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Abstract. Experimental studies connected with runaway electron beams generation convincingly shows 
the existence of electrons with energies above the maximum voltage applied to the discharge gap. Such 
electrons are also known as electrons with “anomalous energies”. We explain the presence of runaway 
electrons having so-called “anomalous energies” according to physical kinetics principles, namely, we 
describe the total ensemble of electrons with the distribution function. Its evolution obeys Boltzmann 
kinetic equation. The dynamics of self-consistent electromagnetic field is taken into the account by adding 
complete Maxwell’s equation set to the resulting system of equations. The electrodynamic mechanism of 
the interaction of electrons with a travelling-wave electric field is analyzed in details. It is responsible for 
the appearance of electrons with high energies in real discharges.  

1 Introduction  
This paper deals with the phenomenon of runaway 
electrons generation in fast gas discharges under high 
pressures. The generation of runaway electrons in high-
pressure pulsed discharges is a fundamental physical 
phenomenon. The possibility of runaway electrons 
appearing in the Earth atmosphere was predicted at first 
in 1925 [1], and much later the prediction was 
successfully proven in laboratory experiments [2].  

At present the fact of fast (runaway) electrons 
detection can be firmly established at the initial stage of 
high-pressure gas breakdown in discharge gaps with 
strongly non-uniform electric field. At the same time, 
various researchers obtain fast electron current pulses 
with largely spread parameters: amplitudes from 0.1 up 
to tens of amperes with durations from tens picoseconds 
to nanoseconds [3, 4]. As the number of runaway 
electrons is strongly depends on several critical 
parameters (gas type, geometric enhancement of the 
electric field near the sharp edges of electrodes, scales of 
field-enhancement regions, time-resolution of the 
experimental equipment), so experimental results of fast 
electrons detection will also differ considerably.  

Owing to modern experimental equipment and 
novel methods of experimental data analysis, it was 
shown that the runaway electron beams have a 
broadband spectrum containing several groups of 
electrons with different mean energies [5, 6]. The main 
amount of runaway electrons constitutes the group of 
particles with mean energy corresponding to the 
voltage amplitude at the gap. However, it was 
discovered that power spectrum also includes a small 
group of electrons with mean energy much greater than 

the applied values. Such electrons represent a group of 
electrons with so-called “anomalous energies”. 

For high-pressure discharges, it was shown that 
number of electrons with “anomalous” energies usually 
does not exceed ten percent of the total number of 
runaway electrons. On the other hand, electrons with 
“anomalous energies” do not yield to the equilibrium 
Maxwellian distribution, i.e. pointed out to the 
nontrivial mechanism of the formation of a runaway 
electron beam. These experimental results showed the 
need to formulate new theoretical models allow 
explaining the appearance of the “anomalous” runaway 
electron beam component self-consistently.  

Essential non-stationarity and spatial three-
dimensionality in real experiments represent a great 
challenge for the theoretical modeling. So simple zero-
dimensional and one-dimensional plate theoretical 
models allowing to understand the mechanism of 
runaway electron beam formation, do not provide ideal 
correlations with the existing experimental data [7, 8].  

A more realistic one-dimensional coaxial model 
provides better agreement between the theoretical and 
experimental data [9, 10]. Simulation show that the 
breakdown of the coaxial gas-filled gap occurs due to the 
rapid propagation of the ionization wave front between 
inner electrode (cathode) and outer electrode (anode). 
Namely, the necessary conditions for the generation of 
runaway electrons with "anomalous energies" are formed 
at the front of the ionization wave. 

The aim of this paper is to describe in details the 
physical mechanism of electron acceleration to 
"anomalous energies". 
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2 The pilot problem of electron 
acceleration by travelling electric field 
pulse 

2.1 Statement of the model problem 

We consider the one-dimensional interaction of a 
travelling-wave longitudinal electric field pulse with a 
single electron (initially at rest), as shown in Fig. 1. For 
the simplicity reason, it is convenient to consider quite 
simple rectangular shape of field strength profile. Let the 
amplitude of the pulse is equal to E0 and the pulse width 
is equal to L. 
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Fig. 1. Schematics of the model problem. 
 

The field pulse moves from left to right with a 
constant velocity, u, and at some time point overlaps the 
rest electron. Electron starts to move accelerated if the 
electric field acts on it. In Fig. 2 the area where the 
electron interacts with travelling-wave field is shown 
with shaded region at the coordinate-time plane. 
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Fig. 2. Two modes of interaction of a field pulse and an 
electron. The solid line describes the “reflecting mode”, the 
dashed line corresponds to the “escaping mode”. 

2.2 Mathematical description of the rectangular 
field pulse profile 

For simplicity, let us consider the non-relativistic case 
u c! (c is a speed of light). The generalization to the 
case of relativistic velocities is straightforward, it is only 
slightly complicates the mathematical formulation. 
While the electron is in the scope of travelling-wave, it 

moves with the constant acceleration (e is elementary 
charge, and m is mass of electron):  

( ) 2
0( ) / 2x t eE m t= .    (1) 

As can be seen in Fig. 2, there are two fundamentally 
different scenarios of such interaction. 

2.2.1 Escaping mode of interaction  

If the rear edge of the electric field pulse advances the 
electron, the latter gains lower velocity. This mode is 
shown in Fig. 2 with the dashed curve. The phase 
trajectories of the electron and the trailing edge of the 
field pulse will intersect if the quadratic equation has a 
real root (when its discriminant D is positive):  
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If the last condition of (2) is satisfied, then the final 
velocity of the electron remains less than the velocity of 
the field pulse, u. In this interaction mode, the electron 
escapes through the traveling electric field area. 
Therefore, it can be called the “escaping mode”. This 
mode takes place at a low voltage drop across the pulse, 
eU0 = eE0L, as compared to the “relative kinetic energy” 
of the electron, mu2/2. 

2.2.2 Reflecting mode of interaction  

To understand the cause of the appearance electrons with 
anomalous energies more important is another mode of 
interaction, when the condition (2) is not satisfied. In this 
case, the accelerating electron eventually outpaces the 
field pulse and leaves ahead (solid curve in Fig. 2). We 
can say that the electron is reflected from the incoming 
high-voltage pulse, and this mode can be called the 
“reflecting mode”. 

It is easy to show that the velocity of the electron that 
leaves forward is exactly twice the velocity of the field 
pulse. Indeed, the interaction time t0 is determined by the 
equation: ( ) 2

0 0 0( ) / 2x t eE m t ut= = . Therefore, the final 
velocity of the electron will be equal to 

( )0 0/ 2V eE m t u= = . The kinetic energy of the electron, 

e, is appropriate to be written together with the condition 
of the reflecting mode: 

 
2 2

2
02 , .

2 2
mV mumu eUe = = <  (3) 

In accordance with (3), the kinetic energy of the 
electron will be limited from above: 

 
2

2
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2
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The last inequality shows that the electron passed 
forward may have kinetic energy exceeding the value of 
eU0. 

2.3 Generalization for general cases  

After analyzing the simplest problem, we can extend our 
conclusions to more general cases. In particular, it is 
possible to extend the expressions (3) to more general 
profiles of the field pulse and to the relativistic energies. 

2.3.1 Extension to more general pulse profiles  

The fact that in the reflecting mode the electron 
acquires an exactly double value of the velocity of the 
traveling field pulse occurs for any bell-shaped pulse 
profiles E(s). The restriction applies only to the function 
E(s) was single-humped and did not change the sign of 
the field.  

For such a pulse profile, it is possible to determine 
the voltage drop 

 0 ( )U E s ds
+¥

-¥

= ò . (5) 

If we go over to the reference frame in which the 
pulse profile is stationary, then the electron bumps into 
the potential barrier with the same velocity u. If the 
height of the potential barrier will be greater than  kinetic 
energy of the incident electron, it is reflected from it in 
the opposite direction at the same speed. With the 
reverse transformation to the laboratory frame, we obtain 
exactly twice the value of the velocity V = 2u.  

Thus, expression (3) is completely valid for a more 
general field-pulse profile. The Fig. 3 shows the final 
kinetic electron energy from the velocity field pulse. 
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Fig. 3. Dependence of the final kinetic energy of the electron 
from the speed of motion of the field pulse at u c! . 
 

2.3.2 Extension to relativistic energies  

Finally, it is possible to extend the calculations to the 
relativistic energy range. In relativistic mechanics, it is 
customary to express the kinetic energies of particles e 
using the relativistic factor g.  

Turning to the reference system, tied to a field pulse, 
and then back to the laboratory frame of reference, one 
can obtain the following expression for the velocity and 
kinetic energy of the electron interaction in the 
reflectance mode. The condition of the “reflecting mode” 
(3) is written in the following form: 

 ( )2
0 2 2

11 , .
1 /

mc eU
u c

g - < g =
-

 (6) 

The electron velocity, V, in the laboratory system 
after its reflection from the traveling field pulse will be 
determined by the law of velocity composition: 
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The kinetic energy of the reflected electron, e, is 
uniquely determined by the field pulse factor g: 
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Formulas (5), (6) and (8) generalize two formulas (3) 
to arbitrary pulse profile and relativistic energies. For 
low potential barriers 2

0eU mc!  from (8) we obtain 
the classical formulas (4) for the maximum electron 
energy: max 04 eUe » × . But, in the ultra-relativistic 

limit, when 2
0 , 1eU mc g! !  take place, we obtain 

expression for the maximum electron energy: 

max 02 eUe » g × . 

3 Kinetic model of high-pressure gas 
discharge in coaxial gap 

Let us show that in the nanosecond breakdown of a gas-
filled coaxial gap there are conditions for the generation 
of electrons with "anomalous energies". The theoretical 
analysis is based on the model of the kinetic description 
of the electronic component of gas-discharge plasma [11, 
12].  

We are going to describe the discharge process by 
using of the kinetic Boltzmann relativistic equation for 
electron distribution function (EDF) with the model 
right-hand part: 

 ( ), .sc
f p f feE r t Q Q S
t m r p - +

æ ö¶ ¶ ¶
+ - = - + +ç ÷¶ ¶ ¶è ø

g
g

 (9) 

Here f(r, p, t) is the EDF depending on time t and 
radial coordinate r, p = mvg is the relativistic 

momentum, ( )21 /p mcg = +  is the relativistic factor, 
E is the electric field strength .  

The first term Q− on the right-hand side of (9) 
describes the loss of electrons in a given element of the 
phase space due to inelastic electron-atom collisions, the 
second term Q+ describes the production of electrons in 
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an element of the phase space in the same inelastic 
processes, and the third term Ssc describes the effect of 
scattering, in particular, elastic collisions on the EDF.  

In the framework of the kinetic approach, we must 
write the integral expression for the convective electron 
current in any cross section of the discharge gap: 

 ( ) ( ) ( ), / , , .e
eJ r t p f r p t dp
m

¥

-¥

= - ò g  (10) 

A coaxial diode (cathode radius rc, anode cylinder 
radius ra, discharge tube length L) is chosen as a 
simplified model of a discharge with nonuniform 
discharge-gap geometry. An electric pulse U0(t) with a 
steep leading edge and an amplitude by far exceeding the 
static gas breakdown voltage is applied to the gap 
switched in series with a voltage supply and a ballast 
resistance R. This equivalent power-supply circuit 
matches well with the discharge of the pulse forming 
line with impedance R loaded onto a diode, which is 
used in most experiments. 

Using the Kirchhoff rule for the complete circuit, we 
can relate the voltage drop across the gap to the value of 
the total current in the discharge circuit Jtot: 
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Finally, using the conservation law for the total 
current (convective current of electrons plus Maxwell's 
displacement current), we can close our system by the 
evolution equation for the intensity of the electric field in 
the gap (e0 is vacuum permittivity): 

 ( ) ( ) ( )0

,
, .tot e

E r t
J t J r t

t
¶

= -
¶

e  (12) 

The above system of equations (9)-(12) represents 
mathematical equations of the kinetic model of a fast gas 
discharge where the electron component of the discharge 
plasma is described from the first principles in terms of 
the EDF evolution. 

 4 Results of the discharge simulation in 
nitrogen  
A discharge in a coaxial diode filled with nitrogen 
(cathode radius rс = 1 mm, anode radius rа = 10 mm, 
length L = 1 cm) is developed at a pressure of 760 Torr. 
A voltage pulse with leading edge duration 300 ps,  in its 
level 0.1–0.9 of the amplitude 200 kV, was fed to the 
diode switched in series with ballast resistance R = 75 W. 

To simplify the problem, we took into account only 
two types of electron-atom collisions, namely, impact 
ionization and elastic scattering collisions. The 
experimental data for these cross-sections are given in 
[13] for electron energies up to 1 keV. We extrapolate 
the dependence of the cross-sections to the high-energy 
region, using the asymptotic dependences [14]. The 
dependences of the cross section on the energy of the 

electron are shown in Fig. 4 (solid lines show 
experimental values from [13] and dashed lines 
correspond to high-energy extrapolations). 
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Fig. 4. Dependences of collision cross section on the energy of 
an electron in nitrogen. 
 

The system of equations (9)-(12) is solved 
numerically with uniform initial conditions for the EDF 
and the electric field. We choose the initial Maxwellian 
EDF, which determines the initial electron density of 
n0 ~ 103 cm-3 that homogeneously fills the discharge gap 
with the thermal spread kT ~ 5 eV.  

Calculations show a detailed picture of the 
breakdown development. The current switching in the 
gap occurs due to its rapid filling with dense plasma, the 
front of which moves from the cathode (internal 
electrode) to the anode. The dynamics of the electric 
field distribution in the gap during the development of 
breakdown is shown in Fig. 5. It can be seen the field 
strength at the ionization front has a local maximum, 
which moves with increasing speed to the anode.  

 

1 2 3 4 5 6 7 8 9 10
-350

-300

-250

-200

-150

-100

-50

0

El
ec

tri
c 

fie
ld

 s
tre

ng
th

 (k
V/

cm
)

Radial coordinate (mm)

1

2 3 4

5

 
 

Fig. 5. Electric field strength distribution in the coaxial gap at 
different time points: curve 1 − 150 ps, 2 − 200, 3 − 250, 4 − 
300, 5 − 350. 

 
Runaway electrons are generated at the leading edge 

of the moving ionization region, where both the field 
strength and electron number density are high. An 
increase of the plasma electrons energy in the EDF tail is 
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accompanied by a decrease of the collision cross section, 
and a group of fast electrons is formed.  

This process is clearly shown in the phase portraits 
shown in Fig. 6. These functions are obtained as a 
solution to the Boltzmann equation (9). We pay attention 
to a group of runaway electrons that is separated from 
the total plasma group under the impact of a strong 
electric field. Here, some instantaneous EDF in the 
vicinity of the maximum discharge voltage are shown. 
The dashed lines show the level of the electron 
momentum corresponding to the kinetic energy equal to 
the instantaneous gap voltage. 
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Fig. 6. Phase portraits EDF for various time points of the 
breakdown in nitrogen (cathode left, right anode). Shaded 
region represents a logarithmic scale. 
 

Here the gap voltage is maximal (~110 kV) at time 
point 240 ps.  The phase diagrams show how an electron 
beam with “anomalous energy” is formed at the anode. 

The travelling-wave electric field profile forms in the 
discharge (see Fig. 5) providing extra acceleration to the 
electrons beyond the maximum level of the potential 
drop at the gap. This represents the same situation that 
was discussed in Section 2. 

In order to obtain the fast electrons current, which 
values could be compared with the experimental data, in 
the calculations we use an “energy filter” – an d = 10 µm 
Al foil, which partially cuts off slow plasma electrons 
coming to the anode from the discharge column. The 
spectral attenuation factor of the foil, j(d, e), is 
calculated using semi-empirical formulas [15]. Thus, the 
current, Jfast(t), and the total spectrum of fast electrons 
per pulse behind the anode, N(e), are given with 

 0
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It should be noted, the bulk of the electron beam has 
an "anomalous energy" as shown in phase pictures Fig. 
6. The integral spectrum of electrons per pulse, shown in 
Fig. 7, of course, contains electrons with lower energies 
also. 
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Fig. 7. Integral spectrum of electron beam behind the anode 
foil. 

 

 
The amplitude of the runaway electron beam current 

Jfast(t) at 25 A is reached at the 250 ps time point. 
Current pulse duration at half maximum is equal to 12 
ps. Thus, the total yield is estimated to be 2·109 fast 
electrons per pulse. This value agrees well with typical 
experiment data [5, 16, 17].  

 

5 Summary  
This work presents an original theoretical model of a 
non-stationary high-pressure discharge. The physical 
kinetics of electrons is described using the Boltzmann 
kinetic equation for the electron momentum distribution 
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function, and the collisions are described on the basis of 
known sections of elementary processes. 

Self-consistent descriptions of both the process of 
forming total EDF in the discharge, and generate a group 
of runaway electrons. It does not use any semi-empirical 
coefficients and the functional dependence of the type: 
the critical field, the field enhancement factor, the drift 
velocity, etc. 

The physical mechanism responsible for the 
appearance in the discharge of electrons with 
“anomalous energies” is convincingly demonstrated.  

However, we must mention that in actual discharges 
of the three-dimensional geometry, the relative fraction 
of electrons with “anomalous energies” should be 
significantly lower than our calculations showed. This is 
clear because in our model of axisymmetric discharge all 
the electrons generated in the amplified field on the 
ionization wave front, while in real discharges only a 
small group of particles participate in this interaction 
with field wave [5].  

We believe that such a mechanism for electron 
acceleration can also take place in other phenomena, for 
example, during the expansion of dense plasma initiated 
by a focused laser beam. 

 
This work has been supported by Russian Foundation for Basic 
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