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Abstract We employ the exponential parametrization of
the metric and a “physical” gauge fixing procedure to write a
functional flow equation for the gravitational effective aver-
age action in an f (R) truncation. The background metric
is a four-sphere and the coarse-graining procedure contains
three free parameters. We look for scaling solutions, i.e. non-
Gaussian fixed points for the function f . For a discrete set of
values of the parameters, we find simple global solutions of
quadratic polynomial form. For other values, global solutions
can be found numerically. Such solutions can be extended in
certain regions of parameter space and have two relevant
directions. We discuss the merits and the shortcomings of
this procedure.

1 Introduction

Since decades the ultraviolet (UV) completion of gravity
is one of the major open problems in theoretical physics.
Several frameworks have been proposed, such as string the-
ory, loop quantum gravity, causal dynamical triangulation,
matrix models, and their generalizations such as tensor mod-
els and group field theory. Perturbative analyses in quantum
field theory have shown that the gravitational interactions,
considered at quantum level, are not renormalizable starting
from two loops [1–3] (one loop in the presence of quantum
matter [4,5]). In this approach a weak coupling expansion is
therefore unable to give a meaningful description of the quan-
tum gravitational interactions up to UV scales, even if, due to
the smallness of the Newton constant, it can be considered a
low-energy effective theory including some quantum correc-
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tions in a consistent bottom-up approach [6,7]. On the other
hand, the possibility of having an interacting UV-complete
quantum field theory of gravitation, originating from a non-
Gaussian UV fixed point (FP) in the theory space, has been
proposed by Weinberg [8] and fits naturally in the nonper-
turbative renormalization group framework. The existence
of such a FP (scaling solution) would permit one to have a
renormalization group (RG) trajectory in the theory space
characterized by all the dimensionless couplings remaining
finite when the UV cutoff is removed.

In order to make the critical theory at the FP physically
meaningful, the corresponding conformal field theory should
have a finite number of relevant deformations so that a finite
number of measurements at low energy would be sufficient
to completely fix the theory, i.e. all the (infinitely many)
couplings at any scale. To decide if the latter fundamen-
tal property may be achieved, any kind of investigation in
this direction should start from a sufficiently large (possi-
bly infinite-dimensional) theory space, show the existence
of one or more critical theories and eventually should be
able to identify which one has the required properties under
deformations that may lead to a definition of a UV complete
and predictive theory.

The search of a gravitational FP has been conducted
mostly using some approximation of the functional renor-
malization group equation (FRGE). In most cases, finite
truncations (i.e. finitely many couplings) were studied and
the general strategy was to establish that the addition of
new couplings would not affect too strongly the results [9–
14]. While the number of couplings considered simultane-
ously has become quite high, these analyses still fall short
of exploiting the full power of the FRGE machinery, which,
as the name suggests, is designed to deal with the renormal-
ization of whole functions, or equivalently infinitely many
couplings.
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The study of truly functional truncations has been slowly
gathering momentum in the last few years. In the case of
f (R) truncations

�k =
∫

dd x
√−g f (R), (1.1)

functional flow equations for the functions f had already
been written in [11,12], but the first serious attempt to solve
the functional FP equations was made in [15,16]. Negative
results concerning the equations written in [11,12] have been
reported in [17,18]. It has been argued that the solution may
require truncations that go beyond functionals of the back-
ground field alone, which in this framework one cannot avoid
to introduce, and taking into account the Ward identities of
the quantum-background split symmetry. This is a general
issue that goes beyond the f (R) truncations and progress
in this direction has been made in [19,20]. In the meantime
solutions were found in simplified (lower-dimensional and/or
conformally reduced) settings [21,22] and recently also in the
full four-dimensional case [23].

A different class of functional truncations of a scalar-
tensor theory consists of actions of the form

�k[φ, g]=
∫

dd x
√
g

(
V (φ) − F(φ)R + 1

2
gμν∂μφ∂νφ

)
.

(1.2)

In this case, the system is closer to familiar models of scalar
theories and one may hope to be able to use the experience
gained there. In particular, given that a FP is known to exist in
the Einstein–Hilbert truncation of three-dimensional gravity,
and a non-trivial functional FP exists for pure scalar theory, it
would seem reasonable to expect a functional FP for the com-
bined system. However, nothing resembling such a solution
was found in [24]. The reason for this has been discussed in
[25] and a different flow equation was proposed, based on the
use of an exponential parametrization for the metric. In this
case, solutions of the corresponding FP equations have been
found [25–27]. The use of the exponential parametrization
can be motivated by the nonlinear nature of the metric itself
since, for example in the case of euclidean signature, the set
of all metrics at a point can be identified with the coset space
GL(d)/O(d). It is natural to use for this nonlinear space an
exponential map [25,28,29] and, as we shall show, in such a
case the off-shell effective action expanded in perturbations
appears to be simpler than the one obtained using a linear
parametrization.

The same method has been used also in f (R) theory [30]
and again some scaling solutions could be found in closed
form, at least for specific cutoff procedures. In the present
paper, we expand the analysis of [30] and also give details
for the derivation of the equations. We then discuss the rela-
tion between these exact solutions and numerical solutions

for generic values of the parameters, for which we give a
constructive procedure.

In Sect. 2, we begin by deriving the Hessian for the f (R)

gravity in d dimensions (Sect. 2.1), and discuss gauge fixing
and the resulting determinants in Sect. 2.2. In Sect. 3, we give
the details of the derivation of the flow equation. In partic-
ular in Sect. 3.1 we first set up the general form of the flow
equation based on a coarse-graining procedure, dependent,
for each irreducible spin component, on an endomorphism
parameter, and use heat kernel to evaluate it in Sect. 3.2. Up
to this point, our discussions are for arbitrary dimensions, but
they are restricted to four dimensions from Sect. 3.3 onwards.
We then discuss the alternative flow equation derived by the
spectral sum in Sect. 3.4. In Sect. 4, we present global solu-
tions of the spectral-sum-based flow equation, first quadratic
ones in Sect. 4.1 and then more general numerical solutions in
Sect. 4.2. In Sect. 5, we also present and discuss global solu-
tions of the flow equation derived by the heat kernel. Since
the structure of the flow equations are basically the same, we
only describe the solutions briefly. Finally in Sect. 6, we sum-
marize our results and discuss the limitations of the present
results and possible ways of overcoming them.

2 f (R) truncation

We use the background field method and split the metric into
background and quantum parts. We perform the calculations
by different parametrizations of the metric fluctuation. One
is the linear split,

gμν = ḡμν + hμν, (2.1)

and the other is the nonlinear exponential type,

gμν = ḡμρ(eh)ρν. (2.2)

Henceforth we assume that the background space is four-
dimensional Einstein space with

R̄μν = R̄

d
gμν, R̄ = const. (2.3)

2.1 Hessian

For the linear split (2.1), the Hessian is given by

I (2) = 1

2
f ′′(R̄)

[
�h − ∇μ∇νh

μν + R̄μνh
μν

]2

+1

2
f ′(R̄)

[
1

2
hμν�hμν + (∇μh

μν)2

+h(∇μ∇νh
μν − R̄μνh

μν) + R̄μαh
μνhα

ν − 1

2
h�h

+R̄μανβh
μνhαβ

]
+ 1

8
f (R̄)(h2 − 2h2

μν). (2.4)
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Here and in the following, we suppress the overall factor√
ḡ and the covariant derivative ∇μ is constructed with the

background metric. In the exponential parametrization (2.2),
the metric has an infinite series expansion

gμν = ḡμν + hμν + 1

2
hμλh

λ
ν + . . . , (2.5)

Therefore the linear term in the expansion of the action,
which is

L(1) =
[

1

2
f (R̄)ḡμν − f ′(R̄)R̄μν

]
hμν, (2.6)

generates an additional contribution to the Hessian by the
replacement

hμν → 1

2
hμλh

λ
ν. (2.7)

Substituting the York decomposition (B.1) into (2.4), we
find

I (2) = − 1

4
hTTμν

[
f ′(R̄)

(

2 − 4

d
R̄

)
+ f (R̄)

]
hTT μν

+ 1

2d
[2R̄ f ′(R̄) − d f (R̄)]ξμ

(

1 − 2

d
R̄

)
ξμ

+d − 1

4d
σ

[
2(d − 1)

d
f ′′(R̄)
0

(

0 − R̄

d − 1

)

+d − 2

d
f ′(R̄)

(

0 + 2

d − 2
R̄

)
− f (R̄)

]

0

(

0 − R̄

d − 1

)
σ

+ 1

4
h

[
2(d − 1)2

d2 f ′′(R̄)

(

0 − R̄

d − 1

)2

+ (d − 1)(d − 2)

d2 f ′(R̄)

(

0 − 2

d − 1
R̄

)
+ d − 2

2d
f (R̄)

]
h

+ 1

2
h

[
2(d − 1)2

d2 f ′′(R̄)

(

0 − R̄

d − 1

)

+ (d − 1)(d − 2)

d2 f ′(R̄)

]

0

(

0 − 2

d − 1
R̄

)
σ, (2.8)

where 
2, 
1, and 
0 are the Lichnerowicz Laplacians on
the symmetric tensor, vector and scalar, respectively, defined
in Appendix A. This formula agrees with [11].

When the exponential parametrization (2.2) is used, we
find

I (2)
exp = −1

4
f ′(R̄)hTTμν

(

2 − 2

d
R̄

)
hTT μν

+d − 1

4d
σ

[
2(d − 1)

d
f ′′(R̄)

(

0 − R̄

d − 1

)

+d − 2

d
f ′(R̄)

]

2

0

(

0 − R̄

d − 1

)
σ

+1

4
h

[
2(d − 1)2

d2 f ′′(R̄)

(

0 − R̄

d − 1

)2

+ (d − 1)(d − 2)

d2 f ′(R̄)

(

0 − 2

d − 2
R̄

)
+ 1

2
f (R̄)

]
h

+d − 1

2d
h

[
2(d − 1)

d
f ′′(R̄)

(

0 − R̄

d − 1

)

+d − 2

d
f ′(R̄)

]

0

(

0 − 2

d − 1
R̄

)
σ. (2.9)

Remarkably all terms containing ξμ cancel out. For f (R̄) =
R̄2, this agrees with our previous result [31,32]. If we use
the gauge-invariant variable s = h + 
0σ , Eq. (2.9) can be
rewritten as

I (2)
exp = −1

4
f ′(R̄)hTTμν

(

2 − 2

d
R̄

)
hTT μν

+d − 1

4d
s

[
2(d − 1)

d
f ′′(R̄)

(

0 − R̄

d − 1

)

+d − 2

d
f ′(R̄)

] (

0 − R̄

d − 1

)
s

+h

(
1

8
f (R̄) − 1

4d
f ′(R̄)R̄

)
h. (2.10)

Note that the last term, which is the only non-gauge-invariant
one, is proportional to the field equation. It vanishes for
F(R̄) = R̄d/2, which is R̄2 for four dimensions, because
the action is scale invariant in this case.

On the sphere, we have R̄μρνσ = R̄
d(d−1)

(ḡμν ḡρσ −
ḡμσ ḡνρ), and (2.10) reduces to

I (2)
exp = −1

4
f ′(R̄)hTTμν

(

 + 2

d(d − 1)
R̄

)
hTT μν

+d − 1

4d
s

[
2(d − 1)

d
f ′′(R̄)

(

 − R̄

d − 1

)

+d − 2

d
f ′(R̄)

] (

 − R̄

d − 1

)
s

+h

(
1

8
f (R̄) − 1

4d
f ′(R̄)R̄

)
h, (2.11)

where 
 = −∇2.

2.2 Gauge fixing

Let us consider a standard gauge fixing term

SGF = 1

2α

∫
dd x

√
ḡ ḡμνFμFν, (2.12)

with

Fμ = ∇ρh
ρ

μ − β + 1

d
∇μh. (2.13)

Using the York decomposition, this reduces to

Fμ = −
(


1 − 2R̄

d

)
ξμ

−∇μ

(
d − 1

d

(

0 − R̄

d − 1

)
σ + β

d
h

)
. (2.14)
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We see that a specific combination of scalar degrees of free-
dom appears in this formula. Following [33], it is conve-
nient to reparametrize the scalar sector in terms of the gauge-
invariant variable s and a new degree of freedom χ defined
as

s = h + 
0σ, χ = [(d − 1)
0 − R̄]σ + βh

(d − 1 − β)
0 − R̄
. (2.15)

The gauge fixing function then reads

Fμ = −
(


1 − 2R̄

d

)
ξμ − d − 1 − β

d
∇μ

×
(


0 − R̄

d − 1 − β

)
χ. (2.16)

Thus the gauge fixing action becomes

SGF = 1

2α

∫
dx

√
ḡ

[
ξμ

(

1 − 2R̄

d

)2

ξμ

+ (d − 1 − β)2

d2 χ
0

(

0 − R̄

d − 1 − β

)2

χ

]
.

(2.17)

From (2.15), we see that χ transforms in the same way as
σ . On shell, the last term in (2.11) is zero, so the quadratic
part of the action is written entirely in terms of the physical
degrees of freedom hT T and s, and the gauge fixing is entirely
in terms of the gauge degrees of freedom ξ and χ .

The ghost action for this gauge fixing contains a non-
minimal operator

Sgh =
∫

dx
√
ḡC̄μ

(
δν
μ∇2 +

(
1 − 2

β + 1

d

)
∇μ∇ν + R̄μ

ν

)
Cν .

(2.18)

Let us decompose the ghost into transverse and longitudinal
parts

Cν = CT
ν + ∇νC

L = CT
ν + ∇ν

1√

0

C ′L , (2.19)

and the same for C̄ . (This change of variables has unit Jaco-
bian.) The ghost action splits in two terms

Sgh =
∫

dx
√
ḡ

[
−C̄Tμ

(

1 − 2R̄

d

)
CT

μ

−2
d − 1 − β

d
C̄ ′L

(

0 − R̄

d − 1 − β

)
C ′L

]
.

(2.20)

On shell, the h-h term in (2.11) goes away. The one-
loop partition function is the product of several determinants.
The determinants associated to the gauge-invariant variables
(hTT , s) are manifestly gauge independent. The fields (ξ, χ)

in the gauge fixing term contribute

Det

(

1 − 2

d
R̄

)−1

Det
−1/2
0 Det

(

0 − 1

d − 1 − β
R̄

)−1

.

(2.21)

Then there are the ghost determinants

Det

(

1 − 2

d
R̄

)
Det

(

0 − 1

d − 1 − β
R̄

)
, (2.22)

and finally we have the Jacobians. The York decomposition
has Jacobian

Det

(

1 − 2

d
R̄

)1/2

Det
1/2
0 Det

(

0 − R̄

d − 1

)1/2

(2.23)

whereas the subsequent transformation (σ, h) → (s, χ) has
unit Jacobian. Altogether, on shell, the gauge-dependent fac-
tors cancel out, and the result is gauge independent. The
one-loop determinants are

Det
(

1 − 2

d R̄
)1/2

Det
(

2− 2R̄

d

)1/2
Det

(
f ′′(R̄)

(

− R̄

d−1

)
+ d−2

2(d−1)
f ′(R̄)

)1/2 .

(2.24)

Note that in General Relativity, the second determinant in the
denominator becomes a constant. The result then agrees with
[34]. The trivial scalar determinant is a sign that the scalar
degree of freedom s is non-propagating. In general, in f (R)

gravity this degree of freedom propagates and contributes to
the one-loop effective action.

Off shell, things are more complicated. One can solve

h = (d − 1)
0 − R̄

(d − 1 − β)
0 − R̄
s − 
0χ. (2.25)

Then the last term in (2.11) contributes additional terms to
the s- and χ -operators (as well as a s–χ mixing term). There
are two choices that simplify the situation. For β = 0, in
which case χ = σ , we have h = s − 
0χ . In the case
β → ∞ we have simply h = −
0χ . In this case the last
term of (2.11) leaves the gauge-invariant modes hTT and
s untouched and only produces a term proportional to χ2.
However, for β → ∞ the gauge fixing strongly enforces the
condition χ = 0, independently of α, so in this gauge the
quadratic action becomes the same off shell as on shell. We
can further kill the ξμ gauge degree of freedom by choosing
α = 0. This gauge should then be equivalent to what was
called the “unimodular physical gauge” in [25].

In this gauge, we have h = 0, so s = 
0σ and (2.10)
reduces to the first two lines in (2.9). As discussed in [25],

the gauge conditions ξ ′
μ ≡

√

1 − 2R̄

d ξμ = 0 and h = 0
produce two ghost determinants

Det

(

1 − 2

d
R̄

)1/2

Det
1/2
0 . (2.26)

123



Eur. Phys. J. C (2016) 76 :46 Page 5 of 18 46

In this case the spin-one determinant in the Jacobian of the
York decomposition (2.23) is canceled by the Jacobian of
the transformation ξμ → ξ ′

μ. Collecting the rest, we see that
this gauge reproduces the on-shell determinants (2.24). The
only difference is that off shell the background curvature
is generic, whereas on shell it becomes a function of the
couplings in f . We take this equivalence of the one-loop
effective action to the on-shell result be a distinct advantage
of the exponential parametrization and of our gauge choice,
in the sense that using this procedure the off-shell results are
less sensitive to the contributions of unphysical degrees of
freedom.

3 Flow equations

3.1 Cutoff and functional renormalization group equation

For the definition of the coarse graining, we have to choose
some reference operator. In the Hessian on the four-sphere
(2.11), the operator 
 = −∇2 appears everywhere and is
a natural choice. However, in order to gain some additional
freedom, we follow [22,23] and add to 
 terms proportional
to the scalar curvature, with coefficients −α, −γ , and −β

for spin two, one, and zero, respectively. These parameters
should not be confused with the gauge fixing parameters
which do not appear in the following.

By the standard procedure, we then get the FRGE

�̇k = 1

2
Tr(2)

⎡
⎣ ḟ ′(R̄)Rk(
 − α R̄) + f ′(R̄)Ṙk(
 − α R̄)

f ′(R̄)
(
Pk(
 − α R̄) + α R̄ + 2

d(d−1)
R̄
)

⎤
⎦

+ 1

2
Tr(0)

⎡
⎣ ḟ ′′(R̄)Rk(
−β R̄)+ f ′′(R̄)Ṙk(
−β R̄)

f ′′(R̄)
(
Pk(
−β R̄)+β R̄− 1

d−1 R̄
)
+ d−2

2(d−1)
f ′(R̄)

⎤
⎦

−1

2
Tr(1)

[
Ṙk(
 − γ R̄)

Pk(
 − γ R̄) + γ R̄ − 1
d R̄

]
, (3.1)

where the dot denotes the logarithmic derivative with respect
to the scale k and Pk(z) = z+Rk(z), with the cutoff function
Rk(z). Because of the implicit dependence on f of the coarse-
graining scheme, we refer to it as spectrally adjusted. The
subscripts on the traces represent contributions from different
spin sectors.

In order to guarantee that the operators 
 − α R̄, 
 −
β R̄, 
 − γ R̄ have positive spectrum, the parameters α, β,
γ should satisfy certain bounds. The spectrum of 
 is given
in Appendix C. We recall that the � = 1 modes of 
 acting
on spin one fields are Killing vectors, so that they do not
contribute to the spectrum of hμν and have to be left out. For
the same reason, the modes � = 0 and � = 1 of 
 acting on
scalars also have to be left out. Thus all spectra begin with
� = 2.

In four dimensions, requiring that the modes � = 2 have
positive eigenvalues leads to the conditions

α <
2

3
; γ <

3

4
; β <

5

6
. (3.2)

3.2 Heat kernel evaluation

The evaluation of the traces is done as follows: first, for some
differential operator z, consider

Tr( j)[W (z)] =
∫ ∞

0
dsW̃ (s)Tr( j)[e−sz], (3.3)

for the spin j sector, where W̃ (s) is the inverse Laplace trans-
form of W (z):

W (z) =
∫ ∞

0
ds e−zs W̃ (s). (3.4)

Using the heat kernel expansion

Tr( j)[e−sz] = 1

(4πs)d/2

∫
Sd

dd x
√
ḡ

∑
n≥0

b( j)
2n s

n R̄n, (3.5)

in (3.3), we obtain

Tr( j)[W (z)] = 1

(4π)d/2

∫
Sd

dd x
√
ḡ

∑
n≥0

b( j)
2n Qd/2−n[W ]R̄n,

(3.6)

where

Qm[W ] = 1

�(m)

∫ ∞

0
dzzm−1W [z]. (3.7)

We choose the optimized cutoff profile [35] Rk(z) = (k2−
z)θ(k2 − z) = k2(1 − y)θ(1 − y), where y = z/k2 and θ is
the Heaviside distribution. Then Ṗk = Ṙk = 2k2θ(k2 − z).
For the contribution of the spin two modes in (3.1), we find

Qm[W ](2) = 1

�(m)

∫ ∞

0
dzzm−1

× ḟ ′(R̄)(k2 − z) + 2 f ′(R̄)k2

f ′(R̄)
(
k2 + α R̄ + 2

d(d−1)
R̄
)θ(k2 − z).

(3.8)

After moving to the dimensionless quantities, r = R̄k−2,
ϕ(r) = k−d f (R̄), ḟ (R̄) = kd [dϕ(r) − 2rϕ′(r) + ϕ̇(r)],
f ′(R̄) = kd−2ϕ′(r), and f ′′(R̄) = kd−4ϕ′′(r), we obtain

Qm[W ](2) = k2m

�(m)

∫ ∞

0
dyym−1

× ḟ ′(R̄)(1 − y) + 2 f ′(R̄)

f ′(R̄)
(

1 + αr + 2
d(d−1)

r
)θ(1 − y)

123
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= k2m

�(m + 2)

ḟ ′(R̄) + 2(m + 1) f ′(R̄)

f ′(R̄)
(

1 + αr + 2
d(d−1)

r
)

= k2m

�(m + 2)

ϕ̇′ − 2rϕ′′ + (d + 2m)ϕ′

ϕ′
(

1 + αr + 2
d(d−1)

r
) . (3.9)

Similarly we find for spin one

Qm[W ](1) = k2m

�(m + 1)

2

1 + (γ − 1
d )r

, (3.10)

while for spin zero, we have

Qm [W ](0)

= 1

�(m)

∫ ∞
0

dzzm−1 ḟ ′′(R̄)(k2 − z) + 2 f ′′(R̄)k2

f ′′(R̄)
(
k2+β R̄− 1

d−1 R̄
)
+ d−2

2(d−1)
f ′(R̄)

θ(k2−z)

= 1

�(m)

∫ k2

0
dzzm−1 (ϕ̇′′ − 2rϕ′′′ + (d − 4)ϕ′′)(k2 − z) + 2ϕ′′k2

ϕ′′
(
k2 + β R̄ − 1

d−1 R̄
)

+ d−2
2(d−1)

k2ϕ′

= k2m

�(m + 2)

ϕ̇′′ − 2rϕ′′′ + (d − 2 + 2m)ϕ′′

ϕ′′
(

1 + (β − 1
d−1 )r

)
+ d−2

2(d−1)
ϕ′ . (3.11)

Finally we recall that on the sphere the constant mode
of h cannot be considered a gauge degree of freedom and
therefore cannot be gauge fixed. One can choose a coarse-
graining scheme where this infrared mode never appears in
the flow equation. Its contributions would have to be added
directly to the effective action only in the deep infrared at
k = 0. Alternatively, we can consider the scheme where we
add to the r.h.s. of Eq. (3.1) the following term:


�̇ = d

2

kd

kd + 1
8 f (R̄) − 1

4d R̄ f ′(R̄)

= d/2

1 + 1
8ϕ(r) − 1

4d rϕ
′(r)

. (3.12)

3.3 Four dimensions

The heat kernel coefficients b2n for 
 acting on spin two,
one, and zero are given in [12,23] for type I cutoff. We
extend the calculation to our case and give the results in
Appendix C. Substituting these heat kernel coefficients and
Eqs. (3.9), (3.10), and (3.11) in (3.1), we obtain

32π2(ϕ̇ − 2rϕ′ + 4ϕ)

= c1(ϕ̇
′ − 2rϕ′′) + c2ϕ

′

ϕ′[6 + (6α + 1)r ] + c3(ϕ̇
′′ − 2rϕ′′′) + c4ϕ

′′

[3 + (3β − 1)r ]ϕ′′ + ϕ′

− c5

4 + (4γ − 1)r
, (3.13)

where

c1 = 5 + 5

(
3α − 1

2

)
r +

(
15α2 − 5α − 1

72

)
r2

+
(

5α3 − 5

2
α2 − α

72
+ 311

9072

)
r3,

c2 = 40 + 15(6α − 1)r +
(

60α2 − 20α − 1

18

)
r2

+
(

10α3 − 5α2 − α

36
+ 311

4536

)
r3,

c3 = 1

2

[
1 +

(
3β + 1

2

)
r +

(
3β2 + β − 511

360

)
r2

+
(

β3 + 1

2
β2 − 511

360
β + 3817

9072

)
r3

]
,

c4 = 3 + (6β + 1)r +
(

3β2 + β − 511

360

)
r2,

c5 = 12 + 2(12γ + 1)r +
(

12γ 2 + 2γ − 607

180

)
r2. (3.14)

If we include the contribution of the constant mode of
trace h, we have an additional term to the r.h.s. of Eq. (3.13)

8

3

r2

16 + 2ϕ − rϕ′ , (3.15)

which has been obtained dividing the expression in Eq. (3.12)
for d = 4 by the corresponding volume of the sphere and
passing to dimensionless quantities.

3.4 Spectral-sum approach for d = 4

Alternatively, we can compute the traces in Eq. (3.1) by sum-
ming directly the corresponding functions of the eigenvalues
of the Laplacian on the sphere [36]

TrW (
 + E) =
∑

�

M�W (λ� + E), (3.16)

where the eigenvalues and the corresponding multiplicities
are given in Table 3 in Appendix C and we recall that all the
mode sums have to start from � = 2.

For simplicity, we restrict our analysis to four dimensions.
We shall use the same optimized cutoff so that the support of
Rk(λl(d, s)+E) will be restricted to the modes � ≤ �̄, where
the upper bound is determined by the condition λ� +E ≤ k2.
In particular, for the different spins we have the following R̄-
dependent restrictions:

�̄(2) = −3

2
+ 1

2

√
48

r
+ 17 + 48α

�̄(1) = −3

2
+ 1

2

√
48

r
+ 13 + 48γ ,

�̄(0) = −3

2
+ 1

2

√
48

r
+ 9 + 48β. (3.17)

The sums extend up to the integer part of these upper bounds.
In this way one would obtain a discontinuous structure in
the flow equation. Since the sum can be written as an exact
function (a polynomial) of these upper bounds, we keep them
as real variables. To reduce the error, we follow [15,16] and
perform the average of the sums taken up to �̄(s) and �̄(s)−
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Table 1 Quadratic solutions of the spectral-sum FP equation. In the last
column, we report the results for the positive critical exponents, evalu-
ated in an ninth-order polynomial expansion. The critical exponent 4 is
present in all solutions and is related to the cosmological term. Those

in the second line converge slowly and may not be accurate estimates.
The fixed points in the last two lines have eigenvalues greater than 4
and are not reliable

103α 103β 103γ 103 g̃0∗ 103 g̃1∗ 103 g̃2∗ Pos. crit. exp.

−97.8 38.9 319 4.31 −7.46 2.85 4, 2.02

−438 −122 −21.0 4.67 −10.4 3.14 4, 3.2, 0.17

134 −2765 551 2.82 −7.70 0.13 4, 2.4 ± 0.8i , 0.13

505 −715 922 2.16 −2.65 0.21 >4

−564 −63.8 −147 7.83 −6.80 1.35 >4

1. This average has also the nice property of removing the
square roots from all the spectral sums. We notice that the
lower limit in the sums requires �̄(s) ≥ 2 in order to have a
contribution from the integration of the quantum fluctuations.
We shall discuss the consequences of this in Sect. 6.

Using Eq. (3.16), we then obtain the following flow equa-
tion in terms of dimensionless variables:

ϕ̇ − 2rϕ′ + 4ϕ

= d1

6 + (6α + 1)r
− d2

(
2rϕ′′ − 2ϕ′ − ϕ̇′)

ϕ′

+d3
(
ϕ̇′′ − 2rϕ′′′) + d4ϕ

′′

(3 + (3β − 1)r)ϕ′′ + ϕ′ + d5

4 + (4γ − 1)r
, (3.18)

where

d1 = 5(6 + (6α − 1)r)(12 + (12α − 1)r)

384π2 ,

d2 = 5(6 + (6α − 1)r)(3 + (3α − 2)r)

3456π2 ,

d3 = (2 + (2β + 3)r)(3 + (3β − 1)r)(6 + (6β − 5)r)

2304π2 ,

d4 = ((2β − 1)r + 2)((12β + 11)r + 12)

256π2 ,

d5 = −72 − 18r(1 + 8γ ) + r2
(
19 − 18γ − 72γ 2

)
192π2 .

(3.19)

One can notice that the structures of Eqs. (3.13) and (3.18)
are the same. In fact, (3.18) can be rewritten exactly in the
form (3.13), with the coefficients

c1 = 5

108
[6 + (6α − 1)r ][6 + (6α + 1)r ][3 + (3α − 2)r ],

c2 = 5

108
[6 + (6α − 1)r ][144 + 9(20α − 3)r

+2(6α + 1)(3α − 2)r2],
c3 = 1

72
[2 + (2β + 3)r ][3 + (3β − 1)r ][6 + (6β − 5)r ],

c4 = 1

8
[2 + (2β − 1)r ][12 + (12β + 11)r ],

c5 = 12 + 3(8γ + 1)r +
(

12γ 2 + 3γ − 19

6

)
r2. (3.20)

4 Solutions of the spectral-sum-based equation

We analyse the FP solutions of the flow for d = 4. In
Ref. [30], we have presented exact quadratic solutions for
both (3.13) and (3.18), so we first discuss this kind of solu-
tions.

4.1 Global quadratic solutions

There are solutions which are quadratic polynomial in the
curvature and exist for a finite, discrete set of values of α, β

and γ . They are obtained by plugging into the FP equation
the ansatz

ϕ(r) = g0 + g1r + g2r
2, (4.1)

and writing the equation as N
D = 0. Here N is a polyno-

mial of fifth order in r and N = 0 can be solved for the six
unknowns α, β, γ, g0, g1, and g2. We then find the follow-
ing distinct solutions (Table 1), where the unknowns were
evaluated numerically.

For these values of the couplings and endomorphisms,
one has then to check the behavior of the denominator D.
Since D has some zeros for at least one positive value of
r , one may worry that the solutions might not exist at these
possible singular points. However, N vanishes identically as
a function of r , so the residues of N/D at the zeros of D
are zero, implying that the solutions are valid through these
points.

Actually we notice that the solutions (α, β, γ, g0, g1, g2),
which are given numerically in Table 1, have simple non-
numerical forms:
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(
11−√

265

54
,

5
√

265−73

216
,

67−2
√

265

108
,

49+√
265

1536π2 ,

−4141 + 121
√

265

82944π2 ,
67795 + 3583

√
265

4478976π2

)
,

(
−2

√
1489+41

270
,

37
√

1489−1559

1080
,

143−4
√

1489

540
,

156+√
1489

4224π2 ,−391
√

1489+101773

1140480π2 ,
2479219+59293

√
1489

153964800π2

)
,

(
2
√

1489−41

270
,−37

√
1489+1559

1080
,

143+4
√

1489

540
,

156−√
1489

4224π2 ,
391

√
1489 − 101773

1140480π2 ,
2479219−59293

√
1489

153964800π2

)
,

(
11+√

265

54
,−5

√
265+73

216
,

67+2
√

265

108
,

49−√
265

1536π2 ,

121
√

265−4141

82944π2 ,
67795−3583

√
265

4478976π2

)

(
−53

94
,− 3

47
,− 83

564
,

89

1152π2 ,− 101

1504π2 ,
707

53016π2

)
. (4.2)

Indeed using these expressions, one may also work directly
with Eq. (3.18) and check explicitly that, upon substitution of
any of the five solutions, the residues at all the possible singu-
lar points are zero after cancellations of several terms. There-
fore these solutions are defined globally, and even extensible
on the full real line.

It is instructive to further examine the possible singulari-
ties of Eq. (3.18) and their cancellation. This will be useful
in the numerical search of global solutions for more generic
values of α, β, and γ to be discussed in the next subsection.
Since in all the above solutions the function ϕ(r) has a min-
imum, one expects that the term in (3.18) containing d2/ϕ

′
may be a possible source of singularities. We can check that
these possible singularities are actually resolved by the zeros
in the polynomial d2. Let us see this more concretely. The
position of the minima for the five solutions are

3(
√

265−25)

20
,

3(43−√
1489)

8
,

3(43+√
1489)

8
,

3(
√

265+25)

20
,

141

56
. (4.3)

On the other hand, the zeros of d2 are located at r̄(α) such
that

r̄(α) = 3

2 − 3α
, r̄(α) = 6

1 − 6α
. (4.4)

It is easy to check that one of these two zeros is located pre-
cisely at the minimum for the first four solutions, providing a
simple mechanism of cancellation of the singularity. For the
last solution, this is not the case and the cancellation of the
singularity is more tricky and involves other three terms of
Eq. (3.18).

Actually there are also other possible fixed singularities,
one which depends on α at r1 = − 6

6α+1 and a second
one, coming from the vector ghost term which leads to a
γ -dependent fixed singularity at r2 = − 4

4γ−1 . We also note
that for the quadratic solutions, there is no contribution from
the term ϕ′′′ = 0, which otherwise could have given rise to
other fixed singularities.

An analysis of the eigenperturbations of the solution,
based on a polynomial expansion around the origin, leads
to the following conclusions. The first solution has two rele-
vant directions with critical exponents θ

(1)
i = (4, 2.03) while

the second one has two relevant direction θ
(2)
i = (4, 3.2) and

possibly a third one with critical exponent close to zero. If
the perturbation is at most quadratic in r , then its existence
(at least for positive r ) is subject to the same constraint as
the solution itself. This is the case for δϕ(r) = 1, which is
the eigenperturbation with eigenvalue λ = −4. We do not
find other simple eigenperturbations of a finite polynomial
form. Since the other eigenperturbations cannot be purely
quadratic, the fixed singularities corresponding to the zeros
of the coefficient of ϕ′′′ will appear. We find that for the first,
fourth, and fifth solutions, the values of α, β, and γ lead to a
linearized third order equation with three fixed singularities.
Therefore there may be globally defined eigenperturbations
in the domain r ≥ 0. On the other hand, the second and third
solutions have values of α, β, and γ corresponding to four
fixed singularities in the differential equation for the eigen-
perturbations, which therefore cannot exist globally, but only
up to some maximum value of r .

It follows from this discussion that for any infinitesimal
change in the parametersα,β, andγ , the equation would have
at least three fixed singularities and another singularity at the
minimum, which precludes the existence of a global solution.
As we shall discuss in Sect. 6, the physical significance of the
solution beyond the minimum is questionable, so this result
may not be so negative after all.

4.2 Global numerical solutions

We now analyze the FP of the flow given in Eq. (3.18) at fixed
endomorphisms, and search for global numerical solutions
compatible with its analytical structure.

First of all, it is convenient to cast the FP equation in the
normal form. Evidently the equation becomes singular at the
zeros of the coefficient of ϕ′′′. The location of these zeros
varies with β but otherwise is fixed:

r = 0, − 2

2β + 3
, − 3

3β − 1
, − 6

6β − 5
. (4.5)

If these zeros happen to be at positive r , the possible singu-
larities there must be canceled.

We have already seen that the potential singularities arise
if there is an extremum in ϕ, but a regular solution can exist if
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Fig. 1 a β-dependent fixed singularities given in Eq. (4.5), b α-dependent fixed singularity (continuous black curve) and zeros of d2 (dashed and
dotted), and c γ -dependent fixed singularity of the ghost term

the minimum point rmin is located at a zero of the coefficient
d2, which depends on α. There are also two possible fixed
singularities at r = − 6

6α+1 and at r = − 4
4γ−1 . Since the FP

equation is of third order, its solutions contain three parame-
ters. Regularity condition at a fixed singularity requires that
the residue at the singularity should vanish, and this fixes one
of the three parameters. Eventually there might also be mov-
ing singularities, as for example happens in the local potential
approximation analysis for an interacting three-dimensional
scalar field theory with Z2 symmetry, where a unique solu-
tion is selected, the Wilson–Fisher FP of the Ising model. We
show in Fig. 1 the positions of the singularities and a possible
minimum as a function of α, β, and γ .

If the solution has no minimum and there is no moving
singularities, we can obtain a finite set of solutions by requir-
ing the presence of just two singularities at strictly positive r
in addition to the singularity at r = 0. This leads to three con-
straints, which maximally restrict the initial value problem.
This situation could be realized in several ways, provided the
three singularities are kept different: either

β ≥ 5

6
, α < −1

6
, γ <

1

4

or

1

3
≤ β <

5

6
, α < −1

6
, γ ≥ 1

4

or

1

3
≤ β <

5

6
, α ≥ −1

6
, γ <

1

4

or

β <
1

3
, α ≥ −1

6
, γ ≥ 1

4
.

In the following, we search for a global solution with a
shape similar to the analytic quadratic solution previously
found, which are characterized by a minimum. We have
already noted that if there is a minimum in ϕ, the singularity
there must be canceled by a zero in d2. Therefore the param-
eter α must be chosen such that at least one of the zeros
r̄(α) of d2 is positive. Thus, avoiding the presence of the
fixed singularity shown as a dotted curve in Fig. 1b requires
− 1

6 ≤ α ≤ 2
3 . In the absence of a moving singularity, we can

then allow for other two fixed singularities which would fix
the solution uniquely. In order to have this, we should require
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0.5 1.0 1.5 2.0 2.5 r

-0.002

0.002

0.004

Fig. 2 Polynomial truncations for order N solutions of the FP equa-
tion, for 6 ≤ N ≤ 16. The curves corresponding to larger values of N
lays below the ones with lower values. The black curve corresponds to
N = 16

1
3 ≤ β ≤ 5

6 and γ ≥ 1
4 or β ≥ 5

6 and γ < 1
4 , as is evident

from Fig. 1a, c.
With these considerations, in the following, we analyze in

detail a specific example belonging to the first region,

β = 1

3
, α = −1

6
, γ = 1

2
. (4.6)

This is chosen just for the purpose of illustration of our study,
and our following construction of the solution should go
through for other choices of the parameters if we choose
the endomorphism parameters within the ranges specified
above. For the choice of (4.6), there are fixed singularities at
r = 0 and r = 2 and the position of the minimum can take
the values rmin = 6/5 or rmin = 3.

It is convenient to employ first a simple polynomial trun-
cation around the origin to find an approximated form of the
solution in the vicinity of the origin

ϕ(r) =
N∑

m=0

gmr
m . (4.7)

We have performed a scan of the solutions of the FP equation
at different values of N up to N = 16, investigated also the
linearized evolution around the FP, and then diagonalized
the corresponding stability matrix. The scaling exponents
are extracted as its eigenvalues with the opposite sign. For
orders N > 10, we find a high degree of stability. Here we
give the first coefficients of the polynomial solution of order
N = 16:

ϕp(r) = 0.00410949 − 0.00809798 r + 0.00392097

r2 − 0.000254811 r3 − 3.35023 × 10−6 r4

− 8.34593 × 10−6 r5 + · · · . (4.8)

The plot of the polynomial solutions at different order is
shown in Fig. 2.

The pattern of the eigenvalues is pretty stable. We find
that there are just two relevant directions with eigenvalues
−4,−1.83,+1.38, 4.41, . . . and increasing the order of the
truncation leads to the appearance of new irrelevant direc-
tions.

We also observe that the polynomial solutions have a min-
imum converging exactly to the point 6/5, which is one of
the values necessary to remove the corresponding singular-
ity. Therefore in our numerical search for the global solution
we impose this property.

Our strategy to construct a global numerical solution is
then the following:

1. We construct three polynomial expansions as functions of
two free parameters at each of the three possible singular
points r = 0, 6/5, 2 by imposing locally the regularity
condition there. In particular we choose the following
set of free parameters: (ϕ′(0), ϕ′′(0)), (ϕ(6/5), ϕ′′(6/5)),
and (ϕ′(2), ϕ′′(2)), for the polynomial expansion at r =
0, r = 6/5 and r = 2, respectively.

2. We then evolve ϕ(r) numerically from r = 0+ to
r = 6/5 and using the shooting method, we search for a
subset of the parameter plane (ϕ′(0), ϕ′′(0)) which gives
solution with a minimum at 6/5, where the possible sin-
gularity is canceled by the zero of d2. This leads to a one-
dimensional curve in the parameter plane. We repeat the
same procedure for the evolution of ϕ(r) from r = 2− to
r = 6/5. We then find also a one-dimensional curve, this
time in the parameter space (ϕ′(2), ϕ′′(2)). We show the
results of this process in Fig. 3a, b. We note that in the
plane (ϕ′(2), ϕ′′(2)) there are regions where one encoun-
ters moving singularities, but these regions do not overlap
with the ones satisfying the regularity conditions.

3. We map the two curves in (ϕ′(0), ϕ′′(0)) and in (ϕ′(2),

ϕ′′(2)) obtained as conditions to cancel the singularities
into the plane of parameters (ϕ(6/5), ϕ′′(6/5)). This can
be done by numerical evolution.

4. The intersection of the two curves fixes the unique
value for (ϕ(6/5), ϕ′′(6/5)) which allow for a global
solution. We show the results of the last two steps in
Fig. 3c. The intersection appear to be at (ϕ(6/5) =
−0.0007134 . . . , ϕ′′(6/5) = 0.006256 . . .), while, being
a point of a minimum, one has ϕ′(6/5) = 0.

5. Then we use the regular polynomial expressions to fix
the boundary conditions around the singular points, and
construct the solution by evolving ϕ(r) numerically from
6/5− to 0, from 6/5+ to 2− and from 2+ to the right.
The result is presented in Fig. 4a, b.

6. Finally we consider the leading asymptotic behavior as
a function of a free real parameter A, which we tune to
obtain a match with the numerical solution. The result is
shown in Fig. 4c.
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Fig. 3 a Curve of the parameters (ϕ′(0), ϕ′′(0)) compatible with the
regularity at r = 0 and r = 6/5 with the red point corresponding
to the location of the approximate solution found using a polynomial
truncation around the origin with N = 16. b Curve of the parameters

(ϕ′(2), ϕ′′(2)) compatible with the regularity at r = 2 and r = 6/5.
c Intersection of the two curves in the plane (ϕ(6/5), ϕ′′(6/5)) after
mapping the other two using numerical evolution
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Fig. 4 a We compare the numerical solution (continuous blue curve)
with the 16th order polynomial expansions around the origin (dashed
red) and around the minimum (dotted green). b The same comparison
is repeated in a zoomed region close to the origin. c We compare the

numerical solution evolved to larger values of r (dashed blue) with the
one which is evolved from larger values of r matching the asymptotic
behavior (continuous purple)
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We give here the first few terms of the asymptotic expansion:

ϕas(r) = Ar2 + 1053Ar

50 − 13,824π2A

+ 1,051,066,368π4A2 + 107,637,120π2A − 1,943,075

6144π2(25 − 6912π2A)2

+ O

(
1

r

)
. (4.9)

We have repeated the analysis for the same values of α

and β but with γ = 1
4 + 10−2 and found that the results

are very similar, with just a mild deformation. Actually we
find that there is a small difficulty in finding an acceptable
asymptotic match in this case. This is due to the fact that
at γ = 1

4 , the asymptotic behavior changes to ∼ r2 log(r)
with a negative coefficient, and close to this value of γ the
radius of convergence of the asymptotic expansion seems to
become much smaller.

In general there are connected regions in the space of the
parameters α, β, γ inside which the global solutions can be
continuously deformed. We have checked that similar solu-
tions can be obtained for α = − 1

6 , β = 1
3 , and any γ > 1

4 .
They look really as members of a single family of solutions
which are connected by continuous deformation. Also the
estimated values of the critical exponents show a mild depen-
dence on γ .

One has also to check that the eigenperturbations should
not be redundant [18]. In particular in an f (R) truncation
based on a background sphere, an operator is redundant if it
can be written in the following form:

O =
∫

dd x
√
ḡ a(r)

(
1

2
ϕ∗(r) − 1

d
ϕ′∗(r)r

)
, (4.10)

i.e. it is proportional to the equation of motion at the fixed
point with a well defined a(r) in the full domain of interest.
If the equation of motion a the fixed point have a nontrivial
solution within the physical domain, then a regular eigenper-
turbation cannot be redundant. We find that the equation of
motion are always satisfied by a positive value of r such that
r < rmin, implying that the eigenperturbations are essential.

4.3 Type I and type II cutoff

For the sake of comparison of our flow equation with others
in the literature, we report also the ninth order polynomial
solutions of the fixed point equations with the popular type
I cutoff, where the reference operator is −∇̄2 for all modes,
and a type II cutoff where the reference operator contains
precisely the R̄-terms that are present in the Hessian.
Type I cutoff: α = β = γ = 0.

The polynomial solution has the form

ϕp(r) = 0.004437 − 0.004693r + 0.001616r2

− 0.00001144r3 − 4.393 × 10−6r4 − 7.242

× 10−7r5 + · · · (4.11)

and the first eigenvalues of the stability matrix are −4, −2.11,
1.9…
Type II cutoff: α = −1/6, β = 1/3, γ = 1/4.
There are two very close polynomial solutions. The first is

ϕp(r) = 0.004106 − 0.006686r + 0.003253r2

− 0.0003248r3 − 0.00001827r4 − 0.00001633r5 + · · ·
(4.12)

with eigenvalues −4, −1.84, 1.20…. The second is

ϕp(r) = 0.004083 − 0.006692r + 0.003384r2

− 0.0002970r3 + 4.912 × 10−7r4 − 5.740

× 10−6r5 + · · · (4.13)

with eigenvalues −4, −1.76, 1.48,…. Considering the depen-
dence of the couplings and the eigenvalues with the order of
the truncations, we note that the first solution converges more
slowly and should be studied at higher order than the second
one.

For both cutoff types the fixed points have two relevant
directions. This is in sharp contrast to the polynomial solu-
tions found previously [10–14] that had three relevant direc-
tions.

We also note that [37] finds, in unimodular gravity, poly-
nomial solutions that have two relevant directions. Since the
cosmological term is absent in unimodular gravity, this would
presumably correspond to three relevant directions in the
full theory. The source of this difference cannot be in the
parametrization, which is exponential in both cases.

According to the count of singularities discussed earlier,
the type I cutoff has four fixed singularities and therefore
is not expected to admit global solutions. Most likely, the
polynomial solution (4.11) given above is valid only in a
neighborhood of the origin. The type II cutoff has two fixed
singularities due to β (in r = 0 and r = 2), so if one demands
the existence of a minimum the solution would be completely
determined. The solution (4.13) given above has a minimum
and could be an approximation of a global solution. The solu-
tion (4.12) does not have a minimum, but it seems to develop
a stationary inflection point with increasing order of the poly-
nomial. For the sake of comparison we note that the solutions
reported in [37] have a minimum. In the preceding numerical
analysis we have studied cutoffs that differ from type II only
in having γ > 1/4. This is because the exceptional value
γ = 1/4 leads to a more complicated asymptotic behavior
for large r .
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Table 2 Quadratic solutions of the heat kernel FP equation, grouped
by the number of relevant directions. In the last column, we report the
results for the positive critical exponents, evaluated in an seventh-order
polynomial expansion. The critical exponent 4 is present in all solutions

and is related to the cosmological term. Those in lines 3 and 4 converge
slowly and may not be accurate estimates. The fixed point in the last
line has eigenvalues greater than 4 and is not reliable

103α 103β 103γ 103 g̃0∗ 103 g̃1∗ 103 g̃2∗ pos. crit. exp.

−593 −73.5 −177 7.28 −8.42 1.71 4, 3.78

−616 −70.7 −154 7.42 −8.64 1.74 4, 3.75

−564 −80.3 −168 6.82 −8.77 1.83 4, 3.65

−543 −87.4 −126 6.31 −9.47 2.06 4, 3.47

−420 −100.5 −3.19 4.90 −10.2 2.83 4, 2.93

−173 −2.98 244 4.53 −8.34 2.70 4, 2.18

−146 −64973 250 2.90 −10.7 0.0006 4, 2.58, 2.00

−109 −22267 307 2.90 −10.4 0.0045 4, 2.45, 2.03

109 −3564 526 2.84 −7.83 0.094 4, 2.3 ± 0.73i , 0.07

377 −1305 794 2.57 −4.37 0.214 >4

4.4 One-loop approximation

We give here the flow equation, derived from Eq. (3.1) if we
neglect the ḟ ′(R̄) and ḟ ′′(R̄) on the right hand side, i.e. if
we consider the so-called one-loop approximation. On eval-
uating again the spectral sums as before, we obtain

ϕ̇ − 2rϕ′ + 4ϕ

= 5((1−18α + 72α2)r2+18(8α−1)r + 72)

384π2(6αr + r + 6)

+ (19−18γ −72γ 2)r2−18(8γ + 1)r−72

192π2((4γ − 1)r + 4)

+ ((24β2 + 10β − 11)r2 + 2(24β + 5)r + 24)ϕ′′

256π2(((3β − 1)r + 3)ϕ′′ + ϕ′)
(4.14)

We note that this equation admits again quadratic scaling
solution. Some are similar to the ones previously obtained for
the full equation, which exist for a finite set of the endomor-
phisms. We also find two one-parameter families of solutions
in the space α, β and γ .

5 Some results for the case of the Heat kernel equation

A similar analysis can be carried out for the flow equation
Eq. (3.13) obtained from a heat kernel expansion, and for the
linear variations around it. Again there exist a discrete set
of endomorphisms parametrized by α, β, and γ for which
purely quadratic solutions exist. They were reported already
in [30] and are given here in Table 2. The critical exponents
have been obtained by a polynomial truncation. These num-
bers should only be taken as rough estimates.

The situation is the same as for the equation obtained
from a spectral sum. The only difference is that the values
of the singular points have more involved expressions, and
this is the reason why we presented a detailed analysis for
the spectral-sum equation. We find that these solutions are
indeed globally defined, all residues at any singularity of the
equation being zero.

As before, all the FP solutions have one trivial relevant
direction associated to a constant eigenperturbation with
eigenvalue −4. No other deformations which are polyno-
mials in r of order no greater than two exist. Then we find
that for the last solution the third order differential equa-
tion for the eigenperturbations is characterized by three fixed
singularities while for all the others there are four or more
fixed singularities so that no global eigenperturbations can
exist. As already mentioned in the case of the spectral-sum
equation, this precludes the existence of global solutions in
an infinitesimal neighborhood of the exact quadratic solu-
tions. The continuous interpolations between the exact solu-
tions that we have discussed in [30] are therefore necessarily
restricted to a finite range of r . See Sect. 6 for a discussion
of this point.

Let us now address the question how to find global numer-
ical solutions using the same reasoning developed in Sect. 4.
The zeros of coefficient ϕ′′′ of Eq. (3.13) are not simple ana-
lytically, so we give some numerical bounds. It is easy to see
that for 0.394474 < β < 0.678204, one has only two fixed
singularities at r = 0 and r = r0(β). Then the coefficient
c1 of 1/ϕ′ has at least one positive zero for α < 0.47552.
As we have already seen, the zeros of c1 in (3.14) naturally
provide a simple mechanism for the cancellation of a pos-
sible singularity located at the minimum of ϕ(r), if present.
In such a scenario in the presence of a minimum, which we
have seen to be favored by the dynamics in several cases,
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Fig. 5 a The position of the minimum rmin of the approximate poly-
nomial solutions of order N for 4 ≤ N ≤ 16 (black dots) and the exact
expected value 1.55718 (red line). Missing low order points at some N

mean that the corresponding polynomial solutions do not exist. b The
first five leading eigenvalues as a function of the order of polynomial
truncation

we must require that no other singularities be present. These
may arise from the poles at r = − 6

6α+1 and at r = − 4
4γ−1 ,

as for the spectral-sum case. Therefore we must require also
α ≥ − 1

6 and γ ≥ 1
4 .

As an example, we consider a case close to the one of
Sect. 4.2 with the choice α = − 1

6 , β = 1
2 , and γ = 1

2 .
For such values of the parameters, we expect a minimum at
rmin � 1.55718. We have studied the polynomial solutions
around the origin, which represent reasonable approximation
of the global solutions. The polynomial solutions have a min-
imum converging to the point rmin � 1.55718. We give here
the first ones for the polynomial solution of order N = 16:

ϕp(r) = 0.00419489 − 0.00774197r + 0.00332949r2

−0.000409593r3 + 0.0000403145r4

−0.0000100345r5 + · · · . (5.1)

In Fig. 5a, we show how the position of the local mini-
mum of the polynomial solutions at different order N rapidly
converge to the expected value of rmin given above, while in
Fig. 5b we give the leading five eigenvalues (which include
the two negative ones associated to the relevant deforma-
tions) for each polynomial solution available up to N = 11.
In particular the nontrivial relevant direction for a polynomial
approximation of order N = 11 is associated to λ = −1.799.
Again when we increase the order N , we find new irrelevant
deformations. The pattern at lower order is not much altered
and numerical values of the lower eigenvalues are little sen-
sitive to the increase of the order of the analysis. In this way
we can construct global solutions.

6 Discussion

The present investigation is a step forward in the search
of scaling solutions for f (R) gravity. It had been shown

in [17,18] that the flow equations for f written in [11,12,
15,16], either do not have scaling solutions, or the solu-
tions are such that all their perturbations are redundant. It
is therefore encouraging that the equations studied here do
have some global scaling solutions. It is particularly striking
that for some choices of cutoff, the scaling solutions have an
extremely simple, quadratic form. This is probably due to the
much simpler form of the equations.

Similar equations have also been written in [22], and in
[37] for unimodular gravity, and it is worthwhile to com-
ment on the differences between them. Our equation, as well
as the one for unimodular gravity, has the property that the
function f does not appear in its beta function in undiffer-
entiated form. It only appears undifferentiated in the flow
equation for the dimensionless variable ϕ, through the clas-
sical scaling term. In the Einstein–Hilbert truncation, this
fact corresponds to the absence of the cosmological constant
from the beta function of Newton’s coupling. This is related
to the absence of trace fluctuations in both calculations—in
unimodular gravity by definition of the theory and in our
calculation by gauge choice. This is in turn due to the fact
that in the exponential parametrization only the volume term
contributes to the Hessian of the trace. The other difference
is in the gauge and ghost sector. In our equation, there are
contributions due to a spin one and a spin zero ghost. The
spin zero ghost is absent in unimodular gravity because there
is no need to impose the tracelessness of hμν as a gauge con-
dition. On the other hand, no ghosts are present in [22]. In
spite of these differences, the equation of [22] was shown in
[23] to have a global scaling solution whose general shape
is quite similar to ours. The equation for unimodular gravity
has only been analyzed at polynomial level so far.

A potential problem of higher derivative gravity theories
is the presence of physical ghosts. This is usually analyzed in
a perturbative framework, but the significance of this analysis
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in the neighborhood of an interacting fixed point is question-
able. Several mechanisms have been proposed that could get
around this issue. In any case, we notice that in our analy-
sis, which is restricted to an f (R) truncation in a de Sitter
background, no physical ghosts are present.

The significance of the positive results we have found is
reduced by several circumstances. The first is the restriction
of the action to purely background-dependent terms, the so-
called “single metric truncation”. The effective action at finite
cutoff cannot be a function of a single metric, so the classical
invariance under the “shift symmetry” ḡμν → ḡμν + εμν ,
hμν → hμν − εμν (in the linear parametrization) is bro-
ken.1 The dangers of the single-field truncations have been
discussed in [38–41]. One should therefore consider trun-
cations involving either two metrics [19] or the background
metric and a fluctuation field [42–45] or else solve the flow
equation together with the modified Ward identities of split
symmetry [20]. In any case the scaling solutions found here
can be at best an approximation of a genuine scaling solution.

A major difference between our results and those obtained
earlier for the f (R) truncation [11–14] is the number of rel-
evant directions. Previously there were three relevant direc-
tions (of which two had a complex pair of eigenvalues)
involving a strong mixing of all operators, but mainly the
cosmological term, the Hilbert term and the R2 term. Due
to the exponential parametrization, the cosmological con-
stant does not appear in our beta functions and is therefore
an isolated relevant direction with eigenvalue −4. Moreover,
we only find one additional real relevant direction instead
of two. This hints at some genuine difference between the
results, but it is not clear at this point whether this is due to
the different parametrization or we are looking at a different
solution. In the section devoted to the search of numerical
solutions we have discussed the regions in the parameter
space, corresponding to different endomorphisms (coarse-
graining schemes), which may allow the existence of dif-
ferent global solutions. We note that in unimodular f (R)

gravity, Ref. [37] found two relevant directions for a poly-
nomial approximation of the fixed point. Given that the cos-
mological term is absent in unimodular gravity, this agrees
with the “old” counting, in spite of the use of the exponential
parametrization. It would be interesting to know the spec-
trum of eigenperturbations of the solution in [23], which was
obtained in the linear parametrization.

In connection with the exponential parametrization, we
also remark that while desirable, parametrization indepen-
dence is in practice hard to maintain at the quantum level. In
the context of asymptotically safe gravity the Vilkovisky–de
Witt formalism has been used in [46]. Our philosophy here
is that one could instead try to exploit the parametrization

1 In the exponential parametrization, the split symmetry has a more
complicated form.

dependence to one’s advantage by choosing a parametriza-
tion that reduces the dependence of the off-shell effective
action on other choices.2 It seems to us that the exponen-
tial parametrization has such virtues. Whether it defines the
same quantum theory as the linear parametrization is a ques-
tion that we cannot answer for the time being.

Another issue is the use of a “spectrally adjusted” cutoff,
which means that the cutoff contains the function f . At a
conceptual level, it is desirable to have a definition of coarse
graining that is independent of all couplings. With a spec-
trally adjusted cutoff, on the other hand, the definition of
what one means by high and low momentum modes changes
in the course of the flow. A practical consequence of this
choice is the appearance of the third derivative in the flow
equation. The reason for using these cutoffs in spite of these
issues is that they lead to simpler equations. It would, how-
ever, be very important to consider a cutoff that does not have
this feature [50].

A third issue had already been discussed earlier [21], and
is related to the compactness of our background manifold.
What is the meaning of coarse graining on length scales that
are larger than the size of the manifold? Otherwise said, if the
spectrum of all operators has a finite gap δ, then for k < δ

the flow equation does not integrate out any modes. If we
imagine that the sphere has a fixed size ∼ R̄−1/2, then for
r � 1, one is in the regime where k2 � R̄. This puts into
question the physical meaning of the behavior of the scaling
solution for large r .

To make this more precise, recall that the mode sums begin
at � = 2 and consider again Eq. (3.17). If �̄ becomes smaller
than 2, then no modes are integrated out. This happens for

1

r
+ α ≤ 2

3
or

1

r
+ γ ≤ 3

4
or

1

r
+ β ≤ 5

6
(6.1)

respectively. Thus for fixed α, β, γ , the spin two, zero, and
one modes do not contribute to the flow of the function ϕ for

r ≥ 3

2 − 3α
or r ≥ 4

3 − 4γ
or r ≥ 6

5 − 6β
, (6.2)

respectively. There is no mode contributing to the flow equa-
tion for values of r such that all three bounds are satisfied.

Conversely we could demand that α, β, and γ be chosen
such that for all r there is some mode contributing to the
flow equation. This leads to requiring that the inequalities
(3.2) be violated. The meaning of this is clear: one is pre-
cisely demanding that even when k → 0 there is some mode
contributing to the flow, and this is equivalent to requiring that
there are some modes with zero or negative eigenvalue. Such
procedure would clearly be artificial, because it amounts to
a shift of the eigenvalues which does not change the eigen-
functions. Even if the constant mode has formally infinite

2 For related remarks, see also [47–49].
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wavelength, it would still be the case that the largest physical
length scale that one can talk of in such a space is its diameter.

It is sometimes said that the equation obtained from the
spectral sum method is superior to the one obtained from
the use of the heat kernel expansion, because the heat kernel
equation uses an asymptotic expansion that makes it valid
only for small r . On the other hand, the equation obtained
from the spectral sum, at least when used for a compact
background and in conjunction with the optimized cutoff,
requires a smoothing procedure that introduces an element
of arbitrariness, which is especially strong at the low end of
the spectrum. In view of the preceding considerations, the
behavior at small k is in any case of dubious physical sig-
nificance, so the difference between the two procedures is
probably not so important.

An apparently unrelated issue is that the propagator of
the spin two mode has the wrong sign when f ′ > 0, which
occurs to the right of the minimum of our scaling solution.
It is interesting to note that for each scaling solution that we
have found, the spin two bound in (6.2) is precisely saturated
at the minimum. This suggests that the solution should only
be considered physical in the region between zero and the
minimum

0 ≤ r = R̄/k2 ≤ rmin. (6.3)

In this region the issue of the sign of the propagator is not
present.

It appears from this discussion that one important source
of ambiguities is the compactness of the background mani-
fold. If one wants to understand better the existence of global
scaling solutions in f (R) gravity within the realm of single-
metric truncations, the best course seems to be to consider a
non-compact background.
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A Lichnerowicz operators

The Lichnerowicz operators are defined as


2Tμν = −∇2Tμν + Rμ
ρTρν + Rν

ρTμρ − Rμρνσ T
ρσ

−Rμρνσ T
σρ,


1Vμ = −∇2Vμ + Rμ
ρVρ,


0S = −∇2S. (A.1)

These operators have the useful properties of “commuting
with covariant derivative” in the sense that


2(∇μξν + ∇νξμ) = ∇μ
1ξν + ∇ν
1ξμ,


2(∇μ∇νS) = ∇μ∇ν
0S. (A.2)

B York decomposition

The York decomposition is defined by

hμν = hTTμν + ∇μξν + ∇νξμ + ∇μ∇νσ

− 1

d
ḡμν∇2σ + 1

d
ḡμνh, (B.1)

where

∇μh
TT
μν = ḡμνhTTμν = ∇μξμ = 0. (B.2)

When this is squared, we get∫
d4x

[
hTTμν h

TT μν + 2ξμ

(

1 − 2

d
R̄

)
ξμ

+d − 1

d
σ
0

(

0 − R̄

d − 1

)
+ 1

d
h2

]
. (B.3)

Note that we can freely insert the covariant derivatives inside
the above expression.

C Heat kernel coefficients on the d-sphere

The curvature tensors satisfy

R̄μνρσ = R̄

d(d − 1)
(ḡμρ ḡνσ − ḡμσ ḡνρ), R̄μν = 1

d
ḡμν R̄.

(C.1)

The volume of the d-sphere is

V = �(d/2)

�(d)

(
4πd(d − 1)

R̄

)d/2

. (C.2)

The heat kernel coefficients can be found by summing
over eigenvalues λ�(d, s) of the operator 
 weighted by their
multiplicity M�(d, s)

Te(s)[e−σ(
+E(s))] =
∑

�

M�(d, s)e−σ(λ�(d,s)+E(s)). (C.3)

For general d, λ�(d, s) and M�(d, s) are summarized in
Table 3.

We use the Euler–MacLaurin formula

b∑
n=a

f (n) =
∫ b

a
f (x)dx + f (b) + f (a)

2

+
∞∑
k=1

B2k

(2k)! ( f
(2k−1)(b) − f (2k−1)(a)). (C.4)
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Table 3 Eigenvalues and
multiplicities of the Laplacian
on the d-sphere

Spin Eigenvalue λ�(d, s) Multiplicity M�(d, s)

0 �(�+d−1)
d(d−1)

R̄ (2�+d−1)(�+d−2)!
�!(d−1)! � = 0, 1, . . .

1 �(�+d−1)−1
d(d−1)

R̄ �(�+d−1)(2�+d−1)(�+d−3)!
(d−2)!(�+1)! � = 1, 2, . . .

2 �(�+d−1)−2
d(d−1)

R̄ (d+1)(d−2)(�+d)(�−1)(2�+d−1)(�+d−3)!
2(d−1)!(�+1)! � = 2, 3, . . .

Here B2k denotes the Bernoulli numbers, and the boundaries
are a = 2 and b = ∞. Naively one would expect that a =
0 (s = 0), a = 1 (s = 1), a = 2 (s = 2), and b = ∞.
However, one has to leave out the mode n = 1 for the spin one
field ξμ (Killing vectors) and for the field σ one has to leave
out the modes n = 0 (constant) and n = 1 (related to the
five conformal Killing vectors that are not Killing vectors),
so the sum should start from n = 2.

For d = 4, the functions f (s)(x) entering into (C.4) are

f (0)(x) = 1

6
(x + 1)(x + 2)(2x + 3)e− 1

12 x(x+3)R̄σ+β R̄σ ,

f (1)(x) = 1

2
x(x + 3)(2x + 3)e− 1

12 {x(x+3)−1}R̄σ+γ R̄σ ,

(C.5)

f (2)(x) = 5

6
(x − 1)(x + 4)(2x + 3)e− 1

12 {x(x+3)−2}R̄σ+α R̄σ .

The integral parts in (C.4) are given by

∫ ∞

2
dx f (0)(x) = 1

(4πσ)2

∫
Sd

dd x
√
ḡ

(
1 + R̄σ

)
e− 5R̄σ

6 +β R̄σ ,

∫ ∞

2
dx f (1)(x) = 1

(4πσ)2

∫
Sd

dd x
√
ḡ

(
3 + 5

2
R̄σ

)
e− 3R̄σ

4 +γ R̄σ ,

∫ ∞

2
dx f (2)(x) = 1

(4πσ)2

∫
Sd

dd x
√
ḡ

(
5 + 5

2
R̄σ

)
e− 2R̄σ

3 +α R̄σ .

(C.6)

We find the coefficients for d = 4 are

Spin b0 b2 b4 b6

0 1 1
6 + β

−511+360β+1080β2

2160
19085−64386β+22680β2+45360β3

272160

1 3 1
4 + 3γ

−607+360γ+2160γ 2

1440
37259−152964γ+45360γ 2+181440γ 3

362880

2 5 − 5
6 + 5α −1−360α+1080α2

432
311−126α−22680α2+45360α3

54432

Note that these coefficients b2n for n ≥ 2 disagree
with [12,23] even if we set α = β = γ = 0, but this
is because there the contributions from the Killing vectors
were included and the sum was taken from a = 0 (s = 0),
a = 1 (s = 1), a = 2 (s = 2).
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