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Abstract. Any theory can be made Weyl invariant by introducing a dilaton.
It is shown here how to construct renormalization group equations for gravity
that maintain this property. Explicit calculations are given only in the simplest
approximation, namely for the one-loop beta functions of a dilaton conformally
coupled to a dynamical metric, but the results have wider validity. This formalism
could be used to define the meaning of a theory with a position-dependent cutoff:
it is equivalent to a theory with a constant cutoff but a conformally related metric.
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1. Introduction

1.1. Scalar-tensor theories

This work has two main motivations. The first one is to fill a gap in the literature concerning
the renormalization group (RG) flow of scalar-tensor theories. This problem has been studied
previously using functional RG methods [1–3], with the aim of calculating the gravitational
contributions to the scalar beta functions and investigating the existence of a fixed point (FP)
for a system with Lagrangians of the general form (∇φ)2 + F(R, φ2), where the function F is
usually polynomial in both arguments. It was found that in four dimensions the system has a
‘Gaussian matter FP’, of the form F∗(R, 0), i.e. at the FP the scalar is only minimally coupled
to gravity [2, 3]. A question that has been raised several times concerns the behavior of the non-
minimal coupling ξφ2 R, which is conformal for ξ = 1/6 and is expected to have an FP there.
This is not the case for the calculations mentioned above, but the reason is simple: a mass-
dependent cutoff was used, breaking Weyl (conformal) invariance even if present in the original
Lagrangian. It is therefore not surprising that in those calculations nothing special seems to
happen at ξ = 1/6. The first motivation of this paper is to investigate the existence of a Weyl
covariant cutoff procedure such that ξ = 1/6 is an FP.

Such a procedure would have further benefits. The class of theories that we shall consider
can be seen as the result of making an arbitrary theory Weyl invariant by introducing a dilaton
field χ and replacing all dimensionful couplings gi by dimensionless couplings ĝi multiplied
by appropriate powers of the dilaton. It is interesting to compare the renormalization of the
original dimensionful couplings gi to the renormalization of their dimensionless cousins ĝi .
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We shall see that the equivalence between the original theory and its Weyl invariant version
can be maintained along the RG flow, and the results obtained earlier regarding the existence
of a gravitational FP will be confirmed, but with some interesting quirks. In order not to
burden the discussion with unnecessary complications, we will restrict ourselves to the simplest
approximation to the simplest truncation of the action, namely the one-loop beta functions of a
dilaton conformally coupled to the metric. This corresponds to the ‘Einstein–Hilbert truncation’
of pure gravity [4–6]. It will be clear that the same techniques can be applied also to more
complicated truncations discussed in [7–14] and to theories with matter.

1.2. Non-constant cutoffs

The second motivation is the desire to define a theory also in the presence of a cutoff that
depends on position. In particle physics experiments, one usually considers a small region of
spacetime and sets up the apparatus in such a way as to have as much control as possible over
everything that goes in and out of it. The process is characterized by a momentum scale that is a
function of the momenta of the in- and outgoing particles, and the description of the process is
optimized (in the sense that radiative corrections are minimized) by choosing a renormalization
point that coincides with this scale. In the Wilsonian description of the theory that we will use
here, the choice of renormalization point corresponds to a choice of an infrared (IR) cutoff. The
chosen scale is a global property of the experiment and there is no reason to think that it could
change with position. When we think of applying quantum field theory to astrophysical systems
or to cosmology, we encounter very different situations. The typical energy scales involved
in physical processes may change very strongly with time or with position, and a position-
dependent cutoff may be desirable.

The way in which this has mostly been handled so far is by identifying the cutoff with
a specific function of position (usually via some prescribed function of the fields) and then
making the couplings depend on position via this cutoff function. In cosmology, different
choices of cutoff have been considered in the past: for example, 1/a(t) [15, 16], 1/t [17–19]
or the Hubble parameter H = ȧ/a [20, 21]. See also [22–24]. Replacing the classical, constant
couplings by their running counterparts at the level of the equations of motion (EOMs) leads
to apparent violation of the conservation of the energy–momentum tensor, which may be
interpreted as a kind of diffeomorphism anomaly. The simplest example of this phenomenon
occurs when one turns Newton’s constant and the cosmological constant in Einstein’s equations
Gµν +3gµν = 8πGT µν into functions of position. Due to the contracted Bianchi identity, taking
the divergence of both sides gives

∇µT µν
= −

∇µG

G
T µν +

1

8πG
∇
ν3. (1)

If the energy–momentum tensor derives from the action of a massless scalar field, it is going to
be conserved when one uses the scalar equation of motion. Then, the rhs of equation (1) will
vanish on shell. If the matter field was massive or had other interactions, equation (1) will also
contain other terms involving the derivatives of these additional Lagrangian parameters. In any
case, equation (1) in itself does not signal inconsistency of the theory, but rather gives conditions
that will be obeyed on shell by the energy–momentum tensor1.

1 This parallels the following well-known fact: in an anomalous gauge theory, the anomaly vanishes on shell and
therefore is not inconsistent with the EOMs of the theory; see, e.g., [25].
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On the other hand, if the energy–momentum tensor describes a phenomenological fluid,
there is no a priori reason for it to be conserved. One could then argue that energy momentum
is conserved at the microscopic level and that (1) is a measure of the energy and momentum of
the field modes that are removed from the description of the system by coarse graining. Again,
it should not be seen as a pathology. In fact, it can be exploited to account for all the entropy
that is observed in the universe [20].

Still, in some applications it would be desirable to have a formalism that is capable of
dealing with non-constant cutoffs while completely avoiding the preceding issues. As we noted
above, in theories with a dilaton, dimensionful couplings are effectively replaced by fields and
can therefore become position dependent. This suggests that making the theory Weyl invariant
by introducing a dilaton may be a way of achieving this goal.

1.3. The dilaton and Weyl invariance

We will assume that special relativity and quantum mechanics hold true, so without any further
thought we can choose the units where c = 1, h̄ = 1. Then, everything has the dimension of a
power of length. The length dimension of a physical quantity q is the number d which enters
in the transformation rule q 7→�dq , under the action of the multiplicative group of the positive
real numbers. Such transformations will be called global rescalings. In quantum field theory in
the Minkowski space, global rescalings are usually viewed as spacetime transformations, acting
as xµ →�xµ; this is consistent with the use of coordinates having the dimension of length. In
a gravitational context, it seems more convenient to view all the coordinates as mere numerical
labels for the points of spacetime, carrying no dimension. Then, the transformation of the fields
does not involve any change in their argument. We will stick to this convention throughout
this paper. There follows from the definition of the line element that the metric tensor has the
dimension of area. This means that it transforms as

gµν 7→�2gµν. (2)

The dimensions of the fields ψa and couplings gi , called da and di , respectively, are determined
by requiring that the action S(gµν, ψa, gi) is dimensionless, i.e. that

S(gµν, ψa, gi)= S(�2gµν, �
daψa, �

di gi). (3)

It does not matter here whether the metric is fixed or dynamical. One finds that the dimensions
of scalar, spinor and vector fields are 1, 3/2 and 0, respectively. One can easily convince oneself
that the dimensions of all parameters in the Lagrangian, such as masses and couplings, are the
same as in the more familiar case when coordinates have the dimension of length.

Every action is invariant under these transformations, by construction. This is just
the statement of dimensional analysis. Sometimes the action is also invariant under the
infinite dimensional Abelian group of maps from spacetime into the positive reals. These
transformations look the same as above, but with � now regarded as a function of x .
Such transformations are called Weyl transformations. Since Lagrangian parameters must be
independent of position, a necessary condition for Weyl invariance is that all parameters in the
Lagrangian be dimensionless.

So far we have discussed rescalings of all dimensionful quantities appearing in a theory.
These transformations should not be confused with another class of transformations called
(global or local) scale transformations, which form the same abstract group but act only on the
fields, not on the parameters of the theory (for discussions; see, e.g., [26–28]). The reason for
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considering these transformations is that theories with different masses or couplings are viewed
as different theories. Then, one says that a theory is (globally or locally) scale invariant if

S(gµν, ψa, gi)= S(�2gµν, �
daψa, gi). (4)

Comparing (3) and (4) we see that a theory is globally scale invariant if and only if di = 0 for
all i . Since in a Weyl invariant theory all parameters gi are dimensionless, Weyl invariance is
equivalent to local scale invariance.

When one uses dimensionful coordinates, a distinction has to be made between the
canonical dimension and the Weyl or scaling dimension of a field. For example, when the
coordinates have the dimension of length, the canonical dimension of a vector field is mass
but its Weyl dimension is zero. One advantage of using dimensionless coordinates is that
the two notions are the same. In quantum field theory, canonically normalized fields acquire
non-integer (anomalous) scaling dimensions [28]. Equivalently, one can work with fields
whose scaling dimension is not affected by quantum corrections, but then the kinetic terms
contain dimensionless wave function renormalization constants Za, which depend on the
renormalization scale. We will work with these non-canonically normalized fields.

Normally, one works with the units of length and mass that are implicitly assumed to
be constant over space and time, but in Weyl’s theory such a notion is declared physically
meaningless. The unit must be allowed to vary arbitrarily from point to point. It can thus be
viewed as a scalar field χ of dimension mass, which can be written as χ(x)= eσ(x)χ0. It is
important that χ is not allowed to be zero anywhere; otherwise it would not be a unit anymore.
The field χ will be called the dilaton.

We can start from any action and rewrite it in a way that is manifestly invariant under Weyl
transformations, by making the presence of the unit/dilaton explicit. We begin by observing
that the ordinary covariant derivative of a field is not a Weyl-covariant notion: under Weyl
transformations, terms involving derivatives of the parameter � appear. Such terms can be
removed by defining a Weyl-covariant derivative as follows. With the dilaton we construct a
pure-gauge Abelian gauge field κµ = −χ−1∂µχ , transforming under (2) as κµ 7→ κµ +�−1∂µ�.
Let ∇µ be the covariant derivative with respect to the Levi–Civita connection of the metric g.
Define a new (non-metric) connection

0̂µ
λ
ν = 0µ

λ
ν − δλµκν − δλνκµ + gµνκ

λ, (5)

where 0̂µλν are the Christoffel symbols of g. The corresponding covariant derivative is denoted
by ∇̂. The connection coefficients 0̂ are invariant under (2). For any tensor t of length
dimension w, define the covariant derivative Dt to be

Dµt = ∇̂µt −wκµt, (6)

where all indices have been suppressed. The curvature of D is defined by

[Dµ, Dν]v
ρ

=Rµνρσvσ . (7)

The tensor Rµνρσ is Weyl invariant, and raising and lowering indices, one obtains Weyl
covariant expressions of different dimensions. A direct calculation gives the explicit expression

Rµνρσ = Rµνρσ + gµρ(∇νκσ + κνκσ )− gµσ (∇νκρ + κνκρ)

−gνρ(∇µκσ + κµκσ )+ gνσ (∇µκρ + κµκρ)− (gµρgνσ − gµσ gνρ)κ
2. (8)
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Now start from a generic action for matter and gravity of the form S(gµν, ψa, gi). Express
every parameter gi as gi = χdi ĝi , where ĝi is dimensionless. Replace all covariant derivatives
∇ by Weyl-covariant derivatives D and all curvatures R by the Weyl-covariant curvatures R.
Now all the terms appearing in the action are products of Weyl-covariant objects, and local
Weyl invariance just follows from the fact that the action is dimensionless. In this way we have
defined an action Ŝ(gµν, χ, ψa, ĝi). It contains only dimensionless couplings ĝi and is Weyl
invariant by construction.

Because the dilaton transforms as χ →�−1χ with � a nowhere zero function, we can
transform any dilaton configuration into any other. In particular, we can set σ = 0 or χ = χ0.
This brings us back to the situation in which the unit can be seen as constant, but now it is a
gauge choice. If we make this choice, all derivatives of χ in the action vanish, and the factors of
χ0 combine with the ĝi to reconstruct the dimensionful gi , giving back the original action S:

Ŝ(gµν, χ0, ψa, ĝi)= S(gµν, ψa, gi). (9)

In conclusion, there is a one-to-one correspondence between the class of all theories
depending on a metric and fields ψa, and Weyl-invariant theories depending on the same fields
plus a dilaton. Every theory is invariant under global rescalings because dimensional analysis
always holds true, and it can be made manifestly Weyl invariant by the above covariantization
procedure. We shall be interested in theories that are Weyl invariant in this sense.

2. The action and equations of motion

We will consider Euclidean action functionals of the general form

S =

∫
d4x

√
g

[
λZ 2χ4

−
1

2
Z
(
ξχ 2 R + gµν∂µχ∂νχ

)]
, (10)

containing three dimensionless couplings Z , ξ and λ. It is clear that Z is redundant: it could be
set to one by a simple rescaling of χ . Still, it plays a role in the renormalization of the theory so
it is useful to keep it for future reference. We will return to this point in section 6.1.

The action (10) is invariant under global rescalings (2) together with χ 7→�−1χ , with
� a constant and the couplings held fixed. Under (2) the curvature scalar transforms as R →

�−2
(
R − 6�−1

∇
2�
)
, so one sees that if ξ = 1/6, (10) is also invariant under local rescalings,

i.e. transformations (2) with� a positive function on spacetime. In this case, the action can also
be written in the form

S =

∫
d4x

√
g

[
λZ 2χ4

−
1

12
Zχ2R

]
, (11)

where the Weyl-covariant curvature R is defined as in (8). When ξ = 1/6, the field χ is
unphysical and if we set

Zχ2
=

12

16πG
; λ=

2π

9
G3, (12)

the action (11) is equivalent to the Hilbert action

S =

∫
d4x

√
g

1

16πG
(23− R), (13)
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This equivalence can be seen also at the level of the EOMs. The first variation of (10) yields

δS = Z
∫

d4x
√

g
[
δgµνEµν + δχE

]
, (14)

where
Eµν =

1
2ξχ

2
(
Rµν −

1
2 gµνR

)
+
(

1
2 − ξ

)
∇µχ∇νχ +

(
ξ −

1
4

)
gµν(∇χ)2 − ξχ∇µ∇νχ

+ξgµνχ∇
2χ +

1

2
λZχ4gµν (15)

and

E = ∇
2χ − ξ Rχ + 4λZχ3. (16)

Thus the EOMs of the theory are

Eµν = 0; E = 0. (17)

Taking the trace of the tensor EOM, we obtain

0 = −
1
2ξχ

2 R +
(
3ξ −

1
2

)
(∇χ)2 + 3ξχ∇

2χ + 2λZχ4. (18)

If ξ = 1/6, this is equivalent to the scalar EOM.

3. Expansion of the action

For the quantum theory we need the second variation of the action. From here on, we will use the
symbols gµν and χ to denote background fields and hµν = δgµν and η = δχ for the variations.
Expanding to second order in powers of hµν and η and discarding total derivative terms, the
quadratic part of the action is given by

S(2) =
1

2
Z
∫

d4x
√

g

{
1

2
ξχ 2

[
−

1

2
hµν∇

2 hµν + hµν∇
µ
∇ρhρν − h∇

µ
∇
νhµν +

1

2
h∇

2 h

−hµνRµρνσhρσ − hµνRνσhµσ + h Rρσhρσ +
1

2

(
R −

2

ξ
λZχ2

)(
hµνh

µν
−

1

2
h2

)]
+

(
1

2
−

3

2
ξ

)
∇
ρχ∇

σχhhρσ + (2ξ − 1)hµν∇
νχ∇

σχhµσ + 2ξχ∇
ν
∇
σχhµνh

µ
σ

−
3

2
ξχ∇

µ
∇
νχhhµν +

(
1

4
−

3

4
ξ

)
(∇χ)2hµνh

µν +

(
1

4
ξ −

1

8

)
(∇χ)2 h2

−
3

4
ξχ∇

2χhµνh
µν +

1

4
ξχ∇

2χh2 + ξχ∇λχ
(
hµν∇

µhλν − h∇ρhρλ
)

+η
[
−2ξχ∇

µ
∇
νhµν + 2ξχ∇

2 h − 2∇
ρχ∇

σhρσ + ∇
ρχ∇ρh

−2∇
ρ
∇
σχhρσ + ∇

2χh + 2ξχRρσhρσ − ξχRh + 4λZχ3 h
]

+η
(
∇

2
− ξ R + 12λZχ2

)
η

}
. (19)

We define the Hessian H by

S(2) =
1

2
ZH((h, η), (h, η))=

1

2
Z
∫

d4x
√

g
(
hµν η

) (Hµνρσhh Hµνhη

Hρσηh Hηη

)(
hρσ
η

)
. (20)
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Note that an irrelevant overall factor of Z has been extracted. From (19) we obtain after
symmetrizing in the arguments:

Hµνρσhh =
1
2ξχ

2

[
−

1
21µνρσ∇2 + g(ν|σ∇ |µ)

∇
ρ
−

1
2 gµν∇ρ

∇
σ
−

1
2 gρσ∇(µ

∇
ν) + 1

2 gµνgρσ∇2

−Rµρνσ
− g(µ|ρR|ν)σ + 1

2 gµνRρσ + 1
2 Rµνgρσ +

(
R −

2
ξ
λZχ2

)
Kµνρσ

]
+1

2ξχ
(
2g(µ|ρ

∇
σχ∇

|ν)
− 1µνρσ∇λχ∇λ − 2gµν∇ρχ∇

σ + gµνgρσ∇λχ∇λ

)
+
(

1
4 −

1
2ξ
)

gρσ∇(µ|χ∇
|ν)χ +

(
1
4 − ξ

)
gµν∇ρχ∇

σχ + (2ξ − 1)g(µ|ρ
∇

|ν)χ∇
σχ

+2ξχg(µ|ρ
∇

|ν)
∇
σχ −

1
2ξχgρσ∇µ

∇
νχ − ξχgµν∇ρ

∇
σχ +

(
1
4 − ξ

)
(∇χ)21µνρσ

+
(

1
2ξ −

1
8

)
(∇χ)2 gµνgρσ − ξχ∇

2χ1µνρσ + 1
2ξχ∇

2χgµνgρσ , (21)

Hµνhη = −ξχ∇
µ
∇
ν + ξχgµν∇2 + ξχRµν

−
1
2ξχRgµν + 2λZχ3 gµν

+(1 − 2ξ)∇(µχ∇
ν) +

(
2ξ −

1
2

)
gµν∇λχ∇λ − ξ∇µ

∇
νχ + ξ∇2χgµν, (22)

Hρσηh = −ξχ∇
ρ
∇
σ + ξχgρσ∇2 + ξχRρσ

−
1
2ξχRgρσ + 2λZχ3 gρσ

−∇
ρχ∇

σ + 1
2 gρσ∇λχ∇λ − ∇

ρ
∇
σχ + 1

2∇
2χgρσ , (23)

Hηη = ∇
2
− ξ R + 12λZχ2, (24)

where

Kµνρσ
=

1
2

(
1µνρσ −

1
2 gµνgρσ

)
. (25)

Symmetrization under the interchange ρ ↔ σ is not indicated explicitly but has to be
performed where needed. Of course this symmetrization is automatic when the operators act on
a symmetric tensor hρσ . Symmetrization under the interchange µ↔ ν is indicated explicitly.
Symmetry under the interchange of the arguments H(ψ, θ)=H(θ, ψ) is not obvious and
requires integration by parts.

A check on this operator comes from the fact that(
Hµνρσhh Hµνhη

Hρσηh Hηη

)(
∇ρεσ + ∇σερ

ελ∇λχ

)
= 0, (26)

which follows from the diffeomorphism invariance of the action. For ξ = 1/6, there is the further
identity (

Hµνρσhh Hµνhη

Hρσηh Hηη

)(
2ωgρσ

−ωχ

)
= 0, (27)

which follows from Weyl invariance of the action. Both identities require using the EOMs.
If χ is constant, only the first two lines of Hµνρσhh survive. If we replace Zξχ 2/2 by

1/(16πG), they are just the Hessian of the Hilbert action. Now we observe that in the special
case ξ = 1/6 all the terms involving derivatives of χ conspire to turn ordinary covariant
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derivatives ∇ into Weyl-covariant derivatives D,2 and curvatures R into Weyl curvatures R:

Hµνρσhh =
1

12
χ2

[
−

1
21µνρσ D2 + g(ν|σ D|µ)Dρ

−
1
2 gµνDρDσ

−
1
2 gρσ D(µDν) + 1

2 gµνgρσ D2

−Rµρνσ− g(µ|ρR|ν)σ + 1
2(g

µνRρσ+Rµνgρσ )+
(
R− 12λZχ 2

)
Kµνρσ

]
, (28)

Hµνhη =Hµνηh =
1
6χ
(
gµνD2

− DµDν +Rµν −
1
2Rgµν

)
+ 2λZχ3 gµν, (29)

Hηη = D2
−

1
6R+ 12λZχ2. (30)

This means thatHµνρσhh is just the conformal covariantization of the Hessian of the Hilbert action,
and the other pieces in the Hessian are also manifestly conformally covariant, in the sense that

Hµνρσhh(�2gµν ,�−1χ)
(�2hρσ )= �−6Hµνρσhh(gµν ,χ)

hρσ , (31)

Hµνhη(�2gµν ,�−1χ)
(�−1η)= �−6Hµνhη(gµν ,χ)

η, (32)

Hρσ
ηh(�2gµν ,�−1χ)

(�2hρσ )= �−3Hρσηh(gµν ,χ)
hρσ , (33)

Hηη(�2gµν ,�−1χ)(�
−1η)= �−3Hηη(gµν ,χ)η. (34)

These transformation properties, which would have been hard to check in the form (21)–(24),
guarantee that the linearized action is invariant under the ‘background Weyl transformations’

gµν 7→�2gµν; χ 7→�−1χ; hµν 7→�2hµν; η 7→�−1η. (35)

These parallel the familiar invariance under ‘background diffeomorphisms’ which holds for
any ξ .

The Hessian can be regarded as a differential operator mapping the covariant tensor hρσ
to a contravariant tensor. The trace and determinant of such an operator are basis dependent.
In the quantum theory, one needs a differential operator mapping covariant tensors to covariant
tensors. If we think of (hµν, η) as a vector in field space, this corresponds to ‘lowering the first
index’ on the Hessian, and is thus achieved by means of a metric in field space. We choose the
conformally invariant functional metric

G((h1, η1), (h2, η2))=

∫
d4x

√
g
[
χ 4h1µνg

µρgνσh2ρσ +χ2η1η2

]
. (36)

Then, the linearized action can be written in abridged notation as

S(2) = 1
2 ZH(θ, θ)=

1
2 ZG(θ,Oθ), (37)

where θT
= (h, η) and the components of O are given by

(Ohh)µν
ρσ

= χ−4gµαgνβHαβρσhh , (38)

(Ohη)µν = χ−4gµαgνβHαβhη , (39)

2 It is useful to note that the covariant derivatives of the backgrounds vanish: Dχ = 0, Dgµν = 0.
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Oρσηh = χ−2Hρσηh , (40)

Oηη = χ−2Hηη. (41)

From the symmetry ofH in its arguments, there follows self-adjointness of O. Furthermore, the
operator O is Weyl covariant in the sense that

(Ohh(�2gµν ,�−1χ))µν
ρσ (�2hρσ )=�2(Ohh(gµν ,χ))µν

ρσhρσ , (42)

(Ohη(�2gµν ,�−1χ))µν(�
−1η)=�2(Ohη(gµν ,χ))µνη, (43)

(Oηh(�2gµν ,�−1χ))
ρσ (�2hρσ )=�−1(Oηh(gµν ,χ))

ρσhρσ , (44)

Oηη(�2gµν ,�−1χ)(�
−1η)=�−1Oηη(gµν ,χ)η. (45)

Note that Ohh and Oηη are dimensionless. In particular, their leading terms begin with
−(1/χ 2)D2.

4. Gauge fixing

Now we have to gauge fix for diffeomorphisms. We add to the action the gauge fixing term

SGF =
1

2α

∫
d4x

√
g

1

2
Zξχ 2 FµḡµνFν, (46)

where

Fν = Dµhµν −
β + 1

4
Dνh. (47)

Note the appearance of the factor Zξχ 2/2, which corresponds to the usual factor of 1/16πG in
the gravitational gauge fixing. It is there for dimensional reasons (Fµ is dimensionless) and
allows the gauge fixing term to combine seamlessly with the inverse propagator (28)–(30).
Integrating by parts and symmetrizing we have

SGF=
Zξ

4α

∫
d4x

√
gχ2

[
−hµνDµDρhρν +

1 +β

4
(h DµDνhµν + hµνDµDνh)−

(1 +β)2

16
h D2 h

]
.

(48)

The ghost action corresponding to the gauge (47) is given by

Sgh =

∫
d4x

√
g χ2C̄µgµν(Ogh)

ρ
νCρ

= Ggh

(
C̄,OghC

)
, (49)

where C̄ and C are dimensionless anticommuting vector fields,

Ggh (A, B)=

∫
d4x

√
g χ2 AµgµνBν (50)

is the Weyl-invariant inner product on vector fields and

(Ogh)
ν
µ = −

1

χ2

(
δνµD2 +

1 −β

2
DµDν +Rµν

)
(51)

is the Weyl-covariant operator acting on ghosts.
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In the case of ξ = 1/6, the quadratic action also has zero modes (27) corresponding to
infinitesimal Weyl transformations. This also requires gauge fixing. The most convenient way to
fix this gauge is to choose η = 0. With this choice we remain with the field hµν propagating in the
background gµν and χ . This will allow us to immediately use the results obtained previously for
pure gravity. With other gauge choices the dilaton fluctuations will remain, and will generally
mix with the graviton. In these gauges, the calculations will resemble those in [2, 3] more
closely.

We will choose the de Donder–Feynman gauge β = 1, α = 1, which simplifies the
quadratic action considerably3. In this case, the full gauge fixed quadratic action is simply

S(2) + SGF =
1

2
Z
∫

d4x
√

g hµνHµνρσhρσ (52)

with

Hµνρσ=
1
12χ

2[Kµνρσ
(
−D2 +R−12λZχ2

)
−Rµρνσ− g(µ|ρR|ν)σ + 1

2(g
µνRρσ+Rµνgρσ )]. (53)

5. The Weyl invariant effective average action

We now assume that ξ = 1/6. In order to evaluate the beta functions, we construct the so-called
effective average action (EAA), which is the effective action with a cutoff on the propagation of
low momentum modes. It can be defined by the functional integral

e−W ( j,φ̄)
=

∫
dµ e−S(φ)−1Sk(φ,φ̄)−

∫
jφ (54)

followed by the Legendre transform

0k(φ, φ̄)= Wk( j, φ̄)−
∫

jφ−1Sk(φ, φ̄). (55)

Here φ denotes collectively the quantum fields, φ̄ the backgrounds, j the sources and1Sk is the
cutoff action, to be specified shortly. We shall be interested in the functional 0k(φ̄)= 0k(0, φ̄)
where the expectation values of the fluctuations are set to zero.

It is sometimes assumed that when a classical theory with action S is scale invariant, the
appearance of a cutoff and/or renormalization scale in the definition of the functional integral
necessarily leads to breaking of scale invariance. A fortiori, this is expected for Weyl invariance.
This is, however, not the case in the presence of a dilaton field. This point has been made
early on, in the context of dimensional regularization, in [29]. The existence of a choice in the
quantization procedure has been discussed in [30]. This choice has been discussed in the context
of the RG flow of conformally reduced gravity in [31]. The same point has also been reiterated
more recently in [32], where it was shown how to maintain Weyl invariance in the presence of
a lattice cutoff. In the following, we shall see how the cutoff 1Sk can be defined in such a way
as to preserve Weyl invariance.

First, we assume that the measure is formally Weyl invariant. This can be achieved by
writing it in the form

dµ=

∏
(χ2 dhµν)

∏(
dη

χ

)∏
dC̄µ

∏
dCν, (56)

3 It may be preferable to use the gauge β = 0 which only imposes conditions on the traceless part of hµν and
therefore decouples the diffeomorphism from the Weyl gauge fixing. This, however, would complicate the algebra
without leading to significant new insight.
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where the product extends over all normal modes of the fields. Note that the h, η measures
can be written simply in terms of the Weyl-invariant (dimensionless) variables ĥµν = χ2hµν ,
η̂ = η/χ .

The first step in the definition of the cutoff is to choose a differential operator whose
eigenfunctions we will take as a basis in field space, and in terms of whose eigenvalues the
cutoff will be imposed. Since we want to define the cutoff in such a way as to preserve the
background Weyl invariance, the operator has to satisfy the covariance property

1(�2gµν ,�−1χ)

(
�2hµν

)
=�21(gµν ,χ)hµν. (57)

This property has the following important consequence: if hµν is an eigenfunction of 1(gµν ,χ)

with eigenvalue λ, then �2hµν is an eigenfunction of 1(�2gµν ,�−1χ) with the same eigenvalue.
Therefore, the spectrum of 1 is Weyl invariant.

We then have to introduce a cutoff scale k. By definition it must have the dimension of
mass and therefore it must transform under Weyl transformations as k →�−1k. In general, it
is therefore a function on spacetime. The ratio u = k/χ is a dimensionless and hence Weyl-
invariant function. In the following, we will assume that χ and k are proportional to each other,
so that u is constant. Then, recalling that the eigenvalues of 1 are dimensionless, we can use
this number u as the cutoff on the spectrum of 1.

Concretely, we proceed as follows. We assume that 1=Ohh for the graviton sector and
1=Ogh for the ghost sector. These operators satisfy the desired Weyl covariance properties
(see (42)). In the gauge that we have chosen above, where there is no η fluctuation, we define
the cutoff action by

1Sk =
1

2
ZG

(
h,

1

12

1

χ2
Rk(χ

2Ohh)h

)
+Ggh

(
C̄,

1

χ2
Rk(χ

2Ogh)C

)
, (58)

with
1

χ2
Rk(χ

2O)=
k2

χ2
r

(
χ2

k2
O
)
. (59)

In order to define a cutoff, the function r(y) must be monotonic; it must tend rapidly to
zero for y > 1 and can be normalized so that r(0)= 1. We shall use the optimized cutoff [33]

r(y)= (a − y)θ(a − y), (60)

where θ is the Heaviside step function and a is a free parameter that corresponds to choosing
different renormalization schemes. In the following, it will be set to one unless otherwise stated.

The crucial fact to notice at this point is that the cutoff action (58) is invariant under Weyl
transformations. Normally a cutoff is regarded as a fixed scale breaking Weyl invariance, but
with our construction every appearance of the cutoff is neutralized by a compensating factor
of the dilaton: the EAA depends on the cutoff only through the dimensionless, Weyl-invariant,
constant combination u. Since the full quadratic action, including the cutoff, is background Weyl
invariant, and the functional measure is also background Weyl invariant, the EAA is background
Weyl invariant:

0�−1k(�
2gµν, �

−1χ)= 0k(gµν, χ). (61)

In the context that we are considering here, with a cutoff that could in general be a function
on spacetime, the ‘beta functional’ of the theory is defined as∫

dx k(x)
δ0k

δk(x)
. (62)
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It is always possible, by means of a Weyl transformation, to go to a conformal frame where the
cutoff is constant, and in this frame the beta functional reduces to

k
d0k

dk
. (63)

Quite generally, given that the EAA depends on k only through the constant u, we have∫
dx k(x)

δ0k

δk(x)
= u

d0k

du
. (64)

6. Beta functions

Since our purpose here is to illustrate the properties of the Weyl-invariant theory, and not to
obtain accurate estimates for the beta functions, for the sake of simplicity we shall restrict our
attention to the one-loop approximation. The one-loop EAA is

0
(1)
k (gµν, χ)= S(gµν, χ)+

1

2
Tr log

(
Pk(χ

2Ohh)

χ2

)
− Tr log

(
Pk(χ

2Ogh)

χ2

)
, (65)

where Pk(z)= z + Rk(z). The only k-dependence is in the cutoff functions and one obtains

u
d0k

du
=

1

2
Tr

χ2

Pk(χ2Ohh)
u

d

du

(
u2r

(
Ohh

u2

))
− Tr

χ2

Pk(χ2Ogh)
u

d

du

(
u2r

(
Ogh

u2

))
= Tr θ (u −Ohh)− 2Tr θ

(
u −Ogh

)
, (66)

where we have used equation (59) and then the explicit form of the optimized cutoff (60). Here
we see explicitly the Weyl invariance of the beta functional. Note that unlike the EAA itself, its
u-derivative is ultraviolet (UV) finite and therefore there cannot be any issue of hidden breaking
of Weyl invariance due to some UV regulator. If the initial point of the flow is chosen to be Weyl
invariant, it will remain so for all u.

The standard way of extracting beta functions from this expression is to make an ansatz of
the form

0k =

∑
i

gi

∫
d4x

√
gMi (67)

and to extract from the rhs of (66) the coefficients of the operatorsMi . This method was first
applied to gravity in [34]. Here we will truncate the expansion to the first two terms. The
evaluation of the traces has been done many times before; e.g., [10]. In a gauge in which k
and χ are constant, the first two terms of an expansion in derivatives of the metric are

k
d0(1)k

dk
=

1

16π 2
k4

∫
d4x

√
g −

1

16π

23

3π
k2

∫
d4x

√
gR. (68)

6.1. The Einstein approach: treating χ as coupling

The traditional procedure is to read from (68) the beta functions of the dimensionless couplings
3̃=3/k2, G̃ = Gk2, in a gauge in which k is constant. One truncates the expansion (67) to the
first two terms, in such a way that the EAA has the form (13), or equivalently∫

d4x
√

g
1

16π G̃
(23̃k4

− k2 R). (69)
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Deriving this equation with respect to k and comparing with (68), one finds that

k
dG̃

dk
= 2G̃ −

23

3π
G̃2, (70)

k
d3̃

dk
= −23̃−

23

3π
G̃3̃+

1

2π
G̃. (71)

These beta functions have an FP at

G̃ =
6π

23
; 3̃=

3

92
. (72)

Note that this procedure is equivalent to treating χ as a coupling. More precisely, defining
χ̃ = χ/k and using the relations

Z χ̃2
=

12

16π G̃
; λ=

2π

9
3̃G̃, (73)

we see that these couplings have an FP at

(Z χ̃2)∗ =
23

8π2
; λ∗ =

π 2

529
. (74)

Since the main point of the Weyl-invariant reformulation of gravity was precisely to replace
Newton’s constant (and all other dimensionful couplings) by dimensionless couplings times
powers of a field, this interpretation is contrary to the philosophy we adopted in this paper.
Nevertheless, we would like to preserve the equivalence between the Weyl-invariant theory and
Einstein gravity also at the quantum level. We will see below how this is achieved.

6.2. The Weyl approach: treating χ as field

In the spirit of Weyl’s theory, we interpret the dilaton as a field providing an arbitrary local
unit of mass. It can be an arbitrary positive function. The cutoff is assumed to be constant
when measured in units of the dilaton. In other words, the cutoff is parameterized by the
dimensionless, Weyl-invariant real parameter u = k/χ . The dimensionless couplings Z and λ
in (11) should be thought of as functions of u.

Equation (66) shows explicitly that the beta functional of the theory, which gives the
dependence of the EAA on u, is Weyl invariant. Therefore, equation (68) can be regarded as
a special case of the equation

u
d0(1)k

du
=

1

16π2
u4

∫
d4x

√
gχ4

−
1

16π

23

3π
u2

∫
d4x

√
gχ2R, (75)

written in a gauge in which k and χ are constant. Comparing (75) with the u-derivative
of (11)

u
d0k

du
= u

d(Z 2λ)

du

∫
d4x

√
gχ4

−
1

12
u

dZ

du

∫
d4x

√
gχ 2R, (76)

we obtain the beta functions:

u
dZ

du
=

23

4π 2
u2, (77)

u
dλ

du
=

u2
− 184Zλ

16π 2 Z 2
u2. (78)
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These beta functions do not have an FP for Z and λ; in fact even the question of the existence
of a FP is ill posed because of the explicit appearance of the independent variable u in the flow
equations. However, these equations are sufficiently simple that one can obtain their general
solution. The equation for Z is independent of λ and has the solution

Z(u)= Z0 +
23

8π2
u2, (79)

where Z0 = Z(0) is the IR limiting value of Z . Plugging this solution in the equation for λ one
finds that

λ(u)=
π2(u4 + 64π 2 Z 2

0λ0)

(8π2 Z0 + 23u2)2
, (80)

where λ0 = λ(0) is the IR limiting value of λ.
In this interpretation, the trajectory depends on the arbitrary integration constants Z0 and

λ0, but for u → ∞ all trajectories have the same asymptotic behavior: Z grows asymptotically
like 23

8π2 u2 and λ tends to the limiting value π 2/529. This agrees with the results (74) in the
following way: the limiting value of λ is the FP value, and the asymptotic value of Z/u2

= Z χ̃2

is also the FP value.
We observe that the trajectory reaches the FP for u ≈ Z0. There is a trajectory that

corresponds to the theory sitting forever at the FP: it is the limiting trajectory characterized by
Z0 = 0, with λ0 arbitrary. Note that this is not inconsistent with the requirement Z > 0, because
for any finite u this condition will be satisfied.

7. Discussion

7.1. Z versus ξ

Since the flow equation preserves Weyl invariance, the condition ξ = 1/6 that we assumed in
section 6 will be maintained, independent of k. We can say that 1/6 is an FP of ξ . We can now
see why it was necessary to retain the redundant wave function renormalization constant Z in the
action (10). Had we set it equal to one from the beginning, we might have been led to interpret
the term proportional to R in (75) as a renormalization of ξ , and we would have concluded that
ξ has an FP at 23/8π2 instead of 1/6. Instead, ξ should be seen as the relative weight between
the second and the third term in (10), and Z as the overall weight. Then, knowing that ξ = 1/6
we can read off the beta function of Z from the χ 2 R term. It would be nice to verify this result
explicitly by reading off the beta function of Z from the term proportional to (∇χ)2/2, and
checking that it gives the same beta function. We leave this check for a future study.

A related observation is that since Z is redundant (or ‘inessential’) the existence of an FP
does not require it to reach a finite limit in the UV. Instead, one would expect it to scale at
an FP with some calculable power of momentum. This is exactly what happens in the Weyl
approach, see equation (79). Instead, it should come as a surprise that in the Einstein approach
all couplings seem to be fixed in the UV.

This has been discussed earlier in [35], where it was attributed to the special role of the
metric. The Weyl-invariant reformulation of the theory casts some additional light into this
issue. In the Einstein approach, one uses the cutoff k as reference mass scale and there is no
independent dilaton field. In this treatment one is not free to absorb Z in a redefinition of
the metric, because any such rescaling would also affect the cutoff, which is supposed to be
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left untouched. Since Z cannot be scaled away, it must reach a finite limit at an FP. In the
Weyl approach, one uses the dilaton field χ as a unit of mass and the parameter Z can be
absorbed in a redefinition of χ without touching the cutoff. In this case, Z is not required to
have a finite limit, and indeed it is found to scale to infinity. In this approach, the resulting
flow equations (77) and (78) are not autonomous. This is reminiscent of the observation that the
flow equations of ordinary Einstein–Hilbert gravity are not autonomous when one uses Planck
units [35]. Such equations do not have FPs, but asymptotically λ tends to a finite value, while
Z does not, in accordance with their status of essential and inessential parameters, respectively.
Although superficially different, the physics contained in the two procedures discussed above is
completely equivalent.

7.2. Renormalization scheme dependence

For simplicity, in the preceding discussion we have set the free parameter a of equation (60)
to one. It is interesting to discuss the dependence of the results on a. If we allow a 6= 1, then
equations (77) and (78) are modified by the replacement of u by au. Then, the asymptotic
behavior of Z is modified by a factor a2, but the limiting value of λ is independent of a. In view
of equation (73), this accords with earlier observations regarding the scheme independence of
the dimensionless product 3G [5, 36]. It also suggests that the FP value of G̃, which in our
calculation turned out to be

G̃ =
12k2

16π Zχ2
=

1

a2

6π

23
, (81)

is really arbitrary as long as it is nonzero. In particular, we note that if we want to take k at a very
low scale, we can guarantee that the asymptotic expansion of the heat kernel, which is used in
the derivation of (68), is still valid by taking a large. This produces an FP for the dimensionless
Newton’s constant which is small.

7.3. Other cutoff schemes

The calculation of the beta functions presented above was based on the use of the operator O
in the definition of the cutoff. This was called a ‘type III’ cutoff in [10]. It is simple to deal
with in the gauge α = 1, because then the operatorO is minimal. For other gauges non-minimal
terms would appear and it becomes more convenient to adopt the scheme IB, which is based
on the decomposition of the graviton field hµν into its irreducible components. The operator O
then decomposes, in any gauge, into (nearly) diagonal blocks, acting separately on the spin 2, 1
and 0 components of hµν . Then one can impose the cutoff separately in each block.

In the Weyl-invariant case, the procedure goes through nearly unchanged. The
decomposition of the graviton can be performed in a background Weyl-invariant way just
replacing ordinary covariant derivatives ∇ by Weyl-covariant derivatives D. The operators
acting on the irreducible components are then of the form −D2 + U . We can then choose the
cutoff to be a kernel constructed with the operator −D2. This operator satisfies the covariance
property (57) and therefore the resulting EAA is again background Weyl invariant. The only
difference would be in the numerical value of the constants that appear in the beta functions.

7.4. No diffeomorphism anomalies

One can now see that in the formalism presented above, the cutoff can be treated as a function
on spacetime, without incurring diffeomorphism anomalies. This is basically due to the fact that
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in the Weyl-invariant theory all the couplings are dimensionless and constant over spacetime.
What might have been a position dependence of the couplings has been transferred to a position
dependence of the dilaton. With the procedure described in section 1.2, if the cutoff is some
function k(x), all the couplings become functions gi(k(x)), where the functional dependence
gi(k) is given by the RG flow and the functional form of k(x) depends on the cutoff choice.
This applies to both dimensionful and dimensionless couplings. On the other hand, with the
procedure described in this paper, a dimensionful coupling gi is replaced first by ĝiχ

di , which
can then be rewritten as ĝi(χ/k)di kdi = g̃i kdi . The factor kdi = χdi udi can be any positive
function, but the dimensionless combinations ĝi and g̃i are constant. In particular, couplings gi

that are dimensionless to begin with, such as the fine structure constant, remain always constant.
In this way, the issues described in section 1.2 do not arise.

7.5. Matter

One can extend the preceding treatment to gravity coupled to any matter field, with any kind of
coupling. By means of the dilaton, one can convert all dimensionful parameters in the matter
action into dimensionless ones, and using the Weyl-covariant derivatives rewrite the action in a
form that is manifestly Weyl invariant.

It is interesting to observe that the standard model is almost entirely Weyl invariant, even
without using the dilaton. It contains only renormalizable, dimensionless coupling constants and
is written in such a way that all the masses of elementary particles derive from their interactions
with the Higgs field. The only dimensionful parameter in the standard model is the mass term in
the Higgs potential, so this is the only term in the action that would require a dilaton to be made
Weyl invariant. There have been several studies along these lines in recent years [37, 38]. One
particularly intriguing speculation which seems to have been brought up independently several
times [39] is that there is no Higgs potential; in this case there is obviously also no Higgs mass
term. Expanding around a nonzero scalar VEV, all the scalar fluctuations are massless and can
be regarded as Goldstone bosons: the angular modes of the Higgs doublet can be viewed as
the Goldstone bosons of SU (2)L × U (1) and the radial mode of the Higgs doublet (which is
an SU (2)× U (1) singlet) can be identified with the dilaton. Electroweak symmetry breaking
would be due to the SU (2)L × U (1) Goldstone bosons, whose kinetic term requires a prefactor
with dimension of mass squared. In the spirit of the present work, this prefactor would be written
as χ2 times a dimensionless coupling. Likewise, in the Yukawa couplings the scalar VEV would
be replaced by χ . The mass of all fields would thus be proportional to χ . The phenomenology
of such a model is probably very similar to that of an asymptotically safe Higgsless standard
model [40].

It is easy to calculate the contribution of minimally coupled matter fields to the beta
functions of Z and λ [41, 42]. We will not pursue this further here.

8. Outlook

We have shown here how to rewrite a theory of gravity in a Weyl-invariant form, and how to
write RG equations that preserve this property. Fluctuations of the dilaton are unphysical and
can be eliminated by a gauge choice, while background Weyl invariance is preserved.

The calculations presented here can be viewed as generalizations of the work on
conformally reduced gravity [31, 43]. The difference lies in the fact that in those earlier
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references only the conformal degree of freedom of the metric was allowed to fluctuate, whereas
here the full metric is dynamical. The main result, however, is the same: Weyl invariance can be
preserved. An alternative quantization method exists, which does not preserve Weyl invariance:
it leads to the appearance of a non-trivial potential for the dilaton [30]. As emphasized in [31],
this alternative quantization corresponds to the standard way of quantizing a scalar field theory.

By recasting the theory in a Weyl-invariant form, one trades all dimensionful couplings
for dimensionless ones. All the scales that are evident in the low-energy world would then be
proportional to a single scale, which is set by the background dilaton. Although here we have
decided to discuss only the Hilbert action, it is clear that all the higher terms in the derivative
expansion of the gravitational action can be treated in the same way. Furthermore, the weak
and the QCD scale can also emerge in a similar fashion. The VEV of the dilaton in itself is
physically unmeasurable: only the ratios of mass scales are physically meaningful. They could,
in principle, be computable [44]. We hope to return to these issues elsewhere.

The other motivation for this work was the formulation of a quantum field theory with a
non-constant cutoff that is free of the diffeomorphism anomalies discussed in the introduction.
This goal has been achieved by making all couplings dimensionless functions of the constant,
dimensionless parameter u = k/χ . The resulting theory is Weyl invariant and given any non-
constant cutoff k(x), one can always go to another gauge where k is constant. Of course, in this
new gauge the metric will also be conformally transformed, but the physics will be the same. The
generalization of the theory to the case when the ratio u is an arbitrary (dimensionless) function
seems problematic, but even within the limited freedom afforded by the present formalism, it
will be interesting to develop applications to astrophysical and cosmological problems.

We conclude by mentioning two possible extensions of this work. The first is to study
the case when the Abelian gauge field κµ is not flat. Since the Abelian gauge field behaves in
many ways like the electromagnetic field, the recent calculation of beta functions of quantum
electrodynamics coupled to quantum Einstein gravity should be a useful guide [45]. The second
is the extension of Weyl transformations (2) to local GL(4) transformations gµν →�ρ

µ�
σ
ν gρσ .

These transformations were studied some time ago in a slightly different context [46]. It would
be interesting to reconsider them in light of subsequent developments.
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[16] Bauer F, Solà J and Štefančić H 2009 Phys. Lett. B 678 427 (arXiv:hep-th/09120677)

Bauer F 2010 Class. Quantum Grav. 27 055001
[17] Bonanno A and Reuter M 2002 Phys. Rev. D 65 043508 (arXiv:hep-th/0106133)
[18] Reuter M and Weyer H 2004 Phys. Rev. D 69 104022 (arXiv:hep-th/0311196)
[19] Reuter M and Weyer H Phys. Rev. D 70 124028 (arXiv:hep-th/0410117)

Reuter M and Weyer H 2004 J. Cosmol. Astropart. Phys. JCAP12(2004)001 (arXiv:hep-th/0410119)
[20] Bonanno A and Reuter M 2007 J. Cosmol. Astropart. Phys. JCAP08(2007)024 (arxiv:hep-th/07060174)
[21] Bonanno A, Contillo A and Percacci R 2011 Class. Quantum Grav. 28 145026
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