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1 Introduction

The intimate relation among BPS correlators of N = 2 supersymmetric gauge theories in

four dimensions, two-dimensional conformal field theories and integrable systems revealed a

world of surprises behind the Seiberg-Witten solution ofN = 2 supersymmetric d = 4 gauge

theories in the Coulomb branch [1]. Its microscopic derivation via equivariant instanton

counting [2] pointed to a connection with free two-dimensional conformal field theories [3–

5]. More recently the embedding in M-theory [6, 7] paved the way to the realization of the

AGT correspondence with Liouville and Toda theory [8, 9].

The relation between d = 4 N = 2 gauge theories and integrable systems was under-

stood to underlie the ability of solving the effective theory in the IR already in the nineties

in the context of the Seiberg-Witten theory [10–13], the prototypical example being the

Toda lattice.
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In this paper we discuss a new connection between supersymmetric theories with eight

supercharges and quantum integrable systems of hydrodynamical type. These naturally

arise in the context of AGT correspondence. Indeed integrable systems and conformal

field theories in two dimensions are intimately connected from several points of view. The

link between conformal field theory and quantum KdV was noticed in [14–17]. In [17] the

infinite conserved currents in involutions of the Virasoro algebra Vir have been shown to

realize the quantization of the KdV system and the quantum monodromy “T-operators”

are shown to act on highest weight Virasoro modules.

More recently an analogous connection between the spectrum of a CFT based on

the Heisenberg plus Virasoro algebra H ⊕ Vir and the bidirectional Benjamin-Ono (BO2)

system has been shown in the context of a combinatorial proof of AGT correspondence [18],

providing a first example of the phenomenon we alluded to before.

In [19] the exact partition function of the six dimensional U(N) supersymmetric gauge

theory on S2 × C2 was computed and in particular shown to account for the S2-finite

size corrections to the Nekrasov partition function. From a mathematical viewpoint these

corrections compute the quantum cohomology of the ADHM moduli space of instantons

in terms of quasi-map I and J functions, the complexified Kähler parameter being identi-

fied with the Fayet-Iliopoulos (FI) parameter of the effective Gauged Linear Sigma Model

(GLSM) on S2.

In this paper we study the link between the six dimensional U(N) exact partition

function and quantum integrable systems finding that the supersymmetric gauge theory

provides the quantization of the gl(N) Intermediate Long Wave system (ILWN ). This is

a well known one parameter deformation of the BO system. Remarkably, it interpolates

between BO and KdV. We identify the deformation parameter with the FI of the S2

GLSM, by matching the twisted superpotential of the GLSM with the Yang-Yang function

of quantum ILWN as proposed in [20]. Our result shows that the quantum cohomology

of the ADHM instanton moduli space is computed by the quantum ILWN system. In the

abelian case N = 1, when the ADHM moduli space reduces to the Hilbert scheme of points

on C2, this correspondence is discussed in [21–23].

On top of this we show that the chiral ring observables of the six dimensional gauge

theory are related to the commuting quantum Hamiltonians of ILWN .

Let us remark that in the four dimensional limit our results imply that the gauge theory

chiral ring provides a basis for the BON quantum Hamiltonians. This shows the appearance

of the H ⊕WN algebra in the characterization of the BPS sector of the four dimensional

gauge theory as proposed in [24] and is a strong purely gauge theoretic argument in favour

of the AGT correspondence.

We also show that classical ILW hydrodynamic equations arise as a collective de-

scription of elliptic Calogero-Moser integrable system. Let us notice that the quantum

integrability of the BON system can be shown by constructing its quantum Hamiltonians

in terms of N copies of trigonometric Calogero-Sutherland Hamiltonians with tridiagonal

coupling: a general proof in the context of equivariant quantum cohomology of Nakajima

quiver varieties can be found in [25]. The relevance of this construction in the study of

conformal blocks of W-algebra is discussed in [26]. Our result hints to an analogous rôle

of elliptic Calogero system in the problem of the quantization of ILWN .
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It is worth to remark at this point that these quantum systems play a relevant rôle in

the description of Fractional Quantum Hall liquids. In particular our results suggest the

quantum ILW system to be useful in the theoretical investigation of FQH states on the

torus, which are also more amenable to numerical simulations due to the periodic boundary

conditions. For a discussion on quiver gauge theories and FQHE in the context of AGT

correspondence see [26, 27].

This paper is organized as follows. In section 2 we first recall some basic notions on the

relevant integrable systems and then discuss the ILW equations as hydrodynamical limit

of elliptic Calogero-Moser. In section 3 we recall the results of [19] on the exact partition

function of the six dimensional U(N) gauge theory on C2 × S2 and their relation with the

equivariant cohomology of the ADHM instanton moduli space. In section 4 we discuss the

Landau-Ginzburg mirror and its relation with quantum ILW system and its KdV limit.

Section 5 is left for concluding remarks and discussions on open problems.

2 Intermediate Long Wave system

In subsection 2.1 we recall some basic facts about gl(N) ILW integrable hydrodynamics

which are relevant for the comparison with the six dimensional U(N) gauge theory. In the

subsequent subsection 2.2 we show that ILW system can be obtained as hydrodynamical

limit of elliptic Calogero-Moser system.

2.1 The prequel

One of the most popular integrable systems is the KdV equation

ut = 2uux +
δ

3
uxxx (2.1)

where u = u(x, t) is a real function of two variables. It describes the surface dynamics of

shallow water in a channel, δ being the dispersion parameter.

The KdV equation is a particular case of the ILW equation

ut = 2uux +
1

δ
ux + T [uxx] (2.2)

where T is the integral operator

T [f ](x) = P.V.

∫
coth

(
π(x− y)

2δ

)
f(y)

dy

2δ
(2.3)

and P.V.
∫

is the principal value integral

Equation (2.2) describes the surface dynamics of water in a channel of finite depth.

It reduces to (2.1) in the limit of small δ. The opposite limit, that is the infinitely deep

channel at δ →∞, is called the Benjamin-Ono equation. It reads

ut = 2uux +H[uxx] (2.4)

where H is the integral operator implementing the Hilbert transform on the real line

H[f ](x) = P.V.

∫
1

x− y
f(y)

dy

π
. (2.5)
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The equation (2.2) is an integrable deformation of KdV. It has been proved in [28]

that the form of the integral kernel in (2.3) is fixed by the requirement of integrability.

The version of the ILW system which we will show to be relevant to our case is the

periodic one. This is obtained by replacing (2.3) with

T [f ](x) =
1

2π
P.V.

∫ 2π

0

θ′1
θ1

(
y − x

2
, q

)
f(y)dy (2.6)

where q = e−δ.

Equation (2.2) is Hamiltonian with respect to the Poisson bracket

{u(x), u(y)} = δ′(x− y) (2.7)

and reads

ut(x) = {I3, u(x)} (2.8)

where I3 =
∫

1
3u

3 + 1
2uT [ux] is the corresponding Hamiltonian. The other flows are gener-

ated by I2 =
∫

1
2u

2 and the further Hamiltonians In =
∫

1
nu

n+ . . ., where n > 3, which are

determined by the condition of being in involution {In, Im} = 0. These have been com-

puted explicitly in [29]. The gl(N) ILW system is described in [30]; more explicit formulae

for the gl(2) case can be found in appendix A of [20].

The periodic ILW system can be quantized by introducing creation/annihilation opera-

tors corresponding to the Fourier modes of the field u and then by the explicit construction

of the quantum analogue of the commuting Hamiltonians In above. Explicitly, one intro-

duces the Fourier modes {αk}k∈Z with commutation relations

[αk, αl] = kδk+l

and gets the first Hamiltonians as

I2 = 2
∑
k>0

α−kαk −
1

24
,

I3 = −
∑
k>0

kcoth(kπt)α−kαk +
1

3

∑
k+l+m=0

αkαlαm (2.9)

where we introduced a complexified ILW deformation parameter 2πt = δ − iθ. This arises

naturally in comparing the Hamiltonian (2.9) with the deformation of the quantum trigono-

metric Calogero-Sutherland Hamiltonian appearing in the study of the quantum cohomol-

ogy of Hilbn
(
C2
)

[31, 32], see appendix B for details. We are thus led to identify the

creation and annihilation operators of the quantum periodic ILW system with the Naka-

jima operators describing the equivariant cohomology of the instanton moduli space: this is

the reason why one has to consider periodic ILW to make a comparison with gauge theory

results. Moreover, from (2.9) the complexified deformation parameter of the ILW system

2πt = δ − iθ gets identified with the Kähler parameter of the Hilbert scheme of points as

q = e−2πt. In this way the quantum ILW hamiltonian structure reveal to be related to

abelian six dimensional gauge theories via BPS/CFT correspondence. In particular the

BO limit t → ±∞ corresponds to the classical equivariant cohomology of the instanton

moduli space described by the four dimensional limit of the abelian gauge theory.

– 4 –



J
H
E
P
0
7
(
2
0
1
4
)
1
4
1

More general integrable systems of similar type arise by considering richer symmetry

structures. These are related to non-abelian gauge theories. A notable example is that of

H ⊕ Vir, where H is the Heisenberg algebra of a single chiral U(1) current. Its integrable

quantization depends on a parameter which weights how to couple the generators of the two

algebras in the conserved Hamiltonians. The construction of the corresponding quantum

ILW system can be found in [20]. This quantum integrable system, in the BO2 limit, has

been shown in [18] to govern the AGT realization of the SU(2) N = 2 D = 4 gauge theory

with Nf = 4. More precisely, the expansion of the conformal blocks proposed in [8] can be

proved to be the basis of descendants in CFT which diagonalizes the BO2 Hamiltonians.

More in general one can consider the algebra H ⊕WN . The main aim of this paper

is to show that the partition function of the non-abelian six-dimensional gauge theory on

S2 × C2 naturally computes such a quantum generalization. Indeed, as it will be shown

in section 4, the Yang-Yang function of this system, as it is described in [20], arises as the

twisted superpotential of the effective LG model governing the finite volume effects of the

two-sphere. In particular, we propose that the Fourier modes of the gl(N) periodic ILW

system correspond to the Baranovsky operators acting on the equivariant cohomology of

the ADHM instanton moduli space. Evidence for this proposal is given in section 4 and

in the appendix B. Moreover in section 4 we identify the deformation parameter t in (2.9)

with the FI parameter of the gauged linear sigma model on the two sphere.

This generalizes the link between quantum deformed Calogero-Sutherland system and

the abelian gauge theory to the gl(N) ILW quantum integrable system and the non abelian

gauge theory in six dimensions.

2.2 ILW as hydrodynamical limit of elliptic Calogero-Moser

An important property of the non-periodic ILW system is that its rational solutions are

determined by the trigonometric Calogero-Sutherland model (see [33] for details). In this

subsection we show a similar result for periodic ILW, namely that the dynamics of the poles

of multisoliton solutions for this system is described by elliptic Calogero-Moser. Analogous

results were obtained in [34, 35]. We proceed by generalizing the approach of [36] where this

limit was discussed for trigonometric Calogero-Sutherland versus the BO equation. The

strategy is the following: one studies multi-soliton solutions to the ILW system by giving

a pole ansatz. The dynamics of the position of the poles turns out to be described by an

auxiliary system equivalent to the eCM equations of motion in Hamiltonian formalism.

The Hamiltonian of eCM system for N particles is defined as

HeCM =
1

2

N∑
j=1

p2
j +G2

∑
i<j

℘(xi − xj ;ω1, ω2), (2.10)

where ℘ is the elliptic Weierstrass ℘-function and the periods are chosen as 2ω1 = L and

2ω2 = iδ. In the previous section 2.1 and in sections 4, 5 we set L = 2π. For notational

simplicity, from now on we suppress the periods in all elliptic functions. The Hamilton

– 5 –
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equations read

ẋj = pj

ṗj = −G2∂j
∑
k 6=j

℘(xj − xk), (2.11)

which can be recast as a second order equation of motion

ẍj = −G2∂j
∑
k 6=j

℘(xj − xk). (2.12)

It can be shown (see the appendix A for a detailed derivation) that equation (2.12) is

equivalent to the following auxiliary system1

ẋj = iG

{
N∑
k=1

θ′1
(
π
L(xj − yk)

)
θ1

(
π
L(xj − yk)

) −∑
k 6=j

θ′1
(
π
L(xj − xk)

)
θ1

(
π
L(xj − xk)

)}

ẏj = −iG

{
N∑
k=1

θ′1
(
π
L(yj − xk)

)
θ1

(
π
L(yj − xk)

) −∑
k 6=j

θ′1
(
π
L(yj − yk)

)
θ1

(
π
L(yj − yk)

)}. (2.13)

In the limit δ →∞ (q → 0), the equation of motion (2.12) reduces to

ẍj = −G2
(π
L

)2
∂j
∑
k 6=j

cot2
(π
L

(xj − xk)
)
, (2.14)

while the auxiliary system goes to

ẋj = iG
π

L

{
N∑
k=1

cot
(π
L

(xj − yk)
)
−
∑
k 6=j

cot
(π
L

(xj − xk)
)}

ẏj = −iGπ
L

{
N∑
k=1

cot
(π
L

(yj − xk)
)
−
∑
k 6=j

cot
(π
L

(yj − yk)
)}

. (2.15)

This is precisely the form obtained in [36].

In analogy with [36] we can define a pair of functions which encode particle positions

as simple poles

u1(z) = −iG
N∑
j=1

θ′1
(
π
L(z − xj)

)
θ1

(
π
L(z − xj)

)
u0(z) = iG

N∑
j=1

θ′1
(
π
L(z − yj)

)
θ1

(
π
L(z − yj)

) (2.16)

1Actually, the requirement that this system should reduce to (2.12) is not sufficient to fix the form of

the functions appearing. As will be clear from the derivation below, we could as well substitute
θ′1( πL z)
θ1( πL z)

by

ζ(z) and the correct equation of motion would still follow. However, we can fix this freedom by taking the

trigonometric limit (δ →∞) and requiring that this system reduces to the one in [36].

– 6 –



J
H
E
P
0
7
(
2
0
1
4
)
1
4
1

and we also introduce their linear combinations

u = u0 + u1, ũ = u0 − u1. (2.17)

These satisfy the differential equation

ut + uuz + i
G

2
ũzz = 0, (2.18)

as long as xj and yj are governed by the dynamical equations (2.13). The details of the

derivation can be found in the appendix A. Notice that, when the lattice of periodicity is

rectangular, (2.18) is nothing but ILW equation. Indeed, under the condition xi = ȳi one

can show that ũ = −iT u [29]. To recover (2.2) one has to further rescale u → Gu and

t → −t/G and shift u → u + 1/2δ. We observe that (2.18) does not explicitly depend on

the number of particles N and holds also in the hydrodynamical limit N,L → ∞, with

N/L fixed.

3 Partition function of N = 1 Super Yang-Mills theory on C2 × S2

The partition function of N = 1 Super Yang-Mills theory on C2 × S2 with U(N) gauge

group in presence of Ω-background was computed in [19]. It is given by the product of a

1-loop term and a non perturbative contribution, namely

Z = Z1−loopZnp (3.1)

where

Z1−loop =
∏
l 6=m

Γ2(alm; ε1, ε2)
Γ3

(
alm; ε1, ε2,

1
ir

)
Γ3

(
alm; ε1, ε2,− 1

ir

) (3.2)

Znp =
∑
k≥0

QkZk (~a, ε1, ε2; q, q̄, r) (3.3)

and

Zk (~a, ε1, ε2; q, q̄, r) =
1

k!

∑
~m∈Zk

∫
Rk

k∏
s=1

d(rσs)

2π
e−4πiξrσs−iθ̂msZgaugeZIJ Zadj (3.4)

with θ̂ = θ + (k − 1)π,

Zgauge =
k∏
s<t

(
m2
st

4
+ r2σ2

st

)
(3.5)

and

ZIJ =
k∏
s=1

N∏
j=1

Γ
(
−irσs + iraj + ir ε2 −

ms
2

)
Γ
(
1 + irσs − iraj − ir ε2 −

ms
2

) Γ
(
irσs − iraj + ir ε2 + ms

2

)
Γ
(
1− irσs + iraj − ir ε2 + ms

2

) (3.6)

Zadj =
k∏

s,t=1

Γ
(
1− irσst − irε− mst

2

)
Γ
(
irσst + irε− mst

2

) Γ
(
−irσst + irε1 − mst

2

)
Γ
(
1 + irσst − irε1 − mst

2

) Γ
(
−irσst + irε2 − mst

2

)
Γ
(
1 + irσst − irε2 − mst

2

) .

– 7 –
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The 1-loop term (3.2) is the perturbative contribution to the partition function in six

dimensions, the dependence on the radius of the 2-sphere r taking into account the sum

over the Kaluza-Klein (KK) modes: it reduces to the 4d perturbative Nekrasov partition

function in the r → 0 limit when these modes become infinitely massive. Notice that (3.2)

can be written also in the more symmetric form (ε3 = i
r )

Z1−loop =
∏
l 6=m

Γ3 (alm; ε1, ε2, ε3)−2 . (3.7)

The non perturbative term takes into account the contributions of the topological

sectors of the gauge theory labeled by the second and third Chern character of the gauge

bundle, with generating parameters Q and (q, q̄) respectively. The six dimensional gauge

theory is the effective low energy theory of a system of D5-D1-D(-1) branes on the minimal

resolution of a transversal A1 singularity C2 × T ∗S2 × C, where N D5-branes are located

on C2 × S2, k D1 branes are wrapping the two sphere and the D(-1)s are located at

the North and the South pole of the sphere, the expansion in (q, q̄) accounting for the two

types. These are nothing but the vortex/anti-vortex contributions of the spherical partition

function describing the effective dynamics of the k D1-branes. Eq. (3.4) was derived in [19]

using the results of [37, 38] applied to the relevant gauged linear sigma model. This flows in

the IR to the (2, 2) supersymmetric non linear sigma model with target space the ADHM

instanton moduli space, the Ω-background being taken into account by the twisted masses

ε1 and ε2.

As shown in [19], eq. (3.4) includes the finite size corrections to the 4d instanton par-

tition function due to the KK modes on the two sphere. From a mathematical perspective,

it was proposed that these are effective world-sheet instantons computing the equivariant

Gromov-Witten invariants of the ADHM moduli space. More precisely, eq. (3.4) can be

used to describe the equivariant quantum cohomology of the ADHM space in terms of a

generalization of Givental’s I-function adapted to non abelian GIT quotients [19, 39]. A

mathematically rigorous formulation of this generalization has been provided in [40]. The

I-function of the ADHM instanton moduli space can be obtained from a factorized repre-

sentation of the spherical partition function (3.4) as discussed in detail in [19] and reads

IkN =
∑

d1,...,dk ≥ 0

((−1)Nz)d1+...+dk

k∏
s=1

N∏
j=1

(−rλs − iraj + irε)ds
(1− rλs − iraj)ds

k∏
s<t

dt − ds − rλt + rλs
−rλt + rλs

(1+rλs−rλt−irε)dt−ds
(rλs−rλt+irε)dt−ds

(rλs−rλt+irε1)dt−ds
(1+rλs−rλt−irε1)dt−ds

(rλs−rλt+irε2)dt−ds
(1+rλs−rλt−irε2)dt−ds

(3.8)

where λs are the Chern roots of the tautological bundle of the ADHM moduli space. From

the above expression we find that the asymptotic behaviour in r → 0, where r is the radius

of the two-sphere, is

IkN = 1 + rNI(N) + . . . . (3.9)

We recall that the coefficient of the first order term in the small r expansion is identified

with the equivariant mirror map. Then from (3.9) we conclude that the equivariant mirror

map is trivial, namely Ik,N = Jk,N , for N > 1, in agreement with the general theorem

of [25] on the equivariant quantum cohomology of Nakajima’s quiver varieties.

– 8 –
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An interesting question to raise is whether a mirror picture resumming all the effective

world-sheet instantons can be obtained and what its interpretation from the point of view

of integrable systems is. Answering these questions is the aim of the rest of the paper.

4 Landau-Ginzburg mirror of the ADHM moduli space and quantum

Intermediate Long Wave system

Let us start by computing the mirror of the ADHM moduli space. This is provided by a

LG model which we study in the Coulomb branch.

A good starting point is to define2

Σs = σs − i
ms

2r
(4.1)

since this is the twisted chiral superfield corresponding to the superfield strength for the

s-th vector supermultiplet in the Cartan of U(k). We can now use the procedure described

in [41]: for every ratio of Gamma functions, we can write

Γ(−irΣ)

Γ(1 + irΣ)
=

∫
d2Y

2π
exp
{
− e−Y + irΣY + e−Y + irΣY

}
. (4.2)

Here Y , Y are interpreted as the twisted chiral fields for the matter sector of the mirror

Landau-Ginzburg model. Since we want to study the Coulomb branch of this theory in

the IR, we have to integrate out the Y , Y fields. Performing a semiclassical approximation

of (4.2), this implies

Y = − ln(−irΣ) , Y = − ln(irΣ) (4.3)

and we are left with

Γ(−irΣ)

Γ(1 + irΣ)
∼ exp

{
ω(−irΣ)− 1

2
ln(−irΣ)− ω

(
irΣ
)
− 1

2
ln
(
irΣ
)}

(4.4)

in terms of the function ω(x) = x(lnx − 1). Defining t = ξ − i θ2π as the complexified

Fayet-Iliopoulos,3 equation (3.4) becomes

ZS
2

k,N =
1

k!

(
ε

rε1ε2

)k ∫ k∏
s=1

d2(rΣs)

2π

∣∣∣∣∣
(∏k

s=1

∏k
t6=s=1D(Σst)∏k

s=1Q(Σs)

) 1
2

e−W

∣∣∣∣∣
2

(4.5)

where the logarithmic terms in (4.4) (which modify the effective twisted superpotential

with respect to the one on R2) give the measure of the integral in terms of the functions

Q(Σs) = r2N
N∏
j=1

(
Σs − aj −

ε

2

)(
−Σs + aj −

ε

2

)
D(Σst) =

(Σst)(Σst + ε)

(Σst − ε1)(Σst − ε2)
.

(4.6)

2We shift irΣs → irΣs − ir ε2 with respect to [19].
3The sign of θ is different from the choice made in [19].
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W is the effective twisted superpotential of the mirror LG model in the Coulomb branch:

W = (2πt−i(k−1)π)

k∑
s=1

irΣs+

k∑
s=1

N∑
j=1

[
ω
(
irΣs−iraj−ir

ε

2

)
+ω

(
−irΣs+iraj − ir

ε

2

)]

+
k∑

s,t=1

[ω(irΣst + irε) + ω(irΣst − irε1) + ω(irΣst − irε2)] . (4.7)

The complex conjugation refers to Σ and t; in particular, we have

W(irΣ, t) =W
(
−irΣ, t

)
= −W

(
irΣ, t

)
. (4.8)

The function W coincides with the Yang-Yang function of the gl(N) Intermediate Long

Wave system as proposed in [20].

Let us now perform a semiclassical analysis around the saddle points of (4.7). As

we will shortly see, this provides the Bethe-ansatz equations for the quantum integrable

system at hand. By definition, the saddle points are solutions of the equations

∂W
∂(irΣs)

= 0 . (4.9)

This implies

2πt−i(k−1)π+

N∑
j=1

ln
Σs − aj − ε

2

−Σs + aj − ε
2

+

k∑
t=1
t6=s

ln
(Σst + ε)(Σst − ε1)(Σst − ε2)

(−Σst + ε)(−Σst − ε1)(−Σst − ε2)
= 0 (4.10)

or, by exponentiating and using (−1)k−1 =
∏k
t=1
t6=s

(Σst)
(−Σst)

,

N∏
j=1

(
Σs − aj −

ε

2

) k∏
t=1
t6=s

(Σst − ε1)(Σst − ε2)

(Σst)(Σst − ε)

= e−2πt
N∏
j=1

(
−Σs + aj −

ε

2

) k∏
t=1
t6=s

(−Σst − ε1)(−Σst − ε2)

(−Σst)(−Σst − ε)
.

(4.11)

These are the Bethe ansatz equations governing the spectrum of the integrable system for

generic t as appeared also in [20, 23]. To be more precise, remember that θ → θ + 2πn is

a symmetry of the theory; the saddle points will be solutions to

∂W
∂(irΣs)

= 2πins (4.12)

but this leaves the Bethe ansatz equations (4.11) unchanged.

Around the BO point t→∞, the solutions to (4.11) can be labelled by colored partitions

of N , ~λ = (λ1, . . . , λN ) such that the total number of boxes
∑N

l=1 |λl| is equal to k. In the

limit t→∞, the roots of the Bethe equations are given by

Σ(l)
m = al +

ε

2
+ (i− 1)ε1 + (j − 1)ε2 , m = 1, . . . , |λl| (4.13)

with i, j running over all possible rows and columns of the tableau λl; those are exactly

the poles appearing in the contour integral representation for the 4d Nekrasov partition

function [42]. In the large t case, the roots will be given in terms of a series expansion in

powers of e−2πt.
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4.1 Derivation via large r limit and norm of the ILW wave-functions

The previous results can also (and maybe better) be understood in terms of a large r

limit of (3.4). In other words this amounts to set ε3 ∼ 0 with ε1, ε2 finite and as such is

a six-dimensional analogue of the Nekrasov-Shatashvili limit [43]. We can use Stirling’s

approximation:

Γ(z) ∼
√

2π zz−
1
2 e−z

(
1 + o

(
z−1
))
, z →∞

Γ(1 + z) ∼
√

2π zz+
1
2 e−z

(
1 + o

(
z−1
))
, z →∞

(4.14)

which implies

ln Γ(z) ∼ ω(z)− 1

2
ln z +

1

2
ln 2π + o

(
z−1
)
, z →∞

ln Γ(1 + z) ∼ ω(z) +
1

2
ln z +

1

2
ln 2π + o

(
z−1
)
, z →∞ .

(4.15)

Consider for example the contribution from the I field; we have

ln Γ
(
−irΣs+iraj+ir

ε

2

)
∼ω
(
−irΣs+iraj+ir

ε

2

)
− 1

2
ln
(
−irΣs+iraj+ir

ε

2

)
+

1

2
ln 2π

ln Γ
(

1+irΣs−iraj−ir
ε

2

)
∼ω
(
irΣs−iraj−ir

ε

2

)
+

1

2
ln
(
irΣs−iraj−ir

ε

2

)
+

1

2
ln 2π. (4.16)

Doing the limit for all of the fields, we find again

ZS
2

k,N =
1

k!

(
ε

rε1ε2

)k ∫ k∏
s=1

d2(rΣs)

2π

∣∣∣∣∣
(∏k

s=1

∏k
t6=s=1D(Σst)∏k

s=1Q(Σs)

) 1
2

e−W

∣∣∣∣∣
2

. (4.17)

Refining the semiclassical approximation around the saddle points of W up to quadratic

fluctuations, we obtain (eliminating the k! by choosing an order for the saddle points)

ZS
2

k,N =

∣∣∣∣∣e−Wcr

(
ε

rε1ε2

) k
2

(∏k
s=1

∏k
t6=s=1D(Σst)∏k

s=1Q(Σs)

) 1
2 (

Det
∂2W

r2∂Σs∂Σt

)− 1
2

∣∣∣∣∣
2

. (4.18)

Apart from the classical term |e−Wcr |2, this can be seen as the inverse norm square of

the eigenstates of the infinite set of integrals of motion for the ILW system, where each

eigenstate corresponds to an N−partition ~λ and so we can denote it by |~λ〉:

ZS
2

k,N =
|e−Wcr |2

〈~λ|~λ〉
. (4.19)

Comparing with (4.18), we find

1

〈~λ|~λ〉
=

∣∣∣∣∣
(

ε

rε1ε2

) k
2

(∏k
s=1

∏k
t6=s=1D(Σst)∏k

s=1Q(Σs)

) 1
2 (

Det
∂2W

r2∂Σs∂Σt

)− 1
2

∣∣∣∣∣
2

. (4.20)

For real parameters (for example when t → ∞), this formula agrees with the expression

for the norm found in [20].

4.2 Quantum ILW Hamiltonians

In this subsection we propose that the chiral ring observables of the U(N) six-dimensional

gauge theory correspond to the set of commuting quantum Hamiltonians of the gl(N)

ILW system. Due to R-symmetry selection rules, the chiral ring observables vanish in

the perturbative sector and are therefore completely determined by their non-perturbative
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contributions. These are computed by the effective two-dimensional GLSM describing D1-

branes dynamics in presence of D(-1)s. More precisely, chiral observables of the GLSM

provide a basis for the quantum Hamiltonians of the corresponding integrable system [43–

45] . This implies that in our case the quantum Hamiltonians for the ILW system are given

by linear combinations of Tr Σn operators, for generic values of t:

ILW quantum Hamiltonians ←→ Tr Σn(t) . (4.21)

The calculation of the local chiral ring observables of U(N) gauge theory on C2 × S2 is

analogous to the one on C2, the crucial difference being that in the six dimensional case the

bosonic and fermionic zero-modes in the instanton background acquire an extra dependence

on the two-sphere coordinates. As a consequence, the sum over the fixed points is replaced

by the sum over the vacua of the effective GLSM giving

tr eΦ =
N∑
l=1

(
eal − e−

ε1+ε2
2 (1− eε1)(1− eε2)

∑
m

eΣm(t)

)
(4.22)

where Σm(t) are the solutions of the Bethe equations (4.11). We expect the above formula

can be proved in a rigorous mathematical setting in the context of ADHM moduli sheaves

introduced in [46]. In the N = 2 case the first few terms read

TrΦ2

2
= a2 − ε1ε2

 |λ|∑
m=1

1 +

|µ|∑
n=1

1


TrΦ3

3
= −2ε1ε2

 |λ|∑
m=1

Σm +

|µ|∑
n=1

Σn


TrΦ4

4
=
a4

2
− 3ε1ε2

 |λ|∑
m=1

Σ2
m +

|µ|∑
n=1

Σ2
n

− ε1ε2 ε12 + ε2
2

4

 |λ|∑
m=1

1 +

|µ|∑
n=1

1


TrΦ5

5
= −4ε1ε2

 |λ|∑
m=1

Σ3
m +

|µ|∑
n=1

Σ3
n

− ε1ε2 (ε12 + ε2
2
) |λ|∑

m=1

Σm +

|µ|∑
n=1

Σn

 .

(4.23)

A check the proposal (4.21) can be obtained by considering the four dimensional limit

where explicit formulae are already known. Indeed in the four dimensional limit t→ ±∞
the roots of the Bethe equations reduces to [20]

Σm = a+
ε

2
+ (i− 1)ε1 + (j− 1)ε2 = a− ε

2
+ iε1 + jε2 , i, j > 1 , m = 1, . . . , |λ| . (4.24)

Consequently, (4.22) reduces to the known formula for the chiral ring observables of four-

dimensional U(N) SYM [3, 47]:

TrΦn+1 =

N∑
l=1

an+1
l +

N∑
l=1

k
(l)
1∑
j=1

[(
al+ε1λ

(l)
j +ε2(j−1)

)n+1
−
(
al+ε1λ

(l)
j +ε2j

)n+1

− (al + ε2(j − 1))n+1 + (al + ε2j)
n+1

] (4.25)
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where λ(l) =

{
λ

(l)
1 ≥ λ

(l)
2 ≥ . . . ≥ λ

(l)

k
(l)
1

}
, l = 1, . . . , N indicate colored partitions of the

instanton number k =
∑

l,j λ
(l)
j . Since the four-dimensional limit corresponds to the t→∞

limit, we expect that the above chiral observables are related to the quantum Hamiltonians

of the BO system. For definiteness, let us consider the case N = 2. The higher rank case

is discussed in appendix C. For N = 2 the Young tableaux correspond to bipartitions

(λ, µ) = (λ1 > λ2 > . . . , µ1 > µ2 > . . .) such that |λ| + |µ| = k. For Benjamin-Ono,

the eigenvalues of the Hamiltonian operators In are given by linear combinations of the

eigenvalues of two copies of trigonometric Calogero-Sutherland system [18, 20] as

h
(n)
λ,µ = h

(n)
λ (a) + h(n)

µ (−a) (4.26)

with

h
(n)
λ (a) = ε2

k
(λ)
1∑
j=1

[(
a+ ε1λj + ε2

(
j − 1

2

))n
−
(
a+ ε2

(
j − 1

2

))n]
(4.27)

where k
(λ)
1 is the number of boxes in the first row of the partition λ, and λj is the number

of boxes in the j-th column. In particular, h
(1)
λ,µ = ε1ε2k. In terms of (4.27), the N = 2

chiral observables (4.25) read

TrΦn+1

n+ 1
=
an+1 + (−a)n+1

n+ 1
−

n∑
i=1

1 + (−1)n−i

2

n!

i!(n+ 1− i)!

(ε2
2

)n−i
h

(i)
λ,µ . (4.28)

The contributions from i = 0, i = n+ 1 are zero, so they were not considered in the sum.

The first few cases are:

TrΦ2

2
= a2 − ε1ε2k ,

TrΦ3

3
= −h(2)

λ,µ

TrΦ4

4
=
a4

2
− h(3)

λ,µ −
ε22
4
ε1ε2k ,

TrΦ5

5
= −h(4)

λ,µ −
ε22
2
h

(2)
λ,µ .

(4.29)

We now rewrite the above formulae in terms of the BO Bethe roots (4.24) so that

h
(1)
λ = ε1ε2

|λ|∑
m=1

1

h
(2)
λ = 2ε1ε2

|λ|∑
m=1

Σm

h
(3)
λ = 3ε1ε2

|λ|∑
m=1

Σ2
m + ε1ε2

ε1
2

4

|λ|∑
n=1

1

h
(4)
λ = 4ε1ε2

|λ|∑
m=1

Σ3
m + ε1ε2ε1

2

|λ|∑
n=1

Σm .

(4.30)
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4.3 Quantum KdV

Another very interesting limit to analyse is the δ → 0 limit which provides a connection

with quantum KdV system. Let us recall that KdV is a bi-Hamiltonian system, displaying

a further Poisson bracket structure behind the standard one (2.7), namely

{U(x),U(y)} = 2 (U(x) + U(y)) δ′(x− y) + δ′′′(x− y) . (4.31)

The mapping between the Hamiltonians of the integrable hierarchy with respect to the first

and second Hamiltonian structure can be obtained via the Miura transform

U(x) = ux(x)− u(x)2 . (4.32)

A quantization scheme for KdV system starting from the second Hamiltonian structure was

presented in [17] where it was shown that the quantum Hamiltonians corresponds to the

Casimir operators in the enveloping algebra UVir. In particular, the profile function U(x)

is the semiclassical limit of the energy-momentum tensor of the two-dimensional conformal

field theory.

It is interesting to observe that the chiral ring observables of the abelian six-dimensional

gauge theory provide an alternative quantization of the same system, obtained starting from

the first Poisson bracket structure. Indeed the quantum ILW Hamiltonian trΦ3 reads in

the U(1) case

HILW = (ε1 + ε2)
∑
p>0

p

2

qp + 1

qp − 1
α−pαp +

∑
p,q>0

[ε1ε2αp+qα−pα−q − α−p−qαpαq]

− ε1 + ε2
2

q + 1

q − 1

∑
p>0

α−pαp

(4.33)

where the free field is ∂φ = iQ
∑

k>0 z
kαk − iQε1ε2

∑
k>0 z

−kα−k and Q = b + 1/b, b =√
ε1/ε2. This reproduces in the semiclassical limit b → 0 the hydrodynamic profile ∂φ →

iQu and from (4.33) the ILW Hamiltonian up to and overall factor −(ε1 + ε2). Let us

notice that due to the twisting with the equivariant canonical bundle of C2, the Hermitian

conjugation for the oscillators reads α†k = ε1ε2α−k, α
†
−k = αk/ε1ε2. By setting θ = 0 and

in the 2πt = δ → 0 limit (4.33) reduces to

HqKdV = δ (ε1 + ε2)
∑
p>0

(1− p2)

12
α−pαp +

∑
p,q>0

[ε1ε2αp+qα−pα−q − α−p−qαpαq] (4.34)

which in turn corresponds to the quantum KdV Hamiltonian. Notice that the extra term

in trΦ2 in (4.33), which is crucial in order to get a finite t → 0 limit, is the counterpart

of the shift in ux/δ in the ILW equation (2.2). We expect that the spectrum of the higher

quantum KdV Hamiltonians can be obtained by substituting into (4.23) the solutions of

the N = 1 Bethe equations (4.11) expanded around t = 0.

The alternative expansion in an imaginary dispersion parameter θ around the disper-

sionless KdV point q = 1 of the quantum Hamiltonian has a nice interpretation in terms

of the orbifold quantum cohomology of the symmetric product of points Sk(C2). Indeed

when δ = 0, namely q = eiθ, the Hamiltonian of the six dimensional abelian gauge theory

can be shown [39] to reduce to that describing the orbifold quantum cohomology of the

symmetric product of points [48].
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Figure 1. The ILW Compass.

Let us finally remark that also the BLZ quantization scheme can be recovered in the

context of gauge theory. To this end, one has to consider the U(2) case, whose relevant

algebra is precisely H ⊕ Vir. In this case, the t → 0 limit of gl(2) quantum ILW reduces

to a decoupled U(1) current and the BLZ system of quantum Hamiltonians [20].

5 Discussion

The connection between six-dimensional gauge theory and quantum ILW system consti-

tutes the substratum of the observed equivalences [31, 48–51] among different enumerative

geometry results arising in different limits of the supersymmetric partition function. More

precisely, these can be resumed in the following figure 1.4

At the North corner the partition function is expanded around q = e−2πt = 0 namely

t→∞ and computes the equivariant quantum cohomology of the Hilbert scheme of points

in C2. This corresponds to the expansion of the ILW integrable system around the BO

point. At the South corner the expansion is instead around q = 1 and computes the orbifold

quantum cohomology of the symmetric product of points in C2. Here δ = 0 and t ∼ iθ

where θ is the expansion parameter for the orbifold quantum cohomology and the ILW

system is expanded around the dispersionless KdV point.

Equivalent counting problems are represented by the West-East corners. The West

corner provides an alternative interpretation of the expansion around the BO point in

terms of Donaldson-Thomas invariants of P1×C2. Finally the expansion in the East corner

corresponds to the all genus Gromov-Witten invariants of P1 × C2 with genus expansion

parameter gs ∼ −it.
The above picture is extended by our results also to the non-abelian case. The North

corner represents the equivariant quantum cohomology of the ADHM instanton moduli

space [19] while the West corner gives higher rank Donaldson-Thomas invariants formulated

in terms of ADHM moduli sheaves [46]. The South and East corners, while being well

defined from the computational viewpoint, still await a rigorous mathematical definition

to the best of our knowledge. In particular the South corner should provide the equivariant

4This figure is intentionally similar to the one in [48].
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quantum cohomology of the Uhlenbeck compactification of the instanton moduli space on

S4. The above figure 1 indicate dualities of quantum ILW system related to the modular

properties of its integral kernel that it would be interesting to analyse.

There is a number of further open questions to be discussed.

In this paper integrable systems of hydrodynamical type have been shown to govern BPS

states counting in supersymmetric gauge theories. These are of a different kind and play a

much different röle than the ones arising in the Seiberg-Witten theory. It is of paramount

importance to investigate whether an explicit connection between the two can be exta-

bilished. We observe that while the systems of SW type are related to an effective IR

description of the theory, the ones discussed in this paper are deeply interconnected with

instanton counting and then with the UV degrees of freedom of the gauge theory. It would

be very interesting to see if a connection arises from RG flow arguments.

We have shown that the equations of motion of periodic ILW system arise as hydrody-

namical limit of the elliptic Calogero-Moser ones. On the other hand it is known that the

quantum spectrum of the limiting BON system can be described in terms of N copies of

the trigonometric Calogero-Sutherland quantum Hamiltonians. It is thus a pressing ques-

tion to establish whether a similar relation can be found between quantum gl(N) ILW and

(copies of) quantum elliptic Calogero-Moser. To this end, and also for other purposes, a

generalization of our results to the K-theoretic setting would be welcome, see [52] for a dis-

cussion of the abelian case. This passes through the M-theory lift of the geometric set-up,

the extra circle encoding the K-theoretic structure. Doing so, one computes finite S2-size

corrections to the five-dimensional Nekrasov partition function in terms of equivariant

quantum K-theory of the ADHM instanton moduli space, and, from the integrable system

viewpoint, provides a connection with Ruijsenaars’s relativistic generalization of Calogero

systems. This could also suggest the existence of an integrable relativistic generalization

of ILW hydrodynamics based on q-deformed Virasoro algebra.

In this paper we pointed out a precise relation between the equivariant quantum coho-

mology of the ADHM instanton moduli space and quantum gl(N) ILW. Let us notice that

a relation between generalized two-dimensional topological gravity and classical ILW sys-

tem has been recently discussed in [53]. It would be interesting to investigate, for example

along the lines of [54], whether any relation exists between these results.

The same type of computations presented in this paper can be promptly generalised

to other Nakajima quiver varieties whose integrable system description is not known so far.

Finally, we discussed how the four-dimensional limit of our results provides a proof of

AGT correspondence involving H ⊕WN algebrae in full gauge theoretic terms. Along the

same lines one should be able to produce a proof also for other classical gauge groups.
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A Details on the proof of (2.13) and (2.18)

A.1 Proof of (2.13)

First of all we pass to the ζ-function representation of (2.13) by employing the identity

θ′1
(
π
Lz
)

θ1

(
π
Lz
) = ζ(z)− 2η1

L
z. (A.1)

As was mentioned all the dependence on η1 drops out in the result. After doing so and

computing ẍj from (2.13) we get

ẍj = −G2 (L1 + L2 + L3) , (A.2)

where

L1 = −
N∑
k=1

℘(xj − yk)

 N∑
l=1

ζ(xj − yl)−
∑
l 6=j

ζ(xj − xl) +

N∑
l=1

ζ(yk − xl)−
∑
l 6=k

ζ(yk − yl)


+
∑
k 6=j

℘(xj−xk)

 N∑
l=1

ζ(xj−yl)−
∑
l 6=j

ζ(xj−xl)−
N∑
l=1

ζ(xk−yl)+
∑
l 6=k

ζ(xk − xl)

 (A.3)

L2 =
2η1

L

−∑
k 6=j

(
℘(xj−xk)+

2η1

L

)∑
l

(xj−yl)−
∑
l 6=j

(xj−xl)−
∑
l

(xk−yl)+
∑
l 6=k

(xk − xl)


+
∑
k

(
℘(xj−yk)+

2η1

L

)∑
l

(xj−yl)−
∑
l 6=j

(xj−xl)+
∑
l

(yk−xl)−
∑
l 6=k

(yk−yl)

(A.4)

L3 =
2η1

L

−∑
k

∑
l

ζ(xj − yl)−
∑
l 6=j

ζ(xj − xl) +
∑
l

ζ(yk − xl)−
∑
l 6=k

ζ(yk − yl)


+
∑
k 6=j

∑
l

ζ(xj − yl)−
∑
l 6=j

ζ(xj − xl)−
∑
l

ζ(xk − yl) +
∑
l 6=k

ζ(xk − xl)

 . (A.5)

The terms L2 and L3 are manifestly vanishing. It is slightly more involved to show the

vanishing of L3. By collecting sums with common range, we have the relation

L3 =
2η1

L


∑
k 6=j

ζ(xj−xk)+
∑
l 6=k

ζ(xk−xl)


+
[
(yj−yk)

]
−
[
(xj−yk)

]
−
[
(yj−xk)

], (A.6)
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which vanishes term by term since∑
k 6=j

ζ(uj − vk) +
∑
l 6=k

ζ(vk − ul)

 =
∑
k 6=j

ζ(uj − vk) + ζ(vk − uj) +
∑
l 6=k,j

ζ(vk − ul)


=
∑
k 6=j

∑
l 6=k,j

ζ(vk − ul) =
∑

pairs(m,n),m 6=n
(m,n) 6=j

[
ζ(vm − un) + ζ(un − vm)

]
= 0, (A.7)

where we used that ζ is odd. Summarizing, we have ẍj = −G2L1 which matches (2.12) in

force of the following identity between Weierstrass ℘ and ζ functions

0 =
∑
k 6=j

℘′(xj − xk) (A.8)

+

N∑
k=1

℘(xj − yk)

 N∑
l=1

ζ(xj − yl)−
∑
l 6=j

ζ(xj − xl) +

N∑
l=1

ζ(yk − xl)−
∑
l 6=k

ζ(yk − yl)


−
∑
k 6=j

℘(xj − xk)

 N∑
l=1

ζ(xj − yl)−
∑
l 6=j

ζ(xj − xl)−
N∑
l=1

ζ(xk − yl) +
∑
l 6=k

ζ(xk − xl)

 .
We prove this identity using Liouville’s theorem. Let us denote the right hand side by

R
(
xj ; {xk}k 6=j , {yk}Nk=1

)
. R is a symmetric function under independent permutations of

{xk}k 6=j and {yk}Nk=1, respectively. Next, we show double periodicity in all variables.

Although the ζ’s introduce shifts, these cancel each other,5 so double periodicity follows

immediately. The non-trivial step is to show holomorphicity. First, the relation should hold

for all j. In particular we can choose j = 1, other cases are obtained just by relabeling.

By double periodicity we can focus only on poles at the origin, so there will be poles in

xj − yk and xj −xl, l 6= j. By the symmetries described above we have to check only three

cases: x1 − y1, x2 − y1 and x1 − x2. To do so, we use the Laurent series for ℘ and ζ

℘(z) =
1

z2
+ ℘R(z) , ℘R(z) =

∞∑
n=1

cn+1z
2n

ζ(z) =
1

z
+ ζR(z) , ζR(z) = −

∞∑
n=1

cn+1

2n+ 1
z2n+1 . (A.9)

Let us now show the vanishing of the residues at each pole.

Pole in x2 − y1. There are only two terms in (A.8) contributing

ζ(x2 − y1)
[
℘(x1 − x2)− ℘(x1 − y1)

]
∼ 1

x2 − y1

 1

(x1 − x2)2
− 1

(x1 − y1)2
+
∑
n≥1

cn+1

(
(x1 − x2)2n − (x1 − y1)2n

)
=
x2−y1

x2−y1

 1

(x1−x2)2(x1−y1)
+
∑
n≥1

cn+1

2n∑
k=1

(
2n

k

)
(−1)kx2n−k

1

k−1∑
l=0

xk−1−l
2 yl1

 . (A.10)

So indeed the residue vanishes.
5All ζ’s appear in pairs, where a given variable appears with positive and negative signs in the argument.
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Pole in x1 − y1. The terms contributing to this pole read

℘(x1 − y1)
∑
k 6=1

{[
ζ(x1 − yk)− ζ(y1 − yk)

]
−
[
ζ(x1 − xk)− ζ(y1 − xk)

]}
+ ζ(x1 − y1)

∑
k 6=1

[
℘(x1 − yk)− ℘(x1 − xk)

]
∼ 1

(x1 − y1)2

∑
k 6=1

{[
1

x1 − yk
− 1

y1 − yk

]
−
[

1

x1 − xk
− 1

y1 − xk

]

+
[
ζR(x1 − yk)− ζR(y1 − yk)

]
−
[
ζR(x1 − xk)− ζR(y1 − xk)

]}
+

1

x1 − y1

∑
k 6=1

[
℘R(x1 − yk)− ℘R(x1 − xk) +

1

(x1 − yk)2
− 1

(x1 − xk)2

]
. (A.11)

Collecting all the rational terms gives a regular term∑
k 6=1

[
1

(x1 − xk)2(y1 − xk)
− 1

(x1 − yk)2(y1 − yk)

]
(A.12)

and we stay with the rest∑
k 6=1

1

x1 − y1

{
℘R(x1 − yk)− ℘R(x1 − xk) +

1

x1 − y1

[ (
ζR(x1 − yk)− ζR(y1 − yk)

)
−
(
ζR(x1 − xk)− ζR(y1 − xk)

) ]}
. (A.13)

In the following we show that the terms in the square parenthesis in the above formula

factorizes a term (x1−y1) which, after combining with the rest, cancels the pole completely.

Indeed, we just use (A.9) and binomial theorem to get[
. . .
]

=−(x1−y1)
∑
n≥1

cn+1

2n+1

2n∑
l=1

(
2n+1

l

)
(−1)l

(
y2n+1−l
k −x2n+1−l

k

) l−1∑
m=0

yl−1−m
1 xm1

℘R(x1−yk)−℘R(x1−xk)=
∑
n≥1

cn+1

2n∑
l=1

(
2n

l−1

)
(−1)lxl−1

1

(
y2n+1−l
k −x2n+1−l

k

)
(A.14)

and after combining these two terms we get{
. . .
}

=
∑
n≥1

cn+1

2n∑
l=1

(
2n

l−1

)
(−1)l

(
y2n+1−l
k −x2n+1−l

k

)[
xl−1

1 − 1

l

l−1∑
m=0

yl−1−m
1 xm1

]
, (A.15)

however the terms in the square brackets of (A.15) factorizes once more a term (x1 − y1)[
. . .
]

= (x1 − y1)
1

l

l−1∑
m=1

(l −m)xl−1−m
1 ym−1

1 (A.16)

so that we end up with a regular term∑
k 6=1

∑
n≥1

cn+1

2n∑
l=1

(
2n

l − 1

)
(−1)l

l

(
y2n+1−l
k − x2n+1−l

k

) l−1∑
m=1

(l −m)xl−1−m
1 ym−1

1 . (A.17)

Summarizing, we have shown the vanishing of the residue at the pole in (x1 − y1) and we

now move on to the last one.
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Pole in x1 − x2. Analysis of (A.8) gives the following terms contributing to this pole

℘′(x1 − x2) + ζ(x1 − x2)

∑
k 6=1,2

℘(x1 − xk)−
∑
k

℘(x1 − yk)

 (A.18)

− ℘(x1 − x2)

∑
k

ζ(x1 − yk)−
∑
k 6=1

ζ(x1 − xk)−
∑
k

ζ(x2− yk) +
∑
k 6=2

ζ(x2 − xk)

 .
In analogy with the previous case let us first deal with the rational terms

−2

(x1 − x2)3
+

1

x1 − x2

∑
k 6=1,2

1

(x1 − xk)2
−
∑
k

1

(x1 − yk)2


− 1

(x1 − x2)2

 −2

x1 − x2
+
∑
k

(
1

x1 − yk
− 1

x2 − yk

)
−
∑
k 6=1,2

(
1

x1 − xk
− 1

x2 − xk

)
=
∑
k

1

(x1 − yk)2(x2 − yk)
−
∑
k 6=1,2

1

(x1 − xk)2(x2 − xk)
, (A.19)

which give a regular contribution as we wanted. For the remaining terms we can write,

using the same methods as above

1

x1 − x2

∑
k 6=1,2

℘R(x1 − xk)−
∑
k

℘R(x1 − yk)−
1

x1 − x2

∑
k

(ζ(x1 − yk)− ζ(x2 − yk))

−
∑
k 6=1,2

(ζ(x1 − xk)− ζ(x2 − xk))

 (A.20)

=
∑
n≥1

cn+1

2n+1∑
l=1

(
2n

l − 1

)
(−1)l

l

l−1∑
m=1

(l −m)xl−1−m
1 xm−1

2

∑
k 6=1,2

x2n+1−l
k −

∑
k

y2n+1−l
k

 ,
which explicitly shows the vanishing of the residue of this last pole.

We just showed that R
(
xj ; {xk}k 6=j , {yk}Nk=1

)
is holomorphic in the whole complex

plane for all variables. Liouville’s theorem then implies it must be a constant. Hence we

can set any convenient values for the variables to show this constant to be zero. Taking

the limit yk → 0 for all k we get

− lim
yk→0

∑
k

℘(x1−yk)
∑
l 6=k

1

yk−yl
+
∑
k 6=1

℘′(x1−xk)+N℘(x1)

Nζ(x1)−
∑
k 6=1

ζ(x1−xk)−
∑
k

ζ(xk)


−
∑
k 6=1

℘(x1 − xk)

Nζ(x1)−
∑
l 6=1

ζ(x1 − xl)−Nζ(xk) +
∑
l 6=k

ζ(xk − xl)

 . (A.21)

The first term can be written as

lim
yk→0

∑
pairs(m,n),m 6=n
m,n∈{1,...,N}

1

yn−ym

[
℘′(x1)(yn−ym)+O

(
(yn − ym)2

) ]
=
N(N − 1)

2
℘′(x1). (A.22)
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Sending xk → 0, k 6= 1 simplifies R further

(N − 1)

(
N

2
+ 1

)
℘′(x1)− (N − 1)℘(x1)ζ(x1)

+ lim
xk→0
k 6=1

∑
k 6=1

℘(x1 − xk)

Nζ(xk)−
∑
l 6=k

ζ(xk − xl)

−N℘(x1)
∑
k 6=1

ζ(xk)

 , (A.23)

where the second line yields

lim
xk→0
k 6=1

{
N
∑
k 6=1

1

xk

[
℘(x1 − xk)− ℘(x1)

]
︸ ︷︷ ︸

−N(N−1)℘′(x1)

−
∑
k 6=1

℘(x1 − xk)
∑
l 6=k

ζ(xk − xl)︸ ︷︷ ︸
(N−1)℘(x1)ζ(x1)+

(N−1)(N−2)
2

℘′(x1)

}
.

Putting everything together we finally obtain

const = lim
yk→0

xl→0,l 6=1

R(. . .) = 0 =⇒ R(. . .) = 0,

which concludes the proof of (A.8).

A.2 Proof of (2.18)

By simplifying the left hand side of (2.18) one gets

N∑
j=1

{
G

[
℘(z − xj)ζ(z − xj) +

1

2
℘′(z − xj)

]
+G

[
℘(z − yj)ζ(z − yj) +

1

2
℘′(z − yj)

]

+ ℘(z − xj)

−iẋj −G N∑
k=1

ζ(z − yk) +G
∑
k 6=j

ζ(z − xk)


+ ℘(z − yj)

iẏj −G N∑
k=1

ζ(z − xk) +G
∑
k 6=j

ζ(z − yk)


+G

2η1

L

[
iẏj − iẋj +G (℘(z − yj)− ℘(z − xj))

∑
k

(yk − xk)

]}
. (A.24)

Going on-shell w.r.t. auxiliary system (2.13), we arrive at

LHS = X1 +X2, (A.25)

where

X1 =

N∑
j=1

1

2
℘′(z−xj)+℘(z−xj)

 N∑
k=1

(ζ(z−xk)−ζ(z−yk)+ζ(xj−yk))−
∑
k 6=j

ζ(xj−xk)


+

1

2
℘′(z−yj)+℘(z−yj)

 N∑
k=1

(ζ(z−yk)−ζ(z−xk)+ζ(yj−xk))−
∑
k 6=j

ζ(yj−yk)


X2 = G2 2η1

L

N∑
j=1

∑
k 6=j

{
ζ(yj − xk) + ζ(xj − yk)− ζ(yj − yk)− ζ(xj − xk)

}
. (A.26)
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It is easy to see that X2 vanishes, since we can rearrange the sum to pairs of ζ’s with

positive and negative arguments respectively

X2 =G2 2η1

L

∑
pairs(m,n),m 6=n
m,n∈{1,...,N}

{[
ζ(ym−xn)+ζ(xn−ym)

]
+

[
ζ(xm−yn)+ζ(yn−xm)

]
(A.27)

−
[
ζ(xm−xn)+ζ(xn−xm)

]
−
[
ζ(ym−yn)+ζ(yn−ym)

]}
= 0.

The vanishing of X1 looks more intriguing, but actually reduces to the already proven

relation (A.8). Indeed, we can write X1 as

X1 =
1

2(N − 1)

N∑
j=1

[
R ({x}, {y})

∣∣∣
xj=z

+R ({x} ↔ {y})
∣∣∣
yj=z

]
= 0,

which concludes the proof of (2.18).

B Fock space formalism for the equivariant quantum cohomology of the

ADHM moduli space

Let us recall the Fock space description of the equivariant cohomology of the Hilbert scheme

of points of C2 — introduced in [55, 56] — following the notation of [48] and [31]. One

introduces creation-annihilation operators αk, k ∈ Z obeying the Heisenberg algebra

[αp, αq] = pδp+q . (B.1)

Positive modes annihilate the vacuum

αp|∅〉 = 0 , p > 0 (B.2)

and the natural basis of the Fock space is given by

|Y 〉 =
1

|Aut(Y )|
∏
i Yi

∏
i

αYi |∅〉 (B.3)

where |Aut(Y )| is the order of the automorphism group of the partition and Yi are the

lengths of the columns of the Young tableau Y . The number of boxes of the Young

tableau is counted by the eigenvalue of the energy operator K =
∑

p>0 α−pαp. Fix now the

subspace Ker(K − k) with k ∈ Z+ and allow linear combinations with coefficients being

rational functions of the equivariant weights. This space is identified with the equivariant

cohomology H∗T (Mk,1,Q). Explicitly

|Y 〉 ∈ H2n−2`(Y )
T (Mk,1,Q) , (B.4)

where `(Y ) denotes the number of parts of the partition Y .

According to [31], the generator of the small quantum cohomology is given by the state

|D〉 = −|2, 1k−2〉 describing the divisor which corresponds to the collision of two point-like

instantons.
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The operator generating the quantum product by |D〉 is given by the quantum

Hamiltonian

HD≡(ε1+ε2)
∑
p>0

p

2

(−q)p+1

(−q)p − 1
α−pαp+

∑
p,q>0

[ε1ε2αp+qα−pα−q−α−p−qαpαq]−
ε1+ε2

2

(−q)+1

(−q)−1
K

(B.5)

which can be recognized as the fundamental quantum Hamiltonian of the ILW system.

The generalization of the Fock space formalism to the rank N ADHM instanton moduli

space was given by Baranovsky in [57] in terms of N copies of Nakajima operators as

βk =
∑N

i=1 α
(i)
k . For example, in the N = 2 case the quantum Hamiltonian becomes

(modulo terms proportional to the quantum momentum) [25]

HD =
1

2

2∑
i=1

∑
n,k>0

[
ε1ε2α

(i)
−nα

(i)
−kα

(i)
n+k − α

(i)
−n−kα

(i)
n α

(i)
k

]
− ε1 + ε2

2

∑
k>0

k
[
α

(1)
−kα

(1)
k + α

(2)
−kα

(2)
k + 2α

(2)
−kα

(1)
k

]
− (ε1 + ε2)

∑
k>0

k
qk

1− qk
[
α

(1)
−kα

(1)
k + α

(2)
−kα

(2)
k + α

(2)
−kα

(1)
k + α

(1)
−kα

(2)
k

]
.

(B.6)

This is the same as the I3 Hamiltonian for gl(2) ILW given in [20]:

I3 =
∑
k 6=0

L−kak + 2iQ
∑
k>0

ka−kak
1 + qk

1− qk
+

1

3

∑
n+m+k=0

anamak . (B.7)

In fact, after rewriting the Virasoro generators in terms of Heisenberg generators

according to

Ln =
∑

k 6={0,n}

cn−kck + i(nQ− 2P )cn , [cm, cn] =
m

2
δm+n,0 (B.8)

and ignoring terms proportional to the momentum, we arrive to

I3 =
∑
n,k>0

[a−n−kcnck + 2a−nc−kcn+k + 2c−n−kcnak + c−nc−kan+k]

+ 2iQ
∑
k>0

k

[
a−kak −

1

2
(c−kak − a−kck)

]

+ 4iQ
∑
k>0

ka−kak
qk

1− qk
+
∑
n,k>0

a−n−kanak +
∑
n,k>0

a−na−kan+k

(B.9)

where we used∑
k 6=0

∑
n6={0,−k}

c−n−kcnak=
∑
n,k>0

[a−n−kcnck+2a−nc−kcn+k+2c−n−kcnak+c−nc−kan+k]. (B.10)

The ak can be related with the Baranovsky operators. Finally, by making the substitution

ak = − i
√
ε1ε2

α
(1)
k + α

(2)
k

2
, ck = − i

√
ε1ε2

α
(1)
k − α

(2)
k

2
(B.11)
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for positive modes and

a−k = i
√
ε1ε2

α
(1)
−k + α

(2)
−k

2
, c−k = i

√
ε1ε2

α
(1)
−k − α

(2)
−k

2
(B.12)

for the negative ones, we obtain

I3 =
i

2
√
ε1ε2

∑
n,k>0

[
ε1ε2α

(1)
−nα

(1)
−kα

(1)
n+k−α

(1)
−n−kα

(1)
n α

(1)
k +ε1ε2α

(2)
−nα

(2)
−kα

(2)
n+k − α

(2)
−n−kα

(2)
n α

(2)
k

]
+
iQ

2

∑
k>0

k
[
α

(1)
−kα

(1)
k + α

(2)
−kα

(2)
k + 2α

(2)
−kα

(1)
k

]
+ iQ

∑
k>0

k
qk

1− qk
[
α

(1)
−kα

(1)
k + α

(2)
−kα

(2)
k + α

(1)
−kα

(2)
k + α

(2)
−kα

(1)
k

]
(B.13)

in agreement with (B.6).

C BON Hamiltonians

In section 4.2 we observed that the spectrum of the chiral operator TrΦn+1 can be expressed

as a linear combination of the eigenvalues of the integrals of motion (IMs) of the Benjamin-

Ono integrable system.6 We showed explicitly the connection between SU(2) N = 2

supersymmetric Yang-Mills theory and Vir ⊕ H CFT. In this appendix we consider the

SU(N) gauge theory versus WN ⊕ H algebra, focusing mainly on I3, which we identify as

the basic Hamiltonian, whose spectrum was computed in [26]. As a preliminary check and

also to build the dictionary between [26] and [20] we can specialize to the Vir ⊕ H case.7

The dictionary is obtained by direct comparison of explicit expressions for IMs and their

eigenvalues and can be found in table 1.

Comparing the expressions for I+
3 (g) in [26] and I2 in [20] (the labelling is unfortunately

shifted) we get

I+
3 (g) = 2ibI2 =⇒ E

(3),+
−→
λ

(g) = 2ib

(
− i

2
h

(2)
−→
λ

∣∣∣
P=P∗

)
= b h

(2)
−→
λ

∣∣∣
P=P∗

. (C.1)

To highlight how one picks the special value P∗ let us still concentrate only on the Vir⊕H

case. Taking the result for E
(3),+
−→
λ

(g) from [26] and using the third row of table 1 we

can write

E
(3),+
(λ,µ) (g) = e

(3),+
λ (g) + e(3),+

µ (g)−
√

2g(q − α0)(|λ| − |µ|)

= bh
(2)
(λ,µ)(P ) + b

[√
2i(q − α0)− 2P

]
(|λ| − |µ|), (C.2)

6This is was checked up to n = 4, where explicit results for the eigenvalues of the IMs are available.
7In [26] the eigenvalues were computed for a special class of eigenstates. In general, the eigenvalues

depend on the momentum P , which characterizes the eigenstates, i.e. does not enter into the IMs. So

picking a special class of eigenstates translates into setting a given value of the momentum P = P∗.
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b i
√
g ε2

††

ak
√

2ak

P∗ special eigenstates a∗

b
(
h

(2)
λ (P )− 2P |λ|

)
e

(3),+
λ (g)

††Here we are taking ε1ε2 = 1.

Table 1. Dictionary between [26] and [20].

where α0 = i√
2
Q and q is a charge for the zero mode b0 of an auxiliary bosonic field,

b0|q〉 = q|q〉. By imposing (C.1) the bracket [. . .] is forced to vanish, which leads to

P∗ =
i√
2

(q − α0) . (C.3)

Finally, concluding the Vir ⊕ H CFT or SU(2) gauge theory respectively, we get for−→
λ = (λ, µ)

E
(3),+
−→
λ

(g) = b h
(2)
−→
λ

∣∣∣
P=P∗

= −ε2
TrΦ3−→

λ

3

∣∣∣∣∣
a=a∗

. (C.4)

At this point we are ready to make connection between the WN−1 ⊕ H CFT and

SU(N) gauge theory for I+
3 (g) and TrΦ3. First, we write the result for E

(3),+
−→
λ

(g) [26] and

manipulate it to a more convenient form for us

E
(3),+
−→
λ

(g) =

N∑
l=1

e
(3),+
λl

+ (1− g)

N∑
l=1

(N + 1− 2l)|λl|

= ε22

N∑
l=1

#rows(λl)∑
j=1

{(
al + ε1|rowj(λl)|+ ε2

(
j − 1

2

))2

−
(
al + ε2

(
j − 1

2

))2
}

− 2ε2

N∑
l=1

alλl +
(
1 + ε22

) N∑
l=1

(N + 1− 2l)|λl|. (C.5)

Then we need also to rewrite the expression for TrΦn+1 (4.25)

TrΦn+1
−→
λ

=

N∑
l=1

an+1
l +

N∑
l=1

#rows(λl)∑
j=1

(−ε2)

n∑
i=1

(
n+ 1

i

)(ε2
2

)n−i 1 + (−1)n−i

2

×

[(
al + ε1|rowj(λl)|+ ε2

(
j − 1

2

))i
−
(
al + ε2

(
j − 1

2

))i ]
. (C.6)

In particular, setting n = 3 in (C.6) and comparing with (C.5) leads to the desired relation

TrΦ3−→
λ

=

N∑
l=1

a3
l −

3

ε2
E

(3),+
−→
λ

(g) + 3

N∑
l=1

|λl|
[

1 + ε22
ε2

(N + 1− 2l)− 2al

]
. (C.7)
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The last piece has to vanish, thus fixing the special value a∗l

a∗l =
1 + ε22
ε2

1

2
(N + 1− 2l) = Qρl, (C.8)

where ρl are the components8 of the Weyl vector for SU(N).

Finally, the key relation connecting the operator TrΦ3 and the energy of BO3 integrable

system is

TrΦ3−→
λ

∣∣∣
a∗l

=
N∑
l=1

(a∗l )
3 − 3

ε2
E

(3),+
−→
λ

(g). (C.9)
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