
09 March 2020

.                                       SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

                                                                               SISSA Digital Library

Superlocalization formulas and supersymmetric Yang-Mills theories / Bruzzo, Ugo; Fucito, F.. - In: NUCLEAR PHYSICS.
B. - ISSN 0550-3213. - 678:3(2004), pp. 638-655.

Original

Superlocalization formulas and supersymmetric Yang-Mills theories

Publisher:

Published
DOI:10.1016/j.nuclphysb.2003.11.033

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Availability:
This version is available at: 20.500.11767/11912 since:

This is the peer reviewd version of the followng article:

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sissa Digital Library

https://core.ac.uk/display/287425257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Superlocalization formulas and supersymmetric

Yang-Mills theories

U. Bruzzo

Scuola Internazionale Superiore di Studi Avanzati,

Via Beirut 4, 34013 Trieste, Italy

and I.N.F.N., Sezione di Trieste

F. Fucito
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Abstract

By using supermanifold techniques we prove a generalization of the localization
formula in equivariant cohomology which is suitable for studying supersymmetric
Yang-Mills theories in terms of ADHM data. With these techniques one can compute
the reduced partition functions of topological super Yang-Mills theory with 4, 8 or
16 supercharges. More generally, the superlocalization formula can be applied to any
topological field theory in any number of dimensions.



1 Introduction

The study of nonperturbative effects in nonabelian supersymmetric gauge theories (SYM)

has been the focus of much research activity in theoretical physics. In recent years, after

the work of Seiberg and Witten [32, 33], many new results have been obtained and the

techniques discussed in [32, 33] have also been used to shed light on analogous effects

in string theory (see [25] for a review). Even if these techniques are very powerful, yet

the derivation of the above mentioned results relies on a certain number of assumptions.

This has triggered the interest of some authors to check these results by independent

methods. A direct evaluation of nonperturbative effects is in fact possible by computing

the partition function or the relevant correlators of the theory of interest. It has been a

pleasant surprise of the last year that such a computation can indeed be carried out in

some cases for arbitrary values of the instanton winding number.

This is the end point of a long journey that we will very briefly summarize: following

the pioneering works [1, 34] in which condensates for SYM theories were computed, in

[15, 16, 19] a first check for the prepotential of the SYM with eight fermionic charges was

performed for instantons of winding number two. This computations were performed at

the semiclassical level and agreed with the prepotential of [32, 33]. This opened the way

to a reformulation in the framework of topological theories [7, 6]. The full exploitation

of the power of this observation was hindered by the presence of constrained quantities

in the functional integral (see [14] for a detailed account on this point). After this point

was dealt with, it was possible to show that the measure of the functional integral could

be written as a total derivative [12]. The derivative operator is found to be the BRST

operator of the SYM. Even if the computation was then reduced to the evaluation of a

boundary term there were still some issues to be settled concerning the compactness of

the domain of integration. This was done for the first time in the case of instantons of

winding number two [21, 22], by localization on certain manifolds of given dimensions.

The computation for arbitrary winding number in the case of eight supersymmetries with

matter in the fundamental and adjoint representation was presented in [31]. In turn this

work stemmed from a line of research focused on computing topological invariants with

the aid of topological field theories [26, 29, 28].

An interesting alternative approach to the computation in [31] appeared in [17], where

use was made of the localization formula in equivariant cohomology (for this formula see e.g.

[10]). In order to use that formula, the action of the SYM under study must be reinterpreted

as a form over the instanton moduli space. This is quite natural for SYM theories with
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eight charges [36], where the fermionic moduli can be interpreted as differential forms on

the instanton moduli space. In the case of instantons of arbitrary winding number, this

approach can be conveniently implemented by using the ADHM contruction [2], as it was

shown in [7, 6].

In this paper we want to show how by using supermanifold techniques one can write

a (mild) generalization of the localization formula which is suitable for implementing this

approach to the computation of the partition function to SYM theories with any number

of charges (supermanifold techniques were already used in [12] to retrieve the measure of

the partition function of SYM). The structure of the paper is as follow. In Section 2 we

briefly recall the basics of equivariant cohomology and the localization formula. In Section

3 we spell out what are the bundles on the instanton moduli space that are relevant

to different numbers of supersymmetry charges. In Section 4 we review the basics of

supermanifold theory, paying special attention to the supermanifolds defined in terms of

the cotangent bundle to a differentiable manifolds (the “tautological supermanifolds”). In

Section 5 we describe our generalization of the superlocalization formula; this stems from

the identification of the BRST operator with a suitable equivariant cohomology operator,

which in the case of tautological supermanifolds (i.e., in the N = 2 case) is the usual

equivariant exterior differential. Finally in Section 6 we treat in some detail the N = 2

case, also explaining how to use the superlocalization formula in the presence of constraints.

One can notice that these results can in fact be applied to any supersymmetric theory,

whose Lagrangian can be written as the BRST variation of some function, in any number

of dimensions.

2 Equivariant cohomology

We recall the basic formulas in equivariant cohomology. Let M an n-dimensional differen-

tiable manifold, and G a Lie group with Lie algebra g and an action ρ on M . To any ξ ∈ g

one associates the fundamental vector field (on M)

ξ∗ =

[
d

dt
ρ(−t exp ξ)

]
t=0

which we shall write in local coordinates as

ξ∗ = ξα T i
α

∂

∂xi
.

If C[g] is the algebra of polynomial C-valued functions on g, and Ω(M) is the algebra of

differential forms on M , the product algebra Ω(M, g) = C[g]⊗Ω(M) has a natural grading,
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defined by

deg(P ⊗ β) = 2 deg(P ) + deg(β)

if P and β are homogeneous. The group G acts on Ω(M, g) as

(g · α)(ξ) = ρg
∗(α(Adg−1ξ)). (1)

Moreover one defines the equivariant differential

dg: Ω(M, g)• → Ω(M, g)•+1 , (dgα)(ξ) = d(α(ξ))− iξ∗α(ξ);

one has

(dg
2α)(ξ) = −Lξ∗(α(ξ)) (2)

where L denotes the Lie derivative. The elements of the invariant subalgebra ΩG(M) =

(Ω(M, g))G are called equivariant forms ; in view of eq. (2), on them the equivariant dif-

ferential squares to zero, allowing the definition of the equivariant cohomology of M as

H•(M,G) = H•(ΩG(M), dg).

If M is compact, and α is an equivariantly closed element in ΩG(M), and ξ ∈ g, one

denotes by
∫

M
α(ξ) the integral of the piece of α(ξ) which is an n-form (n = dimM), in

the usual gradation of Ω(M). This integral can be nicely evaluated by using a localization

formula. For every ξ ∈ g let Mξ ⊂M be the zero-set of ξ∗. If G is compact, and the zeroes

of ξ∗ are isolated (so that Mξ is finite), one has∫
M

α(ξ) = (−2π)n/2
∑
p∈Mξ

α(ξ)0(p)

det1/2 Lp,ξ

(3)

where α(ξ)0 is the 0-form part of α(ξ), and Lp,ξ:TpM → TpM is the linear operator defined

as

Lp,ξ(v) = [ξ∗, v]

(this is well defined since ξ∗(p) = 0).

3 Supersymmetry and vector bundles over the instan-

ton moduli space

If M is a Kähler (or hyperkähler) surface, and M is the moduli space of instantons on M ,

via index-theoretic constructions one can define some vector bundles on M. In this section
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we briefly review the construction of these bundles and recall how they are involved in the

study of SYM with N = 1, 2 or 4 supersymmetries.

We start by considering a Kähler surface M . If E is an SU(N) vector bundle on M ,

with c2(E) = k, there is a smooth space M parametrizing equivalence classes of irreducible

anti-self-dual connections on E (instantons) modulo gauge equivalence (some subtleties are

involved here, e.g. the fact that the Kähler metric in M should be generic in a suitable

sense, but these issues will be ignored here. A good reference on this topic is [13].)

The choice of a spin structure in M amounts to a choice of a square root L of the

canonical bundle K, i.e., a complex line bundle L such that L2 ' K (the canonical bundle

K is the bundle of holomorphic 2-forms on M). We shall consider L as a smooth bundle

(i.e., we also allow for smooth sections rather than just holomorphic). The spin bundles

S+, S− (i.e., the rank-two complex bundles of undotted and dotted spinors, respectively)

may be taken as

S− = [Ω0,0 ⊕ Ω0,2]⊗ L , S+ = Ω0,1 ⊗ L .

It this not difficult to show that Ω0,2 ⊗ L ' L∗, so that S− splits as a direct sum of

orthogonal (in the Kähler metric) subbundles of rank 1, S− ' L⊕ L∗.

One trivially has S+ ⊗ L∗ ' Ω0,1; moreover, since K ' det Ω1,0 if we consider smooth

bundles, one has Ω0,1⊗K ' Ω1,0, hence S+⊗L ' Ω1,0. Let us describe these isomorphisms

in component notation. Let (e0, . . . , e3) be a local orthornomal frame of 1-forms, and

consider the associated local bases of sections of the spin bundles S+, S−. One has an

isomorphism S+ ⊗ S− ' T ∗M ⊗ C, which is given by

ψ ⊗ χ 7→ σmαβ̇ ψ
α χβ̇ em ,

where σmαβ̇ are the Pauli matrices. Thus the isomorphisms S+⊗L ' Ω1,0, S+⊗L∗ ' Ω0,1

express the fact that the forms

σmα1̇ e
m , σmα2̇ e

m

are of type (1,0) and (0,1), respectively. All this is explained in more “physical” terms in

[37, 23].

N = 2 supersymmetry. Let E be an SU(N) bundle on M , and let M be the moduli

space of instantons on E. For every m ∈M we have a twisted Dirac operator

Dm:S+ ⊗ S− ⊗ ad(E) → S− ⊗ S− ⊗ ad(E)

(where ad(E) is the adjoint bundle of E, i.e., the bundle of trace-free endomorphisms of E

and the global symmetry group of the N = 2 theory is identified with the SU(2) structure
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group S−), together with the adjoint operator D∗
m. The assignment

m ∈M  kerDm − cokerDm = kerDm − kerD∗
m

defines the index ind(D) as a class in the topological K-theory of M. Under our assump-

tions (in particular, we consider only irreducible instantons) we have kerD∗
m = 0 for all

m ∈ M, so that ind(D) is a vector bundle, that we denote by S2. The fibre of S2 at the

point m ∈M is the vector space kerDm. This (complex) vector bundle may be naturally

identified with the complexified tangent bundle to M [3], and one has rkS2 = dimRM
(which equals 4kn in the case of framed SU(N) instantons on R4). Since we have considered

the full spin bundle S+, this is the case relevant to N = 2 supersymmetry.

N = 1 supersymmetry. In the case N = 1 one considers the subbundle L instead of

the full bundle S+. In this way we get a vector bundle S1 on M with rkS1 = 1
2

dimM.

One can notice that the orthogonal splitting S− = L ⊕ L∗ implies that the complexified

tangent bundle to the instanton moduli space TM⊗C ' S2 splits as a direct sum of two

vector bundles, TM⊗ C ' S1 ⊕ S ′1, which are dual to the bundles of differential forms of

type (1,0) and (0,1) on M. One has rkS1 = 2kN for the framed instantons.

N = 4 supersymmetry. In this case we have a family of Dirac operators

D:S+ ⊗ Σ⊗ ad(E) → S− ⊗ Σ⊗ ad(E)

where Σ is a bundle with structure group SU(4).1 For framed instantons the resulting

bundle on M has rank 8kN .

4 Supermanifolds

We want to introduce some supermanifolds whose “bosonic” part is the instanton moduli

spaceM; this will be done by using the vector bundles onM that we have introduced in the

previous section. We start by briefly recalling the basic definitions about supermanifolds.

(We consider supermanifolds in the sense of Berezin-Lĕıtes and Konstant [9, 24]).

An (m,n) dimensional supermanifold M is a pair (M,A), where M is an m-dimensional

manifold, and A is a sheaf of Z2-graded commutative algebras on M , such that:

1. there is morphism of sheaves of R-algebras ε:A → C∞M ;

1However as a consequence of the twisting of the theory [35, 27, 38] the structure group is reduced to a
little group. Of the three possibilities listed in [35, 27, 38] we discuss in [11] the so-called SU(2)×SU(2)×
U(1) twisting, where the structure group is actually reduced to S(U(2)× U(2)) ⊂ SU(4).
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2. if N is the nilpotent subsheaf of A, the quotient N/N 2 is a locally free sheaf (vector

bundle) E of rank n;

3. A is locally isomorphic to the exterior algebra sheaf Λ•E , and this isomorphism is

compatible with the morphism ε.

These conditions imply ker ε = N . Also, condition 3 implies that ε is surjective (as a

sheaf morphism).

If we start from a rank n vector bundle E onM we may construct an (m,n)-dimensional

supermanifold (M,A) by letting A = Λ•E , with ε the natural projection Λ•E → E . Con-

versely, standard arguments in deformation theory allow one to prove that any superman-

ifold is globally isomorphic to a supermanifold of this kind [5].

If (x1, . . . , xm) are local coordinates in M , and (θ1, . . . , θn) is a local basis of sections of

E , then the collection (x1, . . . , xm, θ1, . . . , θn) is a local coordinate chart for M. According

to the requirements above, a section of A (i.e., a superfunction on M) has a local expression

f =
n∑

k=1

f[k] (4)

where

f[k] =
∑

α1...αk=1...n

fα1...αk
(x) θα1 · · · θαk

with f0 = ε(f). Thus we get the well-known superfield expansion.

If Ap is the stalk of A at p ∈M (i.e., the algebra of germs of sections of A at p), then

Ip = ker ε:Ap → (C∞M )p

is a maximal graded ideal of Ap. The tangent superbundle is by definition the sheaf DerRA
of graded derivations of A. The tangent superspace TpM at a point p ∈M is by definition

the (m,n)-dimensional graded vector space

TpM = DerRA/Ip · DerRA

and one has a canonical isomorphism TpM ' TpM ⊕ E∗p where E∗p is the fibre at p of the

dual vector bundle E∗, or, in terms of superbundles,

TM ' A⊗ [TM ⊕ E∗] .

Tautological supermanifolds. Our strategy for the computation of the partition

function of the topological SYM theory will involve considering supermanifolds based on
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the instanton moduli space M, associated with the vector bundles S1, S2, S4 we have

introduced in the previous section. Since we shall study in detail the case of N = 2

supersymmetry, and since S2 may be identified with the tangent bundle to M, we shall

develop in some detail the case where the vector bundle to which a supermanifold is

associated with is the cotangent bundle (we choose the cotangent rather than the tangent

bundle for mere reasons of convenience).

So, if given a supermanifold M = (M,A), if the associated vector bundle E on M is

isomorphic to the cotangent bundle T ∗M , we say that M is tautologically associated with

M . If the isomorphism A ' Λ•T ∗M has been fixed, one has a canonical isomorphism

TM ' A⊗ [TM ⊕ TM ] (5)

(cf. [12]), and there is a naturally defined involution Π on TM, exchanging the two

summands.

Superfunctions on M are just differential forms on M ; one has an isomorphism (of

sheaves of C∞M -modules) τ : Ω• → A. Note that if (x1, . . . , xm) are local coordinates in M ,

and we set θi = τ(dxi), then (x1, . . . , xm, θ1, . . . , θm) is a local coordinate system for M

(and of course, dθi 6= 0!).

Berezin integration.2 Let M = (M,A) be an (m,n) dimensional supermanifold,

with M an oriented manifold, and denote by Ωm
M the sheaf of super differential m-forms

on M, and by Pn the sheaf of graded differential operators of order n on A. The sheaf

Ωm
M has its natural structure of graded left A-module given by multiplication of forms by

functions; the sheaf Pn has an an analogous graded left A-module structure, but also has

a (inequivalent) right A-module structure, given by

(D · f)(g) = D(fg)

where f , g are superfunctions. We consider on Pn this module structure, and take the

graded tensor product Ωm
M ⊗A Pn.

The structural morphism ε:A → C∞M extends to a morphism Ωm
M → Ωm

M , whose action

we denote by a tilde. The sheaf Ωm
M ⊗A Pn has a subsheaf K whose sections ω are such

that the differential m-form ω̃(f) on M is exact for every choice of a superfunction f with

compact support (more precisely, ω̃(f) = dη for a compactly supported (m− 1)-form η on

M). The quotient Ωm
M ⊗A Pn/K is denoted by Ber(M) and is called the Berezinian sheaf

of M. It is a locally free graded A-module of rank (1,0) if n is even, rank (0,1) is n is odd.

2This approach to the Berezin integral is taken from [20].
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On its compactly supported sections one can define an integral (the Berezin integral) by

letting ∫
M

ω =

∫
M

λ̃(1)

where λ is any section of Ωm
M ⊗A Pn whose class in the quotient Ωm

M ⊗A Pn/K is [λ] = ω.

This integral performs the usual procedure of “integrating over the fermions”: indeed,

given a local coordinate system (x1, . . . , xm, θ1, . . . , θn) defined in a patch U , one has

ω|U =

[
dx1 ∧ . . . ∧ dxm ⊗ ∂

∂θ1
. . .

∂

∂θn

]
f

for a superfunction f ∈ A(U), and if ω is supported in U , one has∫
M

ω =

∫
M

f[n] dx
1 . . . dxm

i.e. the Berezin integral is the usual integral over M of the last term in the superfield

expansion eq. (4) of the component superfunction f , and corresponds to the usual operation

of “integrating over the fermions” in quantum field theory.

The Berezinian bundle of a ‘tautological’ supermanifold M has a canonical global sec-

tion Θ. If Θ0 is a global nowhere vanishing differential n-form on M , and ∆ is a dual

derivation of order n (i.e., ∆(Θ0) = 1), the class Θ = [Θ0 ⊗ ∆] is a well-defined global

section of Ber(M), independent of the choices of Θ0 and ∆. In local coordinates (x, θ),

where θi = dxi, one has

Θ =

[
dx1 ∧ . . . ∧ dxn ⊗ ∂

∂θ1
. . .

∂

∂θn

]
.

If η is an n-form on M , one has ∫
M

Θ τ(η) =

∫
M

η .

5 BRST transformations and superlocalization for-

mulas

Let M = (M,A) be an (m,n)-dimensional supermanifold, with A the sheaf of sections of

the exterior algebra bundle of a rank n vector bundle E on M . Assume that there is an

action ρ of a Lie group G on M , and that G also acts on E by a linear action ρ̂ in such a
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way that the diagram

E

��

ρ̂g // E

��
M

ρg // M

commutes for all g ∈ G. The action ρ̂ induces a vector field ξ̂∗ on E :

ξ̂∗ =

[
d

dt
ρ̂exp(−tξ)

]
t=0

.

If (x1, . . . , xm) are local coordinates on M , and (θ1, . . . , θn) are a local basis of sections of

E (so that they can be regarded as local fibre coordinates on E∗), ξ̂∗ is locally written as

ξ̂∗ = ξα T i
α

∂

∂xi
+ ξα θB UA

αB

∂

∂θA
(6)

where the functions ξα T i
α are the local components of the generator ξ∗ of the action of G on

M . The vector field (6) can be regarded as an even super vector field ξ̂∗ on M representing

the induced infinitesimal action of G on M.

If p ∈ M is a zero of ξ∗, then an endomorphism L̃ξ,p of the fibre Ep rests defined. We

may regard this as an even endomorphism Lξ,p of the cotangent superspace T ∗
p M, defined

as (1, L) after identifying T ∗
p M ' T ∗

pM ⊕ Ep.

We shall consider the algebra C[g]⊗A(M) (where A(M) is the algebra of global sections

of A), which carries the action of G given by

(g · α)(ξ) = ρ̂g(α(Adg−1ξ))

where by abuse of notation we denote by ρ̂ the induced action of G on M. On C[g]⊗A(M)

one considers the Z-grading

deg(P ⊗ f) = 2 deg(P ) + deg(f)

(where deg(P ) is the degree of the polynomial P ∈ C[g] and deg(f) = k if f = f[k]) and

the Z2-grading given by the grading of A (the terms “even” and “odd”) will refer to this

grading). We shall denote by AG the subalgebra of C[g] ⊗ A(M) formed by G-invariant

elements.

Definition 5.1 A BRST operator is an odd derivation Q of C[g] ⊗ A(M) of Z-degree 1

such that

1. (Q2F )(ξ) = ξ̂∗(F ) for all F ∈ C[g]⊗A(M) and ξ ∈ g;
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2. Q is equivariant, i.e., Q ◦ g = g ◦Q for all g ∈ G;

3. The equivariant morphism σQ: E∗ → TM defined by

σQ(v)(f) = iv(Q(f)) for all functions f on M

is injective.

Remark 5.2 The third condition fails in the case relevant to N = 4 supersymmetry, and

should rather be replaced by the condition that E is a direct sum in such a way that σQ is

injective after restriction to any of the summands of E∗. However for the sake of simplicity

we shall stick to this condition in its present form.

In particular, this implies that Q2
|AG

= 0, so that an equivariant cohomology H•(AG, Q)

is defined. Moreover, for every ξ ∈ g one can define an odd supervector field Qξ by letting

Qξ(F (ξ)) = Q(F )(ξ) for all F ∈ C[g] ⊗A(M). In terms of this supervector field the first

requirement in Definition 5.1 reads

[Qξ, Qξ] = 2ξ̂∗ (7)

where [ , ] is the graded commutator of supervector fields (in this case an anticommutator

in fact). Let us, for future use, write this equation in local components. After writing

Qξ = ai ∂

∂xi
+ bA

∂

∂θA
,

eq. (7) is equivalent to the conditions

ai = σi
A θ

A , bA σi
A = ξα T i

α (8)

where σi
A is the matrix representing the morphism σ∗Q:T ∗M → E , i.e., σ∗Q(dxi) = σi

A θ
A.

Lemma 5.3 If p ∈M is a zero of ξ∗ for an element ξ ∈ g, the diagram

T ∗
pM

σ∗Q //

Lp,ξ

��

Ep

L̃ξ,p

��
T ∗

pM
σ∗Q // Ep

(9)

commutes.
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Proof. The commutativity of the diagram is equivalent to the infinitesimal equivariance

of the morphism σQ. �

Finally, we require the existence of a G-invariant Riemannian metric h on M . Since

the morphism σQ is injective this also defines a G-invariant fibre metric H on E by letting

H(u, v) = h(σQ(u), σQ(v)) for all u, v ∈ E∗. Using the metrics h and H one can con-

struct a G-invariant global section of the Berezinian sheaf Ber(M), whose local coordinate

expression is

Θ =

[
dx1 ∧ . . . ∧ dxm ⊗ ∂

∂θ1
. . .

∂

∂θn

]
det1/2(h)

det1/2(H)
.

Actually, this Berezinian measure does not depend on the metrics but only on the BRST

operator Q via the morphism σQ.

Assumption 5.4 The morphism σQ, regarded as a section of the bundle E ⊗ TM , is

parallel with respect to the connection induced by the metrics h and H.

Lemma 5.5 Let ν be a superfunction which is homogeneous of degree n−1, i.e., ν = ν[n−1],

and let ∗Hν be the section of E∗ which is Hodge dual to ν via the metric H, i.e., in local

coordinates,

(∗Hν)
A =

1

(n− 1)!
(det(H))−1/2 εAA2...An νA2...An if ν = νA1...An−1 θ

A1 . . . θAn−1 ,

where εA1...An is the completely antisymmetric symbol. Then, for every regular domain

U ⊂M with compact closure,∫
M|U

ΘQξ(ν) =

∫
∂U

∗hσQ(∗Hν)) ;

here ∂U is equipped with the induced orientation, and ∗h is Hodge duality in M .

Proof. The equality is proved by direct computation. It is necessary to use the As-

sumption 5.4. �

We can now state the localization formula. Let Q be a BRST operator.

Theorem 5.6 Let M and G be compact, let F ∈ AG be such that Q(F ) = 0, and assume

that ξ ∈ g is such that ξ∗ only has isolated zeroes. Then,∫
M

ΘF (ξ) =
(−2)n/2(n/2)!πm/2

(m/2)!

∑
p∈Mξ

Sdet1/2(Lp,ξ)F (ξ)0(p) (10)

where Sdet(Lp,ξ) is the superdeterminant (Berezinian determinant) of the even endomor-

phism Lp,ξ (cf. [8, 24, 4]).
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The proof of this localization formula follows the pattern of the proof of the usual formula,

cf. [10]. So we need the following preliminary results. We assume that M and G are both

compact, and an element ξ ∈ g such that ξ∗ has isolated zeroes has been fixed.

Lemma 5.7 There exists a superfunction β (actually, a section of E) such that

1. ξ̂∗(β) = 0;

2. Qξ(β) is invertible outside Mξ;

3. Every p ∈ Mξ has a neighbourhood on which the function H(β, β) equals the square

distance from the point p.

Proof. One can construct a differential 1-form λ on M such that Lξ∗(λ) = 0 and

λ(ξ∗) = d2
p, where dp(x) is the distance of x from p in the metric h [10]. The section

β = σ∗Q(λ) of E satisfies the required conditions. �

Lemma 5.8 The superfunction F (ξ)[n] is Q-exact outside Mξ, i.e., there is a section ν of

A on M \Mξ such that

F (ξ)[n]|M\Mξ
= Qξ(ν) .

Proof. In view of the previous Lemma, outside Mξ we may set

ν =
(
β F (ξ)Qξ(β)−1

)
[n−1]

,

and again using the previous Lemma, one gets the desired equality. �

Proof of Theorem 5.6. For every p ∈Mξ let Bε(p) be the ball of radius ε (measured with the

metric h) around p, and denote by Mε the supermanifold M restricted to the complement

of the union of the closures of the balls Bε(p). Then, using Lemma 5.5,∫
M

ΘF (ξ) = lim
ε→0

∫
Mε

ΘQξ(ν) = − lim
ε→0

∑
p∈Mξ

∫
Sε(p)

∗hσQ(∗Hν)

where Sε(p) is the boundary of Bε(p). Under the rescaling

x 7→ ε1/2 x, θ 7→ ε1/2 θ

the term µ = β Qξ(β)−1 is homogeneous of degree zero, so that we get∫
M

ΘF (ξ) = −
∑
p∈Mξ

F (ξ)0(p)

∫
S1(p)

∗hσQ(∗Hµ[n−1]) .
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The integrals in the r.h.s., again using Lemma 5.5, may be recast as Berezin integrals over

the supermanifolds M|B1(p). These may be evaluated by writing their integrands in local

coordinates, obtaining

(−1)n/2

∫
M|B1(p)

Θ

[
n∑

A,B=1

aAB(p) θA θB

]n/2

where aAB(p) is a skew-symmetric matrix of constants which represents the morphism L̃p,ξ

(with an index lowered with the metric H). From this we get (cf. e.g. [39])∫
M

ΘF (ξ) = (−2)n/2(n/2)!
∑
p∈Mξ

F (ξ)0(p) Pf(a(p))

∫
B1(p)

vol(h)

where vol(h) is the Riemannian volume form, and Pf(a(p)) is the Pfaffian of the matrix

a(p). Since

Pf(a(p)) = Sdet1/2(Lp,ξ) and

∫
B1(p)

vol(h) =
πm/2

(m/2)!

we eventually obtain the superlocalization formula.

Example 5.9 The simplest example is provided by the tautological supermanifolds; then

E = T ∗M and for every ξ ∈ g the vector field Qξ is

Qξ = d+ Π(ξ∗, 0)

where the exterior differential d is regarded as an odd supervector field on A, and Π is

the morphism which interchanges the two summands in eq. (5). σ turns out to be the

identity morphism. The superlocalization formula reduces to the usual localization formula

(eq. (3)); note that Sdet1/2(Lp,ξ) = det−1/2(Lp,ξ). In this case the isomorphism τ : Ω• → A
intertwines the equivariant differential with the BRST operator Q. This is the suitable

framework for N = 2 supersymmetry.

Example 5.10 Let M be a Kähler manifold of even complex dimension m, with Kähler

form ω, and assume that G acts on M by Kähler isometries (so every ρg is a holomorphic

isometry for the Kähler metric h). After complexifying the tangent bundle TM , we take

E = Ω1,0, and

Qξ = ∂ + Π(ξ∗, 0) .

The morphism σ∗Q is the projection T ∗M ⊗ C → Ω1,0. We obtain the superlocalization

formula eq. (10) with numerical factor (−2)m/2πm(m/2)!/m!. This is the picture relevant

to N = 1 supersymmetry.
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6 Application to topological N = 2 SYM

We want to apply the superlocalization formula to the computation of the partition function

for topological Yang-Mills theory. We consider explicitely the case ofN = 2 supersymmetry

but the cases N = 1, 4 may be dealt with along the same lines after choosing the relevant

supermanifolds on the instanton moduli space.

We start by briefly recapping the ADHM construction for framed SU(N) instantons

on R4.3 Framed instantons are anti-self-dual SU(N) connections on (trivial bundle on) R4

with a fixed framing at infinity (i.e., if we transfer the instanton to the sphere S4 via a

stereographic projection, there is a fixed isomorphism of the fibre at a given point with CN ,

and this isomorphism is part of the data specifying the instanton). The moduli space of

framed instantons under gauge equivalence is a singular manifold of dimension 4kN , where

k in the second Chern class (instanton number) of the instanton. The ADHM description

is obtained in terms of data consisting of k × k matrices B1, B2, a N × k matrix I and a

k ×N matrix J , all with complex entries. These are subject to the constraints

[B1, B
†
1] + [B2, B

†
2] + II† − J†J = 0 (11)

[B1, B2] + IJ = 0 (12)

where † denotes hermitian conjugation. The group U(k) acts on these data, by adjunction

on B1, B2 and by multiplication from the suitable side on I and J , and this action preserves

the constraints. The moduli space of framed instantons is obtained by taking all the data

(B1, B2, I, J) satisfying the constraints and taking equivalence classes under the action of

U(k). The resulting moduli space is singular, its smooth points corresponding to data with

trivial stabilizer under the U(k) action. Singularities may be resolved, either by standard

blowup techniques, or using the hyperkähler quotient costruction of the moduli space. We

shall denote by M the smooth moduli space so obtained.

In SYM one supplements the ADHM data by fermionic moduli provided by the zero

modes of the gaugino field. For N = 2 the fermionic moduli can be identified with dif-

ferential forms on the bosonic moduli space M; this is the reason of the introduction of

the “tautological supermanifolds” of Section 4. The constraints on the fermionic data are

obtained by linearizing the bosonic constraints, and the multi-instanton action eventually

obtained is obtained by plugging into the SYM action the bosonic and fermionic zero

modes in terms of the (unconstrained) ADHM data and imposing the ADHM constraints

3The original source is [2]; a useful reference on this construction, and other issues that will be touched
upon in this and the following sections, is [30]
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via Lagrangian multipliers. The resulting action turns out to be BRST-exact, hence, given

its invariance under action of the groups involved, also BRST-closed.

Moreover as we have hinted in the previous Sections, if one associates a tautological

supermanifold to the bosonic moduli space, the operator Q of the previous section — the

counterpart on the supermanifold side of the equivariant differential — is exactly the BRST

operator. Putting all this together, this opens the way to the computation of integrals over

the moduli space of quantities depending on the SYM action, such as the partition and

correlation functions, by means of a superlocalization formula.

We shall at first ignore the existence of the constraints on the ADHM data. So the field

content of the theory is given by the matrices B1, B2, I, J with their fermionic partners

M1, M2, µI , µJ . We would like to consider the action of the group U(k)× SU(N), but if

we do so the fixed points of the group action will not be isolated. It is therefore convenient,

following Nakajima [30], to introduce also an action of the group T 2, given by

(B1, B2, I, J) 7→ (eiε1B1, e
iε2B2, I, e

i(ε1+ε2)J).

If we denote by φ, a, (ε1, ε2) elements in the Lie algebras of U(k), SU(N), T 2 respectively,

we obtain for the vector fields ξ∗ and Qξ the following expressions:

ξ∗ = (φI − Ia)
∂

∂I
+ (−Jφ+ aJ + εJ)

∂

∂J
+ ([φ,B`] + ε`)

∂

∂B`

Qξ = µI
∂

∂I
+ µJ

∂

∂J
+M`

∂

∂B`

+ (φI − Ia)
∂

∂µI

+ (−Jφ+ aJ + εJ)
∂

∂µJ

+ ([φ,M`] + ε`M`)
∂

∂M`

(here ε = ε1 + ε2). One recognizes in Qξ the standard expression of the infinitesimal BRST

transformations in the theory under consideration.

Introduction of constraints. If N ⊂M is a submanifold of M , locally given in some

coordinate patch (x1, . . . , xn) by a set of constraints V1 = . . . = Vr = 0, we may consider

the tautological supermanifold N = (N,B) associated to the cotangent bundle T ∗N .

Proposition 6.1 N is a sub-supermanifold of the tautological supermanifold M, whose

equations in the local coordinate patch (x1, . . . , xn, θ1 = dx1, . . . θn = dxn) are

V1 = . . . = Vr = 0, W1 = . . . = Wr = 0,

where the superfunctions Wi expressing the fermionic constraints are given by

Wa =
∂Va

∂xk
θk.
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We consider now a situation where the coordinates inM are the bosonic ADHM parameters

which appear in the Lagrangian L of aN = 2 SYM [15, 18] and the functions Va express the

ADHM constraints. One also introduces fermionic partners θ, subject to the constraints

Wa = 0. The constraints are implemented by the Lagrange multipliers Ha and χa, so that

one considers a Lagrangian

L′ = L+Ha Va(x, θ) + χa ∂Va

∂xk
θk .

The Lagrange multipliers should be considered as additional coordinates on an enlarged

supermanifold M′. We have a BRST vector field Qξ for the unconstrained theory, and we

want to complete it to a new field

Q′
ξ = Qξ + Q̃ξ = Qξ −Ra ∂

∂Ha
− Sa ∂

∂χa

which leaves the Lagragian L′ invariant. To simplify the treatment we assume that the odd

superfunctions Ra are linear in the coordinates χ, i.e., Rb = χaN b
a for a matrix of ordinary

functions N . Since

Q′
ξ(L

′) = Qξ(L)−Ra Va +Ha ∂Va

∂xk
θk − Sa ∂Va

∂xk
θk − χa ∂Va

∂xk
ξαT k

α

and Qξ(L) = 0 we obtain the conditions

Sa = Ha , N b
a Vb = −∂Va

∂xk
ξαT k

α . (13)

One assumes that the group G acts also on the “new sector” of the supermanifold M′, so

that the vector field ξ̂∗ acquires a new contribution

ξ̃∗ = ξα T̃ a
α

∂

∂Ha
+ ξα χb ∂T̃

a
α

∂Hb

∂

∂χa
;

one should have [Q̃ξ, Q̃ξ]+ = 2ξ̃∗, which is equivalent to

Ra = ξα χb ∂T̃
a
α

∂Hb
, Sa ∂R

b

∂χa
= ξα T̃ b

α.

If the functions T̃ are linear in the Ha, these conditions are solved by

Na
b = ξα ∂T̃

a
α

∂Hb
. (14)

The second equation in eq. (13) becomes

ξα ∂T̃
a
α

∂Hb
Vb = −∂Va

∂xk
ξαT k

α . (15)
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Provided that this constraint is satisfied, eq. (14) yields a solution to the problem of finding

the BRST transformations for the Lagrange multipliers.

Since

[
∂

∂θk
, Q′

ξ] = [
∂

∂θk
, Qξ] =

∂

∂xk
, [

∂

∂χa
, Q′

ξ] = [
∂

∂χa
, Q̃ξ] = N b

a

∂

∂Hb

the additional requirement for the conditions of Definition 5.1 to hold is that the matrix

N is invertible.

N = 2 SYM theory follows this pattern: one adds fermionic partners to the fields in the

ADHM realization of the theory, and the constraints on the fermionic fields are obtained by

linearizing the constraints eq. (11) and eq. (12). At the Lagrangian level one implements

the constraints via Lagrangian multipliers HC and HR which multiply eq. (11) and eq. (12),

and by their fermionic partners χR and χC which are then regarded as additional fields. In

[11], whose notation we follow, the reader will find a detailed analysis of this case. After

regularizing the moduli space of gauge connections by minimally resolving the singularities,

the BRST transformations of the theory lead to

ξ̂∗ = (φI − Ia)
∂

∂I
+ (−Jφ+ aJ + εJ)

∂

∂J
+ ([φ,B`] + ε`)

∂

∂B`

+ [φ,HR]
∂

∂HR
+ ([φ,HC] + εHC)

∂

∂HR
+ [φ, φ̄]

∂

∂φ̄

+ (φµI − µIa)
∂

∂µI

+ (−µJφ+ aµJ + εµJ)
∂

∂µJ

+ ([φ,M`] + ε`M`)
∂

∂Ml

+ [φ, χR]
∂

∂χR
+ ([φ, χC] + εχC)

∂

∂χR
+ [φ, η]

∂

∂η
(16)

and

Qξ = µI
∂

∂I
+ µJ

∂

∂J
+M`

∂

∂B`

+ [φ, χR]
∂

∂HR
+ ([φ, χC] + εχC)

∂

∂HC
+ η

∂

∂φ̄

+ (φI − Ia)
∂

∂µI

+ (−Jφ+ aJ + εJ)
∂

∂µJ

+ ([φ,B`] + ε`B`)
∂

∂M`

+ HR
∂

∂χR
+HC

∂

∂χC
+ [φ, φ̄]

∂

∂η
. (17)

(One also includes an “auxiliary” bosonic field φ̄ with its partner η.) This new vector field

Qξ satisfies the conditions of Definition 5.1, so that for the BRST vector field of the ADHM

formulation of N = 2 SYM, the superlocalization formula eq. (10) holds. The reader will

find in [11] the evaluation of the superdeterminant which arises from the application of

eq. (10).

.
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