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Abstract

We provide a direct and explicit proof that imaginary (real) normalized differentials of the second kind with

prescribed polar part do not develop additional singularities as the underlying hyperelliptic Riemann surface de-

generates in an arbitrary way.

1 Introduction

Let R be a smooth compact Riemann surface of genus g, and choose a basis in the homology (a and b cycles). The

main results of this paper is the continuity of certain normalized meromorphic differentials under degenerations of

the Riemann surface R. We start with the definition of the normalized differentials used in this paper.

Definition 1.1 A meromorphic differential on a compact, smooth Riemann surface is called imaginary-normalized

if all its periods are purely imaginary.

This type of normalized differentials have been used in several context. First of all they are deeply intertwined

with the theory of harmonic functions on Riemann surfaces. Indeed for differentials of the second kind4 the real

part of their antiderivative is a harmonic function globally defined on the given Riemann surface. Vice-versa,

any harmonic non constant real function on R (or rather subsets thereof) yields upon complex differentiation an

imaginary-normalized differential of the second kind [1]. Another appearance of normalized differentials was in the

theory of Whitham modulation equations or nonlinear WKB method in [2]: twenty years there was an additional

application in the more abstract theory of moduli spaces of pointed curves in [3].

Our specific interest to the subject arose in the relatively different context of asymptotic analysis of complex

orthogonal polynomials, see [4]. It was then used in [5] to construct a “g-function”, an integral part of the Deift–

Zhou [6] steepest descent analysis of the asymptotics of non-hermitean complex orthogonal polynomials. In an

analogous context it appears implicitly in the study of the semiclassical limit of the one-dimensional focusing

nonlinear Schrödinger equation [7].

The goal of this paper is to study the behavior of an imaginary-normalized meromorphic differential η of the

second kind under arbitrary degenerations of the underlying hyperelliptic Riemann surface R. In Theorem 1.1 we

prove that if the hyperelliptic curve R degenerates to a curve R̃ (also hyperelliptic) of lower genus (i.e. some or

1Work supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC)
2Marco.Bertola@Concordia.ca
3Alexander.Tovbis@ucf.edu
4This means that they can have poles but all residues vanish; the differentials of the first kind are the those holomorphic everywhere,

and those of the third kind are all the other meromorphic differentials.
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all branchpoints come together), then η continuously extends to an imaginary-normalized meromorphic differential

on R̃ provided that none of the branchpoints of R tend to a singularity of η.

The above statement is not a priori obvious; for example, it is known that the first kind (holomorphic) differ-

entials normalized so that they have vanishing A–cycles except one, acquire poles under the degeneration (see e.g.

[8] p. 38).

A degeneration of a curve R is called simple (nodal) if no more than two branch points of R can tend to the

same limit. For simple degenerations (nodes) of a hyperelliptic surface R the problem has been, in fact, addressed

in [5, 7] (in different language and with different intents). For general compact Riemann surfaces this same problem

was studied in [3]. The general structure of our proof goes along similar lines as in Theorem 5.1 of [3], however, our

proof is valid for an arbitrary degeneration of the hyperelliptic surface. The key step in the proof in the present

paper relies upon a certain bound (see the first paragraph in the proof our Theorem 1.1) on the boundary of a fixed

disk around the pole of the differential. This bound is –in fact– the part that we tried to make absolutely explicit

and self-contained, albeit just for the hyperelliptic case, and it constitutes in our opinion the main technical point

of the proof (see Section 2). It seems (in our opinion) that this bound was not completely addressed in [3].

1.1 Setup and statement of results

Let η̃ be a second kind meromorphic differential on a compact smooth Riemann surface R and let Aη̃, Bη̃ be the

vectors of a, b periods of η̃:

Aj,η̃ :=

∮
aj

η̃, Bj,η̃ :=

∮
bj

η̃. (1.1)

Let ω1, . . . , ωg be any basis of the first kind differentials. Denote the period matrices of the chosen basis as A,B,

where ∮
aj

ωk = Ajk ,
∮
bj

ωk = Bjk. (1.2)

Proposition 1.1 Given any meromorphic second kind differential η̃ on a compact smooth Riemann surface R,

there exists a unique imaginary-normalized meromorphic differential η such that η − η̃ is holomorphic. Such a

differential can be expressed by the determinant formula

η(p) = det

 A A Aη̃ +Aη̃
B B Bη̃ +Bη̃

ω1(p) . . . ωg(p) 0 . . . 0 η̃(p)

 /det

[
A A
B B

]
, (1.3)

where p ∈ R.

Proof. The existence and uniqueness part of the argument below appears in [3] (they consider real-normalized

differentials but the argument is the same). The uniqueness follows from the fact that two such differential must

differ by a holomorphic differential with purely imaginary periods. By a standard theorem (Riemann Bilinear

Relations; e.g. [1]), any such holomorphic differential vanishes identically. Let us now consider the existence. If

η = η̃ −
∑g
j=1 Cjωj is an imaginary-normalized differential then the vector C = (C1, . . . , Cg)

t solves the system

AC + AC = Aη̃ +Aη̃

BC + BC = Bη̃ +Bη̃. (1.4)

Using the elementary properties of determinants, one can easily see that η = η(p) is given by (1.3). Q.E.D.
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Remark 1.1 Proposition 1.1 with η given by (1.3) can be extended to meromorphic differentials η̃ of the third kind

as long as all residues are real.

Here and henceforth we specialize to a hyperelliptic curve R of genus g ≥ 0 given by

w2 =

2g+2∏
j=1

(z − αj) =: S(z; ~α), (1.5)

where ~α = (α1, α2, · · · , α2g+2) and αj 6= αk for j 6= k, with standard basis of holomorphic differentials of the form

ωj :=
zj−1 dz√
S(z)

, j = 1, . . . , g. (1.6)

We start by considering a second kind differential η with only one singularity on R. By a Möbius transformation we

can assume that the singularity is at one of the points above z =∞. Now, near its singularity, the differential has

the expansion η(z) = (2f(z)+O(z−2)) dz, where f(z) is a polynomial in z. Then, the differential η̃g,f := η−f(z) dz

has singularities at both points above z =∞ and

η̃g,f (z) =
(
±f(z) +O(z−2)

)
dz , z →∞, (1.7)

where the two signs refer to the two sheets of the Riemann surface R. Applied to the differential (1.7), Proposition

1.1 yields the following corollary.

Corollary 1.1 For any Riemann surface (1.5) and for any polynomial f(z) there exists a unique imaginary-

normalized second kind differential

ηg,f (z; ~α) =
N(z; ~α) dz√
S(z; ~α)

, (1.8)

such that
N(z; ~α)√
S(z; ~α)

= ±f(z) +O(z−2) as z →∞, (1.9)

with the ± referring to the two sheets of R.

Notations in Corollary 1.1 emphasize the dependence of the polynomial N (of degree equal to deg f + g+ 1) on

the branch points ~α of R, which is the main subject of the paper.

Definition 1.2 The differential ηg,f (z; ~α) from Corollary 1.1 will be called the imaginary-normalized differential

on the Riemann surface (1.5) with principal part f .

Let us define the set D of “diagonals” as

D := {αj = αk , j 6= k} ⊂ C2g+2. (1.10)

We study the situation when ~α 6∈ D is approaching ~ρ ∈ D. Up to a permutation of components, the point ~ρ is of

the form

~ρ =

( `1 times︷ ︸︸ ︷
ρ1, . . . , ρ1, . . . ,

`H times︷ ︸︸ ︷
ρH , . . . , ρH , ρH+1, ρH+2, . . . , ρm

)
where

H∑
j=1

`j + (m−H) = 2g + 2, `j ≥ 2 (1.11)

with ρj 6= ρk, j 6= k.
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Definition 1.3 A cluster point of the vector ~ρ ∈ D is any of the components ρj of ~ρ, see (1.11), that appears

repeated `j ≥ 2 times in ~ρ. The multiplicity of the j-th cluster point of the vector ~ρ in (1.11) is the number `j,

where j = 1, · · · , H.

As ~α→ ~ρ the Riemann surface R, given by (1.5), becomes a singular hyperelliptic Riemann surface R̂ and

S(z; ~α)→
H∏
a=1

(z − ρa)2κa

H∏
a=1

(z − ρa)`a−2κa

m∏
j=H+1

(z − ρj) =

H∏
a=1

(z − ρa)2κaS0(z, ~β), (1.12)

where κa :=
⌊
`a
2

⌋
and ~β contains only one representative of each of the ρj ’s with odd multiplicity and all the

non-cluster points (which are considered of multiplicity 1). The dimension of ~β is thus 2g0 + 2 with5

g0 = g −
H∑
a=1

κa . (1.13)

The hyperelliptic Riemann surface R0 given by

w2 = S0(z; ~β) (1.14)

is called the desingularization (or normalization) of the limiting curve R̂. We prove the following continuity

theorem.

Theorem 1.1 Let R be the hyperelliptic Riemann surface (1.5) of genus g and R0, given by (1.14), be the desin-

gularization of the singular Riemann surface R̂ of genus g0. Let f(z) be a polynomial and ηg,f (z; ~α), ηg0;f (z; ~β) be

the differentials in Corollary 1.1 on the hyperelliptic Riemann surfaces R,R0, respectively. Then

lim
~α→~ρ

ηg,f (z; ~α) = ηg0,f (z; ~β). (1.15)

Equivalently, if N(z; ~α) and N0(z; ~β) are the polynomials in the numerators of ηg,f (z; ~α), ηg0,f (z; ~β), respectively (

as in Corollary 1.1) then

lim
~α→~ρ

N(z; ~α) =

H∏
a=1

(z − ρa)κaN0(z; ~β). (1.16)

The continuity result of Theorem 1.1 can be extended to arbitrary imaginary-normalized differentials of the

second kind. Indeed, any such differential η is the sum of several imaginary-normalized differentials of the second

kind with only one pole (each at a different point). Let ~f = {f1, f2, · · · , fn} denote the principal parts of η at the

poles ~p = {p1, p2, · · · , pn} with pj = (zj , wj) so that, e.g., fj(z) = Pj((z− zj)−1), with Pj a given fixed polynomial.

Since Möbius transformations preserve the periods, the Theorem 1.1 applies (with obvious modifications) to each

of the ηg,fj , and we obtain the following corollary.

5We allow complete degeneration so that S0 = 1; formally this corresponds to genus g0 = −1.
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Corollary 1.2 Let R and R0 be the hyperelliptic Riemann surfaces, considered in Theorem 1.1, and let ηg,~f (z; ~α)

be an imaginary-normalized second kind differential on R with prescribed principal parts fj(z) at poles pj = (wj , zj).

Then

lim
~α→~ρ

ηg,~f (z; ~α) = ηg0, ~f (z; ~β), (1.17)

provided that none of the z–coordinates of the poles pj of η coincides with one of the cluster points ρa. The limiting

differential is the imaginary-normalized meromorphic differential on the desingularization of the limiting curve and

with the same singular parts.

Proof of Theorem 1.1 Here we prove the theorem under the main technical assumption that the polynomial

N(z; ~α) remains bounded as ~α → ~ρ on a fixed circle |z| = R with any R > max |ρj |, or, which is the same, the

coefficients of N(z; ~α) remain bounded in the limit. The bulk of the paper, namely, entire Section 2, is devoted to

the proof (Theorem 2.1) of this main assumption.

Since η = ηg,f is a second kind differential, the Riemann bilinear relations yield

g∑
j=1

(∮
aj

η

∮
bj

η −
∮
bj

η

∮
aj

η

)
= 4i

∫∫
|z|<R

|N(z; ~α)|2 d2z

|S(z; ~α)|
+ 2

∮
|z|=R

E(z; ~α)N(z; ~α) dz√
S(z; ~α)

, (1.18)

where E(z; ~α) =
∫ z
z0

N(ζ;~α) dζ√
S(ζ;~α)

and d2z denotes the Lebesgue area measure (here and below). Note that while

E(z; ~α) depends on the basepoint of integration via an additive constant, the contour integral on z = |R| in (1.18)

is independent of this basepoint because Res η|z=∞ = 0. Since all the periods of η are purely imaginary, the left

hand side of (1.18) is zero. Thus, we obtain

4i

∫∫
|z|<R

|N(z; ~α)|2 d2z

|S(z; ~α)|
= −2

∮
|z|=R

E(z; ~α)N(z; ~α) dz√
S(z; ~α)

. (1.19)

By Theorem 2.1 the right hand side of (1.19) is bounded as ~α→ ~ρ. So, the left hand side of (1.19) must remain

bounded as ~α→ ~ρ.

However, we do not know yet whether N(z; ~α) admits a limit as ~α→ ~ρ. We shall thus now show that:

1. any limiting value of N(z; ~α) must be divisible by
∏H
a=1(z − ρa)κa ;

2. all limiting values coincide with each other and hence the limit of N(z; ~α) exists.

Since N(z; ~α) is a polynomial in z, any of its limiting value is also a polynomial of degree not exceeding degN .

Thus, we are considering the limiting values of the coefficients of the polynomial N(z; ~α). According to Theorem

2.1, the coefficients of N(z; ~α) remain bounded as ~α → ~ρ. Take any sequence {~αn}∞1 such that ~αn 6∈ D, n ∈ N,

and ~αn → ~ρ. Then there is a subsequence {~α′n}∞1 ⊆ {~αn}∞1 , such that the limit limn→∞N(z; ~α′n) = N̂(z; ~ρ) exists.

Note also that, according to (1.12), lim~α→~ρ S(z; ~α) =
∏H
a=1(z− ρa)2κaS0(z; ~β) uniformly for z ∈ D(R)= {|z| < R}.

Suppose by contradiction that the above limit N̂(z; ~ρ) is not divisible by
∏H
a=1(z − ρa)κa . Then the Lebesgue

integral ∫∫
|z|<R

|N̂(z; ~ρ)|2 d2z

|S0(z; ~β)|
∏H
a=1 |z − ρa|2κa

= +∞. (1.20)
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Indeed then, near one of the points ρa where N̂(z) is not divisible by (z − ρa)κa , the integrand is of the form

O(1)/|z − ρa|`, with ` ≥ 2 and thus divergent. But by Fatou’s lemma∫∫
|z|<R

|N̂(z; ~ρ)|2

|S0(z; ~β)|
∏H
a=1 |z − ρa|2κa

≤ lim inf
n

∫∫
|z|<R

|N(z; ~α′n)|2 d2z

|S(z; ~α′n)|
<∞. (1.21)

The obtained contradiction shows that

N̂(z; ~ρ) =

H∏
a=1

(z − ρa)κaN̂0(z;β) (1.22)

for some polynomial N̂0(z;β). Let us introduce

η̂(z; ~ρ) :=
N̂(z; ~ρ)√
S(z; ~ρ)

=
N̂0(z; ~β)√
S0(z; ~β)

. (1.23)

According to (1.9),

η̂(z; ~ρ) = ±f(z) +O(z−2) (1.24)

as z →∞ and, thus, η̂(z; ~ρ) dz is a second kind differential on the Riemann surface R0 given by w2 = S0(z; ~β). Let

us prove that η̂(z; ~ρ) is an imaginary-normalized differential onR0. Consider loops γ ⊂ C, such that in their interiors

there are an even number of roots of S0(z); recall that the roots of S0(z) are all simple and in correspondence

with each of the odd–multiplicity cluster points. We choose these γ so that their interior contains also small and

mutually disjoint disks Da around the corresponding cluster points ρa. In particular also the total number of α’s

in the region enclosed by γ is even. These loops span the homology of the Riemann surface R0 because there is

only one branchpoint of S0 at each ρa that has an odd multiplicity `a. They form closed contours on R0 and the

corresponding periods are imaginary because they are limits of imaginary periods on R, by construction. Thus the

integrals
∮
γ
η̂(z; ~ρ) dz are purely imaginary by the continuity argument. So, every limiting differential η̂(z; ~ρ) is

an imaginary-normalized differential on R0 satisfying (1.24). By Corollary 1.1, all such differentials coincide with

ηg0,f (z; ~β). The proof of the theorem is complete. Q.E.D.

2 Proof of boundedness of the coefficients of N(z, ~α)

We start by specializing the formula for N(z, ~α) in Corollary 1.1. Define the polynomial

Q(z; ~α) := res
ζ=∞

f(ζ)
√
S(ζ; ~α)

z − ζ
dζ =

(
f(z)

√
S(z; ~α)

)
+
, (2.1)

on C, where the notation ()+ means the polynomial part and the branch of
√
S(z; ~α) is defined by

√
S(z; ~α)→ zg+1

as z →∞. In the following we shall occasionally omit the reference to the dependence on the α’s.

Lemma 2.1 The polynomial Q(z; ~α) is an entire function of ~α and

Q(z; ~α)√
S(z; ~α)

− f(z) = O(z−g−2) , |z| → ∞. (2.2)

As a consequence, the differential Q(z;~α)√
S(z;~α)

dz has no residue at z =∞.
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Proof. Consider the sheet where
√
S(z) ∼ zg+1. Choose R, r0 such that R > r0 > |αj |, j = 1, 2, · · · , 2g+ 2. Then

for r0 < |z| < R

Q(z)√
S(z)

=
1

2iπ
√
S(z)

∮
|ζ|=R

f(ζ)
√
S(ζ)

z − ζ
dζ = f(z) +

1

2iπ
√
S(z)

∮
|ζ|=r0

f(ζ)
√
S(ζ)

z − ζ
dζ, (2.3)

so that the difference Q(z)/
√
S(z)− f(z) = O(z−g−2). It is also clear that

√
S(z; ~α) restricted on a circle |z| = R

is a locally analytic function of the α’s, and hence Q(z; ~α) is also analytic in α’s. Since R is arbitrarily large, Q is

in fact entire in α’s. The statement about the residue follows directly from (2.2). Q.E.D.

From Lemma 2.1 and Corollary 1.1 we have

ηg,f =
Q(z; ~α) +

∑g
j=1 Cj(~α)zj−1√
S(z)

dz =
N(z; ~α) dz√

S(z)
, (2.4)

where, according to (1.3),

Cj(~α) =
1

D(~α)
det

 A A AQ +AQ
B B BQ +BQ
ej 0 0

 , N(z; ~α) =
1

D(~α)
det

 A A AQ +AQ
B B BQ +BQ

1 · · · zg−1 0 Q(z)

 (2.5)

and D(~α) := det

[
A A
B B

]
, [AQ]j :=

∮
aj

Q(ζ) dζ√
S(ζ)

, [BQ]j :=

∮
bj

Q(ζ) dζ√
S(ζ)

. (2.6)

Here ej is the elementary row vector of size g.

Equation (2.4) does not imply that the polynomial N(z; ~α) remains bounded for all possible bounded values of

~α’s. In particular, while Q(z; ~α) has been shown to be an entire function of α’s (hence bounded as ~α → ~ρ), the

coefficients Cj(α) may become unbounded as ~α→ ~ρ.

In the remaining part of the paper we will prove that all the coefficients Cj(~α) are bounded functions in a

vicinity of any ~ρ ∈ D ⊂ C2(g+1). This proof requires estimates of both the lower bound of D(~α) (mainly in Section

2.1) and of the upper bound of the numerator of Cj(α). Some of these estimates are of their own interest as they

connect with the theory of orthogonal polynomials with respect to the measure d2z/
∏
|z−αj |, see Section 2.2. We

also need a formula for the determinant of the sum of matrices (based on the Laplace expansion) that is provided

in Appendix A.

In the following Proposition 2.1 we recall some information about Riemann bilinear relations (see, for example,

[1]).

Proposition 2.1 Let ω(z; ~α) = h(z)√
S(z;~α)

dz and η(z; ~α) = q(z) dz√
S(z;~α)

be second kind meromorphic differentials on

the Riemann surface R given by (1.5). If all the branchpoints of R are within the disk |z| = R0 < R and aj ,bj,

j = 1 . . . , g, is a canonical basis of cycles then

g∑
j=1

(∮
aj

η

∮
bj

ω −
∮
bj

η

∮
aj

ω

)
= 2

∮
|z|=R

E(z; ~α)
h(z)√
S(z; ~α)

dz, (2.7)

g∑
j=1

(∮
aj

η

∮
bj

ω −
∮
bj

η

∮
aj

ω

)
= 4i

∫∫
|z|<R

q(z)h(z) d2z

|S(z; ~α)|
+ 2

∮
|z|=R

E(z; ~α)h(z)√
S(z; ~α)

dz, (2.8)
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where the Abelian integral

E(z; ~α) :=

∫ z

z0

η(ζ) =

∫ z

z0

q(ζ) dζ√
S(ζ; ~α)

(2.9)

is analytic for |z| ≥ R. Here d2z = i
2dz ∧ dz.

It is clear that the integral in (2.7) is a bounded and analytic function of the branchpoints α’s 6, provided that

they lie in the disk |z| < R0. Similarly, the second integral in (2.8) is a bounded and smooth (it depends on αj ’s)

function of α’s. These integrals will be referred to as the “boundary terms”. However, the remaining area-integral

(“bulk term”) in (2.8) is generically divergent when two or more α’s collide, because in this case the integrand

ceases to be L1
loc( d2z); we are precisely going to analyze these divergences in this section. For a given ~ρ ∈ D define

the distance

r = min

{
1;
|ρi − ρj |

10
, 1 ≤ i < j ≤ m

}
, (2.10)

where ρi, ρj are distinct components of the vector ~ρ given by (1.11), and the partition

Dj := {|z − ρj | < r} , j = 1 . . . H , D0 := {z ∈ C : |z| ≤ R} \
H⋃
j=1

Dj (2.11)

of the disk D(R) = {z ∈ C : |z| ≤ R}. Here and henceforth, without loss of generality, we assume R > 1.

Notation 1 Given a vector ~z ∈ Cg and a multi-index ~m = (m1, . . . ,mH) ∈ NH such that |~m| ≤ g (with |~m| =∑
jmj) we shall adopt the following notation for the subvectors: ~z

(1)
m1 = (z1, . . . , zm1

), ~z
(2)
m2 = (zm1+1, . . . , zm1+m2

)

etc. In the case |~m| < g we also define ~z
(0)
m0 = (zg−|~m|+1, . . . , zg) with m0 := g − |~m|.

Notation 2 For a vector ~α ∈ C2g+2 in a neighborhood of ~ρ given by (1.11) we shall adopt the following notation:

~α
(1)
`1

:= (α1, . . . , α`1) ∈ D`11 , ~α
(2)
`2

= (α`1+1, . . . , α`1+`2) etc.

Lemma 2.2 If R is a Riemann surface given by (1.5) then

D(~α) = (4i)gIg(∞; ~α), where Ig(R; ~α) :=
1

g!

∫∫
D(R)g

∏
1≤k<j≤g

|zj − zk|2
g∏
j=1

d2zj
|S(zj ; ~α)|

. (2.12)

Proof. The Riemann bilinear relations for holomorphic differentials and R → ∞ can be written in terms of the

period matrices A,B as follows

AtB = BtA , (2.13)

so that the matrix M := AtB is symmetric. Then

D(~α) = det

[
A A
B B

]
=

1

detAdetB
det

[
BtA BtA
AtB AtB

]
=

1

detA detB
det

[
M BtA
M AtB

]
= (2.14)

=
1

detA detB
det

[
M BtA
0 AtB− BtA

]
=

detM

detA detB
det
[
AtB− BtA

]
= det

[
AtB− BtA

]
. (2.15)

6In fact they can be extended to entire functions by enlarging R. We shall not need to use this extension.
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The entries of this last matrix are (recall that ωj(z) = zj−1 dz√
S(z)

)

[
AtB− BtA

]
j,k

=

g∑
`=1

(∮
a`

ωj

∮
b`

ωk −
∮
b`

ωj

∮
a`

ωk

)
=

∫∫
R
ωj ∧ ωk = 4i

∫∫
C

zj−1zk−1 d2z

|S(z)|
. (2.16)

We then use Andreief identity [9] (see App. B) that allows to express the determinant of the matrix of integrals

(2.16) as a multiple integral of a determinant as follows

g! det

[
4i

∫∫
C

zj−1zk−1 d2z

|S(z)|

]
= (4i)g

∫∫
Cg

g∏
`=1

d2z`
|S(z`)|

det[zk−1j ]j,k det[zk−1j ]j,k = (4i)g
∫∫

Cg

g∏
`=1

d2z`
|S(z`)|

∏
k<j

|zk − zj |2.(2.17)

Q.E.D.

2.1 Cluster expansion for the denominator

We invite the reader to refer to the notation of Definition 1.3. and in Notation 1 and 2.

Lemma 2.3 Let the multi-index ~m ∈ NH be such that |~m| = g. Suppose that ~z
(1)
m1 ∈ Dm1

1 , ~z
(2)
m2 ∈ Dm2

2 , · · · , ~z(H)
mH ∈

DmH

H . Then

|∆g(~z)| =
∏

1≤k<j≤g

|zj − zk|2 ≥ r(g+1)g3
H∏
a=1

|∆ma
(~z(a)ma

)| , (2.18)

where ∆ma
(~z

(a)
ma) denotes the Vandermonde of the subset of the ma ≥ 1 variables that fall within the disk Da (if

ma = 0 we understand the corresponding term as 1) .

Proof. Since all the variables belong to the various D1, . . . ,DH and the pairwise distance is no less than 8r, each

term |zj − zk|2 in |∆(~z)| with the variables in different disks is no less than (8r)2. Counting those pairs we get∑
j<kmjmk. Thus their contribution is a factor with the lower bound (8r)2

∑
j<kmjmk . Removing the 8 and using

r < 1, we can simplify the lower bound by rH(H−1)g2 . Here we used the fact that there are at most H = g + 1

clusters. Q.E.D.

Lemma 2.4 Let ε ∈ (0, r2 ) and let ~α be such that all the components of subvectors ~α
(n)
`n

are ε-close to ρn, n =

1, · · · , H. If ~z is as in Lemma 2.3 then

g∏
j=1

1

|S(zj)|
≥ R−2g(g+1)

H∏
a=1

1

|Sa(~z
(a)
ma)|

, where Sa(~z(a)ma
) :=

∏
z∈~z(a)

ma

∏
α∈~α(a)

`a

(z − α) (2.19)

and the notation α ∈ ~α(a)
`a

means that the dummy variable α runs over all the components of ~α
(a)
`a

and the notation

z ∈ ~z(a)ma means that z runs over all the components of ~z
(a)
ma .

Proof. If z ∈ Da then

|S(z)| ≤ R2g+2−`a
∏

α∈~α(a)
`a

|z − α| ≤ R2g+2
∏

α∈~α(a)
`a

|z − α|. (2.20)
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di
st
(D
i,
D j
)
≥
8r D2

D1
R

2r

DH

ρ2

ρ1

ρH+1

ρH
ρm

Figure 1: Typical arrangement of cluster disks Da (shaded) and cluster points ρa with indicated the locations of
αj ’s (crosses). The α’s in each disk tend to its center.

Multiplying over the points ~z
(a)
ma ∈ Dma

a and then over the clusters, we obtain

g∏
j=1

1

|S(zj)|
≥ K2

H∏
a=1

1

|Sa(~z
(a)
ma)|

, where K2 := R−(2g+2)|~m| ≥ R−2g(g+1) . (2.21)

Q.E.D.

Proposition 2.2 Let

Ima,a(r; ~α
(a)
`a

) :=
1

ma!

∫∫
Dma

a

|∆ma
|2

|Sa(~z
(a)
ma)|

d2~z(a)ma
, where d2~z(a)ma

:=

ma∏
s=1

d2zs. (2.22)

Then the integrals Ig(R; ~α) defined in (2.12) satisfy

Ig(∞; ~α) ≥ Ig(R; ~α) ≥ r(g+1)g3

R2g(g+1)

∑
~m∈NH
|~m|=g

H∏
a=1

Ima,a(r; ~α
(a)
`a

). (2.23)

Proof. The first inequality (2.23) is obvious, so we concentrate on the second. Using Notation 1 and (2.11),

denote (throughout, N = {0, 1, 2, . . .})

Dm̂ := Dm0
0 × Dm1

1 × · · · × DmH

H , D~m := Dm1
1 × · · · × DmH

H

( g
~m

)
:=

g!

m0!m1! · · ·mH !
. (2.24)

where m̂ = (m0,m1, · · · ,mH). Then we have the identity

g!Ig(R) =
∑

m̂∈NH+1: |m̂|=g

( g
~m

)∫∫
Dm̂

|∆g|2
g∏
j=1

d2zj
|S(zj)|

. (2.25)
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Each term in the sum is a positive number. Keeping only the terms with m0 = 0 and using Lemmas 2.3, Lemma

2.4, we obtain

g!Ig(R) ≥
∑

~m∈NH : |~m|=g

( g
~m

)∫∫
Dm̂

|∆g|2
g∏
j=1

d2zj
|S(zj)|

≥ r(g+1)g3
∑

~m∈NH : |~m|=g

( g
~m

)∫∫
D~m

H∏
a=1

|∆ma
|2

g∏
j=1

d2zj
|S(zj)|

≥ r(g+1)g3R−2g(g+1)
∑

~m∈NH : |~m|=g

( g
~m

) H∏
a=1

∫∫
Dma

a

|∆ma |
2 d2~zma

|Sa(~zma
)|

= g!r(g+1)g3R−2g(g+1)
∑

~m∈NH : |~m|=g

H∏
a=1

Ima,a ≥ g!r(g+1)g3R−2g(g+1)
∑

~m∈NH : |~m|=g

H∏
a=1

Ima,a. (2.26)

Q.E.D.

2.2 Lower and upper bounds

In this section we will establish certain bounds for each of the Ima,a in the cluster expansion of Proposition 2.2. To

simplify our analysis we consider a cluster of `a ≥ 2 points in a disk centered at the origin (instead of ρa). Instead

of using the notation from Ima,a(r; ~α
(a)
`a

) we shall use the generic notation

Jn(r;α1, . . . , α`) :=
1

n!

∫∫
D(r)n
|∆n|2

n∏
s=1

d2zj
|T (zj)|

, ∆n =
∏

1≤i<j≤n

|zi − zj | , T (z) :=
∏̀
j=1

(z − αj). (2.27)

Here n plays the role of ma, (α1, . . . , α`) plays the role of ~α
(a)
`a

and
∏n
j=1 T (zj) plays the role of Sa(~z

(a)
ma) in (2.22)

(up to translation such that ρa = 0).

We shall first recall some general fact about these integrals and their relation with orthogonal polynomials.

Consider the monic holomorphic orthogonal polynomials (OPs) over D(r) with weight d2z
|T (z)| ), i.e, consider the

sequence Pn(z) = zn + . . . satisfying∫
D(r)

Pn(z)Pm(z)
d2z

|T (z)|
= hnδmn, m, n ∈ N ∪ {0}, (2.28)

where hn ≥ 0 and δmn is the Kronecker delta.

Proposition 2.3 The norms hn of the monic orthogonal polynomials (2.28) satisfy

hn =
Jn+1(r;α1, . . . α`)

Jn(r;α1, . . . α`)
. (2.29)

Proof. This is a well known fact that we review for the reader’s convenience [10]. The monic OPs are explicitly

expressed as

Pn :=
1

det[µij ]0≤i,j≤n−1
det


µ00 · · · µ0n−1 1
µ10 · · · µ1n−1 z

...
...

µ00 · · · µnn−1 zn

 , where µij :=

∫
D(r)
zizj

d2z

|T (z)|
. (2.30)
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The determinant in the denominator is equal to Jn(r) due to the Andreief’s identity ([9]). Multiplying Pn(z) by

zj one obtains 0 if j ≤ n− 1 and (2.29) for j = n. Q.E.D

We recall here that the square norm of the n-th monic OP hn can also be represented through the variational

formula ([11])

hn = inf
z1,...,zn∈D(r)

∫∫
D(r)

n∏
j=1

|z − zj |2
d2z

|T (z)|
. (2.31)

Proposition 2.4 The integrals Jn(r) = Jn(r;α1, . . . , α`) satisfy

Jn(r) ≥ Jn−1(r)

∫ r

0

2πs2n−1 ds

(s+ |~α|)`
≥ Jn−1(r)

∫ r

0

2πs2n−1 ds

(s+ r)`
≥ Jn−1(r)

π

n(2r)`
r2n, (2.32)

where |~α| = maxj=1,···,` |αj |, so that ∀m ≥ n:

Jm(r) ≥ Jn(r)
(n!)πm−nr(m+n+1)(m−n)

(m!)(2r)`(m−n)
. (2.33)

Proof. The formula (2.33) follows simply from (2.32) by induction on m− n. Since Jn = hn−1Jn−1 it suffices

to get a lower-bound for hn−1. Consider the integral

F (z1, . . . , zn−1) :=

∫
D(r)

n−1∏
j=1

|z − zj |2
d2z

|T (z)|
(2.34)

in (2.31). Since |T (z)| ≤ (|z|+ |~α|)`, we have

F (z1, . . . , zn−1) ≥
∫
D(r)

n−1∏
j=1

|z − zj |2
d2z

(|z|+ |~α|)`
. (2.35)

We take the infimum over all configurations of zj ’s; the right hand side will then be the minimal square-norm

of monic polynomials of degree k in L2
(
D(r), d2z

(|z|+|~α|)`

)
. It is well known that the minimum is achieved on the

corresponding orthogonal polynomial. In this case, since the measure is invariant by rotations, the orthogonal

polynomial is simply the monomial zn−1 and its square norm is precisely the right hand side of (2.32). Thus

Jn(r) ≥ Jn−1(r) inf
z1,...,zn−1

F (z1, . . . , zn−1) ≥ Jn−1(r)

∫
s<r

2πs2n−1 ds

(s+ |~α|)`
. (2.36)

The second and third inequalities in (2.32) are obvious since |~α| < r. Q.E.D.

Lemma 2.5 Let Ak,Bk denote matrices A,B, where the k-th column is replaced by AQ +AQ in A or by BQ +BQ

respectively, see (2.6). If ek denotes the k-th standard row vector then

(−1)k−1 det

 A A AQ +AQ
B B BQ +BQ
ek 0 0

 = det
[
BtAk − AtBk

]
. (2.37)
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Proof. Using (2.13), we have

(−1)k−1 det

 A A AQ +AQ

B B BQ +BQ

ek 0 0

 = det

[
Ak A
Bk B

]
=

det

[
BtAk BtA
AtBk AtB

]
det[AtB]

=

=

det

[
BtAk − AtBk 0

AtBk AtB

]
det[AtB]

= det
[
BtAk − AtBk

]
. (2.38)

Q.E.D.

Lemma 2.6 Let

M
(a)
ij :=

∫∫
Da

zi−1 ψ̃j(z) d2z

|S(z)|
, a = 1, . . . ,H, (2.39)

M
(0)
ij := (4i)

∫∫
D0

zi−1 ψ̃j(z) d2z

|S(z)|
+ 4

∮
∂D(R)

(∫ z

z0

ζj−1 dζ√
S(ζ)

)
<

(
ψ̃i(z) dz√
S(z)

)
, (2.40)

where ψ̃j(z) = zj−1 for j 6= k and ψ̃k(z) = Q(z). Then the matrix M (0) is continuous in ~α in a polydisk of radius

r around ~ρ and [
BtAk − AtBk

]
= M (0) +M (1) + . . .+M (H). (2.41)

Proof. Using Riemann bilinear relations, we obtain

[
BtAk − AtBk

]
ij

= (4i)

∫∫
D(R)

zi−1 ψ̃j(z) d2z

|S(z)|
+ 2

∮
∂D(R)

(∫ z

z0

ζi−1 dζ√
S(ζ)

)
ψ̃j(z) dz√

S(z)
+

2

∮
∂D(R)

(∫ z

z0

ζi−1 dζ√
S(ζ)

)
ψ̃j(z) dz√

S(z)
= (4i)

∫∫
D(R)

zi−1 ψ̃j(z) d2z

|S(z)|
+ 4

∮
∂D(R)

(∫ z

z0

ζi−1 dζ√
S(ζ)

)
<

(
ψ̃j(z) dz√

S(z)

)
,(2.42)

where the factor 2 in front of the line integrals is due to the fact that there are 2 copies of ∂D(R) on the two

sheets of the Riemann surface7. It should be noted that the basepoint z0 of the integration is irrelevant because

changing it yields a term proportional to
∮
|z|=R

zi−1 dz√
S(z)

. This term is zero because the holomorphic differentials

have no residue at infinity. We choose z0 so that |z0| > R. Then the integrals in (2.42) are uniformly bounded

for all α’s from D(R). Separate the contribution coming from the circles Da near the cluster points (2.11) in the

area-integrals in (2.42), we obtain[
BtAk − AtBk

]
ij

= (4i)

(∫∫
D1

+

∫∫
D2

+ . . .+

∫∫
DH

+

∫∫
D0

)
zi−1 ψ̃j(z) d2z

|S(z)|
+

4

∮
∂D(R)

(∫ z

z0

ζi−1 dζ√
S(ζ)

)
<

(
ψ̃j(z) dz√

S(z)

)
= M

(1)
ij +M

(2)
ij + . . .+M

(H)
ij +M

(0)
ij . (2.43)

This proves (2.41). The matrix M (0) is continuous as ~α→ ~ρ because the “bulk” term is integrated only in the

region where no α’s coalesce and the cluster points in ~ρ are bounded away from ∂D(R). Similarly, the entries M
(a)
j,i

are bounded functions of all the α’s that do not belong to the a-th cluster. Q.E.D.

7The last term in (2.42) is nonzero only for the column j = k when ψ̃k = Q.

13



Lemma 2.7 In the notation of Proposition A.2 (in particular, [m] = {1, . . . ,m}) we have

det
[
BtAk − AtBk

]
= det

[
H∑
a=0

M (a)

]
=

∑
~m∈NH+1

|~m|=g

∑
~I∈( [g]

~m )

∑
~J∈( [g]

~m )

(−1)C( ~J ,~I)
H∏
a=0

M
(a)
Ia,Ja

, (2.44)

where

M
(a)
IaJa

=
(4i)ma

ma!

∫∫
Dma

a

det[ψ̃j(zs)]Ja,[ma]det[zi−1s ]Ia,[ma]

ma∏
i=1

d2zi
|S(zi)|

, ma = |Ia| = |Ja|. (2.45)

Proof. Equation (2.44) with M
(a)
IaJa

:= det
[
M

(a)
ij

]
i∈Ia,j∈Ja

follows from Lemma 2.6 and Proposition A.2. Equation

(2.45) follows from Andreief’s identity. Q.E.D.

Lemma 2.8 The determinant of each of the minors (2.45) satisfy

∣∣∣M (a)
IaJa

∣∣∣ ≤ 4ma sup~ζ∈Dma
a

∣∣∣GIa(~ζ)G̃Ja
(~ζ)
∣∣∣

ma!R2g+2
Ima,a(r; ~α

(a)
`a

), (2.46)

where Ima,a is defined in (2.22),

G̃Ja
(z1, . . . , zma

) :=
det[ψ̃j(zs)]Ja,[ma]

∆ma

, GIa(z1, . . . , zma
) :=

det[ψi(zs)]Ia,[ma]

∆ma

. (2.47)

and the constant in front of Ima,a(r; ~α
(a)
`a

) in (2.46) is uniformly bounded as ~α→ ~ρ.

Proof. From (2.45) we see that their absolute values can be bounded as

|M (a)
IaJa
| ≤ 4ma

ma!

∫∫
Dma

a

∣∣∣det[ψ̃j(zs)]Ja,[ma]

∣∣∣ ∣∣det[ψi(zs)]Ia,[ma]

∣∣ ma∏
i=1

d2zi
|S(zi)|

=

=
4ma

ma!

∫∫
Dma

a

∣∣∣∣∣det[ψ̃j(zs)]Ja,[ma]

∆ma

∣∣∣∣∣
∣∣∣∣det[ψi(zs)]Ia,[ma]

∆ma

∣∣∣∣ |∆ma
|2
ma∏
i=1

d2zi
|S(zi)|

≤

Lemma 2.4

≤ 4ma

ma!R2g+2

∫∫
Dma

a

∣∣∣∣∣det[ψ̃j(zs)]Ja,[ma]

∆ma

∣∣∣∣∣
∣∣∣∣det[ψi(zs)]Ia,[ma]

∆ma

∣∣∣∣ |∆ma |2
ma∏
i=1

d2zi
|Sa(zi)|

=

=
4ma

ma!R2g+2

∫∫
Dma

a

∣∣∣G̃Ja(~z)GIa(~z)
∣∣∣ |∆ma |2

ma∏
i=1

d2zi
|Sa(zi)|

, (2.48)

where Sa(z) :=
∏
α∈~α(a)

`a

(z − α). In general, the expressions (2.47) are symmetric polynomials in the variables

z1, . . . , zm1
. In fact GIa are independent of ~α (by our assumption on ψj) and G̃Ja

depend on ~α only through

Q(z; ~α), and thus analytically by Lemma 2.1. In either cases these two functions are uniformly bounded in the

polydisk Dma
a as ~α→ ~ρ. The proof of the lemma is completed. Q.E.D.

We now prove the boundedness of the polynomial N(z; ~α) near any point ~ρ ∈ D. This does not imply continuity

(or the existence of the limit) of N but is an important step in proving the existence of such a limit. For this reason

it is convenient to separate its proof from the continuity Theorem 1.1.

Theorem 2.1 The coefficients of the polynomial N(z, α) in (2.4) remain bounded as ~α→ ~ρ ∈ D.
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Proof. According to (2.4) and Lemma 2.1, it is sufficient to prove that all the coefficients Cj(~α) are bounded as

~α→ ~ρ. From (2.5) we see that Cj(~α) is the ratio of (2.37) and D(~α). Then, according to (2.44),

∣∣∣det
[
BtAk − AtBk

]∣∣∣ ≤ ∑
~m∈NH+1

|~m|=g

∑
~I∈( [g]

~m )

∑
~J∈( [g]

~m )

H∏
a=0

|M (a)
Ia,Ja

|. (2.49)

Using Lemma 2.6 (the matrix M (0) and all its minors are bounded) and (2.46), we obtain

∑
~I∈( [g]

~m )

∑
~J∈( [g]

~m )

H∏
a=0

|M (a)
Ia,Ja

| ≤ K1

∑
~m∈NH
|~m|≤g

∑
~I∈( [g]

~m )

∑
~J∈( [g]

~m )

H∏
a=1

|M (a)
Ia,Ja

| ≤ K2

∑
~m∈NH
|~m|≤g

H∏
a=1

Ima,a (2.50)

for some constants K1,K2 that do not depend on ~α in a small polydisk around ~ρ. On the other hand, the modulus

of the denominator |D(~α)| = 4gIg(∞; ~α) is bounded from below by Proposition 2.2. and thus

|Cj(~α)| ≤ K3

∑
~m∈NH
|~m|≤g

∏H
a=1 Ima,a∑

~n∈NH
|~n|=g

∏H
a=1 Ina,a

(2.51)

for some constant K3 that do not depend on ~α in a small polydisk around ~ρ. For each term ~m in the numerator of

(2.51) there is a term ~n in the denominator with na ≥ ma. According to Proposition 2.4, each ratio
Ima,a

Ina,a
, ma ≤ na,

is uniformly bounded as ~α→ ~ρ. Thus (2.51) is bounded and the theorem is proved. Q.E.D.

A Generalized Laplace expansion

Let
(

[n]
`

)
be the set of subsets of [n] = {1, 2, . . . , n} consisting of ` (distinct) elements in ascending order I = {1 ≤

i1 < i2 < . . . < i` ≤ n} ∈
(

[n]
`

)
. For I ∈

(
[n]
`

)
we denote with I ′ the (ordered) complementary set in [n]. (Note

that the cardinality of
(

[n]
`

)
is
(
n
`

)
, which should explain the notation.)

Lemma A.1 Let M,T be two square matrices of size n. Then

det(M + T ) = detM +

n∑
`=1

∑
I∈( [n]

` )

det[(M,T )I ], (A.1)

where the symbol (M,T )I means the matrix obtained by substituting the columns {i1, . . . , ik} = I of M with the

corresponding columns of T .

The proof follows from the multilinearity of the determinant with respect to the columns. Now each of those

determinants can be expanded using the general Laplace expansion:

Lemma A.2 (Laplace expansion formula) For each I ∈
(

[n]
`

)
fixed, we have

detA =
∑

J∈( [n]
` )

(−1)|I|+|J | detAJ ,I detAJ ′,I′ , (A.2)

where |I| = i1 + i2 + . . . i` and AI,J denotes the submatrix indexed by i ∈ I, j ∈ J .
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Combining the two lemmas we have:

Proposition A.1 Let M,T be two square matrices of size n. Then

det[M + T ] = detM +

n∑
`=1

∑
I∈( [n]

` )

∑
J∈( [n]

` )

(−1)|I|+|J | det[MJ ,I ] det[TJ ′,I′ ]. (A.3)

Repeated application of Proposition A.1 leads to:

Proposition A.2 Let M0,M1, . . . ,MH be square matrices of size n and ~̀ = (`0, . . . , `H) ∈ NH+1 such that

|~̀| :=
∑
`j = n. Denote by

(
[n]
~̀

)
the set of all partitions ~I = (I0, . . . , IH) of {1, . . . , n} of cardinality `0, . . . , `H

respectively (each of which ordered in ascending order)8.

Then

det

[
H∑
a=0

Ma

]
=

∑
~̀∈NH+1

|~̀|=n

∑
~I∈
(

[n]
~̀

)
∑

~J∈
(

[n]
~̀

)(−1)C( ~J ,~I)
H∏
a=0

det[(Ma)Ia,Ja
], (A.4)

where C( ~J , ~I) is an integer that is inconsequential to our purposes.

B Andréief’s identity

Let (X, dµ) be a measure space and ψ1, . . . , ψn, φ1, . . . , φn be measurable functions. The identity [9] is the following

algebraic identity, as long as all the integrals involved make sense:∫∫
Xn

det [ψj(xk)]j,k det [φj(xk)]j,k

n∏
j=1

dµ(xj) = n! det

[∫
X

φj(x)ψk(x) dµ(x)

]
j,k

(B.1)
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