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ON OPTIMALITY OF c-CYCLICALLY MONOTONE TRANSFERENCE PLANS
SUR L’OPTIMALITÉ DES PLANS DE TRANSPORT c-CYCLIQUES MONOTONES

STEFANO BIANCHINI AND LAURA CARAVENNA

Abstract. This note deals with the equivalence between the optimality of a transport plan for the Monge-

Kantorovich problem and the condition of c-cyclical monotonicity, as an outcome of the construction presented
in [7]. We emphasize the measurability assumption on the hidden structure of linear preorder.

Résumé. Dans la présente note nous décrivons brièvement la construction introduite dans [7] à propos de l’équivalence

entre l’optimalité d’un plan de transport pour le problème de Monge-Kantorovich et la condition de monotonie c-
cyclique — ainsi que d’autres sujets que cela nous amène à aborder. Nous souhaitons mettre en évidence l’hypothèse

de mesurabilité sur la structure sous-jacente de pré-ordre linéaire.

1. Introduction to the Problem

Optimal mass transportation has been an exceptionally prolific field in the very last decades, both in theory and
applications. What we reconsider is though a basic question in the foundations.

Let µ, ν be two Borel probability measures on [0, 1] and c : [0, 1]2 → [0,+∞] a cost function. The Monge-
Kantorovich problem deals with the minimization of the cost functional

I(π) :=
∫
c(x, y)π(dxdy)

among the family of transport plans π ∈ Π(µ, ν), which are defined as probability measures on [0, 1]2 having
marginals respectively µ, ν: denoting with B the Borel σ-algebra,

Π(µ, ν) :=
{
π ∈ P([0, 1]2) : π(A× [0, 1]) = µ(A), π([0, 1]×A) = ν(A) for A ∈ B

}
.

We tacitly assumed that c is π-measurable for all π ∈ Π(µ, ν).
When the cost c is l.s.c., then it is shown in [2] that a transport plan π, with I(π) < +∞, is optimal if it is

concentrated on a c-cyclically monotone set Γ, meaning ([16]) that Γ satisfies the pointwise condition

∀M ∈ N, (xi, yi) ∈ Γ c(x0, y0) + · · ·+ c(xM , yM ) ≤ c(x1, y0) + · · ·+ c(xM , yM−1) + c(x1, yM ).

This expresses that one cannot lower the cost of π by cyclic perturbations of the transport plan (see also below).
They also provided the following counterexample showing that the condition is not sufficient in general.

Example 1.1 (Fig. 1). Consider µ = ν = L1x[0,1] and
α ∈ [0, 1] \Q. Let

c(x, y) =


1 y = x

2 y = x+ α mod 1
+∞ otherwise

.

Being α irrational, the plan (x, x + α mod 1)]L1 is
trivially c-cyclically monotone: the verification with
Γ := {(x, x + α mod 1)}x∈[0,1] leads to 2M < +∞,
M ∈ N. However it is not optimal, since (x, x)]L1

has lower cost.

Figure 1: Level sets of the cost. Ensemble de niveau du
c.

Since c-cyclical monotonicity is more handily verifiable, [17] rose the question of its equivalence with optimality
for c(x, y) = ‖y−x‖2. Improvements of [2] were soon given, independently, in the case both of atomic marginals or
continuous cost ([13]) and in the case of real valued, l.s.c. cost functions c ([14]), answering Villani question. Since
then other cases have been covered ([15, 3, 6, 4, 5]). We briefly outline here the approach we pursued in [7].
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2. Main Statement

Let π̄ ∈ Π(µ, ν) a transference plan, with finite cost I(π̄) < +∞, concentrated on a c-cyclically monotone subset
Γ of {c < +∞}. The aim is to give a concrete construction in order to test whether π̄ is optimal by exploiting the
c-cyclical monotonicity of Γ.

The answer we propose relies on the following intrinsic preorder on [0, 1]. We recall that a preorder is a transitive
relation R ⊂ [0, 1]2: whenever xRx′, x′Rx′′ then xRx′′(a). It reduces to a partial order when it is antisymmetric: if
xRx′, x′Rx then x = x′. A relation is linear if every two elements are comparable: for x, x′ ∈ [0, 1] either xRx′ or
x′Rx.

Definition 2.1. Define x 4 x′ if there exists an axial path with finite cost connecting them:

∃(xi, yi) ∈ Γ, i = 0, . . . , I, I ∈ N, x0 = x, xI+1 = x′ :

(xi+1, yi) ∈ {c < +∞} ∀i = 0, . . . , I.

Define x ∼ x′ if there exists a closed cycle with finite cost connecting them:

∃(xi, yi) ∈ Γ, i = 0, . . . , I, I ∈ N, ∃j ∈ {0, . . . , I}, x0 = xI+1 = x, xj = x′ :

(xi+1, yi) ∈ {c < +∞} ∀i = 0, . . . , I.

Lemma 2.2. The relation 4 is a preorder. Moreover

x ∼ x′ iff x 4 x′ and x′ 4 x.

As a corollary, the relation {(x, x′) : x ∼ x′} is an equivalence relation on a subset of [0, 1], easily extendable
as {x ∼ x′} ∪ {x = x′}. The preorder 4 induces a partial order on the quotient space [0, 1]/ ∼, but its extension
is more subtle. By the Axiom of Choice, every preorder is a subset of some linear preorder B — nevertheless, this
set B in general does not satisfy any measurability condition. Let m a Borel probability measure.

Definition 2.3. A preorder P on [0, 1] is Borel linearizable if there exists a Borel linear order B ⊃ P s.t. B∩B−1 =
P ∩ P−1 ∪ {x = y}, and m-linearizable if instead B is π′-measurable for all π′ ∈ Π(m,m).

Theorem 2.4. If the preorder {x 4 x′} is µ-linearizable, then π̄ minimizes I.

An analogous statement holds with ν instead of µ if one applies Definition 2.1 after inverting the coordinates;
let ∝ and ≈ be the corresponding partial order and equivalence relation.

Since it may seem too abstract, before justifying why the statement holds we observe that it is not difficult to
prove how the hypotheses are satisfied under the following requirement: there exists a countable family of Borel
sets Ai, Bi ⊂ [0, 1], i ∈ N, such that

π

(⋃
i

Ai ×Bi
)

= 1, µ⊗ ν
(
∪i (Ai ×Bi) ∩ {c = +∞}

)
= 0.

Indeed, this reduces the problem to countably many classes of ∼ and consequently to the linearization of a preorder
on a discrete set, easily solvable by induction.

Notice moreover what happens in Example 1.1: ∼ is the trivial equivalence relation {y = x} and 4 ends to the
standard example of non linearizable Borel preorder — the Vitali one ([9]). If the preorder 4 is Borel, then either
Theorem 2.4 holds or the preorder includes a copy of the Vitali preorder ([11]).

3. Sketch of the Proof

The result of Theorem 2.4 is based on a reduction argument. More precisely, we split the optimal transport
problem within the classes of ∼ and to a problem of uniqueness in the quotient space [0, 1]/ ∼. This is formalized
by means of the Disintegration Theorem, a very useful tool which decomposes a measure in a superposition of
conditional measures concentrated on given subsets, thus ‘localizing’ it. Before presenting the reduction argument,
we state what will solve the reduced problems.

Lemma 3.1. If µ′ is concentrated on a class of ∼, then each π′ ∈ Π(µ′, ν′) concentrated on Γ is a minimizer of
the cost functional I in Π(µ′, ν′).

Sketch. Lemma 3.1 is a direct consequence of the definition of ∼. Indeed, for each equivalence class C, if a transport
plan in C×Γ(C)(b) is concentrated on Γ then by Rüschendorf formula one constructs optimal Kantorovich potentials
and deduces the optimality. A different proof can be also found in [15]. �

(a)We are adopting the notation xRx′ if (x, x′) ∈ R.
(b)We use the notation of multivalued function Γ(A) := {y : ∃x ∈ A : (x, y) ∈ Γ}, as well as Γ−1 := {(y, x) : (x, y) ∈ Γ}.
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Lemma 3.2. Let π̆ ∈ Π(µ̆, µ̆) be concentrated on a µ̆ ⊗ µ̆-measurable linear preorder L and let E the equivalence
relation L ∩ L−1. Then π̆(E) = 1.

Sketch. Let E be the lexicographic ordering in [0, 1]α, with α ∈ ω1 countable ordinal. We first exhibit a Borel map
hα : [0, 1]→ [0, 1]α s.t., up to an µ̆-negligible set, xLx′ if and only if hα(x) E hα(x′). Then π̆(E) = 1 is equivalent
to (hα ⊗ hα)]π̆({α = β}) = 1. This follows proving that there is a unique transport plan from a measure to itself
concentrated on {α E β} ⊂ [0, 1]α × [0, 1]α, induced by the identity map.

The definition of hα, by transfinite induction, is based on the Disintegration Theorem, introduced just below. The
first component is h1(x) := µ̆({x′ : x′ 4 x}); then we disintegrate µ̆ w.r.t. h1 and define h2(x) = (h1(x), µ̆h1(x)({x′ :
x′ 4 x})), . . . . The sequence becomes constant in |α| steps. For L Borel, in [9] one finds a different Borel order
preserving immersion in ({0, 1}α,E) without reference measures. �

We need now some basic technicality for explaining the reduction argument. Observe that one can associate,
by the Axiom of Choice, an equivalence relation on [0, 1] with a map q : [0, 1] → [0, 1] whose level sets are the
equivalence classes of the relation. One can then realize the quotient space as a subset of [0, 1]. Given a Borel
probability measure ξ on [0, 1], the push forward probability measure η = q]ξ and the push forward σ-algebra of B
are defined as

S ∈ q]B ⇐⇒ q−1(S) ∈ B,
η(S) := ξ(q−1(S)) for S ∈ q]B.

Definition 3.3. The disintegration of a Borel probability measure ξ on [0, 1] strongly consistent with a map
q : [0, 1] → [0, 1] is a family of Borel probability measures {ξα}α∈[0,1], the conditional probabilities, such that
α 7→

∫
S
ξα(O) is η-measurable, where η := q]ξ, and

ξ(O ∩ h−1(S)) =
∫
S

ξα(O)η(dα) for all O ∈ B, S ∈ q]B,(3.1a)

ξα(Xα) = 1 for η-a.e. α ∈ [0, 1].(3.1b)

Theorem 3.4 (Disintegration Theorem). If q]B ⊃ B, then there exists a unique disintegration strongly consistent
with q, meaning that ξα = ξ′α for η-a.e. α, for any other family {ξ′α}α∈[0,1] satisfying (3.1a).

The reduction argument consists in disintegrating µ in probability measures {µα}α∈[0,1] on the equivalence
classes of ∼, ν in probabilities {να}α∈[0,1] on the classes of ≈ and every transport plan π ∈ Π(µ, ν) with finite
cost in transport plans πα ∈ Π(µα, να). From π̄(Γ) = 1 one would obtain π̄α ∈ Π(µα, να) concentrated on Γ.
Lemma 3.1 would ensure that I(π̄α) ≤ I(πα) for m-a.e. α. Therefore in this case, by the disintegration formula
and the optimality within the classes, we would get I(π̄) ≤ I(π):∫

c(x, y)π̄(dxdy)
(3.1)
=
∫ {∫

c(x, y)π̄α(dxdy)
}
m(dα)

L.3.1
≤
∫ {∫

c(x, y)πα(dxdy)
}
m(dα)

(3.1)
=
∫
c(x, y)π(dxdy).

We are thus left with justifying Consider the linear order condition of Theorem 2.4. The proof of Lemma 3.2
incidentally provides also a Borel quotient map q1 := h ◦ hα : [0, 1]→ [0, 1] for ∼, where h is a Borel injection from
[0, 1]α to [0, 1].

Corollary 3.5. Under the hypothesis of Theorem 2.4, µ has a disintegration strongly consistent with ∼.

Now it is worth noticing that the nontrivial equivalence classes of ≈ are of the form

(3.2) Γ(A) =
{
y : (x, y) ∈ Γ for some x ∈ A

}
with A = {x′ : x′ ∼ x}, x ∈ [0, 1].

As a consequence, one can define the quotient projection w.r.t. ≈ by setting q2(Γ(x)) := q1(x) and also ν has
a disintegration strongly consistent with ≈, since q1 is Borel. By (3.2) then the quotient probability spaces
([0, 1], µ)/ ∼ and ([0, 1], ν)/≈ can be identified with a Borel probability space ([0, 1],m).

For any plan π ∈ Π(µ, ν) its quotient measure n w.r.t. the product equivalence relation q1 ⊗ q2 belongs conse-
quently to Π(m,m). If π has finite cost, n is clearly concentrated on q1 ⊗ q2({c < +∞}).

Lemma 3.6. The set q1 ⊗ q2({c < +∞}) is the partial order q1 ⊗ q1({x 4 x′}) in the quotient space.

The assumption of Theorem 2.4 grants that this partial order can be extended to a m ⊗m-measurable linear
order. Applying Lemma 3.2 one obtains then that n = (I, I)]m for every plan of finite cost π. As a consequence,
π admits the strongly consistent disintegration π =

∫
παm(dα) w.r.t. the partition {(q1 ⊗ q2)−1(α)}α∈[0,1]. The

reasoning is finally concluded by the following lemma.

Lemma 3.7. By the marginal conditions, πα ∈ Π(µα, να) for m-a.e. α.



4 STEFANO BIANCHINI AND LAURA CARAVENNA

4. Mention of side Studies and Remarks

Our basic tool has been the Disintegration Theorem. The main references for our review on that has been [8, 1].
We also applied it to a family of equivalence relations closed under countable intersection, establishing that there
is an element of the family which is the finest partition, in a measure theoretic sense. In particular, in the
construction of the immersion hα of Lemma 3.2 we ended up with such a family, which was not closed under
uncountable intersection because uncountable intersections of sets generally are not measurable. Having a finest
element, we could value the projection in the Polish space [0, 1]α, α ∈ ω1, instead of [0, 1]ω1 .

As briefly sketched, optimality holds in the equivalence classes basically by Kantorovich duality, the equivalence
relation is indeed chosen for having real valued optimal Kantorovich potentials by Rüschendorf’s formula.

Moreover, the necessity of c-cyclical monotonicity with co-analytic cost functions — clearly assuming that the
optimal cost is finite — is a corollary of the general duality in [12](c). We notice that it follows just by the fact
that there is no cyclic perturbation λ of the optimal plan π such that I(π+ λ) < I(π), where cyclic perturbations
of π are defined as nonzero measures λ with Jordan decomposition λ = λ+ − λ− satisfying λ− ≤ π and which can
be written, for some mI ∈M+([0, 1]2I), I ∈ N, as

λ+ =
∑
I

1
I

∫
[0,1]2I

I∑
i=1

δP(2i−1,2i)wm(dw), λ− =
∑
I

1
I

∫
[0,1]2I

I∑
i=1

δP(2i+1 mod 2n,2i)wm(dw).

Observe that if 4 is µ-linearizable, each transport plan of finite cost is concentrated on (q1⊗ q2)−1({α = β}); as
a separate observation based on Von Neumann’s Selection Theorem, we construct optimal potentials for the cost
which is +∞ out of that set, gluing the ones in the classes.

As a final remark on the topic, we observe the following asymmetry: for universally measurable cost functions,
c-cyclically monotone transference plans are optimal under the universally measurable linear preoder condition;
however, in this case the necessity of c-cyclical monotonicity is not proven, since duality is provided in [12] for
analytic functions, corresponding to co-analytic costs.

In general, 4 can be µ-linearizable for some c-cyclically monotone set Γ, π(Γ) = 1, and not for others, and
we do not see how to choose a best one — which in the case of continuous cost would be the support. Another
question is what happens when there is no such set Γ such that 4 is µ-linearizable. Examples show a crazy behavior
indicating that this construction, built trying to encode all the informations given just by c-cyclical monotonicity, is
maybe not suitable to answer. As already mentioned, for Borel sets [11] states that in this case there is a situation
analogous to Example 1.1 and the quotient projection w.r.t. {x 4 y} ∪ {x 4 y}−1 is not universally measurable —
but, however, since we have fixed measures optimality could still hold.

We conclude noticing that in [7] we study with the same approach the problems of establishing if a plan
π ∈ Π(µ, ν) is extremal and if it is the unique plan in Π(µ, ν) concentrated on a given set A, say universally
measurable. In the first case we precisely recover the condition in [10]. The second case comes from the problem
of uniqueness in the quotient space described above, and we answer by a µ-linearizability condition.
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