
Mon. Not. R. Astron. Soc. 377, 507–515 (2007) doi:10.1111/j.1365-2966.2007.11637.x

The radial Tully–Fisher relation for spiral galaxies – I
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ABSTRACT
We find a new Tully–Fisher-like relation for spiral galaxies holding at different galactocentric

radii. This radial Tully–Fisher relation allows us to investigate the distribution of matter in the

optical regions of spiral galaxies. This relation, applied to three different samples of rotation

curves of spiral galaxies, directly proves that: (i) the rotation velocity of spirals is a good

measure of their gravitational potential and both the rotation curve’s amplitudes and profiles are

well predicted by galaxy luminosity, (ii) the existence of a dark component, less concentrated

than the luminous one, and (iii) a scaling law, according to which, inside the disc optical size:

Mdark/Mlum = 0.5(LB/1011 LB�)−0.7.

Key words: galaxies: kinematics and dynamics – galaxies: spiral – dark matter.

1 I N T RO D U C T I O N

Tully & Fisher (1977) discovered that the maximal rotational ve-

locity Vmax of a spiral galaxy, measured by the full width at half-

maximum (FWHM) of the neutral hydrogen 21-cm line profile,

correlates with the galaxy luminosity by means of a power law of

exponent a ∼ 4. This equivalently reads as

M = a log Vmax + b, (1)

with M being the absolute magnitude in some specified band and

b being a constant. It was immediately realized that this relation,

hereafter TF, could serve as a powerful tool to determine the dis-

tances of galaxies (Pierce & Tully 1988) and to study their dynamics

(Persic & Salucci 1988). The rotational velocity reflects the equi-

librium configuration of the underlying galaxy gravitational poten-

tial, especially when Vmax is directly derived from extended rotation

curves (RCs). Before proceeding further, let us point out that spi-

ral galaxies have a characteristic size scale, Ropt, that sets also a

characteristic reference velocity V(Ropt). RD, the exponential thin

disc length-scale, is a natural choice for such reference radius; in

this paper, however, we adopt for the latter a minimal variant, i.e. a

multiple of this quantity: Ropt ≡ 3.2RD (see Persic, Salucci & Stel

1996, hereafter PSS). (No result here depends on the value of the

multiplicity constant.) This choice is motivated by the fact that 3.2

RD, by enclosing 83 per cent of the total light, is a good measure of

the ‘physical size’ of the stellar disc, and that, for many purposes,

Vopt ≡ V(Ropt) = Vmax.1

Let us stress that some known kinematical quantities are not suit-

able reference velocities. For example, the value of Vmax for a spiral

�E-mail: yegorova@sissa.it
1 For the Persic & Salucci (1995) (hereafter PS95) sample, log Vopt =
(0.08 ± 0.01) + (0.97 ± 0.006) log Vmax.

depends on the extension and on the spatial resolution of the avail-

able RC and, in addition, it does not have a clear physical interpre-

tation, sometimes coinciding with the outermost available velocity

measure, in other cases with the innermost one. Also Vlast, the ve-

locity at the outermost measured point, obviously does not have a

proper physical meaning, in addition some spirals never reach the,

so-called, asymptotic flat regime (PSS and Salucci & Gentile 2006).

Coming back to the TF relation, its physical explanation, still

not fully understood, very likely involves the argument that in self-

gravitating rotating discs both the rotation velocity and the total

luminosity are a measure of the same gravitational mass (e.g. Strauss

& Willick 1995). Note that, if this argument is correct, both Vmax

and V last are just empirical quantities of different and not immediate

physical meaning.

The existence of the TF can be understood as it follows. The

stars in spiral galaxies are essentially settled in thin discs with an

exponential surface mass distribution (Freeman 1970)

�(R) = �0e−R/RD , �0 = k1 Ls, (2)

where k1 and s are constants, �0 = (Md/L) I0 is the central surface

mass density with I0 being the central surface brightness, that in the

first approximation, can be set constant among spirals. L and MD

are the total luminosity in a specific band and the disc mass. Since

from equation (2), MD ∝ �0R2
D, the above approximation implies

that RD ∝ L0.5. Let us now consider the condition of self-gravity

equilibrium for the stellar disc, i.e. the ratio E = GMD/(V2
optRopt).

By writing

E = k2 Lt , (3)

where k2 and t are constants, we have that Freeman discs are com-

pletely self-gravitating for k2 � 1.1 and t = 0. By setting s =
0, i.e. by assuming that the disc mass-to-light ratios are constant

among spirals, we arrive to the well-known relation: luminosity

∝ (velocity)4. Random departures from the above conditions in-

duce a larger scatter in the TF relation, while systematic departures,
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e.g. variations of the stellar population with galaxy luminosity or

violation of the condition of self-gravity, modify slope, zero-point

and scatter, possibly in a band-dependent way. More generally we

can write L ∝ V2/(s+0.5−t)
opt (here s and t can be band-dependent),

while we can also envisage a more complex and perhaps non-linear

relationship, if the above scaling laws are not just power laws and

I0 varies among galaxies. From an observational point of view, by

studying several large samples of galaxies, it has been found that

the TF has different slope and scatter in different bands: aI � 10,

sI ∼ 0.4 mag, while aB � 7.7, sB ∼ 0.5 mag (e.g. Pierce & Tully

1992; Salucci, Frenk & Persic 1993). Furthermore, a non-linearity

in the TF is often found at low rotation velocities (Aaronson et al.

1982).

We know that spiral galaxies are discs of stars embedded in (al-

most) spherical haloes of dark matter (DM) and this is crucial for un-

derstanding the physical origin of the TF relation (Persic & Salucci

1988; Strauss & Willick 1995; Rhee 1996). It is well known that

the dark haloes paradigm is supported by the (complex) mass mod-

elling of galactic RCs (e.g. PSS and references therein) and it implies

that discs are not fully self-gravitating. At any radius, both the dark

and luminous components contribute to the (observed) rotational

velocity V(R), with a relative weight that varies both radially and

from galaxy to galaxy. The resulting model circular velocity can be

written as a function of the useful radial coordinate x ≡ R/Ropt as2

Vmodel(x) = (G MD/RD)1/2 [ fd(x)/ fd(1) + � fh(x, α)]1/2, (4)

where f d(x) is the Freeman velocity disc profile

fd(x) = 1

2
(3.2x)2[I0(1.6x)K0(1.6x) − I1(1.6x)K1(1.6x)], (5)

and

fh(x, α) =
(

x2

x2 + α2

)
(1 + α2), (6)

MD is the disc mass, � is the dark/visible matter velocity ratio at Ropt

and α is the halo velocity core radius in units of Ropt. The adopted

halo function f h(x, α) (see PSS) is the simplest way to describe,

inside the optical radius, the contribution of DM halo; in fact, for

an appropriate value of the parameter α, in Vmodel(x), it describes

both the ‘empirical’ universal rotation curve (URC) halo velocity

profile in PSS and (by setting α = 1/3) the N-body Lambda cold

dark matter (� CDM) VNFW(x) Navarro–Frenk–White halo velocity

profile.

Let us point out that, given the existence of the TF relation (L ∝
Vk

opt, k = constant), with the circular velocity described by equa-

tion (4), any dependence on luminosity of the mass distribution

parameters � and α triggers, at radii jRopt(j = 0.2–1.4), a whole

family of relationships, similar to the TF one, but with slopes, scat-

ters and zero-points all different and all depending on the detailed

characteristics of the mass distribution.

We show this in Fig. 1 where, from the empirical (TF) relation

L B =
(

Vopt

200 km s−1

)3.5

1011 LB�, (7)

holding at Ropt we predict the new relation that holds at an inner

radius according to specific mass models. Among those, it is worth

discussing in detail for the model that underlies the URC: i.e. � =
0.5 (LB/2.5 × 1010�0.2)−0.9; α = 1.5 (LB/5 × 1010�)0.2. In this

case, the predicted slope decreases from 3.5 at Ropt to 2.75 at

2 For simplicity here we neglect the bulge, we will consider it in Section 4.
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Figure 1. The TF relation at Ropt (triangles) and the predicted relation at

0.6 Ropt in the cases of no-DM (short dashed line), � = 1 NFW halo (long

dashed line), the URC mass model (see the text, solid line).

0.6Ropt and to 2.5 at 0.4Ropt. If the above is considered just as a

toy model obviously the predicted slopes do not carry any uncer-

tainties, if, instead, it is considered as the URC mass model, they

carry a 15 per cent uncertainty due propagation errors from � and

α.

Therefore the URC paradigm implies, in addition to a universal

velocity profile at any chosen luminosity, also a ‘TF-like’ relation-

ship at any chosen radius JRopt, whose actual characteristics, how-

ever, are not investigated in PSS, and are not easy to recover from

the underlying mass model.

This will be instead easily done in the present paper, meant to be

complementary to PSS; we will come back to the RCs to directly

investigate them extracting from actual data the radial Tully–Fisher

(RTF) relation, i.e. a family of TF-like relations holding at any prop-

erly chosen radial distance. To ensure a better statistical coverage,

this will be repeated for three samples of spirals with different selec-

tion criteria and reference luminosity bands. These samples mostly

contain Sb–Sc spiral galaxies with the number of early-type spirals

and dwarfs being very small. Moreover, in general, the bulge affects

only the first reference radius. Different investigations will be nec-

essary to assess the present results in bulge-dominated spirals and

H I-dominated dwarfs.

Finally, we will use the properties of such relationships to inves-

tigate the mass distribution in late-type spirals.

The plan of this work is the following. In Section 2, we describe

our data samples and the main steps of the analysis. In Section 3,

we show that TF-like relations hold at specific radii, and we derive

the basic parameters of these relations for our samples. In the next

section, we discuss the implications of the existence of RTF relation

and we propose a simple mass model (SMM) that fits the data. The

conclusions are given in Section 5.

2 DATA A N D A NA LY S I S

Sample 1 consists of 794 original RCs of PS95 (note that for most of

them the limited number of independent measurements and some-

times some non-circular motion make it difficult to derive a proper
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mass model, but instead this can be done with the method in Sec-

tions 2 and 3).

In each RC, the data are radially binned on a 0.2Ropt scale so

that we have 4–7 independent and reliable estimates of the circular

velocity, according to its extension.

Sample 2 from Courteau (1997) consists of 86 RCs (selected

from 304 galaxies), and Sample 3 of Vogt et al. (2004) consists

of 81 RCs (selected from 329 galaxies). These samples have been

built by selecting from the original samples only objects with high

quality and high-resolution kinematics yielding reliable determina-

tions of both amplitudes and profiles of the RCs. To ensure this,

we have set the following selection criteria. The RCs must (i) ex-

tend out to �Ropt, (ii) have at least 30 velocity measurements dis-

tributed homogeneously with radius and between the two arms and

(iii) show no global asymmetries or significant non-circular mo-

tions; the profiles of the approaching and receding arms must not

disagree systematically more than 15 per cent over 1Rd length-scale.

The velocity errors are between 1 and 3 per cent.

In each galaxy, we measure the distance from its centre R in

units of Ropt(Ropt ≡ 3.2RD) and we consider a number of radial

bins centred at Rn = (n/5)Ropt for the PS95 sample and at Rn =
(n/20)Ropt for the other two samples; we take the bin size δ =
0.2Ropt for the PS95 sample and δ = 0.06Ropt for the other two

samples. Then we co-add and average the velocity values that fall

in the bins, i.e. in the radial ranges Rn − δ/2 � Rn � Rn + δ/2 and

we get the average circular velocity Vn at the chosen reference radii

Rn. (For the PS95 sample this was made in the original paper.)

A ‘large’ radial bin size has been chosen for the (much big-

ger) PS95 sample because, by selection, most of its RCs have

a relatively smaller number of measurements. For the other two

samples, that exclusively includes extended high-quality RC and

large number of measurements we decrease the bin size by a factor

of 3.2.

In short, we will use two different kinds of samples: Sample 1

includes 794 Sb–Sd galaxies with I magnitudes whose RCs are esti-

mated inside large radial bins that smooth out non-circular motions

and observational errors; Samples 2 and 3 include 167 galaxies

with R magnitudes, whose RCs of higher quality are estimated in-

side smaller radial bins providing so a larger number of independent

data per object.

Figure 2. The RTF relations for the PS95 sample. Each one of the six relations is indicated with different colours.

We look for a series of correlations, at the radii Rn between the

absolute magnitude M (in bands indicated below) and log Vn ≡
log V(Rn). Data in the I (Mathewson, Ford & Buchhorn 1992a) and

r (Courteau 1996; Vogt et al. 2004a) bands will allow us to check the

dependence of our results on the type of stellar populations in spiral

galaxies. Finally, let us stress that the uncertainties of photometry

are about 10 per cent and therefore negligible.

3 T H E RT F R E L AT I O N S H I P

Given a sample of galaxies of magnitude Mband and reliable rota-

tional curves, the RTF relation is defined as the ensemble of the

fitting relationships

Mband = an log Vn + bn, (8)

with an and bn being the parameters of the fits and Rn being the

radial coordinates at which the relationship is searched. The latter

is defined for all objects as a fixed multiple of the disc length-scale

(or equivalently a multiple of Ropt). Parameters an and bn are esti-

mated by the least-squares method (without considering the veloc-

ity/magnitude uncertainties).

The existence of the RTF relation is clearly seen in Figs 2 and

3, where all the TF-like relations for the PS95 sample are plotted

together and identified with a different colour. It is immediate to

realize that they mark an ensemble of linear relations whose slopes

and zero-points vary continuously with the reference radius Rn.

Independent Tully–Fisher-like relationships exist in spirals at

any ‘normalized’ radius Rn. We confirm this in a very detailed

and quantitative way in Figs A1 and A2 and in Tables A1–A3,

where very similar results are found for the other two samples. It is

notable that the various investigations lead to the same consistent

picture.

The slope an increases monotonically with Rn; the scatter sn has

a minimum at about two disc length-scales, 0.6 Ropt. In the I band,

the values of the slopes are about 15 per cent larger than those in

the r band. This difference, well known also for the standard TF, can

be interpreted as due to the decrease, from the r to the I band, of the

parameter s (see equation 2), as an effect of a different importance

in the luminosity of the population of recently formed stars (Strauss

& Willick 1995).
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Figure 3. The RTF relation for the PS95 sample.

It is possible to compare the RTF relations in different bands; in

the case of the absence of DM, true in the inner regions of spirals

(except in the very luminous galaxies and low surface brightness

almost absent in our sample), for the reasonable values sr = 0.1 and

sI =0 the power-law coefficient of the LI versus velocity relationship

is larger by a factor of (0.5 + sr )/(0.5 + sI ) than that of the Lr versus

velocity relationship, in details by a factor of 1.2. This correction

allows us to compare the an slopes as a function of Rn for our samples

(see Fig. 4). Remarkably, we find that the values of the slopes vary

with Rn according to a specific pattern:

bn = −2.3 − 9.9(Rn/Ropt) + 3.9(Rn/Ropt)
2. (9)

It is worth looking at the scatter of the RTF relation (see Fig. 5).

We find that, near the galactic centre, the scatter is large 0.3–0.4

Figure 4. The slope of the RTF relation at different radii for the three sam-

ples. The slope for the standard TF is about to −7.5.

Figure 5. The scatter of the RTF relation at different radii for the three

samples.

dex, possibly due to a ‘random’ bulge component governing the

local kinematics in this region being almost independent of the total

galaxy magnitude. The scatter starts to decrease with Rn, to reach a

minimum of 0.15–0.3 dex at Rn corresponding to two disc length-

scales, the radius where the contribution of the disc to the circular

velocity V(R) reaches the maximum. From 2RD onwards, the scatter

increases outwards reaching 0.3 dex, at the farthest distances with

available data, i.e. at 3–4 disc length-scales.

Let us note that these scatters are remarkably small. Most of the

relations in the RTF family are statistically at least as significant

as the standard TF relation, while the most correlated ones show a

scatter of only 0.2–0.3 mag (i.e. significantly smaller than that of

the standard TF; see Fig. 7). Since they include also the effects of
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Figure 6. The per cent errors of the rotational velocity for different radii.

various observational errors, their small values could indicate that

there is a very small intrinsic scatter in the RTF relation.

An important consequence of the smallness of the scatter of

TF-like relationships is that it allows us to claim that, at any ra-

dius x, the luminosity empirically predicts the rotation velocity of

spirals within the very small error of

δVn/Vn = ln(10)sn/an (10)

that, using the data from Tables A1–A3, is found to range between

5 and 7 per cent for the PS95 sample and between 10 and 12 per

cent for the other two samples (see Fig. 6). Even in the very inner

bulge-dominated regions (not studied here and in PSS), it does not

exceed 20 per cent. The smallness of δVn/Vn is remarkable also

because this quantity includes distance and inclination errors so as

a contribution from non-circular motions, that in principle should

be removed from the estimate of the ‘prediction error’, intrinsic to

the RTF. The fact that the latter relationship is able to reproduce the

rotation velocities of spirals within few per cent, it is a proof for the

Figure 7. The standard TF relation for all three samples compared with the RTF relation at R = 0.6Ropt.

Figure 8. Slopes an of the RTF relation for the three samples as a function of

the reference radius in units of Ropt. The solid line is the best-fitting relation

for equation (14).

URC paradigm, additional and perhaps more impressive than the

small rms of the set of synthetic RCs in PSS.

Incidentally, the existence of a radius (x = 0.6) at which the

TF-like relations show a minimum in the internal scatter (much

less pronounced in the prediction error δVn/Vn) is not related to

the overall capability of the luminosity to ‘measure’ the rotation

velocities. In fact, at very small x the (random) presence of a bulge

increases the scatter of the TF-like relation, in that, at these radii,

the actual kinematical-photometric Fundamental Plane includes (as

in ellipticals) a third quantity (the central brightness). At large x,

the modest increase of the scatter is likely due to an increase of

observational errors.

The scatter of the RTF in the R band for the corresponding samples

is somewhat larger than that in the I band for the PS95 sample. This

can be easily explained by the following: (i) the former samples

include also a (small) fraction of Sa objects and their RCs are of

higher spatial resolution (lower bin size) and therefore less efficient

in smoothing the non-circular motion caused by bars and spiral arms

(ii) the R band is more affected than the I band by random recent

episodes of star formation. A conservative estimate of these effects
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is σ obs � 0.2, thus the intrinsic scatter of the RTF in the R band

(s2
n − σ 2

obs)
0.5 results similar to that found in the I band.

4 RT F : I M P L I C AT I O N S

The marked systematic increase of the slopes of the RTF relation-

ship, as their reference radius Rn increases from the galaxy centre

to the stellar disc edge, bears very important consequences. First, it

excludes, as viable mass models, those in which:

(i) The gravitating mass follows the light distribution, due to a

total absence of non-baryonic DM or to DM being distributed simi-

larly to the stellar matter. In both cases, in fact, we do not expect to

find any variation of the slopes an and very trivial variations of the

zero-points bn with the reference radius Rn, contrary to the evidence

in Tables A1–A3 and Fig. 4.

(ii) The DM is present but with a luminosity-independent frac-

tional amount inside the optical radius. In this case, in fact, the

value of the circular velocity at any reference radius Rn will be a

{luminosity-independent} fraction of the value at any other refer-

ence radius [i.e. log V(Rn) = knm + log V(Rm), knm independent of

luminosity]. As a consequence, the slopes an in the RTF will be

independent of Rn, while the zero-points bn will change in a charac-

teristic way. It is clear that the evidence in Tables A1–A3 and Fig. 4

contradicts this possibility.

The RTF contains crucial information on the mass distribution in

spirals. In Paper II, we will fully recover and test it with theoret-

ical scenarios. Here, instead, we will use a SMM, that includes a

bulge, a disc and a halo mass component and it is tunable by means

of four free parameters. By matching this model with the slopes

of the RTF relation versus reference radii relationship (hereafter

SRTF), we derive the gross features of the mass distribution in spi-

rals. Let us point out that this method has a clear advantage with

respect to the mass modelling based on RCs. In this latter proce-

dure, since the circular velocities have a quite limited variation with

radius, physically different mass distributions may reproduce the

observations equally well. Here instead, on one side, we will use an

observational quantity, the slope of the RTF relation that shows large

variation with reference radius; on the other side, physically differ-

ent mass distributions predict very different slope versus reference

radius relationships.

First, without any loss of generality affecting our results, we

assume the well-known relationships among the crucial structural

properties of spirals:

(i) RD = R1l0.5, (11a)

see PSS, with l ≡ 10(MI −MI
max)/2.5 and Mmax

I = −23.5 is the maximum

magnitude of our sample, and

(ii) MD = M1l1.3 (11b)

(e.g. Shankar et al. 2006, and references therein). Note that the

constants R1 and M1 will play no role in the following. We will best

fit the an data, i.e. the SRTF relation shown in Fig. 4 with the slopes

aSMM(x) we derive from the SMM. In this way, we will fix the free

structural mass parameters.

We describe in detail the adopted SMM, the circular velocity is a

sum of three contributions generated by the bulge component, taken

as a point mass situated in the centre, a Freeman disc and a dark

halo, so

V 2
SMM(x) = G MD/RD

[
fd(x) + Mb

MD

1

(3.2x)
+ Mhalo

MD

1

3.2
fh(x, α)

]
,

where Mhalo is the halo mass inside Ropt. It is useful to measure

V2
SMM in units of GM1/R1, and to set it to be equal to 1. The disc

component from equations (5) and (11a), (11b) takes the form

V 2
d (x, l) = l0.8 fd(x), (12)

with V2
d(1, 1) = 0.347.

We set Mb as the bulge mass to be equal to a fraction cb/(3.2 ×
0.347)l0.5 of the disc mass, with cb being a free parameter of the

SMM; the exponent 0.5 in the luminosity dependence is suggested

from the bulge-to-disc versus total luminosity trend found for spirals

(de Jong 1996). Then, we get

V 2
b (x) = cbV 2

d (1, l)l0.5x−1. (13)

The halo velocity contribution follows the profile of equation (6)

and at Ropt it is set to be equal to ch/(3.2 × 0.347)l(kh−0.5) times the

disc contribution cb/ch. Moreover, kh and α are the free parameters

of the SMM.

Then, we can write

V 2
SMM(x, α, l) = [

cbl1.3/x + l0.8 fd(x) + chl (kh−0.5) fh(x, α)
]
, (14)

where fd is given by equation (5) and fh is given by equation (6).

Note that the simple form of VSMM allows us to get the predicted

slope function aSMM(x).

The core radius α is a DM free parameter; however, let us an-

ticipate that, provided this quantity lies between 0.5 and 2 (see

Donato, Gentile & Salucci 2004 and Salucci, Walter & Borriello

2003), it does not affect in a relevant way the SMM predictions.

Instead the aSMM(x) relationship strongly depends on the values of

ch, kh, cb, and therefore they can be estimated with a good preci-

sion. We can reproduce the observational an = a(Rn) relationship,

by means of the SMM (see Fig. 8) with the following best-fitting

parameters values: (i) kh = 0.8 ± 0.04, that means less luminous

galaxies have larger fraction of DM, (ii) cb = 0.13 ± 0.03, and

(iii) ch = 0.13 ± 0.06 that indicates that at (l, x) = (1, 1) (i.e.

inside Ropt), 20 per cent of the mass is in the bulge component,

20 per cent in the halo, while 60 per cent is in the stellar disc (see

Figs 9 and 10). The quoted uncertainties are the formal χ2 fitting

uncertainties.

5 D I S C U S S I O N A N D C O N C L U S I O N S

In spirals, at different galactocentric distances measured in units

of disc length-scales jRD(j = 0.2, . . . , 4), there exists a family of

Figure 9. Baryonic mass fraction as a function of normalized radius for

high- and low-luminosity objects.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 377, 507–515
Downloaded from https://academic.oup.com/mnras/article-abstract/377/2/507/1035107
by SISSA - Scuola Internazionale Superiore di Studi Avanzati user
on 08 November 2017



TF relation 513

Figure 10. Baryonic mass fraction at two different radii as a function of

luminosity.

independent Tully–Fisher-like relationships, Mband = bj + aj log V
(Rj ), that we call the RTF relation, it contains crucial information

on the mass distribution in these objects. In fact:

(i) The RTF relationships show large systematic variations in

their slopes aj (between −4 and −8) and a rms scatter generally

smaller than that of the standard TF. This rules out the case in which

the light follows the gravitating mass, and, in particular, all mass

models that imply: (a) an absence of DM, (b) a single mass compo-

nent (c) the same dark-to-luminous-mass fraction within jRD in all

galaxies.

(ii) The slopes aj decrease monotonically with Rj , which im-

plies the presence of a non-luminous mass component whose dy-

namical importance, with respect to the stellar disc, increases with

radius.

(iii) The existence of the RTF and the features of the slope versus

Rj can be well reproduced by means of a three components mass

model that includes a dark halo, with 1.6 RD < Rc < 6.4RD, and mass

Mhalo(Ropt) ∝ l0.8, a central bulge with Mbulge ∝ l1.8, an exponential

thin disc of mass Md ∝ l1.3 with, at 1011 LB,�, 80 per cent of the

mass inside Ropt in the stellar form.

Let us also note that we have produced a qualitatively new ev-

idence for the presence of a luminosity-dependent mass discrep-

ancy in spirals, different from that obtained from the non-Keplerian

shapes of the RCs. While the latter originates from a failure, we

do not observe the Keplerian fall-off of the circular velocities at

the disc edge, and therefore we must postulate a new component,

here, we provide a positive evidence for the existence of such a dark

component; we detect radial change of the slope and the scatter of

existing relations between observables that positively indicates the

presence of a more diffuse dark component.

The small scatter of the RTF implies that, in spirals, at any radius,

the luminosity is an extremely efficient statistical estimator of the

rotation velocity. This, since otherwise the strong correlation be-

tween luminosity and rotation velocities would be an unacceptably

fortuitous coincidence, strongly supports in contrast with a differ-

ent claim (Hayashi) that in spirals this velocity coincides with the

circular velocity, i.e. with the centrifugal equilibrium velocities Vc

associated with the central galaxy gravitational potential 
, Vc =
(−R d
/dR)1/2).

Finally, let us stress that any model of formation of spiral galaxies

must be able to produce (e.g. in the I band) a MI versus log V(2RD)

relationship with a slope of 7 ± 0.1 and an intrinsic scatter of

�0.15 mag.
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A P P E N D I X A :

In this appendix, we present Tables-A1–A6 and Figs A1 and A2

related to the results described in the previous sections concerning

Samples 2 and 3.
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Figure A1. The RTF relation for the Courteau sample.

Figure A2. The RTF relation for the Vogt sample.
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Table A1. Parameters of the RTF relation at different radii for the Mathew-

son sample.

R/Ropt Zero-point Error Slope Error SD N

0.2 −11.78 0.103 −4.77 0.054 0.366 739

0.4 −8.241 0.068 −6.141 0.033 0.185 786

0.6 −5.787 0.063 −7.102 0.029 0.146 794

0.8 −4.22 0.09 −7.718 0.042 0.17 657

1.0 −3.034 0.146 −8.197 0.067 0.208 447

1.2 −1.979 0.261 −8.639 0.118 0.253 226

Notes. Column 1 – the isophotal radius; Column 2 – intercept value bn;

Column 3 – the standard error of bn; Column 4 – the slope an; Column 5 –

the standard error of an; Column 6 – the scatter; Columns 7 – the number

of observational points.

Table A2. Parameters of the RTF relation at different radii for the Courteau

sample.

R/Ropt Zero-point Error Slope Error SD N

0.03 −18.217 0.287 −1.8 0.189 0.516 75

0.09 −15.615 0.39 −2.878 0.209 0.381 74

0.16 −14.355 0.495 −3.336 0.249 0.388 75

0.22 −13.379 0.55 −3.707 0.27 0.397 76

0.28 −12.155 0.741 −4.194 0.355 0.465 79

0.34 −11.7 0.613 −4.374 0.291 0.361 74

0.41 −11.11 0.617 −4.586 0.289 0.338 72

0.47 −9.962 0.674 −5.086 0.31 0.295 68

0.53 −9.114 0.699 −5.445 0.321 0.296 71

0.59 −8.919 0.733 −5.519 0.334 0.293 68

0.66 −8.623 0.752 −5.61 0.341 0.279 65

0.72 −8.351 0.625 −5.737 0.284 0.255 63

0.78 −8.172 0.763 −5.799 0.345 0.274 61

0.84 −7.329 1.0 −6.152 0.456 0.32 53

0.91 −6.372 1.0 −6.58 0.449 0.286 44

0.97 −7.573 1.54 −6.042 0.688 0.31 37

1.03 −7.728 1.993 −5.984 0.888 0.311 25

1.09 −9.265 2.254 −5.307 1.0 0.212 14

1.16 −6.853 1.767 −6.35 0.789 0.281 15

Table A3. Parameters of the RTF relation at different radii for the Vogt

sample.

R/Ropt Zero-point Error Slope Error SD N

0.09 −19.351 0.526 −1.992 0.278 0.55 78

0.16 −18.118 0.64 −2.456 0.316 0.528 78

0.22 −16.142 0.714 −3.309 0.339 0.472 76

0.28 −14.787 0.728 −3.869 0.338 0.43 77

0.34 −13.583 0.73 −4.365 0.334 0.394 77

0.41 −12.646 0.78 −4.747 0.354 0.386 77

0.47 −11.746 0.784 −5.112 0.353 0.365 77

0.53 −11.342 0.805 −5.264 0.361 0.361 75

0.59 −10.698 0.778 −5.51 0.347 0.327 72

0.66 −9.804 0.77 −5.885 0.341 0.309 71

0.72 −9.244 0.83 −6.125 0.368 0.318 70

0.78 −9.227 0.936 −6.104 0.414 0.341 68

0.84 −7.873 0.906 −6.7 0.4 0.304 60

0.91 −7.435 1.057 −6.893 0.466 0.334 58

0.97 −6.377 1.153 −7.343 0.505 0.323 50

1.03 −8.398 1.414 −6.435 0.62 0.345 41

1.09 −7.953 1.377 −6.628 0.599 0.301 35

1.16 −8.683 1.38 −6.947 0.622 0.228 24

1.22 −9.616 1.444 −6.842 0.714 0.275 23

1.28 −7.394 2.467 −6.834 1.072 0.347 16

Table A4. Parameters of the standard Tully–Fisher relation for three sam-

ples.

Data Zero-point Error Slope Error SD N

Mathewson −4.455 0.15 −7.57 0.069 0.327 841

Courteau −8.398 1.26 −5.526 0.556 0.495 81

Vogt et al. −8.277 0.997 −6.423 0.433 0.389 79

Table A5. Names of galaxies from the Courteau sample.

UGC 10096 UGC 10196 UGC 10210 UGC 10224

UGC 1053 UGC 10545 UGC 10560 UGC 10655

UGC 10706 UGC 10721 UGC 10815 UGC 11085

UGC 11373 UGC 1152 UGC 11810 UGC 12122

UGC 12172 UGC 12200 UGC 12294 UGC 12296

UGC 12304 UGC 12325 UGC 12354 UGC 12598

UGC 12666 UGC 1426 UGC 1437 UGC 1531

UGC 1536 UGC 1706 UGC 1812 UGC 195

UGC 2185 UGC 2223 UGC 2405 UGC 2628

UGC 3049 UGC 3103 UGC 3248 UGC 3269

UGC 3270 UGC 3291 UGC 3410 UGC 346

UGC 3652 UGC 3741 UGC 3834 UGC 3944

UGC 4232 UGC 4299 UGC 4326 UGC 4419

UGC 4580 UGC 4779 UGC 4996 UGC 5102

UGC 540 UGC 562 UGC 565 UGC 5995

UGC 6544 UGC 6692 UGC 673 UGC 7082

UGC 732 UGC 7549 UGC 7749 UGC 7810

UGC 7823 UGC 783 UGC 784 UGC 8054

UGC 8118 UGC 8707 UGC 8749 UGC 8809

UGC 890 UGC 9019 UGC 9366 UGC 9479

UGC 9598 UGC 9745 UGC 9753 UGC 9866

UGC 9973

Table A6. Names of galaxies from the Vogt sample.

UGC 927 UGC 944 UGC 1033 UGC 1094

UGC 1437 UGC 1456 UGC 1459 UGC 2405

UGC 2414 UGC 2426 UGC 2518 UGC 2618

UGC 2640 UGC 2655 UGC 2659 UGC 2700

UGC 3236 UGC 3270 UGC 3279 UGC 3289

UGC 3291 UGC 3783 UGC 4275 UGC 4287

UGC 4324 UGC 4607 UGC 4655 UGC 4895

UGC 4941 UGC 5166 UGC 5656 UGC 6246

UGC 6437 UGC 6551 UGC 6556 UGC 6559

UGC 6718 UGC 6911 UGC 7845 UGC 8004

UGC 8013 UGC 8017 UGC 8108 UGC 8118

UGC 8140 UGC 8220 UGC 8244 UGC 8460

UGC 8705 UGC 10190 UGC 10195 UGC 10459

UGC 10469 UGC 10485 UGC 10550 UGC 10981

UGC 11455 UGC 11579 UGC 12678 UGC 12755

UGC 12792 UGC 150059 UGC 180598 UGC 210529

UGC 210559 UGC 210629 UGC 210634 UGC 210643

UGC 210789 UGC 211029 UGC 220864 UGC 221174

UGC 221206 UGC 251400 UGC 260640 UGC 260659

UGC 330781 UGC 330923 UGC 330925 UGC 330996

UGC 331021
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