood function and

the χ2 for both models as described in appendix B, exploiting the constraints on sin2 θ12,

sin2 θ23, sin2 θ13 and on δ obtained in [13], and using in this case as parameters sin θ13,

sin θe23 and the phases ψ and ω. We show in figures 5 and 6 the bounds on the neutrino

mixing angles and the JCP factor both in the cases of bimaximal and tri-bimaximal mixing

in the neutrino sector, and for normal and inverted neutrino mass hierarchy.

From figure 5, we see that in the case of tribimaximal mixing (upper row), the intervals

of allowed values of the PMNS mixing angles obtained in the model under discussion and

in the global fit performed in [13] coincide. This is a consequence of the fact that the

4D parameter space of the model considered completely overlaps with the experimentally

allowed parameter space in the PMNS parametrisation and therefore it does not give any

additional constraint. It is consistent with the analytic bounds reported above as well.

In the case of bimaximal mixing instead (figure 5 lower row), only a portion of the

relevant PMNS parameter space is reachable, a fact that is reflected in the bounds on

sin2 θ12 given in eq. (4.4). Values of θ12 in the upper part of its present experimental range

are favoured in this case.

In both cases of tri-bimaximal and bimaximal mixing from the neutrino sector, the

bounds on sin2 θ13 and sin2 θ12 corresponding to the normal and inverted neutrino mass

hierarchy are approximately identical, while they differ for the atmospheric neutrino mixing

angle and for the JCP factor.

Considering the expressions for JCP in eqs. (2.38) and (2.39) and figure 6, we see that

within ∼ 1σ from the best-fit point, every value in the ranges

∣∣JBM
CP

∣∣ . sin θ+1σ
13

4
∼ 0.04 ,

∣∣JTBM
CP

∣∣ . sin θ+1σ
13

3
√

2
∼ 0.038 , (4.5)

is allowed, where we have used the 1σ upper bound on sin θ13 from table 1. As a conse-

quence, we cannot make more specific predictions about the CP violation due to the Dirac

phases δ in this case. This is an important difference with respect to the standard ordering

scheme where, in the tri-bimaximal mixing case, relatively large values of the |JCP| factor

lying in a narrow interval are predicted at 3σ and, in the bimaximal mixing case, δ is

predicted to lie at 3σ in a narrow interval around the value of δ ∼ π.
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Figure 5. Nσ as a function of each mixing angle for the TBM and BM models with the inverse

ordering setup. The dashed lines represent the results of the global fit reported in [13] while the

thick ones represent the results we obtain in our setup. Blue lines are for normal hierarchy while

the red ones are for inverted hierarchy (we use purple when the two bounds are approximately

identical). These bounds are obtained minimizing the value of Nσ in the parameter space for fixed

value of the showed mixing angle.

5 Summary and conclusions

In this paper we considered the possibility that the neutrino mixing angle θ13 arises from the

interplay of 12 and 23 rotations in the neutrino (Uν) and charged lepton (Ue) contributions

to the PMNS neutrino mixing matrix (U = U †eUν). We generalized previous work [22] in

two directions. First, we considered two possible orderings of 12 and 23 rotations in Ue,

the “standard”, Ue ∼ Re23Re12, and the “inverse”, Ue ∼ Re12Re23, while keeping the standard

ordering in the neutrino sector, Uν ∼ Rν23Rν12. Second, in order to be able to accommodate
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Figure 6. Nσ as a function of JCP for the TBM and BM models in the inverse ordering setup. The

dashed lines represent the results of the global fit reported in [13] while the thick ones represent the

results we obtain in our setup. Blue lines are for normal neutrino mass hierarchy while the red ones

are for inverted hierarchy. These bounds are obtained minimizing the value of Nσ in the parameter

space for a fixed value of JCP.

a possible deviation of the atmospheric neutrino mixing angle θ23 from π/4, we allowed

the charged lepton 23 rotation angle (and possibly the neutrino one, in the standard case)

to assume arbitrary values. We considered the cases in which Uν is in the bimaximal or

tri-bimaximal form, or in the form resulting from the conservation of the lepton charge

Le − Lµ − Lτ (LC). We took, of course, all relevant physical CP violation (CPV) phases

into account.

The case of normal ordering turns out to be particularly interesting. The PMNS matrix

can be parameterized in terms of the charged lepton and neutrino 12 rotation angles, θe12
and θν12, an effective 23 rotation angle, θ̂23 ≈ θ23, and a CPV phase φ. Once θν12 is fixed

to the bimaximal (LC) or tri-bimaximal value, the number of parameters reduces to three,

and the Dirac phase δ in the PMNS matrix can be predicted in terms of the PMNS solar,

atmospheric and reactor neutrino mixing angles θ12, θ23 and θ13. Moreover, the range of

possible values of the PMNS angles turns out to be constrained.

In the tri-bimaximal case, the Dirac CPV phase δ is predicted to have a value δ ≈ π/2
or δ ≈ 3π/2, implying nearly maximal CP violation in neutrino oscillations, while in the

bimaximal (and LC) case we find δ ≈ π and, consequently, the CP violation effects in

neutrino oscillations are predicted to be small. The present data have a mild preference

for the latter option (see table 1 and, e.g., figure 4). Moreover, θ23 is predicted to be below

π/4 in the bimaximal case, which is also in agreement with the indications from the current

global neutrino oscillations data. In the set-up considered by us, the θ23 > π/4 solution of

the global fit analysis in [13] is disfavored.
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The case of inverse ordering is qualitatively and quantitatively very different. Fixing Uν
to the bimaximal or tri-bimaximal form is not sufficient to obtain a prediction: the number

of free physical parameters in this case is four — two angles and two CPV phases. Still,

not all values of the four physical parameters in the PMNS matrix, θ12, θ23, θ13 and δ, can

be reached in this parameterization. In the tri-bimaximal case, the ranges of parameters

that can be reached overlaps with the experimental ranges, so that no predictions can be

made. In the bimaximal case, however, this is not the case. One obtains, in fact, the

approximate relation sin2 θ12 & 1/2− sin θ13, which is barely compatible with the data. As

a consequence, i) there is a tension in the above relation that worsen the quality of the fit,

and ii) values of θ12 in the upper part of its present experimental range are preferred. In

both cases, no predictions for the Dirac CPV phase δ can be made. We did not consider

here the LC case as it involves, in general, five parameters, while its “minimal” version,

corresponding to setting θe23 = 0, is equivalent to the standard ordering case with BM

mixing (i.e., with θν12 = π/4).

The fact that the value of the Dirac CPV phase δ is determined (up to an ambiguity

of the sign of sin δ) by the values of the three PMNS mixing angles, θ12, θ23 and θ13,

eqs. (2.22) and (2.26), are the most striking predictions of the scheme considered with

standard ordering and bimaximal (LC) and tri-bimaximal mixing in the neutrino sector.

As we have already indicated, for the best fit values of θ12, θ23 and θ13 we get δ ∼= π

and δ ∼= π/2 or 3π/2 in the cases of bimaximal and tri-bimaximal mixing, respectively.

These results imply also that in the scheme with standard ordering we have discussed,

the JCP factor which determines the magnitude of CP violation in neutrino oscillations,

is also a function of the three mixing angles: JCP = JCP(θ12, θ23, θ13, δ(θ12, θ23, θ13)) =

JCP(θ12, θ23, θ13). This allowed us to obtain predictions for the range of possible values of

JCP using the current data on sin2 θ12, sin2 θ23 and sin θ13, which are given in eqs. (3.1)–

(3.7) and eqs. (3.12)–(3.13).

The predictions for sin2 θ23, and for δ and JCP we have obtained in the scheme with

standard ordering and bimaximal (or LC) or tri-bimaximal form of Uν will be tested by the

neutrino oscillation experiments able to determine whether sin2 θ23 . 0.5 or sin2 θ23 > 0.5,

and in the experiments searching for CP violation in neutrino oscillations.
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A Parametrisation of the PMNS matrix

In the present appendix we show how the parametrisation of eq. (2.5) follows from the ones

in eqs. (2.2) and (2.3). We start by writing explicitly the PMNS matrix as

U = Φ∗eR12(θ
e
12)R23(θ

e
23)ΨR23(θ

ν
23)R12(θ

ν
12)Φν , (A.1)

where Ψ = diag(1, eiψ, eiω), without loss of generality. Any 2× 2 unitary matrix V can be

recast in the form V = PR(θ)Q, where P = diag(eiφ1 , eiφ2), Q = diag(1, eiω2) and R(θ) is

a 2× 2 rotation. We use this to write

R23(θ
e
23)ΨR23(θ

ν
23) = Φ′R23(θ̂23)Ω , (A.2)

where R23(θ̂23) is an orthogonal rotation in the 23 block with

sin θ̂23 =
∣∣ cos θe23 sin θν23 + ei(ω−ψ) sin θe23 cos θν23

∣∣ , (A.3)

Φ′ = diag(eiφ1 , eiφ2 , eiφ3), and Ω = diag(1, eiω2 , eiω3). An explicit solution for the angles in

terms of the original parameters is

φ1 = 0 , φ2 = δc + δs + ψ − ω , φ3 = 0 ,

ω2 = −δs + ω , ω3 = −δc + ω ,
(A.4)

where

δs = Arg
(

cos θe23 sin θν23 + ei(ω−ψ) sin θe23 cos θν23
)
,

δc = Arg
(

cos θe23 cos θν23 − ei(ω−ψ) sin θe23 sin θν23
)
.

(A.5)

Considering now also the R12(θ
ν
12) rotation, we obtain

R23(θ̂23)ΩR12(θ
ν
12) = Φ′′R23(θ̂23)R12(θ

ν
12)Q

′′, (A.6)

with Φ′′ = diag(1, eiω2 , eiω2) and Q′′ = diag(1, 1, ei(ω3−ω2)). The phases in Q′′ add to the

ones in Q′ and are Majorana phases. The ones in Φ′′, instead, add to the ones in Φ′:

Φ′Φ′′ = eiφ1 diag
(
1, ei(φ2−φ1+ω2), ei(φ3−φ1+ω2)) . (A.7)

The phase in the 33 position commutes with R12(θ
e
12). Together with the overall phase φ1,

it will describe the unphysical phase matrix P in eq. (2.5):

P = eiφ1 diag
(
1, 1, ei(φ3−φ1+ω2)

)
. (A.8)

We see that the only physical Dirac CP violating phase in this parametrisation is contained

in the matrix Φ = diag(1, eiφ, 1), with

φ = φ2 − φ1 + ω2 = ψ + δc . (A.9)
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Figure 7. 1σ, 2σ, 3σ contours (respectively solid, dashed and dotted lines) of our global likelihood

function in the (sin2 θ23, sin
2 θ13) plane (left) and (sin2 θ13, δ) plane (right), using the data for NH.

These plots can be compared with figure 1 and figure 2 of [13] for NH. Undisplayed variables have

been marginalized.

B Statistical analysis

In this appendix we describe the simplified statistical analysis performed to obtain the

results. Our aim is to use the results of the global fit performed in [13] to assess how well

each of the models introduced in the previous section can fit the data. In particular, we

use the constraints on the PMNS angles θ13, θ12, θ23 and on the phase δ for the normal

hierarchy (NH) and inverted hierarchy (IH) cases, as derived in [13]. There, the results are

reported by plotting the value of Nσ ≡
√

∆χ2 (with ∆χ2 = χ2 − χ2
min) as a function of

each observable, with the remaining ones marginalized away. We construct an approximate

global likelihood from these functions as

Lj(αj) = exp

(
−

∆χ2
j (αj)

2

)
, L(~α) =

n∏
j

Lj(αj) , (B.1)

where ~α = {sin2 θ13, sin
2 θ23, sin

2 θ12, δ} are the observables relevant for our analysis, and

we define

χ2(~α) ≡ −2 logL(~α) (B.2)

and Nσ(~α) =
√
χ2(~α). In using this procedure we loose any information about possible

correlations between different observables. The effect of this loss of information is however

negligible, as one can check comparing our 1σ, 2σ and 3σ contours in the (sin2 θ23, sin
2 θ13)

and (sin2 θ13, δ) planes shown in figure 7 with the ones in figure 1 and figure 2 of [13].

Each model introduced in the previous section (which we dub with an indexm) depends

on a set of parameters xm = {xmi }, which are related to the observables via expressions

αj = αmj (xm), obtained from eqs. (2.6), (2.30). We then construct the likelihood function

in the space of the parameters xm as

Lm(xm) = L
(
~αm(xm)

)
. (B.3)

– 23 –



J
H
E
P
0
5
(
2
0
1
3
)
0
7
3

We define χ2(xm) = −2 logLm(xm) and Nσ(xm) =
√
χ2(xm). The last one is the function

we use to produce the plots shown in figures 2–6. Finally, to obtain the best-fit point we

use the maximum likelihood method.

References

[1] K. Nakamura and S.T. Petcov, Neutrino mass, mixing, and oscillations, in Particle Data

Group collaboration, J. Beringer et al., Review of particle physics,

Phys. Rev. D 86 (2012) 010001 [INSPIRE].

[2] S.M. Bilenky, J. Hosek and S.T. Petcov, On oscillations of neutrinos with Dirac and

Majorana masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].

[3] E. Molinaro and S.T. Petcov, The interplay between the ‘low’ and ‘high’ energy CP-violation

in leptogenesis, Eur. Phys. J. C 61 (2009) 93 [arXiv:0803.4120] [INSPIRE].

[4] L. Wolfenstein, CP properties of Majorana neutrinos and double beta decay,

Phys. Lett. B 107 (1981) 77 [INSPIRE].

[5] S.M. Bilenky, N.P. Nedelcheva and S.T. Petcov, Some implications of the CP invariance for

mixing of Majorana neutrinos, Nucl. Phys. B 247 (1984) 61 [INSPIRE].

[6] B. Kayser, CPT, CP and c phases and their effects in Majorana particle processes,

Phys. Rev. D 30 (1984) 1023 [INSPIRE].

[7] DAYA-BAY collaboration, F.P. An et al., Observation of electron-antineutrino

disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669]

[INSPIRE].

[8] Daya Bay collaboration, F.P. An et al., Improved measurement of electron antineutrino

disappearance at Daya Bay, Chin. Phys. C 37 (2013) 011001 [arXiv:1210.6327] [INSPIRE].

[9] RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino

disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802

[arXiv:1204.0626] [INSPIRE].

[10] Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance

in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632]

[INSPIRE].

[11] T2K collaboration, T. Nakaya, Results from T2K, talk given at Neutrino 2012. XXV

International Conference on Neutrino Physics and Astrophysics, Kyoto Japan, 3–9 Jun 2012.

[12] T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an

accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801

[arXiv:1106.2822] [INSPIRE].

[13] G.L. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of

leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

[14] M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino

mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

[15] Z.-z. Xing, Almost maximal lepton mixing with large T violation in neutrino oscillations and

neutrinoless double beta decay, Phys. Rev. D 64 (2001) 093013 [hep-ph/0107005] [INSPIRE].

[16] C. Giunti and M. Tanimoto, Deviation of neutrino mixing from bimaximal,

Phys. Rev. D 66 (2002) 053013 [hep-ph/0207096] [INSPIRE].

– 24 –

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://inspirehep.net/search?p=find+J+Phys.Rev.,D86,010001
http://dx.doi.org/10.1016/0370-2693(80)90927-2
http://inspirehep.net/search?p=find+J+Phys.Lett.,B94,495
http://dx.doi.org/10.1140/epjc/s10052-009-0985-3
http://arxiv.org/abs/0803.4120
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.4120
http://dx.doi.org/10.1016/0370-2693(81)91151-5
http://inspirehep.net/search?p=find+J+Phys.Lett.,B107,77
http://dx.doi.org/10.1016/0550-3213(84)90372-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B247,61
http://dx.doi.org/10.1103/PhysRevD.30.1023
http://inspirehep.net/search?p=find+J+Phys.Rev.,D30,1023
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://arxiv.org/abs/1203.1669
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1669
http://dx.doi.org/10.1088/1674-1137/37/1/011001
http://arxiv.org/abs/1210.6327
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6327
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://arxiv.org/abs/1204.0626
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0626
http://dx.doi.org/10.1103/PhysRevD.86.052008
http://arxiv.org/abs/1207.6632
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.6632
http://dx.doi.org/10.1103/PhysRevLett.107.041801
http://arxiv.org/abs/1106.2822
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2822
http://dx.doi.org/10.1103/PhysRevD.86.013012
http://arxiv.org/abs/1205.5254
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5254
http://dx.doi.org/10.1007/JHEP12(2012)123
http://arxiv.org/abs/1209.3023
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3023
http://dx.doi.org/10.1103/PhysRevD.64.093013
http://arxiv.org/abs/hep-ph/0107005
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0107005
http://dx.doi.org/10.1103/PhysRevD.66.053013
http://arxiv.org/abs/hep-ph/0207096
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0207096


J
H
E
P
0
5
(
2
0
1
3
)
0
7
3

[17] C. Giunti and M. Tanimoto, CP violation in bilarge lepton mixing,

Phys. Rev. D 66 (2002) 113006 [hep-ph/0209169] [INSPIRE].

[18] P.H. Frampton, S.T. Petcov and W. Rodejohann, On deviations from bimaximal neutrino

mixing, Nucl. Phys. B 687 (2004) 31 [hep-ph/0401206] [INSPIRE].

[19] S.T. Petcov and W. Rodejohann, Flavor symmetry Le − Lµ − Lτ , atmospheric neutrino

mixing and CP-violation in the lepton sector, Report SISSA-63-2004-EP,

Phys. Rev. D 71 (2005) 073002 [hep-ph/0409135] [INSPIRE].

[20] A. Romanino, Charged lepton contributions to the solar neutrino mixing and θ13,

Phys. Rev. D 70 (2004) 013003 [hep-ph/0402258] [INSPIRE].

[21] K.A. Hochmuth, S.T. Petcov and W. Rodejohann, UPMNS = U†`Uν ,

Phys. Lett. B 654 (2007) 177 [arXiv:0706.2975] [INSPIRE].

[22] D. Marzocca, S.T. Petcov, A. Romanino and M. Spinrath, Sizeable θ13 from the charged

lepton sector in SU(5), (tri-)bimaximal neutrino mixing and Dirac CP-violation,

JHEP 11 (2011) 009 [arXiv:1108.0614] [INSPIRE].

[23] G. Altarelli, F. Feruglio and I. Masina, Can neutrino mixings arise from the charged lepton

sector?, Nucl. Phys. B 689 (2004) 157 [hep-ph/0402155] [INSPIRE].

[24] S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton

unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].

[25] I. Masina, A maximal atmospheric mixing from a maximal CP-violating phase,

Phys. Lett. B 633 (2006) 134 [hep-ph/0508031] [INSPIRE].

[26] S. Antusch and S.F. King, Charged lepton corrections to neutrino mixing angles and CP

phases revisited, Phys. Lett. B 631 (2005) 42 [hep-ph/0508044] [INSPIRE].

[27] S. Dev, S. Gupta and R.R. Gautam, Parametrizing the lepton mixing matrix in terms of

charged lepton corrections, Phys. Lett. B 704 (2011) 527 [arXiv:1107.1125] [INSPIRE].

[28] S. Antusch and V. Maurer, Large neutrino mixing angle θMNS
13 and quark-lepton mass ratios

in unified flavour models, Phys. Rev. D 84 (2011) 117301 [arXiv:1107.3728] [INSPIRE].

[29] A. Meroni, S.T. Petcov and M. Spinrath, A SUSY SU(5)× T ′ unified model of flavour with

large θ13, Phys. Rev. D 86 (2012) 113003 [arXiv:1205.5241] [INSPIRE].

[30] C. Duarah, A. Das and N.N. Singh, Dependence of tan2 θ12 on Dirac CP phase δ in

tri-bimaximal neutrino mixing under charged lepton correction, arXiv:1210.8265 [INSPIRE].

[31] W. Chao and Y.-j. Zheng, Relatively large θ13 from modification to the tri-bimaximal,

bimaximal and democratic neutrino mixing matrices, JHEP 02 (2013) 044

[arXiv:1107.0738] [INSPIRE].

[32] D. Meloni, Large θ13 from a model with broken Le −Lµ −Lτ symmetry, JHEP 02 (2012) 090

[arXiv:1110.5210] [INSPIRE].

[33] S. Antusch, C. Gross, V. Maurer and C. Sluka, θPMNS
13 = θC/

√
2 from GUTs,

Nucl. Phys. B 866 (2013) 255 [arXiv:1205.1051] [INSPIRE].

[34] G. Altarelli, F. Feruglio, L. Merlo and E. Stamou, Discrete flavour groups, θ13 and lepton

flavour violation, JHEP 08 (2012) 021 [arXiv:1205.4670] [INSPIRE].

[35] G. Altarelli, F. Feruglio and L. Merlo, Tri-bimaximal neutrino mixing and discrete flavour

symmetries, arXiv:1205.5133 [INSPIRE].

[36] F. Bazzocchi and L. Merlo, Neutrino mixings and the S4 discrete flavour symmetry,

arXiv:1205.5135 [INSPIRE].

– 25 –

http://dx.doi.org/10.1103/PhysRevD.66.113006
http://arxiv.org/abs/hep-ph/0209169
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0209169
http://dx.doi.org/10.1016/j.nuclphysb.2004.03.014
http://arxiv.org/abs/hep-ph/0401206
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0401206
http://dx.doi.org/10.1103/PhysRevD.71.073002
http://arxiv.org/abs/hep-ph/0409135
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0409135
http://dx.doi.org/10.1103/PhysRevD.70.013003
http://arxiv.org/abs/hep-ph/0402258
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0402258
http://dx.doi.org/10.1016/j.physletb.2007.08.072
http://arxiv.org/abs/0706.2975
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.2975
http://dx.doi.org/10.1007/JHEP11(2011)009
http://arxiv.org/abs/1108.0614
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0614
http://dx.doi.org/10.1016/j.nuclphysb.2004.04.012
http://arxiv.org/abs/hep-ph/0402155
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0402155
http://dx.doi.org/10.1088/1126-6708/2005/08/105
http://arxiv.org/abs/hep-ph/0506297
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0506297
http://dx.doi.org/10.1016/j.physletb.2005.10.097
http://arxiv.org/abs/hep-ph/0508031
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508031
http://dx.doi.org/10.1016/j.physletb.2005.09.075
http://arxiv.org/abs/hep-ph/0508044
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508044
http://dx.doi.org/10.1016/j.physletb.2011.09.074
http://arxiv.org/abs/1107.1125
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1125
http://dx.doi.org/10.1103/PhysRevD.84.117301
http://arxiv.org/abs/1107.3728
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3728
http://dx.doi.org/10.1103/PhysRevD.86.113003
http://arxiv.org/abs/1205.5241
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5241
http://arxiv.org/abs/1210.8265
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.8265
http://dx.doi.org/10.1007/JHEP02(2013)044
http://arxiv.org/abs/1107.0738
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0738
http://dx.doi.org/10.1007/JHEP02(2012)090
http://arxiv.org/abs/1110.5210
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5210
http://dx.doi.org/10.1016/j.nuclphysb.2012.09.002
http://arxiv.org/abs/1205.1051
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1051
http://dx.doi.org/10.1007/JHEP08(2012)021
http://arxiv.org/abs/1205.4670
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4670
http://arxiv.org/abs/1205.5133
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5133
http://arxiv.org/abs/1205.5135
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5135


J
H
E
P
0
5
(
2
0
1
3
)
0
7
3

[37] S. Gollu, K.N. Deepthi and R. Mohanta, Charged lepton correction to tribimaximal lepton

mixing and its implications to neutrino phenomenology, arXiv:1303.3393 [INSPIRE].

[38] C.H. Albright, A. Dueck and W. Rodejohann, Possible alternatives to tri-bimaximal mixing,

Eur. Phys. J. C 70 (2010) 1099 [arXiv:1004.2798] [INSPIRE].

[39] P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino

oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

[40] P.F. Harrison and W.G Scott, Symmetries and generalizations of tri-bimaximal neutrino

mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].

[41] Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation,

Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [INSPIRE].

[42] X.G. He and A. Zee, Some simple mixing and mass matrices for neutrinos,

Phys. Lett. B 560 (2003) 87 [hep-ph/0301092] [INSPIRE].

[43] L. Wolfenstein, Oscillations among three neutrino types and CP-violation,

Phys. Rev. D 18 (1978) 958 [INSPIRE].

[44] F. Vissani, A study of the scenario with nearly degenerate Majorana neutrinos,

hep-ph/9708483 [INSPIRE].

[45] V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Bimaximal mixing of three

neutrinos, Phys. Lett. B 437 (1998) 107 [hep-ph/9806387] [INSPIRE].

[46] A.J. Baltz, A.S. Goldhaber and M. Goldhaber, The solar neutrino puzzle: an oscillation

solution with maximal neutrino mixing, Phys. Rev. Lett. 81 (1998) 5730 [hep-ph/9806540]

[INSPIRE].

[47] H. Georgi and S.L. Glashow, Neutrinos on Earth and in the heavens,

Phys. Rev. D 61 (2000) 097301 [hep-ph/9808293] [INSPIRE].

[48] I. Stancu and D.V. Ahluwalia, L/E flatness of the electron-like event ratio in

Super-Kamiokande and a degeneracy in neutrino masses, Phys. Lett. B 460 (1999) 431

[hep-ph/9903408] [INSPIRE].

[49] S.T. Petcov, On pseudoDirac neutrinos, neutrino oscillations and neutrinoless double beta

decay, Phys. Lett. B 110 (1982) 245 [INSPIRE].

[50] P.I. Krastev and S.T. Petcov, Resonance amplification and T-violation effects in three

neutrino oscillations in the Earth, Phys. Lett. B 205 (1988) 84 [INSPIRE].

[51] D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries,

Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].

[52] D. Hernandez and A.Y. Smirnov, Discrete symmetries and model-independent patterns of

lepton mixing, arXiv:1212.2149 [INSPIRE].

[53] S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry,

arXiv:1301.1340 [INSPIRE].

– 26 –

http://arxiv.org/abs/1303.3393
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.3393
http://dx.doi.org/10.1140/epjc/s10052-010-1492-2
http://arxiv.org/abs/1004.2798
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2798
http://dx.doi.org/10.1016/S0370-2693(02)01336-9
http://arxiv.org/abs/hep-ph/0202074
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0202074
http://dx.doi.org/10.1016/S0370-2693(02)01753-7
http://arxiv.org/abs/hep-ph/0203209
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0203209
http://dx.doi.org/10.1016/S0370-2693(02)01649-0
http://arxiv.org/abs/hep-ph/0204049
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0204049
http://dx.doi.org/10.1016/S0370-2693(03)00390-3
http://arxiv.org/abs/hep-ph/0301092
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0301092
http://dx.doi.org/10.1103/PhysRevD.18.958
http://inspirehep.net/search?p=find+J+Phys.Rev.,D18,958
http://arxiv.org/abs/hep-ph/9708483
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9708483
http://dx.doi.org/10.1016/S0370-2693(98)00880-6
http://arxiv.org/abs/hep-ph/9806387
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9806387
http://dx.doi.org/10.1103/PhysRevLett.81.5730
http://arxiv.org/abs/hep-ph/9806540
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9806540
http://dx.doi.org/10.1103/PhysRevD.61.097301
http://arxiv.org/abs/hep-ph/9808293
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9808293
http://dx.doi.org/10.1016/S0370-2693(99)00811-4
http://arxiv.org/abs/hep-ph/9903408
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9903408
http://dx.doi.org/10.1016/0370-2693(82)91246-1
http://inspirehep.net/search?p=find+J+Phys.Lett.,B110,245
http://dx.doi.org/10.1016/0370-2693(88)90404-2
http://inspirehep.net/search?p=find+J+Phys.Lett.,B205,84
http://dx.doi.org/10.1103/PhysRevD.86.053014
http://arxiv.org/abs/1204.0445
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0445
http://arxiv.org/abs/1212.2149
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2149
http://arxiv.org/abs/1301.1340
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1340

	Introduction
	General setup
	Standard ordering
	Inverse ordering

	Results with standard ordering
	Results with the inverse ordering
	Summary and conclusions
	Parametrisation of the PMNS matrix
	Statistical analysis

