

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

SISSA Digital Library

Yang-Mills-Higgs connections on Calabi-Yau manifolds

This is a pre print version of the following article:

Original

Yang-Mills-Higgs connections on Calabi-Yau manifolds / Biswas, I.; Bruzzo, Ugo; Graña Otero, B.; Lo Giudice, A.. - In: THE ASIAN JOURNAL OF MATHEMATICS. - ISSN 1093-6106. - 20:5(2016), pp. 989-1000.

Availability: This version is available at: 20.500.11767/11959 since:

Publisher:

Published DOI:10.4310/AJM.2016.v20.n5.a8

Terms of use: openAccess

Testo definito dall'ateneo relativo alle clausole di concessione d'uso

Publisher copyright

(Article begins on next page)

YANG-MILLS-HIGGS CONNECTIONS ON CALABI-YAU MANIFOLDS

INDRANIL BISWAS, UGO BRUZZO, BEATRIZ GRAÑA OTERO, AND ALESSIO LO GIUDICE

ABSTRACT. Let X be a compact connected Kähler–Einstein manifold with $c_1(TX) \ge 0$. If there is a semistable Higgs vector bundle (E, θ) on X with $\theta \ne 0$, then we show that $c_1(TX) = 0$; any X satisfying this condition is called a Calabi–Yau manifold, and it admits a Ricci–flat Kähler form [Ya]. Let (E, θ) be a polystable Higgs vector bundle on a compact Ricci–flat Kähler manifold X. Let h be an Hermitian structure on E satisfying the Yang–Mills–Higgs equation for (E, θ) . We prove that h also satisfies the Yang–Mills–Higgs bundles on X satisfying the Yang–Mills–Higgs equation for (E, 0). A similar result is proved for Hermitian structures on principal Higgs bundles on X satisfying the Yang–Mills–Higgs equation.

1. INTRODUCTION

Let X be a compact connected Kähler–Einstein manifold with $c_1(TX) \ge 0$. A Higgs vector bundle on X is a holomorphic vector bundle E on X equipped with a holomorphic section θ of End(E) $\bigotimes \Omega_X$ such that $\theta \wedge \theta = 0$. The definition of semistable and polystable Higgs vector bundles is recalled in Section 2. We prove that if there is a semistable Higgs vector bundle (E, θ) on X with $\theta \neq 0$, then $c_1(TX) = 0$ (see Proposition 2.1).

Let X be a compact connected Calabi–Yau manifold, which means that X is a Kähler manifold with $c_1(TX) = 0$. Fix a Ricci–flat Kähler form on X [Ya]. Let (E, θ) be a polystable Higgs vector bundle on X. Then there is a Hermitian structure on E that satisfies the Yang–Mills–Higgs equation for (E, θ) (this equation is recalled in Section 2). Fix a Hermitian structure h on E satisfying the Yang–Mills–Higgs equation for (E, θ) .

Our main theorem (Theorem 3.3) says that h also satisfies the Yang–Mills–Higgs equation for (E, 0).

We give an example to show that if a Hermitian structure h_0 on E satisfies the Yang– Mills–Higgs equation for (E, 0), then h_0 does not satisfy the Yang–Mills–Higgs equation for a general polystable Higgs vector bundle of the form (E, θ) (see Remark 3.4). In

²⁰¹⁰ Mathematics Subject Classification. 14F05, 14J32, 32L05, 53C07, 58E15.

Key words and phrases. Calabi-Yau manifold, approximate Hermitian-Yang-Mills structures, Hermitian-Yang-Mills metrics, polystability, Higgs field.

Remark 3.5 we describe how a Yang–Mills–Higgs Hermitian structure for (E, θ) can be constructed from a Yang–Mills–Higgs Hermitian structure for (E, 0).

Theorem 3.3 extends to the more general context of principal G-bundles on X with a Higgs structure, where G is a connected reductive affine algebraic group defined over \mathbb{C} ; this is carried out in Section 4.

2. HIGGS FIELD ON A KÄHLER-EINSTEIN MANIFOLD

We recall that a Kähler metric is called $K\ddot{a}hler-Einstein$ if its Ricci curvature is a constant real multiple of the Kähler form. Let X be a compact connected Kähler manifold admitting a Kähler-Einstein metric. We assume that $c_1(TX) \geq 0$; this is equivalent to the condition that the above mentioned scalar factor is nonnegative. Fix a Kähler-Einstein form ω on X. The cohomology class in $H^2(X, \mathbb{R})$ given by ω will be denoted by $\tilde{\omega}$.

Define the *degree* of a torsionfree coherent analytic sheaf F on X to be

$$\operatorname{degree}(F) := (c_1(F) \cup \widetilde{\omega}^{d-1}) \cap [X] \in \mathbb{R},$$

where d is the complex dimension of X. Throughout this paper, stability will be with respect to this definition of degree.

The holomorphic cotangent bundle of X will be denoted by Ω_X . A Higgs field on a holomorphic vector bundle E on X is a holomorphic section θ of $\operatorname{End}(E) \bigotimes \Omega_X = (E \bigotimes \Omega_X) \bigotimes E^*$ such that

$$\theta \bigwedge \theta = 0. \tag{2.1}$$

A Higgs vector bundle on X is a pair of the form (E, θ) , where E is a holomorphic vector bundle on X and θ is a Higgs field on E.

A Higgs vector bundle (E, θ) is called *stable* (respectively, *semistable*) if for all nonzero coherent analytic subsheaves $F \subset E$ with $0 < \operatorname{rank}(F) < \operatorname{rank}(E)$ and $\theta(F) \subseteq F \bigotimes \Omega_X$, we have

$$\frac{\operatorname{degree}(F)}{\operatorname{rank}(F)} < \frac{\operatorname{degree}(E)}{\operatorname{rank}(E)} \quad (\text{respectively}, \ \frac{\operatorname{degree}(F)}{\operatorname{rank}(F)} \le \frac{\operatorname{degree}(E)}{\operatorname{rank}(E)}) \,.$$

A semistable Higgs vector bundle (E, θ) is called *polystable* if it is a direct sum of stable Higgs vector bundles.

Let Λ_{ω} denote the adjoint of multiplication of differential forms on X by ω . In particular, Λ_{ω} sends a (p, q)-form on X to a (p - 1, q - 1)-form. Given a Higgs vector bundle (E, θ) on X, the Yang-Mills-Higgs equation for the Hermitian structures h on E states that

$$\Lambda_{\omega}(\mathcal{K}_h + \theta \wedge \theta^*) = c\sqrt{-1} \cdot \mathrm{Id}_E, \qquad (2.2)$$

where $\mathcal{K}_h \in C^{\infty}(X, \operatorname{End}(E) \bigotimes \Omega_X^{1,1})$ is the curvature of the Chern connection on E for h, the adjoint θ^* of θ is with respect to h, and c is a constant scalar (it lies in \mathbb{R}). A Hermitian structure on E is called Yang–Mills–Higgs for (E, θ) if it satisfies the equation in (2.2).

Proposition 2.1. If there is a semistable Higgs bundle (E, θ) on X such that $\theta \neq 0$, then $c_1(TX) = 0$.

Proof. The Higgs field θ on E induces a Higgs field on End(E), which we will denote by $\hat{\theta}$. We recall that for any locally defined holomorphic sections s of End(E),

$$\widehat{\theta}(s) = \left[\theta, s\right].$$

Let

$$\theta' = \widehat{\theta} \otimes \mathrm{Id}_{\Omega_X}. \tag{2.3}$$

This is a Higgs field for $\operatorname{End}(E) \bigotimes \Omega_X$. We note that the integrability condition in (2.1) implies that $\theta'(\theta) = 0$.

Assume that (E, θ) is semistable with $\theta \neq 0$, and also assume that $c_1(TX) \neq 0$. Since (X, ω) is Kähler–Einstein with $c_1(TX) \geq 0$, the condition $c_1(TX) \neq 0$ implies that the anti-canonical line bundle $\bigwedge^d TX$ is positive, so X is a complex projective manifold. Also, the cohomology class of ω is a positive multiple of the ample class $c_1(TX)$.

We shall use the fact that the tensor product of semistable Higgs bundles on a polarized complex projective manifold, with the induced Higgs field, is semistable [Si2, Cor. 3.8]. Thus, $(\text{End}(E), \hat{\theta})$ is semistable. Moreover, since ω is Kähler–Einstein, Ω_X is a polystable vector bundle, in particular it is semistable. Then $(\Omega_X, 0)$ is a semistable Higgs bundle. As a result, the Higgs bundle $(\text{End}(E) \bigotimes \Omega_X, \theta')$ is semistable.

The homomorphism

$$\mathcal{O}_X \longrightarrow \operatorname{End}(E) \otimes \Omega_X, f \longmapsto f\theta$$

defines a homomorphism of Higgs vector bundles

$$\varphi : (\mathcal{O}_X, 0) \longrightarrow (\operatorname{End}(E) \otimes \Omega_X, \theta').$$
 (2.4)

As $\theta \neq 0$, the homomorphism φ in (2.4) is nonzero. Since $(\text{End}(E) \otimes \Omega_X, \theta')$ is semistable, we have

$$0 = \frac{\operatorname{degree}(\mathcal{O}_X)}{\operatorname{rank}(\mathcal{O}_X)} = \frac{\operatorname{degree}(\varphi(\mathcal{O}_X))}{\operatorname{rank}(\varphi(\mathcal{O}_X))} \le \frac{\operatorname{degree}(\operatorname{End}(E) \otimes \Omega_X)}{\operatorname{rank}(\operatorname{End}(E) \otimes \Omega_X)} = \frac{\operatorname{degree}(\Omega_X)}{\operatorname{rank}(\Omega_X)}; \quad (2.5)$$

the last equality follows from the fact that $c_1(\text{End}(E)) = 0$. Therefore,

$$\operatorname{degree}(\Omega_X) \ge 0. \tag{2.6}$$

Recall that $c_1(TX) \ge 0$ and X admits a Kähler–Einstein metric. So, (2.6) contradicts the assumption that $c_1(TX) \ne 0$. Therefore, we conclude that

$$c_1(TX) = 0. (2.7)$$

Consequently, ω is Ricci-flat, in particular, X is a Calabi–Yau manifold.

A well-known theorem due to Simpson says that E admits an Hermitian structure that satisfies the Yang–Mills–Higgs equation for (E, θ) if and only if (E, θ) is polystable [Si1, Thm. 1] (see also [Si2]); when X is a compact Riemann surface and rank(E) = 2, this was first proved in [Hi].

The Chern connection on E for h will be denoted by ∇^h . Let $\widehat{\nabla}^h$ denote the connection on $\operatorname{End}(E) = E \bigotimes E^*$ induced by ∇^h . The Levi–Civita connection on Ω_X associated to ω and the connection $\widehat{\nabla}^h$ on $\operatorname{End}(E)$ together produce a connection on $\operatorname{End}(E) \bigotimes \Omega_X$. This connection on $\operatorname{End}(E) \bigotimes \Omega_X$ will be denoted by $\nabla^{\omega,h}$.

Proposition 2.2. Assume that the Hermitian structure h satisfies the Yang–Mills–Higgs equation in (2.2) for (E, θ) . Then the section θ of End $(E) \bigotimes \Omega_X$ is flat (meaning covariantly constant) with respect to the connection $\nabla^{\omega,h}$ constructed above.

Proof. The Hermitian structure h on E produces an Hermitian structure on $\operatorname{End}(E)$, which will be denoted by \hat{h} . The connection $\widehat{\nabla}^h$ on $\operatorname{End}(E)$ defined earlier is in fact the Chern connection for \hat{h} . The Kähler form ω and the Hermitian structure \hat{h} together produce an Hermitian structure on $\operatorname{End}(E) \bigotimes \Omega_X$. This Hermitian structure on $\operatorname{End}(E) \bigotimes \Omega_X$ will be denoted by h^{ω} . We note that the connection $\nabla^{\omega,h}$ in the statement of the proposition is the Chern connection for h^{ω} .

Since ω is Kähler–Einstein, the Hermitian structure on Ω_X induced by ω satisfies the Yang–Mills–Higgs equation for the Higgs vector bundle $(\Omega_X, 0)$. As h satisfies the Yang–Mills–Higgs equation for (E, θ) , this implies that h^{ω} satisfies the Yang–Mills–Higgs equation for the Higgs vector bundle $(\text{End}(E) \bigotimes \Omega_X, \theta')$ constructed in (2.3). In particular, the Higgs vector bundle $(\text{End}(E) \bigotimes \Omega_X, \theta')$ is polystable. The Proposition is obvious if $\theta = 0$. Assume that $\theta \neq 0$; then φ defined in (2.4) is nonzero.

Since $c_1(\Omega_X) = 0$, the inequality in (2.5) is an equality. Now from [Si1, Prop. 3.3] it follows immediately that

- $\varphi(\mathcal{O}_X)$ in (2.4) is a subbundle of End(*E*),
- the orthogonal complement $\varphi(\mathcal{O}_X)^{\perp} \subset \operatorname{End}(E) \bigotimes \Omega_X$ of $\varphi(\mathcal{O}_X)$ with respect to the Yang–Mills–Higgs Hermitian structure h^{ω} is preserved by θ' , and
- $(\varphi(\mathcal{O}_X)^{\perp}, \theta'|_{\varphi(\mathcal{O}_X)^{\perp}})$ is polystable with

$$\frac{\operatorname{degree}(\varphi(\mathcal{O}_X)^{\perp})}{\operatorname{rank}(\varphi(\mathcal{O}_X)^{\perp})} = \frac{\operatorname{degree}(\operatorname{End}(E) \otimes \Omega_X)}{\operatorname{rank}(\operatorname{End}(E) \otimes \Omega_X)} = 0.$$

We note that [Si1, Prop. 3.3] also says that the Hermitian structure on the image of φ induced by h^{ω} satisfies the Yang–Mills–Higgs equation for the Higgs vector bundle $(\varphi(\mathcal{O}_X), 0)$. Since the above orthogonal complement $\varphi(\mathcal{O}_X)^{\perp} \subset \operatorname{End}(E) \bigotimes \Omega_X$ is a holomorphic subbundle,

- the connection $\nabla^{\omega,h}$ preserves $\varphi(\mathcal{O}_X)$,
- and the connection on $\varphi(\mathcal{O}_X)$ obtained by restricting $\nabla^{\omega,h}$ coincides with the Chern connection for the Hermitian structure $h^{\omega}|_{\varphi(\mathcal{O}_X)}$.

Also, recall that $h^{\omega}|_{\varphi(\mathcal{O}_X)}$ satisfies the Yang–Mills–Higgs equation for the Higgs vector bundle $(\varphi(\mathcal{O}_X), 0)$. These together imply that all holomorphic sections of $\varphi(\mathcal{O}_X)$ over X are flat with respect to the Yang–Mills–Higgs connection $\nabla^{\omega,h}$ on $\operatorname{End}(E) \bigotimes \Omega_X$. In particular, the section θ is flat with respect to $\nabla^{\omega,h}$.

2.1. Decomposition of a Higgs field. In view of Proposition 2.1, henceforth we assume that $c_1(TX) = 0$. Therefore, the Kähler–Einstein form ω is Ricci–flat. For any point $x \in X$, the fiber of the vector bundle Ω_X over x will be denoted by $\Omega_{X,x}$.

Let (E, θ) be a polystable Higgs vector bundle on X. For any point $x \in X$, we have a homomorphism

$$\eta_x : T_x X \longrightarrow \operatorname{End}(E_x), \quad \eta_x(v) = i_v(\theta(x)), \quad (2.8)$$

where $i_v : \Omega_{X,x} \longrightarrow \mathbb{C}, z \longmapsto z(v)$, is the contraction of forms by the tangent vector v.

Lemma 2.3. For any two points x and y of X, there are isomorphisms

 $\alpha : T_x X \longrightarrow T_y X \quad and \quad \beta : E_x \longrightarrow E_y$ such that $\beta(\eta_x(v)(u)) = (\eta_u(\alpha(v)))(\beta(u))$ for all $v \in T_x X$ and $u \in E_x$.

Proof. Let h be an Hermitian structure on E satisfying the Yang–Mills–Higgs equation for (E, θ) . As before, the Chern connection on E associated to h will be denoted by ∇^h .

Fix a C^{∞} path $\gamma : [0,1] \longrightarrow X$ such that $\gamma(0) = x$ and $\gamma(1) = y$. Take α to be the parallel transport of $T_x X$ along γ for the Levi–Civita connection associated to ω . Take β to be the parallel transport of E_x along γ for the above connection ∇^h . Using Proposition 2.2 it is straightforward to deduce that

$$\beta(\eta_x(v)(u)) = (\eta_y(\alpha(v)))(\beta(u))$$

for all $v \in T_x X$ and $u \in E_x$.

From (2.1) it follows immediately that for any $v_1, v_2 \in T_x X$, we have

$$\eta_x(v_1) \circ \eta_x(v_2) = \eta_x(v_2) \circ \eta_x(v_1) \,,$$

where η_x is constructed in (2.8). In view of this commutativity, there is a generalized eigenspace decomposition of E_x for $\{\eta_x(v)\}_{v\in T_xX}$. More precisely, we have distinct elements $u_1^x, \dots, u_m^x \in \Omega_{X,x}$ and a decomposition

$$E_x = \bigoplus_{i=1}^m E_x^i \tag{2.9}$$

such that

• for all $v \in T_x$ and $1 \leq i \leq m$,

$$\eta_x(v)(E_x^i) \subseteq E_x^i, \qquad (2.10)$$

• the endomorphism of E_x^i

$$\eta_x(v)|_{E_x^i} - u_i^x(v) \cdot \operatorname{Id}_{E_x^i} \tag{2.11}$$

is nilpotent.

Therefore, these elements $\{u_i^x\}_{i=1}^m$ are the joint generalized eigenvalues of $\{\eta_x(v)\}_{v\in T_xX}$. Note however that there is no ordering of the elements $\{u_i^x\}_{i=1}^m$. From Lemma 2.3 it follows immediately that the integer m is independent of x.

Let Y' denote the space of all pairs of the form (x, ϵ) , where $x \in X$ and

$$\epsilon : \{1, \cdots, m\} \longrightarrow \{u_i^x\}_{i=1}^m$$

is a bijection. Clearly, Y' is an étale Galois cover of X with the permutations of $\{1, \dots, m\}$ as the Galois group. We note that Y' need not be connected. Fix a connected component $Y \subset Y'$. Let

$$\varpi: Y \longrightarrow X, \ (x,\epsilon) \longmapsto x \tag{2.12}$$

be the projection. So ϖ is an étale Galois covering map.

For any $y = (x, \epsilon) \in Y$, and any $i \in \{1, \dots, m\}$, the element $\epsilon(i) \in \{u_i^x\}_{i=1}^m$ will be denoted by $\widehat{u}_i^{\varpi(y)}$.

Therefore, from (2.9) we have a decomposition

$$\varpi^* E = \bigoplus_{i=1}^m F_i \,, \tag{2.13}$$

where the subspace $(F_i)_y \subset (\varpi^* E)_y = E_{\varpi(y)}, y \in Y$, is the subspace of $E_{\varpi(y)}$ which is the generalized simultaneous eigenspace of $\{\eta_x(v)\}_{v\in T_{\varpi(y)}X}$ for the eigenvalue $\widehat{u}_i^{\varpi(y)}(v)$ (the element $\widehat{u}_i^{\varpi(y)}$ is defined above).

Clearly, (2.13) is a holomorphic decomposition of the holomorphic vector bundle $\varpi^* E$. Consider the Higgs field $\varpi^* \theta \in H^0(Y, \operatorname{End}(\varpi^* E) \bigotimes \Omega_Y)$ on $\varpi^* E$, where $\Omega_Y = \varpi^* \Omega_X$ is the holomorphic cotangent bundle of Y. From (2.10) it follows immediately that

$$(\varpi^*\theta)(F_i) \subseteq F_i \otimes \Omega_Y.$$
(2.14)

Let

$$\theta_i := (\varpi^* \theta)|_{F_i} \tag{2.15}$$

be the Higgs field on F_i obtained by restricting $\varpi^* \theta$.

Equip Y with the pulled back Kähler form $\varpi^*\omega$. Consider the Hermitian structure ϖ^*h on ϖ^*E , where h, as before, is a Hermitian structure on E satisfying the Yang–Mills–Higgs equation for (E, θ) . It is straightforward to check that ϖ^*h satisfies the Yang–Mills–Higgs equation for $(\varpi^*E, \varpi^*\theta)$. In particular, $(\varpi^*E, \varpi^*\theta)$ is polystable. The restriction of ϖ^*h to the subbundle F_i in (2.13) will be denoted by h_i . Since

$$(\varpi^* E, \varpi^* \theta) = \bigoplus_{i=1}^m (F_i, \theta_i),$$

where θ_i is constructed in (2.15), and ϖ^*h satisfies the Yang–Mills–Higgs equation for $(\varpi^*E, \varpi^*\theta)$, it follows that h_i satisfies the Yang–Mills–Higgs equation for (F_i, θ_i) [Si1, p. 878, Theorem 1]. Consequently, (F_i, θ_i) is polystable. We note that the polystability of (F_i, θ_i) also follows form the fact that (F_i, θ_i) is a direct summand of the polystable Higgs vector bundle $(\varpi^*E, \varpi^*\theta)$.

Let

$$\operatorname{tr}(\theta_i) \in H^0(Y, \Omega_Y) \tag{2.16}$$

be the trace of θ_i . Let r_i be the rank of the vector bundle F_i . Define

$$\widetilde{\theta}_i := \theta_i - \frac{1}{r_i} \mathrm{Id}_{F_i} \otimes \mathrm{tr}(\theta_i) \in H^0(Y, \mathrm{End}(F_i) \otimes \Omega_Y).$$
(2.17)

We note that $\tilde{\theta}_i$ is also a Higgs field on F_i .

Corollary 2.4. The section $\theta_i \in H^0(Y, \operatorname{End}(F_i) \bigotimes \Omega_Y)$ in (2.15) is flat with respect to the connection on $\operatorname{End}(F_i) \bigotimes \Omega_Y$ constructed from h_i and $\varpi^*\omega$. Similarly, $\tilde{\theta}_i$ in (2.17) is flat with respect to this connection on $\operatorname{End}(F_i) \bigotimes \Omega_Y$.

Proof. We noted earlier that h_i satisfies the Yang–Mills–Higgs equation for (F_i, θ_i) . From this it follows that h_i also satisfies the Yang–Mills–Higgs equation for $(F_i, \tilde{\theta}_i)$. Therefore, substitutions of (F_i, θ_i, h_i) and $(F_i, \tilde{\theta}_i, h_i)$ in place of (E, θ, h) in Proposition 2.2 yield the result.

Proposition 2.5. The Higgs field $\tilde{\theta}_i$ on F_i in (2.17) vanishes identically.

Proof. Since the endomorphism in (2.11) is nilpotent, it follows that

$$\widehat{\theta}_i(y)(v) \in \operatorname{End}(\varpi^* E_y) = \varpi^* \operatorname{End}(E_y) = \operatorname{End}(E_{\varpi(y)})$$

is nilpotent for all $y \in Y$ and $v \in T_y Y$. Consider the homomorphism

$$\widetilde{\theta}_i : F_i \longrightarrow F_i \otimes \Omega_Y, \quad z \longmapsto \widetilde{\theta}_i(y)(z) \quad \forall \ z \in (F_i)_y.$$
(2.18)

Let

$$\mathcal{V}_i := \operatorname{kernel}(\widetilde{\widetilde{\theta}_i}) \subset F_i \tag{2.19}$$

be the kernel of it. From Corollary 2.4 it follows that the subsheaf $\mathcal{V}_i \subset F_i$ is a subbundle. We also note that \mathcal{V}_i is of positive rank.

Let

$$\widetilde{\theta}_i^f = \widetilde{\theta}_i \otimes \mathrm{Id}_{\Omega_Y}$$

be the Higgs field on $F_i \bigotimes \Omega_Y$. Since $\varpi^* \omega$ is Kähler–Einstein, and h_i satisfies the Yang– Mills–Higgs equation for $(F_i, \tilde{\theta}_i)$, the Hermitian structure on $F_i \bigotimes \Omega_Y$ induced by the combination of h_i and $\varpi^* \omega$ satisfies the Yang–Mills–Higgs equation for $(F_i \bigotimes \Omega_Y, \tilde{\theta}_i^f)$. In particular, $(F_i \bigotimes \Omega_Y, \tilde{\theta}_i^f)$ is polystable.

Note that

$$\frac{\operatorname{degree}(F_i \otimes \Omega_Y)}{\operatorname{rank}(F_i \otimes \Omega_Y)} = \frac{\operatorname{degree}(F_i)}{\operatorname{rank}(F_i)} + \frac{\operatorname{degree}(\Omega_Y)}{\operatorname{rank}(\Omega_Y)} = \frac{\operatorname{degree}(F_i)}{\operatorname{rank}(F_i)}; \quad (2.20)$$

the last equality follows from the fact that $c_1(\Omega_Y) = 0$. The homomorphism $\tilde{\theta}_i$ in (2.18) is compatible with the Higgs fields $\tilde{\theta}_i$ and $\tilde{\theta}_i^f$ on F_i and $F_i \bigotimes \Omega_Y$ respectively, meaning $\tilde{\theta}_i \circ \tilde{\theta}_i = \tilde{\theta}_i \circ \tilde{\theta}_i$. From the definition of \mathcal{V}_i in (2.19) it follows immediately that $\tilde{\theta}_i|_{\mathcal{V}_i} = 0$. Hence $(\mathcal{V}_i, 0)$ is a Higgs subbundle of $(F_i, \tilde{\theta}_i)$. Since both $(F_i, \tilde{\theta}_i)$ and $(F_i \bigotimes \Omega_Y, \tilde{\theta}_i^f)$ are semistable of same slope (see (2.20)), we conclude that $(\mathcal{V}_i, 0)$ is a Higgs subbundle of $(F_i, \tilde{\theta}_i)$ of same slope (same as that of F_i). Now, as $(F_i, \tilde{\theta}_i)$ is polystable, the Higgs subbundle $(\mathcal{V}_i, 0)$ of same slope has a direct summand.

Let $(W_i, \theta_i^c) \subset (F_i, \tilde{\theta}_i)$ be a direct summand of $(\mathcal{V}_i, 0)$. If $W_i = 0$, then the proof is complete. So assume that $W_i \neq 0$.

Substituting (W_i, θ_i^c) in place of $(F_i, \tilde{\theta}_i)$ in the above argument and iterating the argument, we conclude that $\tilde{\theta}_i = 0$.

Corollary 2.6. Let X be a compact 1-connected Calabi–Yau manifold. If (E, θ) is a polystable Higgs vector bundle on X, then $\theta = 0$.

Proof. Since X is simply connected, it follows that ϖ in (2.12) is an isomorphism. We have $H^0(X, \Omega_X) = 0$, because $b_1(X) = 0$ and dim $H^0(X, \Omega_X) = b_1(X)/2$. Therefore, $\operatorname{tr}(\theta_i)$ in (2.16) vanishes identically, and hence $\tilde{\theta}_i$ in (2.17) is θ_i itself. Now Proposition 2.5 completes the proof.

3. INDEPENDENCE OF YANG-MILLS-HIGGS HERMITIAN STRUCTURE

As before, X is a compact connected Kähler manifold with $c_1(TX) = 0$, and ω is a Ricci-flat Kähler form on X. Let (E, θ) be a polystable Higgs vector bundle on X. Let h be a Hermitian structure on E satisfying the Yang–Mills–Higgs equation for (E, θ) . We will continue to use the set-up of Section 2.

Lemma 3.1. The decomposition in (2.13) is orthogonal with respect to the pulled back Hermitian structure ϖ^*h on ϖ^*E .

Proof. The decomposition in (2.13) gives a decomposition of the Higgs vector bundle $(\varpi^* E, \varpi^* \theta)$

$$(\varpi^* E, \varpi^* \theta) = \bigoplus_{i=1}^m (F_i, \theta_i),$$

where θ_i are constructed in (2.15). Recall that $(\varpi^* E, \varpi^* \theta)$ and all (F_i, θ_i) are polystable. If \tilde{h}_i , $1 \leq i \leq m$, is a Hermitian structure on F_i satisfying the Yang–Mills–Higgs equation for (F_i, θ_i) , then the Hermitian structure $\bigoplus_{i=1}^m \tilde{h}_i$ on $\varpi^* E$, constructed using the decomposition in (2.13), clearly satisfies the Yang–Mills–Higgs equation for $(\varpi^* E, \varpi^* \theta)$.

Any two Hermitian structures on $\varpi^* E$ that satisfy the Yang–Mills–Higgs equation for $(\varpi^* E, \varpi^* \theta)$, differ by a holomorphic automorphism of the Higgs vector bundle $(\varpi^* E, \varpi^* \theta)$ [Si1, p. 878, Theorem 1]. In particular, there is a holomorphic automorphism

$$T: \varpi^*E \longrightarrow \varpi^*E$$

such that $(T \otimes \mathrm{Id}_{\Omega_Y}) \circ (\varpi^* \theta) = (\varpi^* \theta) \circ T$, and

$$\bigoplus_{i=1}^{m} \widetilde{h}_i(a, b) = \varpi^* h(T(a), T(b)).$$
(3.1)

Therefore, the lemma follows once it is shown that any holomorphic automorphism of the Higgs vector bundle $(\varpi^* E, \varpi^* \theta)$ preserves the decomposition in (2.13). Note that the decomposition in (2.13) is orthogonal for the above Hermitian structure $\bigoplus_{i=1}^{m} \tilde{h}_i$ on $\varpi^* E$. If the above automorphism T preserves the decomposition in (2.13), then from (3.1) it follows immediately that the decomposition in (2.13) is orthogonal with respect to $\varpi^* h$.

From the construction of the decomposition in (2.13) it follows that the *m* sections

$$\frac{1}{r_1} \operatorname{tr}(\theta_1), \cdots, \frac{1}{r_m} \operatorname{tr}(\theta_m) \in H^0(Y, \Omega_Y)$$

in (2.16) and (2.17) are distinct; as mentioned just before (2.9), the elements $\{u_i^x\}_{i=1}^m$ are all distinct. Indeed, (2.13) is the generalized eigenspace decomposition for $\varpi^*\theta$, and $\frac{1}{r_1} \operatorname{tr}(\theta_1), \cdots, \frac{1}{r_m} \operatorname{tr}(\theta_m)$ are the eigenvalues. It now follows that any automorphism of the Higgs vector bundle ($\varpi^* E, \varpi^* \theta$) preserves the decomposition in (2.13). As observed earlier, this completes the proof.

Lemma 3.2. The section

$$\theta \bigwedge \theta^* \in C^{\infty}(X, \operatorname{End}(E) \otimes \Omega^{1,1}_X)$$

(see (2.2)) vanishes identically.

Proof. Consider θ_i defined in (2.15). From Proposition 2.5 it follows immediately that

$$\widetilde{\theta}_i \bigwedge \widetilde{\theta}_i^* = 0.$$
(3.2)

Since the decomposition in (2.13) is orthogonal by Lemma 3.1, from (3.2) and (2.17) we conclude that

$$(\varpi^*\theta)\bigwedge(\varpi^*\theta^*) = 0.$$

This implies that $\theta \wedge \theta^* = 0$.

Theorem 3.3. Let (E, θ) be a polystable Higgs vector bundle on X equipped with a Yang– Mills–Higgs structure h. Then h also satisfies the Yang–Mills–Higgs equation for the Higgs vector bundle (E, 0).

Proof. In view of Lemma 3.2, this follows immediately from (2.2).

Remark 3.4. It should be clarified that the converse of Theorem 3.3 is not valid. In other words, if h is an Hermitian structure on E satisfying the Yang–Mills–Higgs equation for (E, 0), then h need not satisfy the Yang–Mills–Higgs equation for (E, θ) . The reason for it is that the automorphism group of (E, 0) is in general bigger than the automorphism group of (E, θ) . To give an example, take X to be a complex elliptic curve equipped with a flat metric. Take E to be the trivial vector bundle $\mathcal{O}_X^{\oplus 2}$ on X of rank two. Let θ be the Higgs field on $\mathcal{O}_X^{\oplus 2}$ given by the matrix

$$A := \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix};$$

fixing a trivialization of Ω_X , we identify the Higgs fields on $\mathcal{O}_X^{\oplus 2}$ with the 2 × 2 complex matrices. This Higgs vector bundle (E, θ) is polystable because the matrix A is semisimple. The Hermitian structure on $\mathcal{O}_X^{\oplus 2}$ given by the standard inner product on \mathbb{C}^2 satisfies the Yang–Mills–Higgs equation for (E, 0), but this Hermitian structure does not satisfy Yang–Mills–Higgs equation for (E, θ) (because $AA^* \neq A^*A$).

Remark 3.5. Let (E, θ) be a polystable Higgs vector bundle on X. From Theorem 3.3 we know that the Higgs vector bundle (E, 0) is polystable. Fix a Hermitian structure h_0 on E satisfying the Yang–Mills–Higgs equation for (E, 0). Any other Hermitian structure on E that satisfies the Yang–Mills–Higgs equation for (E, 0) differs from h_0 by a holomorphic automorphism of E. Take a holomorphic automorphism T of E such that the Hermitian structure $h := T^*h_0$ on E has the following property:

$$\theta \bigwedge \theta^{*_h} = 0$$

where θ^{*_h} is the adjoint of θ constructed using h. From Lemma 3.2 and Theorem 3.3 it follows that such an automorphism T exists. The above Hermitian structure h satisfies the Yang–Mills–Higgs equation for (E, θ) .

4. Polystable principal Higgs G-bundles

Let G be a connected reductive affine algebraic group defined over \mathbb{C} . The Lie algebra of G will be denoted by \mathfrak{g} . As before, X is a compact connected Kähler manifold equipped with a Ricci-flat Kähler form ω . Let $E_G \longrightarrow X$ be a holomorphic principal G-bundle. Its adjoint vector bundle $E_G \times^G \mathfrak{g}$ will be denoted by $\mathrm{ad}(E_G)$. A Higgs field on E_G is a holomorphic section

$$\theta \in H^0(X, \operatorname{ad}(E_G) \otimes \Omega_X)$$

such that the section $\theta \wedge \theta$ of $\operatorname{ad}(E_G) \bigotimes \Omega_X^2$ vanishes identically. A Higgs *G*-bundle on *X* is a pair of the form (E_G, θ) , where E_G is a holomorphic principal *G*-bundle on *X*, and θ is a Higgs field on E_G .

Fix a maximal compact subgroup

$$K_G \subset G$$
.

A Hermitian structure on a holomorphic principal G-bundle E_G on X is a C^{∞} reduction of structure group of E_G

$$E_{K_G} \subset E_G$$

to the subgroup K_G . There is a unique C^{∞} connection ∇ on the principal K_G -bundle E_{K_G} such that the connection on E_G induced by ∇ is compatible with the holomorphic structure of E_G [At, p. 191–192, Proposition 5]. Using the decomposition $\mathfrak{g} = \operatorname{Lie}(K) \oplus \mathfrak{p}$, given any Higgs field θ on E_G , we have

$$\theta^* \in C^{\infty}(X; \operatorname{ad}(E_G) \otimes \Omega^{0,1}_X)$$
 .

Let (E_G, θ) be a Higgs *G*-bundle on *X*. The center of the Lie algebra \mathfrak{g} will be denoted by $z(\mathfrak{g})$. Since the adjoint action of *G* on $z(\mathfrak{g})$ is trivial, we have an injective homomorphism

$$\psi : X \times z(\mathfrak{g}) \hookrightarrow \mathrm{ad}(E_G) \tag{4.1}$$

from the trivial vector bundle with fiber $z(\mathfrak{g})$. This homomorphism ψ produces an injective homomorphism

$$\psi : z(\mathfrak{g}) \hookrightarrow H^0(X, \operatorname{ad}(E_G))$$

A Hermitian structure $E_{K_G} \subset E_G$ is said to satisfy the Yang–Mills–Higgs equation for (E_G, θ) if there is an element $c \in z(\mathfrak{g})$ such that

$$\Lambda_{\omega}(\mathcal{K}(\nabla) + \theta \bigwedge \theta^*) = \widehat{\psi}(c) ,$$

where $\mathcal{K}(\nabla)$ is the curvature of the connection ∇ associated to the reduction E_{K_G} , and θ^* is defined above.

It is known that (E_G, θ) admits a Yang–Mills–Higgs Hermitian structure if and only if (E_G, θ) is polystable [Si2], [BS, p. 554, Theorem 4.6]. (See [BS] for the definition of a polystable Higgs G–bundle.)

Lemma 4.1. Let (E_G, θ) be a Higgs G-bundle on X equipped with an Hermitian structure $E_{K_G} \subset E_G$ that satisfies the Yang-Mills-Higgs equation for (E_G, θ) . Then

$$\theta \bigwedge \theta^* \,=\, 0 \,.$$

Proof. This follows by applying Lemma 3.2 to the Higgs vector bundle associated to (E_G, θ) for the adjoint action of G on \mathfrak{g} . Consider the adjoint Higgs vector bundle $(\operatorname{ad}(E_G), \operatorname{ad}(\theta))$. The reduction E_{K_G} produces a Hermitian structure on the vector bundle $\operatorname{ad}(E_G)$ that satisfies the Yang–Mills–Higgs equation for $(\operatorname{ad}(E_G), \operatorname{ad}(\theta))$. Now Lemma 3.2 says that

$$\operatorname{ad}(\theta) \bigwedge \operatorname{ad}(\theta)^* = 0.$$

This immediately implies that the C^{∞} section $\theta \wedge \theta^*$ of $\operatorname{ad}(E_G) \bigotimes \Omega_X^{1,1}$ is actually a section of $\psi(z(\mathfrak{g})) \bigotimes \Omega_X^{1,1}$, where ψ is the homomorphism in (4.1).

Take any holomorphic character $\chi\,:\,G\,\longrightarrow\,\mathbb{C}^*.$ Let

$$L^{\chi} := E_G \times^{\chi} \mathbb{C} \longrightarrow X$$

be the holomorphic line bundle associated to E_G for χ . The Higgs field θ defines a Higgs field on L^{χ} using the homomorphism of Lie algebras

$$d\chi:\mathfrak{g}\longrightarrow\mathbb{C}$$
(4.2)

associated to χ ; this Higgs field on L^{χ} will be denoted by θ^{χ} . Since L^{χ} is a line bundle, we have $\theta^{\chi} \bigwedge (\theta^{\chi})^* = 0$ (Lemma 3.2 is not needed for this). As $\theta \bigwedge \theta^*$ is a section of $\psi(z(\mathfrak{g})) \bigotimes \Omega_X^{1,1}$, from this it can be deduced that $\theta \bigwedge \theta^* = 0$. Indeed, given any nonzero element $v \in z(\mathfrak{g})$, there is a holomorphic character

$$\chi: G \longrightarrow \mathbb{C}^{*}$$

such that $d\chi(v) \neq 0$ (defined in (4.2)).

Theorem 4.2. Let (E_G, θ) be a polystable Higgs G-bundle on X, and let $E_{K_G} \subset E_G$ be an Hermitian structure that satisfies the Yang–Mills–Higgs equation for (E_G, θ) . Then the Hermitian structure $E_{K_G} \subset E_G$ also satisfies the Yang–Mills–Higgs equation for $(E_G, 0)$.

Proof. In view of the Yang–Mills–Higgs equation for (E_G, θ) , this follows immediately from Lemma 4.1.

Acknowledgements

We thank the referee for pointing out several misprints. I.B. is supported by a J. C. Bose Fellowship. B.G.O. is supported by Project ID PRY 6777 of the Pontificia Universidad Javeriana, Bogotá. U.B. is supported by PRIN "Geometry of Algebraic Varieties" and GNSAGA-INDAM. A. L. is supported by the FAPESP post-doctoral grant number 2013/20617-2.

References

- [At] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207.
- [BL] U. Bruzzo and A. Lo Giudice, Restricting Higgs bundles to curves, *Asian J. Math.* in print. Also arXiv:1310.2099 [math.AG].
- [BS] I. Biswas and G. Schumacher, Yang–Mills equation for stable Higgs sheaves, Internat. Jour. Math. 20 (2009), 541–556.
- [Hi] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59–126.
- [Si1] C. T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, *Jour. Amer. Math. Soc.* 1 (1988), 867–918.
- [Si2] —, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95.
- [Ya] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation. I, *Comm. Pure Appl. Math.* **31** (1978), 339–411.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DE SANTA CATARINA, CAMPUS UNI-VERSITÁRIO TRINDADE, CEP 88.040-900 FLORIANÓPOLIS-SC, BRAZIL; ISTITUTO NAZIONALE DI FISICA NUCLEARE, SEZIONE DI TRIESTE, ITALY. ON LEAVE FROM SCUOLA INTERNAZIONALE SU-PERIORE DI STUDI AVANZATI, TRIESTE, ITALY

E-mail address: bruzzo@sissa.it

Departamento de Matemáticas, Pontificia Universidad Javeriana, Cra
. $7^{\rm ma}$ Nº 40-62, Bogotá, Colombia

E-mail address: bgrana@javeriana.edu.co

IMECC - UNICAMP, DEPARTAMENTO DE MATEMÁTICA, RUA SÉRGIO BUARQUE DE HOLANDA, 651, CIDADE UNIVERSITÁRIA, 13083-859 CAMPINAS-SP, BRAZIL

E-mail address: logiudice@ima.unicamp.br