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Abstract

We present the Lax pair formalism for certain extension of the continuous
limit of the classical Toda lattice hierarchy, provide a well defined notion of tau
function for its solutions, and give an explicit formulation of the relationship
between the C'P! topological sigma model and the extended Toda hierarchy. We
also establish an equivalence of the latter with certain extension of the nonlinear
Schrodinger hierarchy.

1 Introduction

The Toda lattice equation [26]
Gy = eIn17In — In=ntl = 50 < n < 00 (1.1)

is one of the prototypical integrable systems that plays significant role in classical and
quantum field theory. The Toda lattice hierarchy consists of infinitely many evolu-
tionary differential-difference equations commuting with (ILTl). In this paper we study
this hierarchy from the point of view of 2D topological field theory. One of the first
lessons of this approach [ 28] is that, one is to replace the discrete variable n by a
continuous one. The result of such “interpolation” is the following equation for the
function ¢ = q(z, 1)

Eqy = 1@971@) _ pal@)=a(zte) (1.2)

In this equation the cosmological constant plays the role of the independent variable
x, the formal small parameter € is called the string coupling constant. Similar inter-
polation can be applied to the whole Toda lattice hierarchy. It is conjectured that the
partition function of the C'P! topological sigma model as the function of the coupling
constants of the theory is the tau function of a particular solution of certain extension
of the interpolated Toda lattice hierarchy. Under such identification the coupling con-
stant corresponding to the identity primary field ¢; € H°(CP') serves as the spatial
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variable and that of the remaining primary ¢, € H?*(CP') and of the gravitational
descendent fields correspond to the time variables of the hierarchy. Such an extension
of the Toda lattice hierarchy is formulated independently in [I5), B1], and the above
conjecture is known to be true up to genus one approximation [5l, 8, 1], T2, T3, BT]. The
extended Toda lattice hierarchy is formulated in [I5, B1] by using the bihamiltonian
structure of the original Toda lattice hierarchy, and is defined by the bihamiltonian
recursion relation. We call this hierarchy the extended Toda hierarchy in this paper.

To an expert in the theory of integrable systems that might be less motivated by
the eventual applications of the Toda hierarchy to the theory of Gromov - Witten
invariants, the importance of considering the extended Toda hierarchy can also be
explained by means of the following argument. The flows of the usual Toda hierarchy
form a complete family, i.e. they span the space of vector fields commuting with (ITI).
This fails to be true for the interpolated Toda lattice hierarchy. Indeed, already the
spatial translations x — x + ¢ do not belong to the linear span of the Toda lattice
flows. One can show, using the technique of [I0] that the flows of extended Toda
lattice hierarchy form a complete family of flows commuting with (2.

Two important aspects of the theory of extended Toda hierarchy remained unclear,
after [I5l, BT]. The missing points were the Lax pair formalism and a well defined
notion of tau function for an arbitrary solution of the extended hierarchy. A Lax
pair formalism is crucial both for the theory of integrability of the hierarchy and for
its applications in physics, while a well defined notion of tau function for solutions
of the hierarchy is needed to formulate explicitly the relation between the extended
Toda hierarchy and the C'P! topological sigma model, or equivalently, to the theory of
Gromov-Witten invariants of C' P! and their gravitational descendents.

We present in Section 2 a Lax pair formalism of the extended Toda hierarchy. By
using this Lax pair formalism we are able to express in Section 3 the densities of the
Hamiltonians of the hierarchy in terms of the Lax operator, and in Section 4 we give
the definition of the tau function for solutions of the hierarchy by using the result of
Section 3. In Section 5 we show that the extended Toda hierarchy is equivalent to
certain extension of the nonlinear Schrodinger hierarchy. In the last Section we discuss
the relation of the C'P! topological sigma model with the extended Toda hierarchy.

2 Formulation of the extended Toda hierarchy

The Toda lattice equation ([LTI) describes the motion of one-dimensional particles with
exponential interaction of neighbors [26]. A crucial aspect among the integrability
properties of this equation is its Lax pair formalism given by Flaschka in [T4]. By
introducing the new dependent variables

Un = ——F;7y Un =(4n—1 — Qn, (23)



we can rewrite the Toda lattice equation in the form

% = elntl — el aaut" =V, —Up_1, NEZL (2.4)
Let A be the shift operator defined by
Afn = fn+1

for any function f on the one dimensional infinite lattice. The Lax operator ! is defined
by

L=A+uv,+e"A"! (2.5)
and the Toda lattice equation can be recast into the form
oL _
— =[A+wv,, L] 2.6

Here the square bracket stands for the usual commutator of two operators. Related to
the Toda lattice equation there is an infinite family of mutually commuting flows of
the form _ _ _
oL 1 0 0oL 0 0L
ot, (p+1) Oty 0t,  Ot, 0,
This family of evolutionary diferential-difference equations is the so-called Toda lattice
hiearchy. Clearly for p = 0 the equation (1) coincides with (EZG).

We are to define certain extension of the Toda lattice by constructing another
infinite family of evolutionary equations that commute with each other and with the
flows of the original Toda lattice hierarchy. To this end, we first replace the discrete
variable n by a continuous variable . By interpolating we introduce the dependent
variables u(z), v(x) such that

(L)L), p=>0, (2.7)

u, = u(en), v, = v(en). (2.8)

Here € is a formal parameter that can be viewed as the lattice mesh. We will also use
an alternative notation for the dependent variables

w o=, wii=u (2.9)
and we will denote w = (w!, w?) the two-component vector. Then the Toda lattice
hierarchy for the functions w®(z, ¢, t1,...), @« = 1,2 can be recast into the form

oL 1
= p+1 >
68t27p (p + 1)' [(L )+ >L]a b= 0. (2.10)

Here the Lax operator L acting on smooth functions on the line is defined by

L=A+uv(z)+ e @A (2.11)

'We use here not the original Lax operator introduced in [T4] but the one of Ueno and Takasaki
27




with A being defined now as the shift operator
A = e

and the time variables t*? are obtained from ¢, by rescaling t*? = et,. We call this
hierarchy the Toda hierarchy.

Let us denote R the ring of formal power series of the form Zkzo fre®, where f;

are polynomials of the variables v(z),u(z), e**® and the z-derivatives of v,u. The
gradation on R is defined by

degv™ =1—m, degu™ = —m, dege* =2, dege =1, m >0. (2.12)

Here
o™ =gy, w™ = gmu. (2.13)

The equations of Toda hierarchy will be considered as R-valued vector fields. For
example, the interpolated Toda lattice equation has the form

ﬁ — % (eu(:v+e) . eu(w)) _ Z ( ek ak+leu

ot>0 S (k+ 1)
ou 1 e
O2:0 = . (v(z) —v(x —¢€)) = Z(_l)k+1m8§+lv- (2.14)

k>0

Following [10], we will treat equations of this class as infinite order evolutionary PDEs.
For the sake of brevity they will also be called PDEs in subsequent considerations. The
solutions of such PDEs will be considered in the class of formal power series in e.

The dressing operators P and @ (see [27])

P=>"pA* Q=> aA' p=1 (2.15)

k>0 k>0

can be formally defined by the following identities in the ring of Laurent series in A~*
and A respectively:

L=PAP ' =QA'Q " (2.16)
Note that the coefficients pp and ¢ of the dressing operators do not belong to the
ring R but to a certain extension of it (see [27]). The dressing operators are defined
up to the multiplication from the right by operators of the form 1+ >, ., prA~* and
Zk>0 cjkAk respectively, where pg, ¢, are some constants.

To construct an extension of the Toda hierarchy we need to introduce the following
notion of the logarithm of the Lax operator L:

log L := % (Ped, P~ — Qed, Q7). (2.17)

Remarkably the above ambiguity in the choice of dressing operators is cancelled in the
definition of the operator log L. Moreover, the coefficients of the operator log L do
belong to R as the following theorem guarantees:
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Theorem 2.1 The operator log L has the following expression

logL="> gih*, g = gr(w, Wy, Waa, ... ;€) €R. (2.18)
keZ

Proof Let us first consider the operator eP, P~! where P, = Zkzl pmA_k. It has the
expression

PP =) A7, (2.19)

k>1

From the definition of the dressing operator P it follows that
[eP,P7' L™ = €0, L™, m>1. (2.20)
For any operator A = > Y, A¥ let us define its residue by
res A =Y. (2.21)
By taking residue on both sides of (20) with m = 1 we get
a1(x +€) —ay(x) = —edv(x), (2.22)

which shows that a; € R (see the explicit formula ([2225) below). By induction on the
index of a; and by taking residue on both sides of (Z20) for general m we show that
ap € R for k> 1.

To finish the proof of the theorem, we need to obtain similar result for the operator
Q.Q~ . From (ZTH), (ZIH) we know that the function gy that appears in the expression
of @) satisfies the relations

qo() _ pul@) qo,2(7) _ Q,2(7 — €) —u
-9 " o w@—9 (2:23)

from which it follows that the coefficients of the operator L= ¢ " Lgo belong to R.
Denote Q = ¢; *Q. We have by definition the relation

L=QA Q™" (2.24)

By using the identity ([Z24)) we can show, as we did for the operator eP,P~1 above,

that the operator € Q,Q ' has the expression

€Q.Q7" =D bhAF, b eR.
k>1

Then the theorem follows from (22Z3) and the identities

log L= 3 (cQuQ ™" — PP ™), Q=



The Theorem is proved. O

The proof of the above theorem also gives an algorithm of computing the coefficients
g of the operator log L expanded in the form (ZI]). Indeed, from [22) we obtain

a(z)=—) %(e@x)kv(:c) +c (2.25)

k>0

where the coefficients Bj, are the Bernoulli numbers and ¢ is an integration constant.
If we set v = e* = 0 in the Lax operator L, then the coefficients of the dressing
operator P must be constants, and in this situation P,P~! = 0. This fact implies
that the integration constant ¢ must be equal to zero. Now, if we already obtained the
expression for the first n — 1 coefficients of ¢ P, P~! that is expanded in the form (ZI9),
then the identity

res ([P, P~", L") — €0, L") =0

can be written in the form
an(x + ne) — a,(x) = ed, W

for some W € R. So we have

Here the integration constants also disappear due to the same reason as for the van-
ishing of the integration constant ¢ for a;. The coefficients of the operator Q,Q~! can
be computed in a similar way.

Definition. The extended Toda hierarchy consists of the evolutionary PDEs that are
represented in the following Lax pair formalism:

oL
“Biha

Here the operators Ag, are defined by

= [A@q, L] = Ag’qL - LAg’q, 6 = 1, 2; q > 0. (226)

1

A= e (27

2
Avg = [L9(log L = )] (2.27)

+

and for any operator B = Y B,AF, the operator B, is given by Zkzo BiA¥. Here the
constants ¢, are defined as follows

1
co =0, cq:1+§+...+5. (2.28)

The flows 5%, p > 0 form the original Toda hierarchy (ZZI0). We will see in the
next Section that the flows 59—, p > 0 coincide with those defined in [T5, BT] by using
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a bihamiltonian recursion relation. In the literature the explicit Lax pair formalism
for these flows exists only for their dispersionless limit [T, M2, [3]. To have a more
concrete feeling of the form of these flows, let us write down the first three of them.
By the definition (221), we have

Ao = (Pe@xP_1 — Qe@IQ_l)Jr = eQ,Q 7' = €0, — €Q0, Q7.

Since [Qed, Q™' L] = 0, we obtain
8 o
8;”’1]0 —w?, a=12 (2.29)

So this first flow is just the translation along the spatial variable x. The second flow is
the interpolated Toda lattice equation (ZTZI).

Introduce the following two operators that act on the space of smooth functions of

Buf(r) = (A~ 1) () = 30 26 (x),
k>0
B f(r) = (1— A, f(r) = 3 %(—e@m)kf(x). (2.30)
E>0

Here B, are the Bernoulli numbers. The following operator
A= (A+0) (0, — 1)+ Byv(z +e€) +e"[ed, + 1 — B_u(z — )] A™! (2.31)

(it differs from the one given by (Z27) by the operator —L(1 + Qed,Q ') commuting
with L) gives the Lax representation for the t"!-flow

% = vu, + % [eu(m—l—e) (B_u(x + 6) _ 2) — QU(m) (B_U(I — 5) — 2)] )
% _ % [v(z) (B_u(z) — 2) — v(z — ) (B_u(z — €) — 2)

+Biv(x +¢€) — Byv(z —€)]. (2.32)
We finish this Section with the following simple statement.

Theorem 2.2 The components of the vector fields of the extended Toda hierarchy are
homogeneous elements of the graded ring R, of the degree

«

w
deg%IQ"‘Mﬁ_Maa a76:1727 QZO (233>

1

_ 1 _
Here py = —5, 2 = 3.

We leave the proof as an exercise for the reader.
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3 Bihamiltonian structure of the extended Toda hi-
erarchy

The existence of a bihamiltonian structure for the original Toda lattice hierarchy is
well known (see for example [8, 22]). In this Section we are to adopt it to the extended
Toda hierarchy (226). The bihamiltonian structure for the original Toda hierarchy is
given by the following two compatible Poisson brackets

{v(x), v(y) b = {u(z),u(y)}» = 0,

(ol ul)h = = [ 1) 6 — ), (3.1)
{o(e), vy} = 7 [ePet) — e gz —y),

{o(a), u(y)}o = 2o(a) [ 1] () 32
{ula),uly)hs = ¢ [ — ] 3z —y)

In particular, for a local Hamiltonian
H= /h(w;wx,wm, e dr,  h(w;we, Wi, .. .;€) ER

the Hamiltonian system w.r.t. the first Poisson bracket reads

uy = {u(x = Tno e O —5H
t { ( )>H}1 B [1 ](51}(1’)
I 0H
Ve = {U(,’L’), H}l = E [6 Oz _ 1] 6u(l’) (33)

The same Hamiltonian will generate a different PDE when the second Poisson bracket
is used:

1 Ly 8H 1.y 0H
us—{u(x),H}g—E[A—A }5u(aj)+e[1 A }&](x)
vy = {v(z), H}s = %v(x) A 1] % + % [Ae"®) — u@p-1] 52Z B4

Here s is the new time variable.

We have the following main theorem of this Section:
Theorem 3.1 The flows of the extended Toda hierarchy (Z28) are Hamiltonian sys-

tems of the form

ow”
g — (w(2), Hogh, @,6=1,2 ¢20. (3.5)
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They satisfy the following bihamiltonian recursion relation

{w*(x), Hgg-1}2 = (q + pp + ){w (2), Hg g}1 + Rp{w™(z), Hy g1 }1- (3.6)

Here the Hamiltonians have the form
Hpq = /hﬁ,q(w;wx, cose)dr, B=1,2; ¢>—1 (3.7)

with the Hamiltonian densities hg, = hgq(w;w,,...;€) € R given by

1
res [L7 (log L — ¢ge1)] s hog = 0 2)!res L7, (3.8)

2
(g4 1)

and
Rg, = 2503.1. (3.9)

Proof We first prove that the flows 6t2 - have the Hamiltonian form (BH). For a 1-form
> fam(u, g, .. )du®™ on the jet space, we say that it is equivalent to zero if it is

the :B—derlvatlve of another 1-form. We denote this equivalence relation by ~. Here

o.m ow*(x
Wy = S (@) Alternatively,

For example, we have
e'dv, + e"uydv = 0, (e“dv) ~ 0

Under this notation, we can easily verify that

Oha 1
4 Jy®™ = d Lq+2 ~
ouem T T g (q+ 1)

where dL = dv(z) + e“®du(z) A~1. Expand the operators Ag, that are defined in
&Z7) into the form

dha, = res LIt dL (3.10)

q = Z an;k Ak, A27q = Z a27q;k Ak, (311)

k>0 k>0

then by using the definition of the Hamiltonians Hs , and the equivalence relation (B10)
we deduce the validity of the following identities:

0H. 0H.
S = ag0(z), = ayga(n - ). (3.12)
So from the definition of the first Poisson bracket we have
1
{v(x), Haghr = (a2q 1(2)e""T) — ag 41 (x — €)' ™) .
1
{u(z), Hyghr = - (az,q0(x) — azgo(x —¢€)) (3.13)



which yields the Hamiltonian form (B) of the flows a%q.

To prove that the flows % are also Hamiltonian systems with respect to the first

Poisson bracket, we need first to show the validity of the following equivalence relation:
res (L9 dlog L) ~ res (LY 'dL) . (3.14)
Indeed, from the commutativity of the operators L and Ped, P! we obtain

dres [Lqepea’cpfl}

~ qres [Lq_lepfaxpfldlz] + res

1 Nk _
L? kz W(Peaxp 1)k 1d(P€8xP 1)
>1

— gresLYdL + res [Lqepfawp”d(Pe&xP—l)} .
So from the obvious relations
LPP™" — [+l dres L9 ~ (g + 1)resLidL

we arrive at

res [L?d(Ped, P~")] ~ resL? 'dL. (3.15)
In a similar way we obtain the following equivalence relation
res [L7d(Qed,Q™")] ~ —resL? 'dL. (3.16)

The equivalence relation (BI4)) now readily follows from the above two equations. By
using (BI4) we obtain

dhy, = ﬁ dres [L‘”l (log L — cq+1)}

~ % res [L? (log L — c441) dL] + T _i 01 res [L?dL]

= % res[L4 (log L — ¢,) dL] . (3.17)
It yields the following identities

S ga(e), S = a9 (3.18)

Here aq ;. are defined in (BI). From the above identities we see that the flows 54—
that is defined by ([ZZ8) are Hamiltonian systems of the form (B3).

We now proceed to proving the bihamiltonian recursion relation (B). In the case
of = 1,8 =2, we can rewrite ([B:8) by using the identities (BI2) into the form

[Ae“(x) — e“(“’”)A_l} as,q-1.0(x) +v(z) [A — 1] agg—11(x — e)e“(x)
=(qg+1) [azq;l(:c)e“(w“) — agg1(x — e)e“(:”)] ) (3.19)

10



On the other hand, from the first and the second equality of the relation
= tpe o L (3.20)
(g +1)! q' q!

we obtain respectively the following identities

(¢+1)

q a2 41\T) = A2, 4—1;,0\T € v(T)a2,q—1;1\T e a2,4—12\T — €),
(¢ + 1)agga(z) (z +€) +v(x) () + e (z —€)
(q+ Dazg (@) = asg-10(x) + v(z + )agg11(x) + " ag,1o(x).

The recursion relation ([BI9) can be easily verified by substituting the above two ex-
pressions of as 41(x) into its right hand side. In the case of a = 2, 3 = 2, the recursion
relation (B6) can be also verified by using the identities in (B220). Finally, for the case
of § =1 the recursion relation (B) follows from the following trivial identities

2 1
q an (logL —¢,) =L L7 (log L — ¢y 1) — 2 an

2
(¢—1)!
2

1
_ q—1 _ _ q
= (q_l)!L (log L — cq—1) L 2q!L.

Theorem is proved. a

In [15, BT] an extended Toda hierarchy was defined by using the bihamiltonian
recursion relation (B6), and the Hamiltonians are defined implicitly from this recursion
relation. The above theorem shows that this extended Toda hierarchy coincides with
the one that is defined by ([228), it also gives an explicit expression of the densities of
the Hamiltonians of the hierarchy. We list here the first few of them

hfl,—l = B_U(ZL’), h27_1 = ’U(SL’),

hio = By(v(z) +v(r+€) —2v(x) +v(z) B_u(x),

hoo = v(x)? 4 ™) 4 eulete) (3.21)
where the operators By are defined in (230). We will see below that these densities

of the Hamiltonians possess an important symmetry property which will be used to
define the tau functions for solutions of the extended Toda hierarchy.

4 Tau functions for the extended Toda hierarchy

We now proceed to define the tau functions for solutions of the extended Toda hierarchy.
Denote by R the subset of homogeneous elements of the ring R, i.e. elements of the

form
f= Z Fr (U, g, .. )€
k>0
where fi are homogeneous polynomials of e, v(™ (™ for m > 0 with deg f, =

deg f — k. From the definition of the extended Toda hierarchy (2226]) and the densities
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of the hamiltonian ([B¥) we know that %, hsq € R. The degrees of the flows are
given in (Z33) and the degrees of hg, are given by

3
deghg, = q + 5 + Ug.

Lemma 4.1 The following formulae hold true:
dlog L

otba [Agq log L], B=12 ¢=0. (4.1)
Proof From (Z20) we have
o(Ped,P™Y) . ) i
(= LM+ [PednP ' [Agq, L™ = 0.

The Jacobi identity and the commutativity between the operators L and Ped, P~! then
imply the following identity

O(Ped, P1) 11 rm
[W — [Aﬁﬂ,PeaxP 1], L ] =0.
Since the operator % — [Agg, Ped, P~'] has the form Y, fiA™* with coeffi-
cients fr being elements of R, we obtain from the last equality the formula
I(Ped, P™1) _
W — [Aﬁg, PE@IP 1] =0.
In a similarly we can also get the formula
9(Qe0,Q™) _
W — [A@q, Qe@xQ 1] =0.

So the lemma follows from the definition of log L and from the last two identities. O

We introduce now the functions €, ;.34 by the formula

1 L 8h’o¢,p—l . I%I'GS ([Aﬁ#b Lp(lOgL - CP)]) , = 17
E (A - 1)Qa,p;6,q T OtBa - { (p—il)! res [Aﬁ,qu Lp+1] ’ o= (4-2>

and by the homogeneity condition
Qupipg €R, degQupsg=p+q+1+pa+ps o B=12 pg>0  (43)

Note that in the above definition the second equality of (2 follows from the defini-
tion (226), (BX) and from the above lemma. The r.h.s. is a total z-derivative of a
homogeneous element in R. Therefore Q, .5, € R and the conditions [{@2) and E3J)
specify €, .54 uniquely. The only exception is {2 .19 that should be a homogeneous
element of the degree 0. This is set to be

Q10,10 = u.
The following Theorem shows that ), .3, Is symmetric with respect to the pair of its

indices (a, p) and (3, q):
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Theorem 4.2 The extended Toda hierarchy has the following tau-symmetry property:

aha7p_1 o ahﬁ,q—l -
atﬁyq B otep ’ Oé,ﬁ - 1’ 27 b, q Z 0. (44)

Proof Let us prove the theorem for the case when o = 1, 3 = 2, other cases are proved
in a similar way. From the second identity of (L) we obtain

8h17p_1 . 2
otz pl(g+1)

S res[—(L)_, LP(log L — ;)]

res[(LIT) ., LP(log L — ¢,)]

pl(g+1)!
2
= (g o el dos L =) (L]
2 Ohaq-
= i r oy el e L — e L1 = T, (4.5
Theorem is proved. -

From the above theorem and the definition (f2]) it follows that 8%”;;5,? 4 is symmetric

w.r.t. the three pairs of indices (o, p), (3, q), (o, k). This property justifies the following
definition of tau function for the extended Toda hierarchy:

Definition. For any solution of the extended Toda hierarchy there exists a function 7
of the spatial and time variables z,t*?, a = 1,2, p > 0 and of € such that

, 0%logT

(4.6)
hold true for any o, 3 =1,2, p,q > 0.

Recall that the solutions considered in this paper are assumed to be formal power
series in €.

Since the first flow % of the extended Toda hierarchy coincides with the transla-
tion along the spatial variable x, we can modify the above definition of the tau function
by requiring that

OlogT OdlogT
oo g

(4.7)

Corollary 4.3 The densities of the Hamiltonians of the extened Toda hierarchy have
the following expressions in terms of the tau function:

Olog T

havp = G(A - 1)ata’p+17

a=1,2 p>-1. (4.8)
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Proof From the definition of €2, ;.10 we get

S ettt | PlogT dlogT
ha,P—l = k! a:c Qa,p;l,(] = Z A 895 Ot H10 = G(A - 1) ot
k>1 k>1
Here we used (7). The corollary is proved. 0

Our notion of tau function for the extended Toda hierarchy follows that of Date,
Jimbo, Kashiwara and Miwa designed for the KP hierarchy [3]. Note that the above
corollary implies in particular the following relations of the dependent variables v, u of
the extended Toda hierarchy with the tau function:

0 T(x +¢€) T(x + €)T(x —€)

= :].
VT 908 T(x) u=os 72(x)

In this formula we omit the dependence of the tau function on all the times t*? but
the very first one t°

(4.9)

= X.

Remark 1. The above formulae mean that, the dependent variables u, v of the
extended Toda hierarchy are not normal coordinates in the sense of [I0]. Because of
this the relationships between the tau-function and the Hamiltonian densities in the
present paper look more complicated than in the general setting of [10].

If we return back to the variable g, of the original Toda lattice equation ([II), then
from the above relation we have
7(n)
L =log ——/ 4.10
q 8 ln = 1) (4.10)
So the tau function for the extended Toda hierarchy also agrees with the function that
was introduced by Hirota and Satsuma [T6] to convert the Toda lattice equation into a
bilinear form. We will discuss the bilinear formulation of the extended Toda hierarchy
in a separate publication.

Remark 2. The dispersionless limit ¢ — 0 of the bihamiltonian structure (BII),
(B2) coincides with the canonical Poisson pencil on the loop space L£(M) of the Frobe-
nius manifold M = M), constructed in [7] on the orbit space of the extended affine

Weyl group WM (A;). The Frobenius manifolds My9(ay,,, o) On the orbit spaces of

more general extended affine Weyl groups W *) (Agim—1) of the A-series are obtained by
the dispersionless limits of extended Toda-like systems associated with the difference
Lax operators of the form

L=A+ai(o)A" 7+ apm(@)A™™, agm() #0.

This extended hierarchy coincides with the one associated with the Frobenius manifold
My Apsm1) according to the general scheme of [I0]. We will give details in a separate
publication. Recall that, in [7] there were also constructed Frobenius manifolds on the
orbit spaces of extended affine Weyl groups associated with the Dynkin diagrams of
the BC' D E F G series. At the moment we do not know how to construct Lax repre-
sentation of the integrable hierarchies associated, according to the results of [I0], with
these Frobenius manifolds. We plan to study this problem in subsequent publications.
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5 An alternative representation of the extended Toda
hierarchy—the extended NLS hierarchy

In this Section we present an alternative representation of the extended Toda hierarchy
that is defined in the Section 2. We are to choose > as spatial variable and write
down the evolutionary PDEs that are satisfied by the functions u,v under this new
spatial variable. Let us redenote the time variables as follows:

TW =12 TR =t p >0, (5.1)

and specify X = T as the spatial variable. For the convenience of presentation, we
use the following quantities as the dependent variables:

(X, T)=p=v(x—¢), W (X,T)=p=e"®. (5.2)

In terms of the tau function of the extended Toda hierarchy, these new dependent
variables have the expression

Jdlog T

p=¢(l- A_I)W7

p=exp[(1—A"")(A—1)logT]. (5.3)

Let us first proceed to writing down the Lax pair formalism for the hierarchy that
is satisfied by ¢(X,T), p(X,T). Note that the extended Toda hierarchy is the compat-
ibility condition of the following linear systems

L = \ip, (5.4)
n
Sror — € Anp, (5.5)

where A, , are defined in (227) and A is the spectral parameter. By using the equation
€ 0pot) = (A 4+ v)1, we can rewrite the linear system (B4) in the form

LYY= (5.6)
with the operator £ defined by
L = edx + p(edx — ). (5.7)

Here the pseudo-differential operator (edx — ¢)~! has the expansion

(edx —p) ' = Z a;(edx) ™" (5.8)

k>1

and the coefficients a; are uniquely defined by the relation

(€dx —)(>_ai(edx) ™) =1. (5.9)

k>1
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For example, we have
a1 = ]-7 a2 = @, a3 = —€Px +Q02

We can also reexpress the operators A, , as differential operators in eJx. This can be
easily done by the substitution

AF v (eOx — o(x + (k —1)e)) ... (eDx — @()). (5.10)

So the linear systems in (B3) can be expressed in form

0 _
8T1ﬁ,p =" Ay ¥ (5.11)
with ) )
A, = TESN] (L), Agy = ol (LP(log £ —cp)), , (5.12)

the subscript + here means to take the differential part of a pseudo-differential operator.
The pseudo-differential operator log £ is obtained from log L by the substitution of

(E10) and
A (e0x — oz — (k— 1)) ... (edx — ()t (5.13)

The coefficients of log £ can be expressed in terms of the new dependent variables ¢, p
and their X-derivatives. This can be achieved by using the system of equations (214

to express 6(;; U2 m > 1in terms of ¢, p and their X-derivatives. For example, we have
% _ oy [bgp , (poxx — Pk — peX) + 0(64)] (5.14)
ox 12p3 X X ’
O _ o) _ < ( — O(e* 5.15
ap 0 { 6,2 poxx — oxpx) + O(e )} : (5.15)

Now the compatibility condition of the linear systems (B.6), (EI1) takes the form

oL
oTor

The TH-flow coincides with the shift along X, and the T*%-flow is given by (EI4) and
(ETH). The T"!-flow has the form

€ = [Aap L], a=1,2 p>0. (5.16)

0
8Tf71 =Ox (—epx +¢" +2p),
dp
ST = Ox (epx +2¢p) (5.17)

This integrable system appears in the study of nonlinear water waves in [2, []]. In
terms of the new variables

—1a—1 —19—1 _—15—1 _—1n9—1
qzee 8Xv:pee Oy ¢ r = ele™¢ 8Xv:ee 8X<p’ (518)



or, equivalently,

T'x
p=4qr, = _67,
the above system takes the form
0 N or _
8TC{71 = eqxx +2¢ ¢, STl —erxyx — 2¢ Lqrt (5.19)

These functions have the the following simple expressions in terms of the tau function
of the extended Toda hierarchy:
q:M7 T:M_ (5.20)
7(z) (z)
Under the constraints € = i,r = +¢* the system (EI9) is reduced to the well known

nonlinear Schrédinger equation (NLS) [30]. Due to this fact, we will call the hierarchy
(E10) the extended NLS hierarchy.

The extended NLS hierarchy also possesses a bihamiltonian structure. The related
compatible Poisson brackets are given by

{e(X), (V)1 = {p(X),p(Y)}1 =0,

{o(X), p(Y) )1 =0'(X =Y). (5.21)
{p(X),0(Y)}e =20 (X = Y),

{p(X),p(Y)}e = p(X)5"(X = Y) + pxd(X = Y) —ed"(X =),

{p(X), p(Y)}2 = [p(X)0x + Oxp(X)]6(X —Y). (5.22)

This Poisson pencil was given in [I] for the bihamiltonian structure of the system
(ETD). It is easy to verify that the extended NLS hierarchy hierarchy (EIG) has the
Hamiltonian form

ow”

oTba

= {0%(X), Hg o}, o,f=1,2, ¢>0. (5.23)

Here the Hamiltonians Hg,, = i hs X are defined by

1 - 2
¢+ 2) res L‘,q+27 hoy = o 1)'res [£q+1(10g£ B Cq+1)] (5.24)

and the residue of a pseudo-differential operator equals the coefficient of 8)}1. The
hierarchy satisfies the following bihamiltonian recursion relation:

hl,q =

{0*(X), Hpg—1}2 = (g + % + fip) {0 (X), Hg b + Ry {d*(X), Hy g1 }1,

a,f=1,2, ¢ >0. (5.25)

Here ,&1 = —,&2 = %, R% = 2(5?5[32.
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Remark. In the “dispersionless” limit ¢ — 0 the substitution (B2) becomes
p=uv, p=ce" (5.26)
This coincides with the Legendre type transformation Sy of [6] (see Appendix B) trans-

forming the Frobenius manifold associated with Toda lattice with the potential

1
Froqa = §U2U + e

to the Frobenius manifold associated with NLS with the potential

1 1 3
Fare = —0? 0211 _ =
NLS = 5% P+2P [ng 2}

(see Example B.1 in [6]). It looks plausible that the trick similar to the above one will
work also for an arbitrary semisimple Frobenius manifold in order to lift the Legendre-
type trasnforms of the Frobenius manifold to a transformation of the integrable hierar-
chy associated with this manifold. We will describe these transformations in a separate
publication.

6 The extended Toda hierarchy and the C'P! topo-
logical sigma model

Let ¢y = 1 € H'(CPY), ¢ = w € H*(CP') be the two primary fields for the C'P?
topological sigma model. The 2-form w is assumed to be normalized by the condition

/ w = 1.
cp!

The free energy of the C'P! topological sigma-model is a function of infinite number of

coupling parameters
t — (tl,(), t2,0’ tLl, t2,1’ . )

and of € defined by the following genus expansion form:

Fltie) =Y 72F, (). (6.27)

920

The parameter e is called here the string coupling constant, and the function F, = F,(t)
is called the genus g free energy which is given by

1
Fy= 3t (60,) T (B (6.28)
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where 7,(¢,) are the gravitational descendent of the primary fields with coupling con-
stants t*?, and the rational numbers (7,,(da,) - - - T, (@a, )¢ are given by the genus g
Gromov-Witten invariants and their descendents of C'P!:

(o1 (Par) - - - Tpm (D) g Z q / eVigay AT AL Aevy B, AT

[Mg,m (CP,B)]virt
(6.29)
Here M,,,(C P!, 3) is the moduli space of stable curves of genus g with m markings of
the given degree 8 € Hy(C'P';7Z), ev, is the evaluation map

ev; : My ,(CP', 3) — CP!

corresponding to the i-th marking, 1; is the first Chern class of the tautological line
bundle over the moduli space corresponding to the i-th marking. According to the
divisor axiom [21] the indeterminate ¢ can be absorbed by shift t20 — %% — log ¢; we
will assume that such a shift has already been performed. So the free energy (E217)
does not depend on q.

The conjectural relation of the C'P' topological sigma model with the extended
Toda hierarchy can now be stated in a similar way as the Kontsevich-Witten result
[28, 20, 29]? does for the relation of the 2d topological gravity with the KdV hierarchy.
Namely,

Theorem 6.1 [Toda conjecture| The functions
u(z,tye) = Ft"' + x4+ ¢) = 2F (0 +2) + Ft'' + 2 —¢)
[Ft"' + 24 €) — F(t"0 + )] (6.30)

- Eatz,o

satisfy the equations of the extended Toda hierarchy (ZZ@). In these formulae we write
explicitly down only those arguments of the function F that have been modified. This
particular solution is uniquelly specified by the string equation

wp OF 11,4 OF
Dttt = (6.31)
p>1

The bihamiltonian description of the extended Toda hierarchy obtained in Section
3 above along with the tau-structure described in Section 4 enables one to rewrite
the bihamiltonain recursion (B) in the form of a recursion for the correlators of the
C P! topological sigma-model. Namely, let us introduce, following [28], the functions

(7p(da)Tq(Pp) . ..) of t, € by
0 0

top1 T Otmspm

(7o1(001) - - T (Pa)) = €5 F(t;e). (6.32)

2An alternative proof was given recently by Okounkov in [Z3]
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Then the following recursion relations hold true

(n+ DA = 1){7(w))
=0 (A = D{ra(w)) + (A + D{n(w) (W), (6.33)

n (A =1)(r.(1))
=0 (A = D{m-1(1)) = 2(A = D{7-1(w))
+(A+ D{ro(w)mn-1(1))- (6.34)

In these recursion relations

OF
o120

A= expe%, v=eA—-1)
We are to emphasize that, these recursion relations hold true for an arbitrary solution
of extended Toda hierarchy if one defines the “correlators” by the equation (G32) with
the function F corresponding to the logarithm of the tau function of this solution?.
The needed solution is specified by ([E33)), ([E34)) together with the string equation. In
this case the recursion relations describe the topology of the forgetting map [21]

M, ,(CPY) — M,, 1(CP").

Due to the discussion of the last Section, we can equally state Theorem as
follows. The free energy (G21) is the logarithm of a particular tau function of the
extended NLS hierarchy (BI0).

The proof of Theorem at the genus one approximation can be found in [B, B,
1T, 12, 13, BT], see also important results concerning such relations in [I5], 24), 25]. The
crucial point in proving the validity of this conjecture in full genera is the Givental’s
result on the Virasoro constraints for CP! [I8, [[9]. Probably, one can derive our
Toda conjecture from the results of Okounkov and Pandharipande [24] 25] using the
arguments of Getzler’s paper [I5] along with the Givental’s result. From our point of
view the most natural way of proving the Conjecture is that to use the properties of the
Virasoro symmetries of the extended Toda hierarchy and the uniqueness of solution of
the loop equation 9, [10]. We will publish the details of the proof in a separate paper.

Acknowledgments. The researches of B.D. were partially supported by Italian Min-
istry of Education research grant “Geometry of Integrable Systems”. The researches
of Y.Z. were partially supported by the Chinese National Science Fund for Distin-
guished Young Scholars grant No.10025101 and the Special Funds of Chinese Major
Basic Research Project “Nonlinear Sciences”.

3In the literature sometimes these recursion relations together with the Toda equations ([ZI4)) are
called Toda conjecture.
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