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1 Introduction

The experimental determination of lepton mass and mixing parameters has made remark-

able progress in the last 15 years, gradually unveiling an unexpected pattern, which has

often challenged the theoretical prejudice. Such an experimental information is essential to

the ambitious program of understanding the origin of flavour breaking. This program has

been most often carried out in a top-down approach based on flavour symmetries or other

organizing principles. In this paper we would like to revisit the problem from a different

point of view, in a bottom-up approach based on a general “stability” assumption, accord-

ing to which the smallness of some fermion masses does not arise from special correlations

among the entries of the mass matrix, and as a consequence it is stable with respect to

small variations of the matrix entries.

Our analysis will lead to constraints on the structure of fermion mass matrices. The

latter contain of course additional parameters that are not physical in the Standard Model
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(SM) — their form depends in particular on the basis in flavour space in which they are

written. The idea underlying our approach is that in a certain basis in flavour space, asso-

ciated to the unknown physics from which they originate, the entries of the fermion mass

matrix can be considered as independent fundamental parameters, i.e. parameters that are

not correlated, neither as a consequence of a non-abelian symmetry, nor accidentally. It is

important to stress that assuming absence of correlations among the entries of the mass

matrix does not imply an anarchical scenario. In fact, the size of each matrix entry can be

dictated by some abelian flavor symmetry. We consider such an assumption motivated and

timely, as an experimental evidence of such correlations, which would have been welcome as

a smoking gun of underlying symmetries, failed so far to show up in the measurement of θ13

and θ23 [1, 2]. For example, neutrino mass models leading to the so-called “tri-bimaximal”

(TBM) mixing structure [3–7] for the neutrino mass matrix mν require 3 independent cor-

relations among the entries of mν (mν
12 = mν

13, mν
22 = mν

33, mν
11 +mν

12 = mν
22 +mν

23), see

e.g. ref. [8], that can be accounted for by discrete symmetries (with a highly non-trivial

construction needed to achieve a consistent and complete picture, including quarks and

the charged fermion hierarchies). In the light of recent data, such models require sizeable

corrections from the charged lepton sector [9–28], making the TBM scheme as predictive

as simple models without correlations (see however refs. [25–28] for a a possible prediction

for the CP phase).

In the following, we will concentrate in particular on the charged fermion (lepton) mass

matrices, which are particularly suited for our approach due to the significant hierarchy

among their eigenvalues.1 This makes unlikely that the small eigenvalues arise as a conse-

quence of accidental correlations among much larger quantities, an important element in

our analysis, and is a sign of a non-anarchical origin of its matrix entries. We will see that

our approach allows to draw interesting conclusions on their contribution to lepton mixing.

The precise formulation of our assumption will be given in section 2. Let us see here

in a qualitative and intuitive way how assuming the absence of certain special correlations

among matrix elements can translate into relevant information on the structure of the

fermion mass matrices, using a simple and well known 2 family example: the charged

lepton mass matrix ME , restricted to the second and third families,

ME =

(
M22 M23

M32 M33

)

(throughout this paper we will use a “RL” convention for the charged fermion mass ma-

trices). Suppose that ME = UTecM
diag
E Ue, where Mdiag

E = Diag(mµ,mτ ) and Ue, Uec are

rotations by angles θ, θc, respectively, that are both large, tan θ ∼ tan θc ∼ 1. As a conse-

quence, all the four entries of ME are of the same order of magnitude as the tau mass mτ ,

and the observed relative smallness of mµ is a consequence of a precise correlation among

those four entries,

M22M33 −M23M32 = 0 , (1.1)

1With an abuse of mathematical terminology, we will use “eigenvalues” to mean “singluar values”.
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up to small corrections of relative order O (mµ/mτ ). Such a correlation can certainly occur,

accidentally or as a consequence of a non-abelian symmetry. But if we assume that it does

not, this translates into constraints on the structure of the matrix ME . Since mτ ∼ |M33|
(see appendix C) and mτmµ = |M33M22 −M23M32|, we have in fact

mµ

mτ
=
mµmτ

m2
τ

∼
∣∣∣∣M33M22 −M23M32

M2
33

∣∣∣∣ . (1.2)

Requiring, according to our assumption, that the smallness of mµ does not result from a

fine-tuned cancellation among two correlated terms M33M22 and M23M32 (as in eq. (1.1)),

we conclude that ∣∣∣∣M22

M33

∣∣∣∣ . mµ

mτ
and

∣∣∣∣M23M32

M2
33

∣∣∣∣ . mµ

mτ
, (1.3)

which provides relevant information on the structure of the mE matrix.

Interestingly, the above conditions can equivalently be obtained by requiring that the

lightest eigenvalue mµ, or equivalently the product mµmτ = | detM |, is stable with respect

to small variations of the matrix entries. The stability of an anomalously small quantity

X(a) with respect to a small variation ∆a� a of the variable a is measured by the quantity

∆a =

∣∣∣∣∆X∆a

a

X

∣∣∣∣ ≈ ∣∣∣∣∆ logX

∆ log a

∣∣∣∣ . (1.4)

In the ∆a→ 0 limit, the definition above coincides with the “fine-tuning” or “sensitivity”

parameter often used to measure the naturalness of the Higgs mass (for reasons that will

become clear later, we prefer to keep a finite form here). The larger is ∆a, the more

unstable is the smallness of X. When a is assumed to be an independent fundamental

parameter of the theory, it is desirable to have ∆a . 1, in such a way that the smallness of

X(a) can be considered “natural”, i.e. not accidental. In the case of our 2× 2 mass matrix

M , we can require that the small quantity m2m3 = |detM |, or detM itself, is stable with

respect to variations of the matrix elements Mij and calculate the corresponding sensitivity

parameters:

∆M33 = ∆M22 =
|M22M33|
m2m3

, ∆M23 = ∆M32 =
|M23M32|
m2m3

. (1.5)

Therefore, the assumption in eq. (1.3) is equivalent to imposing

∆Mij . 1 (1.6)

for (one or) all the entries Mij , ij = 1, 2, and is therefore nothing but a stability assumption,

at least if the parameters Mij can be considered independent.

The arguments above on the structure of our toy 2 × 2 lepton mass matrix are well

known and underlie textures that have been widely considered in the literature. For ex-

ample, textures with M32,M33 ∼ mτ , M22,M23 ∼ mµ have been considered since ref. [29]

as possible explanations for the origin of the large atmospheric angle. The purpose of this

paper is to analyse in a rigorous and complete way the consequence on the structure of a

full 3× 3 hierarchical mass matrix of the systematic application of the above ideas.

– 3 –
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In sections 2 and 3 we precisely define the assumption we make, which generalises

eq. (1.3), and we study its connection with the absence of correlations in the full de-

terminant and 2 × 2 sub-determinants of 3 × 3 fermion matrices. We also give different

characterisations of stable mass matrices valid for any n × n matrix. This section will

make use of a number of useful results on mass matrices collected in the appendices A–C.

In section 4 we will consider examples of applications of our results to the charged lepton

contributions to neutrino mixing. In particular, we will revisit the issue of whether the

charged lepton contribution can account for all neutrino mixing and show that this is indeed

possible without fine-tuning (a model realising this scenario with an abelian symmetry is

sketched in appendix D). We will also consider the case in which the charged lepton mass

matrix combines with a maximal 12 rotation originating in the neutrino sector and we will

see that this also leads to a plausible texture for the lepton mass matrix. In section 5 we

summarise our results.

2 The stability assumption

In this section we define the assumption we make in this paper, in the general case of a

n×n matrix M , and we study its consequences, including an explicit equivalent formulation

in terms of constraints on products of matrix elements, which is the basis of the analysis

carried out in the next sections. The proofs of the statements in this section are given in

appendix B.

Let M be a generic complex n× n matrix with hierarchical eigenvalues

0 < m1 � . . .� mn , (2.1)

representing for example a Dirac fermion mass matrix. Throughout this paper we will

assume that its eigenvalues are stable in size with respect to small variations of the matrix

elements Mij . In order to give a precise definition of this assumption, it is useful to define

the quantities

Πp ≡
( ∑
k1<...<kp

m2
k1 . . .m

2
kp

)1/2

≈ mn . . .mn−p+1 , (2.2)

where p = 1 . . . n. For hierarchical eigenvalues, Πp is essentially the product of the p

largest eigenvalues, as shown in eq. (2.2). The quantities Πp are useful because, on the one

hand, the requirement of the stability of the eigenvalues m1, . . . ,mn can be equivalently

formulated in terms of the stability of the products mn . . .mn−p+1 ≈ Πp;
2 on the other

hand, the quantities Π2
p have a polynomial expression in terms of the matrix elements Mij

2Strictly speaking the two requirements are equivalent if n is not too large, say n ≤ 3. If n � 1,

the stability of all Πp implies the stability of all mk, but not viceversa. This can be seen by observing

that ∆(log Πp)/∆(logMij) ≈ ∆(logmn)/∆(logMij) + . . . + ∆(logmn−p+1)/∆(logMij). Therefore, even

if the individual eigenvalues have sensitivities of order one, the sensitivity of Πp can be large, for large

p and n, because of the large number of O (1) contributions. On the contrary, a small sensitivity for all

Πp guarantees a small sensitivity for all the eigenvalues. Inverting the previous relations one finds in fact:

∆(logmn)/∆(logMij) ≈ ∆(log Π1)/∆(logMij) and ∆(logmk)/∆(logMij) ≈ ∆(log Πn−k)/∆(logMij) −
∆(log Πn−k+1)/∆(logMij) for k < n.
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and their conjugated, see eq. (A.5), which allows to translate the stability requirement into

constraints on the matrix elements.

Definition (stability assumption). We say that the mass matrix M is stable with respect

to small variations of its matrix elements iff∣∣∣∣ ∆Πp

∆Mij

Mij

Πp

∣∣∣∣ . 1 for |∆Mij | � |Mij | and i, j, p = 1 . . . n . (2.3)

As explained, the definition above expresses the stability of the determination of the eigen-

values of M (more precisely the products in eq. (2.2)) with respect to small variation of

any matrix entry.

Proposition 1 (relation with fine-tuning). The stability assumption implies∣∣∣∣ ∂Πp

∂Mij

Mij

Πp

∣∣∣∣ . 1 for i, j, p = 1 . . . n , (2.4)

but the viceversa is true only for n = 1, 2.

An example of 3 × 3 matrix M that satisfies eq. (2.4) but not eq. (2.3) is given in the

example 2 in appendix B. The reason why eq. (2.4) in that case misses the instability is

that the latter does not show up when |∆Mij | is much smaller than the second eigenvalue

(which is always the case in eq. (2.4), where the limit ∆Mij → 0 is taken). This is the

reason why we chose to use a definition of stability using finite differences.

We now show that for n ≤ 3 the stability assumption translates in practice into simple

constraints on products of matrix entries, which correspond to the absence of cancellations

in the expressions entering the determinants and sub-determinants of M . The constraints

in eqs. (2.5) and (2.6) are all we need for the analysis carried out in the next sections.

Proposition 2 (characterization of stable matrices with n ≤ 3).

1. For n = 1, M is trivially always stable;

2. For n = 2, M is stable if and only if

|M11M22| . m1m2 , |M12M21| . m1m2 ; (2.5)

or equivalently if and only if |MijMji| . mimj for all i, j = 1, 2;

3. For n = 3, M is stable if and only if

|MihMjk| . m2m3 for all i 6= j, h 6= k

|M1iM2jM3k| . m1m2m3 for all ijk permutations of 123 .
(2.6)

The interpretation of the above characterisation is clear in the light of the results on

mass matrices in appendix A. In particular, eq. (2.5) can be interpreted as the absence of

cancellations in the r.h.s. of m1m2 = |M11M22−M12M21|, as discussed in the Introduction.

As for the n = 3 case, an analogous interpretation is possible in the light of the the fact that

– 5 –
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the absolute value of the determinant of any p×p submatrix of M (in the case of eq. (2.6),

the 2×2 submatrix made of the Mih,Mjk,Mik,Mjh elements, with determinant MihMjk−
MikMjh) is always smaller or equal to the product of the p largest eigenvalues (in the case

of eq. (2.6), the product m2m3). Moreover, m1m2m3 = |
∑

ijk perm. of 123M1iM2jM3k|, so

that the last condition in eq. (2.6) can also be interpreted as the absence of cancellations

in the previous expression for m1m2m3.

Note that the connection outlined above between the stability of M and the absence

of cancellations in the determinant and sub-determinants, although intuitive, is not trivial.

For example, it does not hold for n ≥ 4, as shown by the example 1 in appendix B.

For completeness, we also give two additional characterisations of stable hierarchical

matrices that emerge in the proof of the previous proposition. Let us first fix a matrix

element Mij and define M̂(ij) to be the matrix obtained from M by setting to zero all the

elements in the row i and column j except Mij and M̌(ij) the matrix with the element ij

set to zero, as in eq. (B.1). Let us also fix 1 ≤ p ≤ n and denote by Π̂(ij)p and Π̌(ij)p the

quantities in eq. (2.2) associated to M̂(ij) and M̌(ij) respectively.

Proposition 3 (general characterisation of stable matrices). The following three state-

ments are equivalent:

1. Eq. (2.3) holds for given p, i, j;

2. Π̂(ij)p . Πp;

3. Π̌(ij)p . Πp.

Therefore the stability of the mass matrix is equivalent to requiring 2. or 3. for all i, j, p.

The intuitive meaning of the points 2. and 3. above has again to do with stability, as

they state that setting to zero one of the matrix entries (or alternatively all the entries on

the same row and column except that one) does not give rise to a drastic change of the

structure of the eigenvalues.

Appendices A and B contain a number of additional results, as well as the proofs of

the statements in this section.

3 General structure of stable charged fermion (lepton) mass matrices

In this section, we will describe the general structure of a 3× 3 hierarchical fermion mass

matrix satisfying the stability assumption, i.e. such that the hierarchy of its eigenvalues

does not require accidental or dynamical correlations among its entries.

Let us start with a remark on the ordering of rows and columns of M : it is always

possible to order the rows and columns of M in such a way that the structure of the matrix

follows the hierarchy of the eigenvalues, i.e. in such a way that the third row and column

are associated to the third and largest eigenvalue, and so on. More precisely, it is possible

– 6 –
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to order the rows and columns of M in such a way that

|M33| = O (m3) ,

|detM[23]| = O (m2m3) ,

and of course | detM | = m1m2m3 ,

(3.1)

where M[23] is the 2× 2 sub-matrix of M corresponding to the second and third rows and

columns (as in eqs. (A.2) and (A.3)). We will assume that this it the case in the following.

En passant, one can wonder how far from m3 and m2m3 can |M33| and | detM[23]| get

in the equations above, or what exactly O (m3) and O (m2m3) mean. In appendix C we

show that we can always make |M33| ' m3/
√

3 ≈ 0.6m3 and |detM[23]| ' m2m3/
√

6 ≈
0.4m2m3. If M did not satisfy the stability assumption (but is hierarchical), the bounds

above would be qualitatively different, |M33| ' m3/3 and | detM[23]| ' m2m3/6.

Once the rows and columns of M have been ordered as above, a stable M is subject

to the following constraints:

• |M3i|, |Mi3| ≤ m3, i = 1, 2, 3;

• |M2i|, |Mi2| . m2, i = 1, 2;

• |M11| . m1;

• |MijMji| . mimj for all i, j = 1, 2, 3 except ij = 13, 31;

• |M13M31| . m2m3;

• |M13M32|, |M23M31| . m2m3;

• |M13M21M32|, |M31M12M23|, |M13M22M31| . m1m2m3.

Viceversa, an hierarchical M satisfying the constraints above (and having m1,m2,m3 as

eigenvalues) is automatically stable.

While in the 2 × 2 case M satisfies the stability assumption iff |MijMji| . mimj for

all i, j = 1, 2, in the 3 × 3 case the corresponding constraint turns out to be true for all

i, j = 1, 2, 3 except for ij = 13, 31. We can then consider, in turn, two ranges for |M13M31|:
|M13M31| . m1m3 and the (somewhat less expected) m1m3 � |M13M31| . m2m3. In

this second case, which we consider first, the structure of M turns out to be particularly

constrained.

3.1 m1m3 � |M13M31| . m2m3

In this case, the constraints above force |M22| � m2, so that | detM[23]| = O (m2m3) must

be accounted for by |M23M32| ∼ m2m3. The general structure of M can then be described

in terms of the size of the product |M13M31|,

k ≡ |M13M31|
m1m3

, (3.2)

– 7 –
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and in terms of the asymmetry, or degree of “lopsidedness”, between |M32| and |M23| (R23)

and between |M31| and |M13| (R13, or R12 = R13/R23),

R23 ≡

√∣∣∣∣M32

M23

∣∣∣∣ , R12R23 ≡

√∣∣∣∣M31

M13

∣∣∣∣ . (3.3)

The matrix |M | of absolute values of the entries of M has then the following structure

|M | =

 . m1 .
√
m1m2/(R12

√
k)
√
m1m3k/(R12R23)

.
√
m1m2R12/

√
k . m2/k

√
m2m3/R23

√
m1m3k (R12R23)

√
m2m3R23 ∼ m3

 , (3.4)

where

1� k .
m2

m1
,

√
m2

m3
. R23 .

√
m3

m2
,

√
m1

m2
k . R12 .

√
m2

m1

1

k
. (3.5)

The largest stable values of k, k ∼ m2/m1, require

|M | =

 . m1 . m1 ∼√m2m3/R23

. m1 . m1 ∼√m2m3/R23

∼√m2m3R23 ∼
√
m2m3R23 ∼ m3

 , (3.6)

where the lopsideness factor R23 is bounded as in eq. (3.5).

3.2 |M13M31| . m1m3

In this case, |MijMji| . mimj holds for all i, j = 1, 2, 3. A general parameterisation similar

to equation eq. (3.4) is still possible, although it turns out to be more complicated. The

lopsidedness parameters Rij can be defined only if the corresponding |MijMji| is non-zero.

If that is the case, we can define

kij ≡
|MijMji|
mimj

, i ≤ j , and Rij ≡

√∣∣∣∣Mji

Mij

∣∣∣∣ , i < j . (3.7)

In terms of the above parameters we can then write

|M | =


√
k11m1

√
m1m2k12/R12

√
m1m3k13/R13

√
m1m2k12R12

√
k22m2

√
m1m2k23/R23

√
m1m3k13R13

√
m1m2k23R23

√
k33m3

 , (3.8)

where

kij . 1 ,√
mi

mj
kij . Rij .

√
mj

mi

1

kij√
m1

m2
k23k13 .

R13

R23
.

√
m2

m1

1

k23k13
,

√
k12k23k13 .

R23R12

R13
.

1√
k12k23k13

.

(3.9)

The formulas above also apply to the previous case, and thus become general, provided

that the constraint k13 . 1 is generalised to k13 . m2/m1 and provided that k13

√
k22 . 1.

– 8 –
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4 Examples

4.1 Can neutrino mixing arise from the charged lepton sector?

As an example of applications of the above results, in this subsection we revisit the issue

of whether the PMNS matrix can be dominated by the charged lepton contribution. The

PMNS matrix U is given by U = UeU
†
ν , where Ue and Uν enter the diagonalisation of the

charged lepton and neutrino mass matrices, ME = UTecM
diag
E Ue, Mν = UTν M

diag
ν Uν . Let

us consider the possibility that Uν is diagonal and all the mixing comes from the charged

lepton sector, U = Ue (up to phases that can be set to zero without loss of generality).

We first observe that in such a case the last row of the charged lepton mass matrix

ME is approximately determined by the PMNS matrix, as

|ME
3i | = |U3i|mτ +O

(
m2
µ/mτ

)
, (4.1)

where, experimentally, |U3i| = O (1).3

By using eq. (4.1) and the results for normal hierarchy from the global fit in ref. [1]

we then get the 1σ ranges

|ME | ≈

 . . . . . . . . .

. . . . . . . . .

(0.28–0.45)mτ (0.50–0.62)mτ (0.72–0.76)mτ

 , (4.2)

up to corrections suppressed by (mµ/mτ )2 ≈ 0.003.

We now want to determine the constraints on the first and second lines that follow from

the stability assumption. Using the characterisation of stable mass matrices in section 3,

we find that we find that a lepton mass matrix ME in the form eq. (4.2) satisfies the

stability assumption iff it is possible to find a k such that

|ME | =

 . me . me . kme

. mµ/k . mµ/k . mµ

∼ mτ ∼ mτ ∼ mτ

 , with 1 . k .
mµ

me
. (4.3)

The above matrix can be diagonalised perturbatively with a series of 2 × 2 unitary

transformations, giving

U = Ue = ΦR12(θ′12, φ
′)R23(θe23, φ3 − φ2)R12(θe12, φ2 − φ1) , (4.4)

where Rij(θ, φ) denotes the 3× 3 unitary transformation consisting in the embedding of(
cos θ − sin θeiφ

sin θe−iφ cos θ

)
(4.5)

3In order to prove the previous equation, we first observe that |Ue3i| = |U3i| = O (1) and |Ue
c

33 | =

O (1) (because |ME
33| ∼ mτ ) and therefore |ME

3i | = |Ue
c

33U
e
3imτ | + O (mµ) ∼ mτ . The stability condition

then implies |ME
j3| . mµ and |Ue

c

3j | . mµ/mτ , j = 1, 2 (since |ME
j3| = |Ue

c

3j U
e
33mτ | + O (mµ)). Finally,

unitarity implies |Ue
c

33 | = 1−O (mµ/mτ )2 and |Ue
c

k3 | . mµ/mτ , k = 1, 2. Therefore, |ME
3i | = |Ue

c

33U
e
3imτ +

Ue
c

k3U
e
kimk| = |Ue

c

33U
e
3i|mτ +O

(
m2
µ/mτ

)
= |Ue3i|mτ +O

(
m2
µ/mτ

)
.
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in the ij block of the 3×3 matrix; R23(θe23, φ3−φ2) and R12(θe12, φ2−φ1) are the rotations

necessary to bring the third row of ME in diagonal form and are determined by that row,

ME =

 . . . . . . . . .

. . . . . . . . .

eiφ1se12s
e
23mτ e

iφ2ce12s
e
23mτ e

iφ3ce23mτ

 ; (4.6)

R12(θ′12, φ
′) diagonalises the 12 block after the previous two rotations have been applied;

Φ is a diagonal matrix of phases. The results above hold up to corrections of relative order

m2
µ/m

2
τ . Eqs. (4.2) and (4.3) give

tan θe23 ∼ tan θe12 ∼ 1 and tan θ′12 ∼ 1/k . (4.7)

The PMNS matrix in eq. (4.4) is in a form that has been already considered in the

literature [10, 25, 26, 30, 31]. The precise relation between the parameters in eq. (4.4)

and the parameters of the standard parameterisation can be found in refs. [25, 26]. In our

notations,
sin θ13 = sin θ′12 sin θe23 = O (1) sin θ23/k

sin2 θ23 = sin2 θe23

cos2 θ′12

1− sin2 θ′12 sin2 θe23

sin2 θ12 =
| sin θe12 cos θ′12 + eiφ cos θe12 cos θe23 sin θ′12|2

1− sin2 θ′12 sin2 θe23

,

(4.8)

where φ = φ′ + φ1 − φ2. A fit for the parameters θe23, θe12 and θ′12, φ is shown in figure 1,

using the results of the global fit of neutrino oscillation data from ref. [1] both for normal

and inverted ordering of neutrino masses. The O (1) factor in the first equation is not ex-

pected to be small, unless a correlation among the entries of ME
[23][12] makes its determinant

correspondingly small [30]. If this is not the case, we estimate

1/k = O (1)× 0.16 . (4.9)

From figure 1(a,c) we also note also that, as a consequence of the first equation in (4.8), the

rotation angle θ′12 that diagonalises the 12 sector of ME has the same size, within errors, as

the Cabibbo angle. Such a connection with the quark sector can be realised in the context

of grand-unification [25, 32–34].

In the light of what above, we observe that:

• A small θ13 in the range

0.03 ≈ me

mµ
sin θ23 . sin θ13 ≤ sin θ23 ≈ 0.7 , (4.10)

including the measured range, can be obtained without the need of cancellations even

if all neutrino mixing comes from the charged lepton sector.4

4In ref. [30], a small θ13 was associated to cancellations in the determinant of the ME
[23][12] submatrix,

but it was also shown that the latter could be a natural consequence of a heavy vector-like lepton exchange

dominance.
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Inverted ordering
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Figure 1. Contours of Nσ ≡
√

∆χ2 in the (sin θ′12, sin θ
e
23) (a,c) and (sin θe12, φ) (b,d) planes. We

construct the likelihood function using the results of the recent global fit of neutrino oscillation

data from ref. [1] for normal ordering (upper row) and inverted ordering (lower row) of neutrino

masses. In plots (a,c) we use only the constraints on sin θ13 and sin2 θ23 and the first two equations

in eq. (4.8). In plots (b,d) we include also the constraints on sin2 θ12 and δ and use the third line

of eq. (4.8) as well as the relation between φ and δ obtained by comparing the expressions for

JCP in the two parametrizations (see ref. [26] for the details), and we marginalize over sin θ′12 and

sin θe23. The same analysis can be applied also to the case discussed in section 4.2, see eq. (4.24),

by substituting θe12 with θ̂12.
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• Independent of whether all neutrino mixing is accounted for by the charged lepton

contribution or not, the latter contribution is usually written as a product of two

rotations in the “standard order” Ue = R12R23. We see that the “inverted order”,

Ue = R23R12, considered e.g. in refs. [9, 26], can also be obtained (up to corrections

of order me/mµ), without the need of correlations, when 1/k is at the lower end of

its range, 1/k ∼ me/mµ.

• The value of k in eq. (4.9) is compatible with k ∼
√
mµ/me. Lepton mixing can

therefore be accounted for in this set up by

|ME | ∼

 me me
√
memµ√

memµ
√
memµ mµ

mτ mτ mτ

 . (4.11)

Finally, let us briefly discuss whether an abelian flavour model, for example, can ac-

count for the texture in eq. (4.11). Often abelian models lead to textures in the form

ME
ij ∼ cijλ

c
iλjm0, with 0 < λi, λ

c
j < 1 and |cij | ∼ 1 [35, 36]. Such textures can

also be obtained in partial compositeness models (for a recent review see e.g. ref. [37]).

Clearly such textures can account for all the entries of the above texture except for

ME
33, which parametrically would be expected to be O

(
mτ

√
mµ/me

)
rather than O (mτ ),

i.e. an order of magnitude larger. Still, a texture in the form ME
ij ∼ cijλ

c
iλjm0 with

|ME
33| = O

(
mτ

√
mµ/me

)
is not obviously ruled out. In fact, the parametric difference be-

tween the ratio |ME
32/M

E
33| ∼ 0.07 predicted by that texture and the ratio |ME

32/M
E
33| ∼ 1 in

eq. (4.11) can be accounted by i) the fact that the precise observed value |ME
32/M

E
33| ≈ 0.7

is slightly smaller than 1, ii) the fact that in a two Higgs doublet model with large tanβ

the running of |ME
32/M

E
33| from a high scale to the electroweak scale can reduce its value

by a factor 2 [38], and iii) a slightly stretched O (1) factor.

Another possibility is to consider an abelian flavour model with more than one flavon,

which does not necessarily lead to a texture in the form ME
ij ∼ cijλ

c
iλim0. A complete

example, also forcing the neutrino mass matrix to be diagonal, is provided in appendix D.

4.2 Correction to θ12 = π/4 from the charged lepton sector

As a second example, let us consider the case in which the neutrino mass matrix contributes

to lepton mixing with a maximal “12” rotation (up to phases),

Uν = ΦνR12

(
π

4

)
Ψν , (4.12)

where Φν and Ψν are diagonal matrices of phases. The charged lepton mass matrix must

account in this case for the measured deviation of θ12 from π/4, besides for θ23 and θ13.

As before we have ME
3i ≈ mτU

e
3i, where now

Ue = UUν . (4.13)
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We can still parameterize the last row of ME as in eq. (4.6), with

se12s
e
23 e

iφ1 = (Ū31 e
iα1 + Ū32 e

iα2)/
√

2

ce12s
e
23 e

iφ2 = (−Ū31 e
iα1 + Ū32 e

iα2)eiβ/
√

2

ce23 e
iφ3 = Ū33 e

iα3 ,

(4.14)

where we have denoted by Ū the PMNS matrix in the standard parameterization (the

matrix U in eq. (4.13) is not necessarily in that parameterization). Eqs. (4.14) show that

the value of θe23 is still determined by the PMNS matrix to be in the 1σ range 0.72 <

cos θe23 < 0.76, while the value of θe12 also depends on the unknown phase α1 − α2. A non

zero value of θe12 is required in order to make |U31| 6= |U32|, as preferred by data at 2σ

(see below). For the present central values of the PMNS parameters in ref. [1] (normal

hierarchy), one gets the lower bound tan θe12 > 0.13. While θe12 may be expected not to

be far from this lower limit, large values are also allowed, provided that the relative phase

α1 − α2 in eq. (4.14) is properly adjusted.

In the light of what above, the texture for the third line of ME can be written as

|ME | ∼

 . . . . . . . . .

. . . . . . . . .

εmτ mτ mτ

 , (4.15)

where ε = tan θe12 and indicatively we can consider the range 0.13 . ε . 1, with smaller

values also allowed if PMNS parameters away from the best fit are considered (we will

anyway assume that ε & me/mµ ≈ 0.005, as indicated by present data). As the case

ε = O (1) has been considered in the previous subsection, we are interested to the case in

which ε is significantly smaller than one, but the discussion below holds in both cases.

Let us now determine the constraints on the structure of the charged lepton mass

matrix that follow from eq. (4.15) and the stability assumption. Using the characterisation

of stable mass matrices in section 3, we find that a lepton mass matrixME in the form (4.15)

satisfies the stability assumption iff it is possible to find a k such that

|ME | =


. me .

me

ε
min(1, kε) . me k

. mµ/k .
mµ

kε
min(1, kε) ∼ mµ

∼ εmτ ∼ mτ ∼ mτ

 , with 1 . k .
mµ

me
. (4.16)

We can now diagonalise the matrix in eq. (4.16) to obtain the charged lepton con-

tribution to the PMNS matrix. A perturbative block by block diagonalisation gives as

before

Ue = ΦR12(θ′12, φ
′)R23(θe23, φ3 − φ2)R12(θe12, φ2 − φ1) , (4.17)

where Φ is a diagonal matrix of phases, R23(θe23, φ3 − φ2) and R12(θe12, φ2 − φ1) are the

rotations necessary to bring the third row of ME (parameterised as in eq. (4.6)) in diagonal

form, R12(θ′12, φ
′) diagonalises the 12 block after the previous two rotations have been

applied, and the result holds up to corrections of relative order m2
µ/m

2
τ . Eq. (4.16) gives

tan θ′12 ∼ 1/k , tan θe23 ∼ 1 , tan θe12 = ε . (4.18)
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By combining Ue in eq. (4.17) with Uν in eq. (4.12) we find a PMNS matrix in the form

U = UeU
†
ν = ΦR12(θ′12, φ

′)R23(θe23, φ3 − φ2)R12(θ̂12, φ̂12)Ψ , (4.19)

where Ψ is a diagonal matrix of phases. The PMNS matrix is thus again in the form

found in the previous subsection (12 × 23 × 12 rotations), but now the last 12 rotation

R12(θe12, φ2 − φ1) is replaced by the combination of that rotation with the maximal 12

rotation provided by the neutrino sector

R12(θ̂12, φ̂12) = R12(θe12, φ2 − φ1)R12(π/4, φν12)× phases , (4.20)

where φν12 is a combination of the phases in Φν , Ψν . In the absence of phases, θ̂12 =

π/4± θe12. In general,
π

4
− θe12 ≤ θ̂12 ≤

π

4
+ θe12 , (4.21)

with θ̂12, φ̂12 given by

eiφ̂12 tan θ̂12 = eiφ
ν
12

1 + tan θe12e
i(φe12−φν12)

1− tan θe12e
i(φe12−φν12)

. (4.22)

The PMNS matrix is again parameterised in the way considered e.g. in ref. [26] in

terms of the angles θ′12, θe23 and θ̂12 in eq. (4.19) and of the phase φ = φ′ = φ̂12. The

angles θ′12, θe23, θ̂12 are related to the parameters of the charged lepton mass matrix in

eq. (4.16) by

tan θ′ ∼ 1/k , tan θe23 ∼ 1 , π/4− ε . tan θ̂12 . π/4 + ε (4.23)

and are related to the standard PMNS parameters by eqs. (4.8) with θe12 → θ̂12 and

φ = φ′ − φ̂12,
sin θ13 = sin θ′12 sin θe23 = O (1) sin θ23/k

sin2 θ23 = sin2 θe23

cos2 θ′12

1− sin2 θ′12 sin2 θe23

sin2 θ12 =
| sin θ̂12 cos θ′12 + eiφ cos θ̂12 cos θe23 sin θ′12|2

1− sin2 θ′12 sin2 θe23

.

(4.24)

The determination of the PMNS parameters in figures 1 therefore still applies. In particular,

the determination of θe23 and θ′12 is still given by figure 1(a,c), while θ̂12 and φ are determined

by figure 1(b,d). From figure 1(b,d) we see that θe12 = 0, corresponding to θ̂12 = π/4, is 2σ

away from the best fit. Note also that the rotation θ′12 in the 12 sector of ME has again

the same size as the Cabibbo angle.

Note that two factors, both associated to the charged lepton sector, contribute to

make θ12 different from the maximal value provided by the neutrino sector. One is the θe12

rotation induced by ME
31, which makes θ̂12 6= π/4, and the other is the θ′12 rotation used

to diagonalise the 12 block of ME
12 after the other two blocks have been diagonalised. It

has been observed [26] that in the absence of the θe12 contribution, i.e. when θ̂12 = π/4,

the θ′12 rotation alone can account for the deviation of θ12 from π/4 only at the price of
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a 2σ tension (as θ′12 is constrained by θ13, see eqs. (4.24)). Here we see that this tension

disappears if the independent contribution θe12, induced by ME
31, is taken into account. In

such a scheme, θ′12 determines θ13 and θe12 further contributes to the deviation of θ12 from

the neutrino contribution. Summarizing:

• A small θ13 in the range

0.03 ≈ me

mµ
sin θ23 . sin θ13 ≤ sin θ23 ≈ 0.7 ,

can be again induced without fine-tuning by the rotation θ′12, whose natural size is set

by 1/k. The experimental value of sin θ13 = O (1) sin θ23/k gives 1/k = O (1)× 0.16.

• The previous rotation alone can account for the deviation of θ12 from π/4 only at the

price of a 2σ tension, with present data. On the other hand, this tension disappears

if the independent contribution to θ12 induced by a non-zero ratio ε = |ME
31/M

E
32| is

taken into account. Therefore, a plausible and stable texture for the charged lepton

mass matrix can account at the same time for the atmospheric mixing angle, the θ13

angle, and the deviation of the θ12 angle from π/4.

Finally, we comment on the possible origin of the texture in eq. (4.16). We observe that

the latter is compatible with a form ME
ij ∼ cijλ

c
iλjm0, with 0 < λi, λ

c
j < 1 and |cij | ∼ 1,

provided that ε . 1/k ∼ 0.16. Together with the experimental 2σ bound ε & 0.13, this

implies ε ∼ 1/k. The structure ME
ij ∼ cijλ

c
iλjm0 and the constraint detME = memµmτ

then allow to rewrite eq. (4.16) as

|ME | ∼

 me
me

ε

me

ε
εmµ mµ mµ

εmτ mτ mτ

 , ε ∼ 0.13–0.16 . (4.25)

The previous texture is indeed in the form ME
ij ∼ cijλ

c
iλim0, with (λ1, λ2, λ3) ∝ (ε, 1, 1)

and (λc1, λ
c
2, λ

c
3) ∝ (me/ε,mµ,mτ ). It can also be written in the form ME

ij ∼ cijε
qci+qjm0,

with appropriate choice of ε and of the charges qi, q
c
i . Explicit and complete flavour mod-

els, forcing also a maximal θν12 angle without non-abelian symmetries, will be considered

elsewhere.

5 Summary

We have studied general properties and specific examples of hierarchical fermion mass

matrices satisfying a “stability” assumption. The latter amounts to assuming the stability

of the smaller eigenvalues with respect to small perturbations of the matrix entries. Such an

assumption is equivalent to the absence of certain precise correlations, be them accidental

or forced by a dynamical/symmetry principle, among the matrix entries and is therefore

also motivated by the fact that no evidence of special correlations has so far emerged

from data.
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We have found a simple and general characterisation of a stable 3× 3 mass matrix M

with eigenvalues mi, i = 1, 2, 3, in terms of products of matrix entries that proves useful

for practical applications,

|MihMjk| . m2m3 for all i 6= j, j 6= k

|M1iM2jM3k| . m1m2m3 for all ijk permutations of 123 .

A number of exact relations involving the minors of M obtained in the appendices show

that the latter corresponds to the absence of cancellations in the expressions entering the

determinants and sub-determinants of M .

As an example of application of the general results, we have revisited the issue of the

the charged lepton contribution to neutrino mixing and determined the structure of the

charged lepton mass matrix under two assumption for the neutrino contribution: i) no

contribution at all (all mixing from the charged lepton sector) and ii) it only provides a

maximal θ12 angle.

In the first case, we have seen that lepton mixing can indeed all come from the

charged lepton sector and that this does not need to fine-tune the value of θ13, as long

as θ13 & me/mµ sin θ23 ≈ 0.03, as it turned out to be. We have also translated the

present determination of the standard PMNS parameters into a determination of alter-

native, equivalent parameters, directly related to the charged lepton matrix entries. The

latter determination also allows to determine with good accuracy the whole third row of

the charged lepton mass matrix. We have also briefly discussed the possible origin of the

textures we have considered and provided an explicit example of a model realising this

scenario with abelian flavour symmetries.

In the case in which the neutrino sector only provides a maximal 12 rotation, we have

shown that present data provide a 2σ evidence for a non-vanishing 31 entry of the charged

lepton mass matrix. The PMNS matrix turns out in fact to be given by a product of 12

and 23 rotations, U = 121 × 23× 122 × 12π/4, where the neutrino sector only provides for

the last one. Both the first and the second 12 rotations contribute to shift θ12 from π/4.

The first one is the rotation used to diagonalise the 12 block of ME after the other two

blocks have been diagonalised and is directly related to θ13. The second one is induced by

a non zero value of ME
31/M

E
32. Sometimes only the first one is considered, with the second

set to zero. In such a case, a 2σ tension arises between the value of the 12 rotation needed

to account for θ13 and the value needed to account for the deviation from θ12 = π/4 (also

due to the constraints on the phase δ). On the other hand, the tension disappears if the

second 12 rotation is taken into account. In such a case, the first 12 rotation determines

θ13 and the independent second rotation further contributes to the deviation of θ12 from

π/4. This way, a plausible texture for the charged lepton mass matrix can account at the

same time for the atmospheric mixing angle, the θ13 angle, and the deviation of the θ12

angle from π/2.

In both cases, the left-handed rotation that diagonalises the 12 sector of ME has the

same size, within errors, as the Cabibbo angle, which may be considered as a hint in support

of grand-unification.
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Finally, independent of whether all neutrino mixing is accounted for by the charged

lepton contribution or not, we have shown that the so-called “inverted order” of the 12

and 23 rotations in the charged lepton sector, Ue = R23R12 can also be obtained without

fine-tuning (up to corrections of order me/mµ).
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A Useful results

In this appendix, we collect some results that have been used in the main text and will be

used in appendix B.

Let us first define some notations. Below, M will denote a n × n generic complex

matrix, possibly representing a fermion mass matrix. The matrix M can be diagonalized

by using two independent unitary matrices,

M = V TMDU , U, V ∈ U(n) , MD = Diag(m1, . . . ,mn) , (A.1)

where m1, . . . ,mn ≥ 0 are uniquely defined singular values of M (referred in the text as

eigenvalues), ordered according to their sizes, m1 ≤ . . . ≤ mn. We denote by M[i1...ip][ja...jq ]

the p× q sub-matrix made of the elements in the rows i1 . . . ip and columns j1 . . . jp of M ,(
M[i1...ip][j1...jq ]

)
ab
≡Miajb (A.2)

(p, q = 1 . . . n, a = 1 . . . p, b = 1 . . . q). If the rows and columns coincide, we also use the

notation

M[i1...ip] ≡M[i1...ip][i1...ip] . (A.3)

A first useful result is the fact that the determinant of any squared p× p submatrix of

M is bound by the p largest singular values of M ,∣∣ detM[i1...ip][j1...jp]

∣∣ ≤ mn . . .mn−p+1 . (A.4)

In the case p = n, the inequality eq. (A.4) becomes of course an equality. For p = 1,

eq. (A.4) shows that all matrix elements are bound by the largest eigenvalue, |Mij | ≤ mn.

These inequalities are complementary to the ones in eq. (A.5) below.

Eq. (A.4) follows from a known result of linear algebra stating that the singular values

m̂1 ≤ . . . ≤ m̂p of the p × p submatrix M[i1...ip][j1...jp] are bound by the p largest singular

values of M , m̂i ≤ mn−p+i, i = 1 . . . p, see e.g. ref. [39].5

5It can also be obtained as follows. If two out of i1 . . . ip are equal, eq. (A.4) is trivially

verified. If i1 . . . ip are all different, | detM[i1...ip][j1...jp]|
2 ≤

∑
k1<...<kp

|detM[i1...ip][k1...kp]|
2 =

det[(M†M)[i1...ip]] = det(U†M2
DU)[i1...ip] =

∑
k1<...<kp

| detU[k1...kp][i1...ip]|
2m2

k1
. . .m2

kp ≤ m2
n . . .m

2
n−p+1∑

k1<...<kp
|detU[k1...kp][i1...ip]|

2 = m2
n . . .m

2
n−p+1|det(U†U)[i1...ip]|

2 = m2
n . . .m

2
n−p+1.
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A related but independent result allows to obtain combinations of p singular values

through the determinant of p× p submatrices:

Π2
p =

∑
i1<...<ip

m2
i1 . . .m

2
ip =

∑
h1<...<hp
k1<...<kp

∣∣detM[h1...hp][k1...kp]

∣∣2. (A.5)

The relation above generalizes the p = 1 result
∑n

i=1m
2
i =

∑n
i,j=1 |Mij |2 obtained in

ref. [40]. For p = n it reduces to m2
1 . . .m

2
n = | detM |2. The general case follows from

equating the coefficients of λn−p in the secular equation det(λ1−M †M) =
∏n
i=1(λ−m2

i ).

The result is particularly useful in the case of hierarchical singular values m2
1 � . . .� m2

n,

in which case
∑

i1<...<ip
m2
i1
. . .m2

ip
≈ m2

n . . .m
2
n−p+1 and eq. (A.5) becomes an expression

for the product of the p largest squared singular values of M .

B Proofs of the results in section 2

We now prove the results stated in section 2, starting from proposition 3, whose discussion

is preparatory to the proof of the other two. In the following, and in the main text, x . y

(x & y) indicates that x < y (x > y) or x is of the same order of y, i.e. they differ by

a factor of order one. Therefore, x . y (x & y) is equivalent to the negation of x � y

(x� y). Moreover, a / b (a ' b) indicates that a < b+ ε (a ' b− ε), with 0 < ε� |b|.

B.1 Proof of proposition 3

For convenience, we remind that the proposition states that the following three statements

are equivalent:

1. Eq. (2.3) holds for given p, i, j;

2. Π̂(ij)p . Πp;

3. Π̌(ij)p . Πp.

We also remind that the quantities Π̂(ij)p and Π̌(ij)p are associated to the mass matrices

M̂(ij) =



M11 · · · 0 · · · M1n

· · · · · · 0 · · · · · ·
Mi−1,1 · · · 0 · · · Mi−1,n

0 0 Mij 0 0

Mi+1,1 · · · 0 · · · Mi+1,n

· · · · · · 0 · · · · · ·
Mn1 · · · 0 · · · Mnn


, M̌(ij) =


M11 · · · M1j · · · M1n

· · · · · · · · · · · · · · ·
Mi1 · · · 0 · · · Min

· · · · · · · · · · · · · · ·
Mn1 · · · Mnj · · · Mnn

 . (B.1)

As the quantities Πp can be profitably calculated in terms of the determinant of sub-

matrices (eq. (A.5)), let us first determine the relation among the sub-determinants of M ,

M̂(ij), M̌(ij). The relation depends on whether the sub-matrix includes the row i and the
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column j. Accordingly, we have (for convenience, we fix i, j and drop the suffix (ij) in M̂ ,

M̌ , Π̂p, Π̌p)

det M̂[ii1...ip−1][jj1...jp−1] = Mij detM[i1...ip−1][j1...jp−1]

det M̂[ii1...ip−1][j1...jp] = 0

det M̂[i1...ip][jj1...jp−1] = 0

det M̂[i1...ip][j1...jp] = detM[i1...ip][j1...jp]

det M̌[ii1...ip−1][jj1...jp−1] = detM[ii1...ip−1][jj1...jp−1] −Mij detM[i1...ip−1][j1...jp−1]

det M̌[ii1...ip−1][j1...jp] = detM[ii1...ip−1][j1...jp]

det M̌[i1...ip][jj1...jp−1] = detM[i1...ip][jj1...jp−1]

det M̌[i1...ip][j1...jp] = detM[i1...ip][j1...jp] .

(B.2)

In the above equations, all i1 . . . ip are different from i and all j1 . . . jp different from j.

Let us begin proving that 2⇒ 1. Using eq. (A.5) one finds

|Mij |
∆Π2

p

|∆Mij |
=
∑
α∈Ipij

(
eiθv∗αwα + e−iθvαw

∗
α +

∣∣∣∣∆Mij

Mij

∣∣∣∣ |wα|2) , (B.3)

where

eiθ =
∆Mij/Mij

|∆Mij/Mij |
, Ipij =

{
(i1 . . . ip−1, j1 . . . jp−1) :

1 ≤ i1 < . . . < ip−1 ≤ n , all 6= i

1 ≤ j1 < . . . < jp−1 ≤ n , all 6= j

}
,

v(i1...ip−1,j1...jp−1) = detM[i,i1...ip−1][j,j1...jp−1] ,

w(i1...ip−1,j1...jp−1) = Mij detM[i1...ip−1][j1...jp−1] = det M̂[i,i1...ip−1][j,j1...jp−1] .

(B.4)

For p = 1, eq. (B.3) should be interpreted as

|Mij |
∆Π2

1

|∆Mij |
= 2 cos θ|Mij |2 + |∆MijMij | . (B.5)

Now, ∑
α∈Ipij

|vα|2 ≤
∑

i1<...<ip
j1<...<jp

|detM[i1...ip][j1...jp]|2 = Π2
p (B.6)

and
∑
α∈Ipij

|wα|2 ≤
∑

i1<...<ip
j1<...<jp

| det M̂[i1...ip][j1...jp]|2 = Π̂2
p . Π2

p , (B.7)

the last approximate inequality being the hypothesis. Because of the Cauchy-Schwartz

inequality, we also have |
∑

α v
∗
αwα| . Π2

p. All in all, we have proven point 1, as∣∣∣∣ ∆Πp

∆Mij

Mij

Πp

∣∣∣∣ ≈ 1

2

∣∣∣∣ ∆Π2
p

∆Mij

Mij

Π2
p

∣∣∣∣ ≤ |∑α v
∗
αwα|

Π2
p

+
1

2

∣∣∣∣∆Mij

Mij

∣∣∣∣ ∑α |wα|2

Π2
p

. 1 (B.8)
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for all ∆Mij with |∆Mij | � |Mij | (note that in the first step in eq. (B.8) we have neglected

a term of the same order of the sub-leading second term in the r.h.s.).

Let us now prove, by contradiction, that 1 ⇒ 3. Suppose that Π̌p . Πp was not

verified. Then we would have Π̌p = RΠp, with R � 1. The large size of Π̌p would then

imply a large size of
∑

α |wα|2, as∑
α∈Ipij

|wα|2 =
∑

i1<...<ip−1, 6=i
j1<...<jp−1, 6=j

|Mij detM[i1...ip−1][ji...jp−1]|2 (B.9)

≥
∣∣∣∣ ∑
i1<...<ip−1, 6=i
j1<...<jp−1, 6=j

(
| detM[ii1...ip−1][jji...jp−1]|2 − | det M̌[ii1...ip−1][jji...jp−1]|2

)∣∣∣∣
= |Π̌2

p −Π2
p| ≈ R2Π2

p ,

where we have used eqs. (B.2). Consider now a variation of Mij by

∆Mij =
k

R
Mije

iφ, (B.10)

where k is a positive number of order one and φ is a phase chosen in such a way that

2 Re[eiθv∗αwα] = 0 in eq. (B.3). Then |∆Mij | � |Mij |, but eq. (B.3) gives∣∣∣∣Mij

Π2
p

∆Π2
p

∆Mij

∣∣∣∣ =
k

R

∑
α |wα|2

Π2
p

& kR� 1 , (B.11)

which would contradict the assumption.

Let us finally prove that 3⇒ 2. This can be done by observing that Π̌p . Πp implies

Π̂2
p =

∑
i1<...<ip, 6=i
j1<...<jp, 6=j

|detM[i1...ip][ji...jp]|2

+
∑

i1<...<ip−1, 6=i
j1<...<jp−1, 6=j

| detM[ii1...ip−1][jji...jp−1] − det M̌[ii1...ip−1][jji...jp−1]|2

≤
∑

i1<...<ip, 6=i
j1<...<jp, 6=j

|detM[i1...ip][ji...jp]|2 +
∑

i1<...<ip−1, 6=i
j1<...<jp−1, 6=j

| detM[ii1...ip−1][jji...jp−1]|2

+
∑

i1<...<ip−1, 6=i
j1<...<jp−1, 6=j

|det M̌[ii1...ip−1][jji...jp−1]|2

≤ Π2
p + Π̌2

p ∼ Π2
p , (B.12)

where we have used eqs. (B.2) to obtain the first equality. This proves point 2.

B.2 Proof of proposition 2

For convenience, we remind that this proposition characterises as follows the stability of

matrices M with dimension n ≤ 3:
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1. For n = 1, M is always stable;

2. For n = 2, M is stable if and only if

|M11M22| . m1m2 , |M12M21| . m1m2 ; (B.13)

3. For n = 3, M is stable if and only if

|MihMjk| . m2m3 for all i 6= j, j 6= k (B.14a)

|M1iM2jM3k| . m1m2m3 for all ijk permutations of 123 . (B.14b)

Let us start observing that for p = 1 (any n) eq. (B.5) gives∣∣∣∣Mij

Π1

∆Π1

∆Mij

∣∣∣∣ ≈ cos θ
|Mij |2∑
hk |Mhk|2

≤ 1 . (B.15)

This proves in particular that M is always stable for n = 1.

Given what above, for n = 2 we just need to consider the case p = 2. In general, for

p = n, eq. (B.3) gives∣∣∣∣Mij

Πn

∆Πn

∆Mij

∣∣∣∣ ≈ ∣∣∣∣Re

[
eiθ
Mij cof Mij

detM

]
+

∣∣∣∣Mij cof Mij

detM

∣∣∣∣2 ∣∣∣∣∆Mij

Mij

∣∣∣∣ ∣∣∣∣ . (B.16)

Therefore, l.h.s. . 1 in the previous equation for all ∆Mij (i.e. for all θ) if and only if

|Mij cof Mij | . m1 . . .mn (or MijM
−1
ji . 1) . (B.17)

In the p = n = 2 case the above relations coincide with the ones in eq. (B.13), which proves

the case n = 2.

The proof of the n = 3 case is more involved. First of all, let us show that the

stability or Π2 with respect to variation of any matrix element is equivalent to |MihMjk| .
m2m3 for all i 6= j, h 6= k. It is easy to show that the stability of Π2 implies the latter

relations: proposition 3 states that the stability of Π2 implies Π̂(ij)2 . Π2; then |MihMjk| =
| det M̂

(ij)
[ij][hk]| ≤ Π̂(ij)2 . Π2 ' m2m3. Viceversa, if |MihMjk| . m2m3 for all i 6= j, h 6= k,

we have, using eq. (B.3) as before,∣∣∣∣Mih

Π2

∆Π2

∆Mih

∣∣∣∣ . ∣∣∣∣
∑

hk(detM[ij][hk])
∗MihMjk

m2
2m

2
3

∣∣∣∣
.

∑
hk |detM[ij][hk]|

m2m3
≤ 2

(
∑

hk | detM[ij][hk]|2)1/2

m2m3
≤ 2

Π2

m2m3
' 2 , (B.18)

which proves that Π2 is stable.6

In order to complete the proof of the n = 3 case, we now show that the stability of

Π3 is equivalent to |M1iM2jM3k| . m1m2m3 for all ijk permutations of 123. First, using

again eq. (B.3), we find that the stability of Π3 is equivalent to

|Mij cof Mij | . m1m2m3 for all ij . (B.19)

6In eq. (B.18) we have used
∑k
i=1 |xi| ≤

√
k(
∑k
i=1 |xi|

2)1/2 to the sum of the 4 terms in∑
hk | detM[ij][hk]|.
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We then have to show that eq. (B.19) is equivalent to eq. (B.14b). It is easy to show that

eq. (B.14b) implies eq. (B.19). In order to show that eq. (B.19) implies eq. (B.14b), let us

first observe that there must exist at least one 2× 2 sub-matrix M[ij][hk] with determinant

| detM[ij][hk]| = O (m2m3). Otherwise, if | detM[ij][hk]| � m2m3 for all sub-matrices, we

would also have Π2
2 =

∑
i<j,h<k |detM[ij][hk]|2 � m2

2m
2
3.7 Without loss of generality, we

can assume such sub-matrix to be M[23]. Then eq. (B.19) for ij = 11 forces |M11| . m1.

Since we also have |M22M33| . m2m3, we conclude that

|M11M22M33| . m1m2m3 . (B.20)

We have therefore proven one of the relations in eq. (B.14b). All the other ones follow

because of the constraints eq. (B.19). For example, using eq. (B.19) for ij = 33, |M11M22−
M12M21||M33| . m1m2m3, we obtain

|M12M21M33| . m1m2m3 . (B.21)

Using eq. (B.19) for ij = 12, we obtain |M12M23M31| . m1m2m3. And so on and so forth

(the 9 constraints in eq. (B.19) are enough to constrain all the 6 products in eq. (B.14b).

This completes the proof of the n = 3 case and thus of proposition 2.

B.3 Proposition 2 cannot be extended to n = 4

As mentioned in the text, the characterisation in proposition 2 cannot be extended to

the case n = 4. For example, not all n = 4 hierarchical matrices satisfying the stability

assumption satisfy |M1iM2jM3kM4l| . m1m2m3m4 for all ijkl permutations of 1234. This

is the case for example of the matrix in eq. (B.22).

Example 1. Consider the matrix

M =


0 ε′ ε′ ε′

ε′ 0 0 1

ε′ ε′ 0 1

0 ε ε 1

 , (B.22)

where ε′ � ε � 1. The singular values are approximately given by ε′(ε′/ε), ε′/2,
√

4/3 ε,√
3. The matrix satisfies the stability assumption. However, M13M24M31M42 ≈

(ε/ε′)m1m2m3m4 � m1m2m3m4.

B.4 Proof of proposition 1

Before illustrating the proof, let us define more precisely the quantity on the l.h.s. of

eq. (2.4). If the limit of the l.h.s. of eq. (2.3) for ∆Mij → 0 existed, we would simply have∣∣∣∣ ∂Πp

∂Mij

Mij

Πp

∣∣∣∣ = lim
∆Mij→0

∣∣∣∣ ∆Πp

∆Mij

Mij

Πp

∣∣∣∣ . (B.23)

7More precisely, we can show that there is at least one sub-matrix M[ij][hk] such that detM[ij][hk] ≥
m2m3/2. In order to show it, we anticipate that there can be at most 4 sub-determinants giving a sizeable

contribution to Π2 (see appendix C). Then for at least one of the 4 sizeable sub-determinants we must have

|M[ij][hk]|2 ≥ Π2
2/4 ≈ m2

2m
2
3/4, i.e. |detM[ij][hk]| ≥ m2m3/2.
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On the other hand, the quantities Πp are not holomorphic functions of the variable Mij ,

and the limit depends on the direction along which ∆Mij → 0. In such a case, we replace

the r.h.s. of eq. (B.23) by the maximum value taken by the limit when ∆Mij approaches 0

from different directions in the complex plane (∆Mij = αz, z ∈ C, |z| = 1, α ∈ R, α→ 0).

Since Π2
p can be considered as an holomorphic function of Mij and M∗ij (through eq. (A.5)),

we have

max
z

lim
∆Mij=αz→0

∣∣∣∣ ∆Πp

∆Mij

Mij

Πp

∣∣∣∣ =

∣∣∣∣ ∂Πp

∂Mij

Mij

Πp

∣∣∣∣+

∣∣∣∣ ∂Πp

∂M∗ij

M∗ij
Πp

∣∣∣∣ . (B.24)

In short, we define the l.h.s. in eq. (2.4) as the quantity in eq. (B.24).

Let us now prove proposition 1, which therefore states that the stability assumption

implies ∣∣∣∣ ∂Πp

∂Mij

Mij

Πp

∣∣∣∣+

∣∣∣∣ ∂Πp

∂M∗ij

M∗ij
Πp

∣∣∣∣ . 1 for i, j, p = 1 . . . n , (B.25)

but the viceversa is true only for n = 1, 2.

The fact that eq. (2.3) implies eq. (B.25) simply follows from eq. (B.24). We then need

to prove that the viceversa is true for n = 1, 2, but not for n ≥ 3.

For p = 1 (any n), both eq. (2.3) and eq. (B.25) are always verified. This proves the

viceversa for n = 1 and n = 2, p = 1. For p = n = 2, it is easy to see (for example from

eq. (B.3), maximising with respect to θ) that∣∣∣∣ ∂Π2

∂Mij

Mij

Π2

∣∣∣∣+

∣∣∣∣ ∂Π2

∂M∗ij

M∗ij
Π2

∣∣∣∣ =

∣∣∣∣MijMhk

m1m2

∣∣∣∣ , (B.26)

where Mhk is the matrix element opposite to Mij in M . Therefore eq. (B.25) implies

eq. (B.13), which implies that M is stable. This proves the viceversa for n = 2.

Finally, we need to prove that the viceversa is not true for n = 3. This is illustrated

by the following example.

Example 2. Consider the matrix

M =

ε′ 1 1

0 ε 0

0 1 1

 , (B.27)

where ε′ � ε� 1. The singular values are approximately given by ε′/
√

2, ε/
√

2, 2. Using

for example the general relation

∣∣∣∣ ∂Πp

∂Mij

Mij

Πp

∣∣∣∣+

∣∣∣∣ ∂Πp

∂M∗ij

M∗ij
Πp

∣∣∣∣ =
|
∑

α∈Ipij
v∗αwα|

Π2
p

, (B.28)

one can see that eq. (B.25) is verified. On the other hand, M does not satisfy the stability

assumption because M12M33 � m2m3, which contradicts eq. (B.14a).
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C Ordering rows and columns

In this appendix we discuss the results on the ordering of rows and columns of a 3 × 3

hierarchical mass matrix M mentioned in section 3.

Let us first consider a hierarchical matrix M that does not necessarily satisfy the

stability assumption. The following lemma proves useful to discuss this case.

Lemma (ordering for unitary matrices). Given a 3× 3 unitary matrix U , it is possible to

permute its columns (rows) in such a way that

|U33| ≥
1√
3
, | detU[23]| ≥

1√
6
. (C.1)

Moreover, it is not possible to set more stringent general bounds: for any ε > 0 there exists

a unitary matrix U for which it is not possible to find an ordering such that |U33| ≥ 1/
√

3+ε

and |detU[23]| ≥ 1/
√

6 + ε.

Proof. To prove the first bound in eq. (C.1) it suffices to observe that |U31|2 + |U32|2 +

|U33|2 = 1, so that maxi |U3i|2 ≥ 1/3. We can then permute the columns of U in such a

way that |U33| = maxi |U3i| ≥ 1/
√

3. Consider now an ordering in which |U33| ≥ 1/
√

3.

As | detU[23][13]|2 + |detU[23][23]|2 = |U23|2 + |U33|2 ≥ 1/3, the larger determinant will

not be smaller than 1/6. We can then order the first two columns in such a way that

| detU[23]| = maxi=1,2 | detU[23][i3]| ≥ 1/
√

6.

To prove that the bounds cannot be made more stringent, it suffices to consider the

matrix

U =


− 1√

6
− ε√

2
− 1√

6
− ε√

2

√
2

3
−
√

2ε′

1√
2

− 1√
2

0

1√
3
− ε′ 1√

3
− ε′ 1√

3
+ ε

 , (C.2)

where ε and ε′ are small and positive and such that |U31|2 + |U32|2 + |U33|2 = 1 (the

matrix U is then unitary). In order to have |U33| ≥ 1/
√

3, the third column should not be

permuted. Moreover, |detU[23][13]| = | detU[23][23]| = 1/
√

6 + ε/
√

2. Therefore, whatever is

the ordering chosen for the first two columns, we have |detU[23]| = 1/
√

6 + ε/
√

2, which

can be made arbitrarily close to 1/
√

6.

Using the previous lemma, we can show the following proposition.

Proposition. Let M be a hierarchical 3 × 3 matrix. Then it is possible to permute rows

and columns in such a way that

|M33| '
m3

3
, |detM[23]| '

m2m3

6
. (C.3)

Moreover, it is not possible to set more stringent general bounds.
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Proof. It suffices to use the singular value decomposition M = V TMDU , U, V unitary,

MD = Diag(m1,m2,m3), 0 < m1 � m2 � m3. We can then permute the rows and

columns of M (i.e. the columns of U and V ) in such a way that U and V satisfy eq. (C.1).

We then have | detM33| ≈ |V33m3U33| ≥ m3/3 (alternatively, we could have observed

that m2
3 ≈ Π2

1 =
∑

hk |Mhk|2, so that maxhk |Mhk|2 ' m2
3/9). Moreover, |detM[23]| ≈

| detV[33||detU]23]|m2m3 ≥ m2m3/6. Using the relations above it is also possible to show,

as in the lemma, that the bounds in eq. (C.3) cannot be made more stringent.

Let us now assume that M satisfies the stability assumption. It is then possible to get

stronger bounds on |M33|, |detM[23]|.

Proposition. Let M be a hierarchical 3 × 3 matrix satisfying the stability assumption.

Then it is possible to permute rows and columns in such a way that

|M33| '
m3√

3
, | detM[23]| '

m2m3√
6

. (C.4)

Proof. The result in eq. (C.4) can be proven by direct inspection of the structures allowed by

proposition 2. In particular, we can classify the possible structures in terms of the number

N of 2× 2 sub-matrices whose determinant is not suppressed with respect to m2m3. Note

that the stability assumption allows at most N = 4 such sub-matrices. Indeed, for each

sub-determinant giving a unsuppressed contribution, eq. (B.19) forces one matrix element

to be of order m1 or smaller, and direct inspection shows that with more than 4 matrix

elements of order m1 or smaller, it is not be possible to have 4 or more unsuppressed

sub-matrices. Then, direct inspection shows that

|M33| '
m3√

3
, | detM[23]| '

m2m3√
4

(N = 4)

|M33| '
m3√

3
, | detM[23]| '

m2m3√
6

(N = 3)

|M33| '
m3√

3
, | detM[23]| '

m2m3√
2

(N = 2)

|M33| '
m3√

2
, | detM[23]| '

m2m3√
1

(N = 1) .

(C.5)

We will not go through the lengthy and not particularly inspiring proof, but we make three

observations useful to determine the possible structures of M for a given N (and thus to

prove eqs. (C.5)):

• The matrix entries must satisfy |Mij | ≤ m3, |MihMjk| . m2m3, |MihMjkMlm| .
m1m2m3 when rows and columns are all different.

• The possible structures can be classified by the position of the entries complementary

(i.e. with no common row or column) to the 2 × 2 unsuppressed sub-determinants,

which by eq. (B.19) are not much larger than m1. All remaining 2× 2 sub-determi-

nants must be suppressed with respect to m2m3.

• Suppose only the 2× 2 sub-matrices in the last two rows have unsuppressed determi-

nants and let us consider the two sub-matrices that include the third column elements
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M23 and M33, M[23][i3], i = 1, 2. At least one of the two must have | detM[23][i3]| '
1/
√

6. The latter statement can be shown by observing that if |detM[23][i3]| < ε for

both i, then (M21,M22,M23) = (M31,M32,M33)(M23/M33) + (δM21, δM22, 0), with

|δM21|, |δM22| < ε/|M33| and |detM[23][21]| = |δM21M32 − δM22M31| < 2ε. There-

fore, m2
2m

2
3 ≈ Π2

2 ≈
∑3

i=1 | detM[23][i3]|2 < 6ε2 and ε ' m2m3/
√

6.

D Flavor model for Uν = 1

In this appendix we briefly present, as a proof of existence, an abelian flavor model which

realises the case in which the neutrino mass matrix is diagonal and the lepton mixing

arises from the charged lepton sector, closely related to the one presented in appendix A

of ref. [30], albeit with no need of introducing extra messenger fields. We do so in the

context of a supersymmetric SU(5) grand unified theory. We introduce a flavor symmetry

F = U(1)F0 ×U(1)F1 ×U(1)F2 ×U(1)F3 ×U(1)F4 .

The relevant field content, as well as charge assignment is given by

101 102 103 5̄1 5̄2 5̄3 5H 5̄H
F0 3 2 0 0 0 0 0 0

F1 2 2 1 1 1 0 0 0

F2 2 2 2 1 0 0 0 0

F3 2 2 2 0 1 0 0 0

F4 2 2 2 0 0 1 0 0

.

The flavon fields, and their charge assignment, are

θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

F0 −1 0 0 0 0 0 0 0 0 0

F1 0 −2 −1 0 0 0 0 0 0 0

F2 0 0 0 −2 0 0 −3 0 0 −4

F3 0 0 0 0 −2 0 0 −3 0 −4

F4 0 0 0 0 0 −2 0 0 −3 −4

.

The effective superpotential at low energy can be written as

W = yij10i10j5H + ηij10i5̄j 5̄H +
cij
Λ

(5̄i5H)(5̄j5H) , (D.1)

where Λ is a high mass scale related to the flavor dynamics and the other couplings are

adimensional and include suitable powers of 〈θi〉/Λ ∼ λ � 1 (for simplicity, all vev are

assumed to be of the same order) in order to make each term invariant under the symmetry

F . This fixes the up-type quark mass matrix to be

Mu ∼ ŷ〈5H〉λ2

λ7 λ6 λ4

λ6 λ5 λ3

λ4 λ3 1

 , (D.2)
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the charged lepton one to be

ME ∼ η̂〈5̄H〉λ4

λ4 λ4 λ3

λ3 λ3 λ2

1 1 1

 , (D.3)

and finally the neutrino masses are diagonal and with inverted ordering, proportional to

Mν
ij = δij

λ〈5H〉2

Λ
(δi1ĉ1λ+ δi2ĉ2λ+ δi3ĉ3) . (D.4)

Above we defined the O(1) parameters ŷij , η̂ij and ĉi. Notice that in eq. (D.3) we repro-

duced the mass matrix of eq. (4.11). Finally, let us point out that the only symmetries

necessary in order to reproduce the texture of eq. (D.3) in the charged lepton sector (albeit

with a different overall scaling with λ) are the first two U(1) factors, U(1)F0 ×U(1)F1 , and

the only flavons necessary are θ0, θ1 and θ2, with the same charges as specified above.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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