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Microelectrode arrays (MEAs) represent an important tool to study the basic
characteristics of spinal networks that control locomotion in physiological conditions.
Fundamental properties of this neuronal rhythmicity like burst origin, propagation,
coordination, and resilience can, thus, be investigated at multiple sites within a certain
spinal topography and neighboring circuits. A novel challenge will be to apply this
technology to unveil the mechanisms underlying pathological processes evoked by spinal
cord injury (SCI). To achieve this goal, it is necessary to fully identify spinal networks
that make up the locomotor central pattern generator (CPG) and to understand their
operational rules. In this review, the use of isolated spinal cord preparations from rodents,
or organotypic spinal slice cultures is discussed to study rhythmic activity. In particular,
this review surveys our recently developed in vitro models of SCI by evoking excitotoxic
(or even hypoxic/dysmetabolic) damage to spinal networks and assessing the impact on
rhythmic activity and cell survival. These pathological processes which evolve via different
cell death mechanisms are discussed as a paradigm to apply MEA recording for detailed
mapping of the functional damage and its time-dependent evolution.
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SPINAL CORD INJURY: A MAJOR CHALLENGE AWAITING
NEW SOLUTIONS
Spinal cord injury (SCI) is one of the most prominent causes
of severe disability worldwide, with lifelong devastating dys-
function, and high medical and social costs. Most of the six
million SCI patients worldwide are of young age and for them
the chances of recovery are very low (Garbossa et al., 2012). In
fact, to date there is no treatment that can restore neuronal con-
nectivity to the injured spinal cord and re-establish function of
neuronal networks responsible for standing and walking. This
realization has prompted the search, in recent years, of novel
technical approaches and strategies to understand the molecular
changes underlying lesional processes, the functional organiza-
tion of the spinal cord and its plasticity. New technologies like
Microelectrode arrays (MEAs) can be useful for studying and
eventually developing new strategies to treat diseases of the cen-
tral nervous system (CNS) including SCI, which all represent
an important burden to society and which, too often, remain
incurable (WHO, 2008; Smith, 2011).

As reviewed by McDonald and Sadowsky (2002), the patho-
physiology of the SCI is complex, as it begins with molecular and
cellular events occurring immediately after traumatic (or non-
traumatic) injury, and it continues with pathological processes
that develop over hours, days, and even weeks later (so called sec-
ondary injury). Thus, after the primary injury that causes local

cell damage and death, the secondary ischemia, anoxia, excito-
toxicity, free-radical formation, inflammation, edema, and finally
glial scar formation, all contribute to degeneration of neuronal
and glial cells in the adjacent, initially-spared spinal segments
(Schwab et al., 2006). Finally, aberrant plasticity with reorgani-
zation of spinal networks may occur and produce dysfunction
like neuropathic pain or spasticity. The location and extension of
the injury will determine the ensuing impairment of sensory and
motor functions as well as persistent autonomic disabilities.

One major problem restraining current strategies to restore the
lost connectivity in the spinal networks responsible for walking
is our incomplete anatomical knowledge of the neuronal cir-
cuits subserving locomotion. Furthermore, our limited ability to
control the fundamental mechanisms responsible for death and
regeneration of the neurons in those networks is a current imped-
iment to significant clinical progress. SCI pathological events
belong to the same category of unsolved issues such is the inabil-
ity of the mammalian central neurons to regenerate their fibers
after injury and the impossibility for surviving neurons to replace
or substitute dead postmitotic cells, with few localized exceptions
(Bellenchi et al., 2013). In fact, Ramón y Cajal observed that
“Once development was ended, the fonts of growth and regen-
eration of the axons and dendrites dried up irrevocably” (quoted
by Bellenchi et al., 2013). In addition, the mechanisms involved
in the pathways leading to neuronal death are incompletely
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understood so that specific strategies for neuroprotection are still
preliminary (Kuzhandaivel et al., 2011). Very few molecules have
reached clinical studies and none of them has provided effective
treatment for SCI patients (Tohda and Kuboyama, 2011). The rea-
sons for clinical failure of preclinical studies may include, besides
incomplete knowledge of these processes, factors like unsuitable
models, different protocols and the difficulty of detailed animal
tissue analysis beyond a single time point.

Therapeutic strategies arising from animal studies have
mostly focused on stem cells, which might provide trophic and
immunomodulatory factors to enhance axonal growth and con-
trast neuroinflammation (Regenberg et al., 2009; Garbossa et al.,
2012; Karimi-Abdolrezaee and Eftekharpour, 2012; Reeves and
Keirstead, 2012). The possibility that they will replace dead neu-
rons (i.e., that they will differentiate into neurons after trans-
plantation, integrate within neuronal circuits and generate axons
reaching the muscle) remains an experimental approach that
needs further studies (Garbossa et al., 2012). Various degrees
of functional recovery has been lately obtained in SCI models
following transplantation of stem cells (Abematsu et al., 2010;
Cizkova et al., 2011; Nori et al., 2011; Nakajima et al., 2012).
Recent clinical studies (Kumar et al., 2009; Pal et al., 2009;
Sharma et al., 2012) have shown the safety of these procedures
in man, although functional benefit to patients is not systemati-
cally proven and may depend on lesion severity and stage (Tohda
and Kuboyama, 2011; Garbossa et al., 2012). Even when substan-
tial axonal sprouting across the spinal lesion is achieved, there
is no significant functional recovery (Lu et al., 2012), implying
that damage may derive from processes extending beyond the
mere repair of damaged fibres. Schira et al. (2012) show, in the
adult rat, moderate locomotor improvement after spinal cord
hemisection concomitant with local injection of human umbil-
ical stem cells and an immunosuppressant drug. Perhaps future
research should first focus on the mechanisms of intact CNS to
understand and maximize the potential of stem cell treatment
(Illis, 2012).

These results should be aimed at preserving surviving neu-
rons and optimizing their function by exploiting neuroplasticity
(Oudega and Perez, 2012). Such goals demand precise knowledge
of the network topography, connectivity, molecular structure,
metabolism, and physiology. Thus, in the recent years the devel-
opment of in vitro preparations of the spinal cord that readily
generate electrically oscillatory cycles with the hallmarks of loco-
motor patterns, offers unrivalled opportunities for advance in this
field. The MEA technology can provide longlasting recording of
the basic network properties essential for motor rhythms.

A BLUEPRINT FOR THE LOCOMOTOR CPG
Locomotion is the result of the complex coordinated activity of
many groups of muscles, commanded by motoneurons in the
ventral horn of the spinal cord, where they represent the out-
put elements of an extended network. The circuits responsible
for locomotion are driven by intrinsic spinal networks, collec-
tively called central pattern generator (CPG; Grillner et al., 1998;
Heckmann et al., 2005; Kiehn, 2006; Boulenguez and Vinay, 2009;
Rossignol and Frigon, 2011) because these circuits can organize
rhythmic locomotor activity in the absence of supraspinal and

sensory inputs. Several studies have also shown that motoneu-
rons are not merely passive actuators of rhythmicity as they play a
significant role in modulating locomotor patterns via an interplay
of their own membrane conductances in the neonatal (MacLean
et al., 1997) and adult (Manuel et al., 2012) spinal cord.

Recent studies of mouse genetics have provided substantial
advances in the classification of propriospinal neurons involved
in locomotion by identifying distinct neuronal subtypes that
contribute to certain phases and properties of the locomotor
pattern (Kiehn, 2006; Brownstone and Wilson, 2008; Goulding,
2009; Grillner and Jessell, 2009; Ziskind-Conhaim et al., 2010).
Hence, the overall organization of the locomotor CPG, though
still incompletely understood, is seen less and less as a black-
box structure because key cellular members and the pattern of
synaptic interconnections between them begin to be elucidated
in detail and validated with computer modeling (Zhong et al.,
2012). An interesting model supported by a body of experimental
evidence indicates that the motor control organization consists
of two fundamental structures with hierarchical arrangement,
namely a rhythm generating top module (responsible for periodic
clock-like discharges) and a pattern generating bottom structure
(creating alternation between flexor and extensor and between left
and right limb muscle commands; McCrea and Rybak, 2008). It
is also noteworthy that, despite their different phylogenetic clas-
sification, all mammals, including man, use similar processes of
locomotion (Grillner, 2011) made by a series of elementary pro-
grams termed “locomotor primitives” (Dominici et al., 2011).
This finding clearly shows that the use of locomotor networks
of non-human mammals can provide important data of wide
relevance to human studies.

While rhythm generation is considered to be dependent on
glutamatergic excitatory neurons, pattern generation controlling
left-right alternation and flexor-extensor alternation is thought
to require the participation of inhibitory GABAergic/glycinergic
interneurons (Talpalar et al., 2011). In mammals, the hindlimb
locomotor networks are distributed throughout the lumbar
enlargement: L1–L5 in rodents, L3–L5 in cats (Kiehn, 2006). In
humans, evidence for the existence of the CPG that controls
locomotion comes from studies of patients with complete spinal
lesion, in whom involuntary stepping movements with recipro-
cal activity of limb muscles can be elicited by spinal cord focal
stimulation, most effectively at L2–L3 level (Rosenfeld et al., 1995;
Duysens and Van de Crommert, 1998; Dietz, 2003; Dimitrijevic,
2012). The deficits in the spinal networks controlling locomo-
tion and in their afferent inputs are involved not only in the
pathophysiology of the SCI, but also in other neurological dis-
orders such as Parkinson’s disease or stroke sequelae (Dietz, 2003;
Meacham et al., 2011).

In vitro PREPARATIONS TO STUDY SPINAL LOCOMOTOR
NETWORKS
Isolated spinal cord preparations, deprived of afferent or descend-
ing inputs, can be maintained in vitro to generate electrical
oscillatory cycles which possess all the hallmarks of locomotor
patterns (Kiehn, 2006). Nonetheless, the absence of limbs makes
necessary to refer to this pattern as fictive locomotion, which is
the most convincing evidence for the existence of the spinal CPG
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capable of generating rhythmic, walk-like outputs (Duysens and
Van de Crommert, 1998). Like real locomotion, this pattern com-
prises left/right signal alternation at homosegmental level, and
homolateral alternation between flexor and extensor motor pools,
all occurring with regular periodicity. In vitro this phenomenon is
usually recorded from ventral roots of the lumbar region. When
synaptic inhibition is pharmacologically blocked, a clock-like
synchronous pattern spontaneously emerges from motor pools
(Bracci et al., 1996): this activity is termed disinhibited burst-
ing, and represents a useful tool to investigate the properties of
basic rhythmicity. It is interesting that disinhibited bursting can
be generated by a topographically limited network that com-
prises a ventral horn quadrant only (Bracci et al., 1996), while
fictive locomotion needs at least three intact lumbar segments
(Kjaerulff and Kiehn, 1996), demonstrating the requirement for
an extended network to express all the functional characteris-
tics of locomotion. Thus, it should be noted that slice or culture
preparations are intrinsically unable to generate fictive locomo-
tion, but they do produce basic rhythmic patterns likely arising
from the same, albeit anatomically reduced, locomotor networks.
Indeed, the strong interactions between fictive locomotion and
disinhibited bursting (Beato and Nistri, 1999) suggest that they
are both generated by the same networks or at least by networks
with extensively overlapping elements.

Isolated spinal cord preparations of neonatal rodents (isolated
from the brainstem to the cauda equina) show good survival
in vitro and, have, therefore, been widely used to study fic-
tive locomotion (Kiehn, 2006; Mladinic et al., 2013). Chemical
substances can be applied to produce fictive locomotion that per-
sists for a long time without showing fatigue (Cazalets et al.,
1992; Beato and Nistri, 1998; Kiehn et al., 2000; Marchetti et al.,
2001; Kiehn, 2006; Nistri et al., 2006; Taccola and Nistri, 2006;
Juvin et al., 2007; Cowley et al., 2010). In particular, as first
shown by Kudo and Yamada (1987), fictive locomotion can be
induced by application of N-Methyl-D-aspartate (NMDA) and/or
5-hydroxytryptamine (5-HT; serotonin) (Kudo and Yamada,
1987; Cazalets et al., 1992; Beato and Nistri, 1998; Pearlstein et al.,
2005), or other excitatory transmitters (Cowley and Schmidt,
1994), or by increasing the extracellular K+ concentration (Bracci
et al., 1998). To improve in vitro survival and experimental access
to networks, spinal cord organotypic cultures, that maintain the
basic cytoarchitecture of the in vivo tissue and synaptic connectiv-
ity, have been developed. Even though these cultures cannot gen-
erate locomotor-like patterns, they exhibit spontaneous rhythmic
activity which propagates to the whole preparation, conserving
basic components of rhythm generation (Streit et al., 2001).

MEA RECORDING REVEALS IMPORTANT MECHANISMS FOR
CPG ACTIVITY
The CPG functional structure implies a series of intercon-
nected oscillators with regular discharges organized into a rhythm
(Selverston and Moulins, 1985). This concept applies also to
the locomotor CPG. Hence, to analyze simultaneously the activ-
ity of topographically-distinct neurons in a spinal network, the
extracellular multisite recording technology performed with slice
cultures of embryonic rat spinal cords grown on multielectrode
arrays, is a particularly useful approach to study the process of

generation and propagation of rhythmic activity (Streit, 1993;
Streit et al., 2001; Tscherter et al., 2001; Avossa et al., 2012). These
authors used MEAs containing 68 electrodes arranged on a hexag-
onal grid (inter-electrode distance = 200 nm). Channels showing
activity as fast voltage transients (corresponding to action poten-
tials of neuronal cell bodies or axons) supplied the electrophys-
iological data that were analyzed with dedicated software (Streit
et al., 2001). In such slice cultures, most spontaneous activity
emerges from discrete “hubs” where there is a high probability
of detecting neuronal firing that can spread with depolarizing
waves to engulf the whole preparation and even induce con-
traction of co-cultured skeletal muscle fibres (Tscherter et al.,
2001; Czarnecki et al., 2008). Certain spinal neurons, including
motoneurons, show intrinsic spiking activity that can be recorded
in the absence of synaptic inputs, a phenomenon that makes such
cells as candidates to initiate rhythmicity when a few of them fire
synchronously (Darbon et al., 2002; Czarnecki et al., 2008, 2009).
Co-culturing spinal slices with skeletal muscle has shown that the
intrinsic firing of motoneurons may contribute to the activation
of population bursts through cholinergic positive feedback loops
(Magloire and Streit, 2009). Furthermore, by combining MEA
recording with single cell patch clamping, it has been possible
to identify cellular mechanisms responsible for burst generation
like the persistent sodium current (Darbon et al., 2004), and the
modulatory role of serotonin in rhythmicity (Czarnecki et al.,
2009).

These studies suggested a common rhythm-generating net-
work that can be activated in organotypic slices by different proto-
cols that comprise disinhibition (with pharmacological blockers;
Ballerini and Galante, 1998; Ballerini et al., 1999) or network exci-
tation evoked with high K+ and low Mg2+ (Streit et al., 2001).
Moreover, the patterns of rhythmic activity similar to those in
spinal slice cultures are recorded in dissociated cultures of rat
embryonic spinal cord and grown on MEA, showing that the
patterns of rhythmic activity seen in spinal slice cultures can be
reproduced in randomly assembled networks: this result suggests
that rhythmic activity is controlled by the interplay of intrinsic
neuronal activity and recurrent excitation in neuronal networks
without the need for specific architecture (Streit et al., 2001).

MEA IN SCI STUDIES: PRESENT AND FUTURE
The CPG networks that are genetically programmed to express
locomotion often remain relatively intact following SCI which
simply causes their disconnection from descending command
centers (Meacham et al., 2011). These networks can be activated
by electrical stimulation applied to the surface of the spinal cord
(Courtine et al., 2009), or even more efficiently with fine elec-
trodes implanted in the spinal tissue (Mushahwar et al., 2007;
Bamford and Mushahwar, 2011). These data suggest that it would
be feasible to use MEA to investigate the properties of spinal net-
works after SCI and how chemical or electrical stimulation can
facilitate their oscillatory discharges. It is noteworthy that, using
spinal organotypic cultures from mice expressing the genetic phe-
notype G93A of hereditary lateral amyotrophic sclerosis, a selec-
tive dysregulation of synaptic transmission was demonstrated
(Avossa et al., 2006). Likewise, MEAs were used to study the
electrophysiological activity of motoneurons in spinal cord slices
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from mouse models of spinal muscular atrophy (Zhang et al.,
2010). Furthermore, a battery of biomarkers may be employed
to correlate functional damage with cell type loss in organotypic
cultures (Avossa et al., 2006; Cifra et al., 2012). Since conventional
arrays of rigid microelectrodes can be substituted with elastomer-
substrate MEA technology, this stretchable MEAs (five electrode

configuration) can be wrapped around the isolated spinal cord
to stimulate spinal tracts (without any penetrating injury) in the
attempt to activate fictive locomotion (Meacham et al., 2011).

In our laboratory, isolated spinal cord preparations of neona-
tal rats as well as spinal organotypic cultures have been used to
investigate the molecular mechanisms involved in the delayed

FIGURE 1 | Possible application of MEA on spinal cord slices to study

the functional progression of the injury and the involvement of

individual neurons in the control of locomotion. In the panel (A), we
show the schematic presentation of freshly-cut spinal cord slices, before and
after experimental injury (with three different phases of the injury: early, late,
and post-lesional). The functional progression of the injury could be
monitored (in the real time) using MEA technology. Namely, the MEA
containing tens of electrodes could be arranged on a grid to cover the
central-ventral region of the spinal cord, which contains the neurons involved

in the control of locomotion. MEA would allow the recording of the electrical
activity (action potentials) of numerous neuronal cells in the CPG zone. With
the progression of the injury and the death of the cells, the number of spiking
neurons would decline, giving the possibility to correlate the remaining
functional activity with the histological analysis panel (B). The combination of
MEA recordings and the topographical mapping of the live, electrically active
neurons in the lesioned spinal cord slices could define precisely the spinal
network oscillators. DH, dorsal horn; VH, ventral horn; WM, white matter; df,
dorsal funiculus; vf, ventral funiculus; cc, central canal.
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cell death of locomotor networks after acute experimental injury
(Kuzhandaivel et al., 2011). Novel experimental paradigms have
been developed to mimic the consequences of strong or weak SCI
lesions, taking as end point the functional activity of locomotor
networks in relation to the number and topology of surviv-
ing cells (Taccola et al., 2008). The use of organotypic cultures
is predicted to allow an extended follow up of functional and
structural damage evolution well beyond the in vitro survival
of slices or isolated preparations. This is feasible study since, at
least within the first 24 h after the primary lesion, the damage
evolution progresses with similar properties in isolated prepa-
rations and organotypic cultures (Mazzone et al., 2010). Our
model has already been shown to be suitable for preclinical testing
of neuroprotective drugs selectively directed toward dysregulated
mechanisms leading to neuronal or glial cell death (Margaryan
et al., 2010; Kuzhandaivel et al., 2010a,b, 2011; Nasrabady et al.,
2011a,b; Sámano et al., 2012). In addition, nanotechnologies (that
employ carbon nanotubes; Bareket-Keren and Hanein, 2012;
Parpura et al., 2013) in association with MEA recording may be
tested for the ability to promote network repair and the functional
outcome after experimental SCI. Electrophysiological data have
already indicated an unexpected increase in synaptic efficiency
when spinal networks are interfaced with these new materials
(Cellot et al., 2011; Fabbro et al., 2012).

Alternatively, the MEA could also be applied to freshly-cut
spinal cord slices, in analogy to studies of rat neocortical and
hippocampal brain slices (Becker et al., 2012) set up to examine
the mechanisms underlying anesthetic (isoflurane)-induced exci-
tation. One might envisage monitoring, in real time, the onset
and distribution of experimental SCI by recording the progressive
loss of neuronal activity and assess its time dependent evolu-
tion as proposed in Figure 1A. This approach would be useful
if implemented in conjunction with tests for delayed recovery of
rhythmicity either spontaneously or after applying neuroprotec-
tion (or neurorepair) protocols. Ultimately, this approach might
transfer to a MEA recording chamber the experimental paradigm
used with the isolated spinal cord preparation for which detailed
immunohistochemical data are already available (Figure 1B). An
obvious advantage of this approach would be the possibility to
create a functional map to guide future experiments with the
aim of identifying potential mechanisms of cell resilience to dam-
age through more precisely defined circuits of spinal network
oscillators.
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