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ABSTRACT

Context. The exploitation of clusters of galaxies as cosmological probes relies on accurate measurements of their total gravitating
mass. X-ray observations provide a powerful means of probing the total mass distribution in galaxy clusters, but might be affected
by observational biases and rely on simplistic assumptions originating from our limited understanding of the intracluster medium
physics.
Aims. This paper is aimed at elucidating the reliability of X-ray total mass estimates in clusters of galaxies by properly disentangling
various biases of both observational and physical origin.
Methods. We use N-body/SPH simulation of a large sample of ∼100 galaxy clusters and investigate total mass biases by comparing
the mass reconstructed adopting an observational-like approach with the true mass in the simulations. X-ray surface brightness and
temperature profiles extracted from the simulations are fitted with different models and adopting different radial fitting ranges in order
to investigate modeling and extrapolation biases. Different theoretical definitions of gas temperature are used to investigate the effect
of spectroscopic temperatures and a power ratio analysis of the surface brightness maps allows us to assess the dependence of the
mass bias on cluster dynamical state. Moreover, we perform a study on the reliability of hydrostatic and hydrodynamical equilibrium
mass estimates using the full three-dimensional information in the simulation.
Results. A model with a low degree of sophistication such as the polytropic β-model can introduce, in comparison with a more
adequate model, an additional mass underestimate of the order of ∼10% at r500 and ∼15% at r200. Underestimates due to extrapolation
alone are at most of the order of ∼10% on average, but can be as large as ∼50% for individual objects. Masses are on average biased
lower for disturbed clusters than for relaxed ones and the scatter of the bias rapidly increases with increasingly disturbed dynamical
state. The bias originating from spectroscopic temperatures alone is of the order of 10% at all radii for the whole numerical sample,
but strongly depends on both dynamical state and cluster mass. From the full three dimensional information in the simulations we find
that the hydrostatic equilibrium assumption yields masses underestimated by ∼10–15% and that masses computed by means of the
hydrodynamical estimator are unbiased. Finally, we show that there is excellent agreement between our findings, results from similar
analyses based on both Eulerian and Lagrangian simulations, and recent observational work based on the comparison between X-ray
and gravitational lensing mass estimates.
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1. Introduction

Galaxy clusters are the largest virialized structure known in
the universe. According to the hierarchical clustering model of
structure formation, they form by the gravitational collapse of
the rare peaks of the primeval density field, on scales of the order
of ∼10 Mpc. Within this scenario their formation and evolution
is a sensitive function of the cosmological matter density param-
eter Ωm and the mass fluctuation amplitude σ8, where σ8 is the
rms linear fluctuation on scales 8 h−1 Mpc.

Measurements of their evolution rate can be used to asses the
growth in mass of such structures, thereby providing a powerful
method to constrain the geometry and matter content of the uni-
verse (see Voit 2005, and references therein). Moreover, because
of the spatial extent of the collapse scale, the cluster baryonic
fraction fb is expected to be close to the cosmic value Ωb/Ωm.
Measurements of fb at high redshifts can be used to derive con-
straints on the equation of state of the dark energy (Haiman et al.
2001; Majumdar & Mohr 2004; Allen et al. 2008).

The importance of cluster of galaxies as cosmological probes
will be further strengthened with the forthcoming high redshift
surveys. This is of particular relevance in the new era of pre-
cision cosmology, in which studies of cluster evolution will

provide independent tests with which to compare constraints on
cosmological models extracted from observations of the cosmic
background radiation (e.g. Spergel et al. 2007) and distance mea-
surements of high redshift supernovae (e.g. Tonry et al. 2003;
Riess et al. 2004, 2007).

From the scenario here outlined it follows that in order to
use cluster of galaxies as cosmological probes it is crucial to
accurately measure their baryonic and total gravitating mass.
The methods used to derive cluster masses are mainly based on
the velocity dispersion of the optical galaxy populations (e.g.
Biviano & Girardi 2003; Rines et al. 2003), observations of
the X-ray emitting intracluster medium (ICM) (e.g. Finoguenov
et al. 2001; Reiprich & Böhringer 2002; Ettori et al. 2002;
Arnaud et al. 2005; Vikhlinin et al. 2006) and on gravitational
lensing (e.g. Smith et al. 2002; Mahdavi et al. 2008).

Accurate mass estimates derived from X-ray data are based
on the assumptions that both the total potential and the ICM dis-
tribution are spherically symmetric and that the ICM is in hy-
drostatic equilibrium in the cluster potential well. The latter as-
sumption is usually justified by the fact that the estimated ICM
sound crossing times are short when compared against cluster
ages (Sarazin 1986).
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Under these assumptions the ICM is a faithful tracer of the
underlying matter distribution and the total mass profile can be
determined from the gas radial density and temperature pro-
files. The density profile is recovered by deprojecting the surface
brightness profile, as measured from X-ray flux maps, whereas
knowledge of the temperature profile requires the availabil-
ity of spatially resolved spectroscopy. High quality data taken
by the present generation of X-ray telescopes, Chandra and
XMM-Newton, allow for nearby clusters accurate measurements
of these quantities out to a large fraction of the cluster virial
radius (Markevitch et al. 1998; Vikhlinin et al. 2005; Piffaretti
et al. 2005; Sanderson et al. 2006; Pratt et al. 2007; Leccardi &
Molendi 2008).

The reliability of cluster mass estimated through the X-ray
method can be accurately studied using N-body/hydrodynamical
simulations. The principal benefit over analytical methods is that
the gas evolution can be treated self-consistently. The validity
of the numerical approach is supported by X-ray observations,
which show the existence of complex thermal structures and of
merging activity (see Markevitch & Vikhlinin 2007, for a re-
view).

Since early pioneering studies, hydrodynamical simulations
have become a widely used tool to investigate cluster formation
and evolution in different cosmological scenarios (cf. Voit 2005).
The numerical resolution of the simulations and the modeling of
the cluster gas physics has been improved over the years. The lat-
ter now incorporates radiative cooling (Yoshikawa et al. 2000;
Lewis et al. 2000; Pearce et al. 2000; Muanwong et al. 2002;
Davé et al. 2002), metal enrichment of the ICM by supernovae
and energy feedback (Kay et al. 2003; Tornatore et al. 2003;
Valdarnini 2003; Borgani et al. 2004; Kay et al. 2004; Kravtsov
et al. 2005).

The accuracy of cluster X-ray mass estimators has been
tested by means of N-body/hydrodynamical simulations in a va-
riety of papers (Evrard 1990; Evrard et al. 1996; Kay et al. 2004;
Rasia et al. 2006; Kay et al. 2007; Nagai et al. 2007a). Evrard
(1990) first pointed out the existence of a significant bias in
the binding mass estimates when using the isothermal β-model.
Evrard et al. (1996) confirmed that the source of this discrep-
ancy is related to the isothermal and hydrostatic assumptions.
The lack of validity of the hydrostatic assumption is observa-
tionally motivated by optical and X-ray maps, which show the
existence of substructure with an ongoing merger activity, and
is numerically supported by a number of authors (e.g. Kay et al.
2004; Rasia et al. 2004; Nagai et al. 2007a), who found that in
the simulations the ICM is not perfectly in hydrostatic equilib-
rium. This implies the presence of residual gas bulk (laminar)
and turbulent (random kinetic) motion, and leads to an underes-
timate of the masses because of additional non-thermal pressure
support which is not accounted for by the hydrostatic equilib-
rium equation.

With respect to the isothermal β-model the modeling of
the ICM has been significantly improved (e.g. Vikhlinin et al.
2006) through observational progress, which showed the exis-
tence of temperature profiles declining with radius (De Grandi
& Molendi 2002; Vikhlinin et al. 2005; Piffaretti et al. 2005;
Sanderson et al. 2006; Pratt et al. 2007). These features are well
reproduced out of the core radii in hydrodynamic simulations
which incorporate cooling and feedback (Muanwong et al. 2002;
Kay et al. 2003; Tornatore et al. 2003; Valdarnini 2003; Borgani
et al. 2004).

In order to properly assess the reliability of cluster X-
ray mass estimators it is however necessary to construct
mock observations of simulated clusters which must reproduce

spectroscopic measurements as expected from X-ray telescopes.
This is motivated by the presence of complex thermal struc-
tures in the ICM, which bias the (measured) spectral fit temper-
atures towards lower values than the average emission weighted
cluster temperatures defined theoretically (Mathiesen & Evrard
2001; Mazzotta et al. 2004; Valdarnini 2006). The dependence
of X-ray mass estimators on spectral biases and other systemat-
ics has been investigated through hydrodynamic simulations by
a number of authors (Rasia et al. 2006; Kay et al. 2007; Nagai
et al. 2007a; Jeltema et al. 2008). Nagai et al. (2007a) argued
that mass estimates are biased low (∼5–20%) even for clusters
identified as relaxed.

In order to properly disentangle observational biases that
arise from spectroscopic measurements from those due to in-
complete relaxation of the gas or from the ones caused by an
inaccurate modeling of the radial profiles, it is however nec-
essary to derive X-ray mass estimates from a large sample of
simulated clusters. This is the main goal of this paper, in which
we apply different X-ray mass estimators to a large set of high-
resolution hydrodynamical simulations of galaxy clusters. The
physics of the gas includes radiative cooling, star formation,
chemical enrichment and energy feedback. The sample com-
prises ∼100 clusters, the size of the sample being a critical quan-
tity in order to extract sub-samples large enough to give mean-
ingful statistics.

We discuss the dependence of the mass bias at different radii
upon the adopted analytical models and the chosen radial range
used to perform fits of the profiles, the cluster dynamical state
as well as the impact on the mass bias which follows from the
use of spectral temperatures. As a statistical indicator to quantify
the cluster dynamical state through the analysis of X-ray maps
we adopt the power ratio method (see Jeltema et al. 2005, and
references therein). We also investigate the limit of applicability
of the dynamical equilibrium equation when used to recover the
cluster true masses in the presence of significant non-thermal gas
pressure.

The paper is organized as follows. In Sect. 2 we present
the procedure for simulating the cluster sample. In Sect. 3 we
describe how we generate and analyze the synthetic X-ray ob-
servations that are used in Sect. 4 to recover the total mass
distribution. In Sect. 5 we investigate the reliability of the hydro-
static and hydrodynamical mass estimators from the full three-
dimensional information provided by the simulations. Finally,
we discuss our main results and present our conclusions in
Sect. 6.

2. N-body/SPH simulations

The considered cosmological model assumes a flat CDM uni-
verse, with matter density parameter Ωm = 0.3, ΩΛ = 0.7,
Ωb = 0.0486 and h = 0.7 is the value of the Hubble constant in
units of 100 km s−1 Mpc−1. The power spectrum has been nor-
malized to σ8 = 0.9 on a 8 h−1 Mpc scale at the present epoch
and the primeval spectral index n is set to 1.

The simulation ensemble of galaxy clusters is constructed
according to the following procedures. A low-resolution N-body
run is first performed starting from an initial reshift zi = 10
in a box of comoving size L, using a P3M code with Np par-
ticles. Clusters of galaxies are identified at z = 0 using a friends-
of-friends (FoF) algorithm. The virial mass and radius are re-
lated by Mvir = (4π/3)Ωm ρc Δc r3

vir, where Δc � 187Ω−0.55
m

for a flat cosmology and ρc is the critical density. This is de-
fined as ρc(z) = 3H(z)2/8πG, where H(z)2 = H2

0 E(z)2 and
E(z)2 = Ωm(1 + z)3 + ΩΛ. In general, the fiducial radius rΔ is
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Table 1. Main parameters of the two cluster samples S1 and S2: comov-
ing box size L of the cosmological N-body runs, number of correspond-
ing particles Np, number Ncl of the most massive clusters extracted from
the sample at z = 0, and virial mass Mvir of the most (least) massive
cluster of sample S1(S2).

Sample L Np Ncl Mvir

[h−1 Mpc] [1014 h−1 M�]
S1 400 1683 33 15
S2 200 843 120 1.5

defined such that the average of the total density within that ra-
dius is Δ times the critical density, i.e. M(<rΔ) = 4πr3

Δ
Δ ρc(z)/3.

The simulation ensemble is constructed by combining two
distinct samples S1 and S2. Table 1 lists the most relevant simu-
lation parameters of the two samples S1 and S2.

A sample is constructed by extracting at z = 0 the Ncl most
massive clusters which are found in a cosmological run of size
L and Np particles. For sample S1 the box size and the number
of particles are twice and eight times those of sample S2. The
value of Ncl for sample S1 is chosen such that the last cluster
of the sample has its virial mass above that of the first cluster
of sample S2. The mass range for the virial masses of the com-
bined samples spans a decade. The random realization of the
initial density perturbations are different in the two cosmologi-
cal simulations.

After completition of the cluster selection, the clusters of the
ensemble are resimulated individually using high-resolution hy-
drodynamic simulations in physical coordinates. The initial con-
ditions of each hydrodynamic simulation are set as follows. The
particles of a cluster lying at z = 0 within a distance rvir from
the cluster center are tagged and located back at an initial red-
shift zin = 49 and a cubic region of size Lc � 25–50 Mpc ∝ M1/3

vir ,
which contains these particles, is placed at the cluster center. The
original Fourier modes of the cosmological simulation are then
used to perturb the positions of a uniform lattice of NL = 513 gas
particles set inside the cube and high frequency waves are added
to the original modes to sample the new Nyquist frequency. The
positions of dark matter particles are found similarly. Particles
with perturbed positions which lie within a inner sphere of ra-
dius Lc/2 from the cluster centre are kept for the hydrodynamical
simulations. For these particles the masses are set in proportion
to Ωb and (Ωm − Ωb) for gas and dark matter particles, respec-
tively. Tidal fields are modeled by adding to the inner particles an
external shell of low-resolution dark matter particles. The shell
has an outer radius Lc and the mass of a particle is 8 times the
sum of the masses of a gas and dark matter particle of the inner
region.

The hydrodynamic simulations are run using a multistep
TREESPH code in which the gas entropy is explicitly conserved
(Goodman & Hernquist 1991). The simulations contain �70 000
gas and dark matter particles in the inner region and a similar
value of low-resolution dark matter particles in the outer shell.
The mass of the gas particles ranges from mg � 5 × 109 M�
for the most massive cluster of the ensemble, down to mg �
6×108 M� for the least massive cluster. This mass resolution can
be considered adequate for the present purposes, as suggested
from analyzing the stability of gas profiles of simulated clusters
(Valdarnini 2002). The gravitational softening parameter of gas
particles is set to εg = 25 kpc and 15 kpc, for clusters of sample
S1 and S2, respectively. For the dark matter particles the soften-
ing is rescaled according to εi ∝ m1/3

i , where mi is the mass of

the particle i. The softenings are comoving out to z = 20, after
which they are kept fixed in physical coordinates.

The physical modeling of the gas includes radiative cooling,
which depends on the gas temperature and metallicity. Cold gas
in high density regions is subject to star formation and gas parti-
cles are eligible to form star particles. At each timestep gas parti-
cles neighboring a star particle are heated by supernova (SN) ex-
plosions of type II and Ia. The gas is also metal enriched through
SN explosions. The energy and metal feedback are calculated
according to the stellar lifetime and initial mass function. A de-
tailed description of the feedback recipes is given in Valdarnini
(2003). The hydrodynamic variables of a simulated cluster are
stored at run time at various redshifts in the interval from z = 2
down to z = 0.

3. Simulation and analysis of X-ray observations

At z = 0 we extract a total of 153 clusters. For this sample
we compute spectroscopic-like global temperatures and select
objects with Tsl(<r500) ≥ 2 keV (see Sect. 3.4 below for the
definition of Tsl). This temperature selection is adopted because
when generating spectroscopic temperature profiles we use the
approximation derived by Mazzotta et al. (2004), which was de-
veloped for continuum-dominated spectra and is therefore not
accurate for low temperature systems. Our final sample com-
prises ∼100 temperature-selected clusters spanning a mass range
of 8.2 × 1013 h−1 M� � M(<r200) � 1.2 × 1015 h−1 M�.

For each simulated cluster we generate three independent
observations by considering three orthogonal projections, thus
obtaining a total of ∼300 observed objects. In the following
sections we describe how we generate and analyze these mock
X-ray observations. Our analysis may be viewed as complemen-
tary to those presented in Rasia et al. (2006) and Nagai et al.
(2007a). The main difference is the large size of the sample used
here, which allows us to achieve results of much higher statisti-
cal significance.

3.1. X-ray maps

Simulated surface brightness maps are obtained by first choosing
a line of sight and then locating the origin at the cluster center in
the plane orthogonal to the line of sight; the latter is defined as
the location where the gas density reaches its maximum value.
Throughout the paper we assume that this position also coincides
with the peak of the X-ray emission.

For a given line of sight and redshift z the X-ray surface
brightness is defined as:

S X(x, y) =
1

4π(1 + z)4

∫ ∞

−∞
εXdl, (1)

where the integral is along the line of sight, x and y are Cartesian
coordinates on the chosen plane and εX is the X-ray emissivity.
The latter quantity can be calculated as εX = Λ ρ

2
g(x), which

differs from the true emissivity aside from a constant factor. Here
ρg(x) is the gas density, Λ = Λ(T, Z, x, E1, E2) is the cooling
function, and T and Z are the gas temperature and metallicity,
respectively. The quantities E1 and E2 define the energy band
[E1–E2] used in the X-ray flux measurement. Because of the
Lagrangian nature of SPH simulations, the emissivity εX(x) is
expressed as a summation over particles:

εX(x) =
∑

j

m j

ρg, j
Λ(T j, Z j, x, E1, E2)ρ2

g, j(x)W(x − x j, h j); (2)
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here the subscript j denotes the values of the quantity at the posi-
tion of the particle j, W is the SPH smoothing kernel, and h j the
smoothing length of particle j. From this expression for εX(x) it
is possible to evaluate the X-ray surface brightness S X(x, y) by
performing the integral (1) along the line of sight axis, z̃. For our
purposes the integral (1) is replaced by

S X(x, y) =
1

4π(1 + z)4
ε2D

X (x, y), (3)

where ε2D is defined according to Eq. (2) in which the kernel
is the 2D Gaussian kernel W2D = exp[−(

√
x2 + y2/hG

j )2]/πhG 2
j

and hG
j � 0.82h j.

For each simulated object we generate three surface bright-
ness maps by choosing three orthogonal projections. Motivated
by observations we evaluate the maps in the soft energy band
[0.5–2] keV. Since particles with temperatures below 105 K do
not contribute to the gas emissivity in this energy band, they are
not taken into account in the computation.

Cold and dense ICM clumps can affect total mass recon-
structions because they produce pronounced irregular features
in azimuthally averaged brightness and temperature profiles, and
introduce a systematic bias in the spectral temperature determi-
nation. We therefore remove small scale clumps from the con-
structed flux images by performing a masking procedure as done
with real X-ray observations. This is accomplished by generat-
ing [0.5–2] keV maps on a 1024 × 1024 grid of size 2.1 × r200.
The pixel size of the maps is ∼5 and 2 kpc for the most and least
massive clusters in our sample, respectively. Pixel sizes are sim-
ilar to those adopted in observations and are sufficiently small
so as to allow a complete identification of all small-scale clumps
resolved in our simulations. Clumps are detected and removed
following the procedure implemented by Vikhlinin et al. (1998):
images are decomposed into wavelets of pixel scale 2n, with
n = 0, 1, . . .6, with the significance threshold set to 5 in units of
the rms level. Particles that lie in those pixels which are part of a
statistically significant structure on a given scale are tagged and
identified as part of a clump. These particles are then removed
from all the SPH summations. In three dimensions, clumps are
identified by those particles that are part of a two dimensional
clump in any of the planes. The wavelet algorithm commonly
also detects the central peak of the surface brightness distribu-
tion. In order to avoid the unwanted masking of the cluster emis-
sion in the central region we exclude the inner 0.2 × r200 cir-
cular aperture from our masking procedure. In addition, we do
not impose any limiting flux fX for the detection of small scale
clumps. We motivate this choice with the finding that setting fX
to ∼3 × 10−15 erg /cm−2 s−1, as in Nagai et al. (2007a), has neg-
ligible effect. Finally, we compute the amount of gas mass re-
moved by the masking procedure and find that even in the most
clumpy clusters it is less than a few percent of the total gas mass.
If not stated explicitly, all the results presented in the following
are derived by including the masking procedure.

3.2. Power ratios

Total mass determinations from X-ray observations can be heav-
ily affected by the cluster dynamical state since the method relies
on the assumption of hydrostatic equilibrium. The dynamical
state of clusters is related to the amount of substructure present
in their X-ray surface brightness distribution (e.g. Richstone
et al. 1992; Evrard et al. 1993) and various statistical measures
have been proposed to quantify cluster substructure (e.g. Buote
2002, and references therein).

In this work we adopt the power ratio method (Buote & Tsai
1995) as a statistical indicator of the cluster dynamical state,
since it is widely used to study cluster X-ray morphologies (e.g.
Buote & Tsai 1996). This method is expect to be statistically sig-
nificant when applied to a large cluster sample such as the one
studied here. It is in fact unaffected only by mergers along the
line of sight, which rarely occur.

According to the power ratio method, the X-ray surface
brightness map S X(ρ, ϕ), where (ρ, ϕ) are the conventional polar
coordinates, is the source term of the pseudo potential Ψ(ρ, ϕ)
which satisfies the 2-D Poisson equation. The pseudo potential
is expanded into plane harmonics and the mth coefficients of the
expansion are given by:

αm =

∫
R′≤Rap

d2x
′
S X(x

′
)R
′m

cos(mϕ′), (4)

βm =

∫
R′≤Rap

d2x
′
S X(x

′
)R
′m

sin(mϕ′), (5)

where x′ = (ρ, ϕ) and the integration is over a circular region
with aperture radius Rap. The mth power ratio is then defined as

Πm(Rap) = log10(Pm/P0), (6)

where

Pm(Rap) =
1

2m2
(α2

m + β
2
m) m > 0, (7)

P0 = [α0 ln(Rap/kpc)]2. (8)

The power ratios Πm(Rap) are then indicators of the amount of
structure present on the scale of the aperture radius Rap. The val-
ues of Pm depend on the choice of the coordinate system. For a
fully relaxed configuration Πm → −∞. As Π3 indicates asym-
metric distributions, we adopt it here as a measure of the amount
of substructure present in a cluster.

For each of the ∼300 [0.5–2] keV surface brightness maps
(see Sect. 3.1) we set the origin of coordinates at the peak of
the X-ray emission. In addition to being fully consistent with
the procedure employed in the computation of azimuthally av-
eraged brightness and temperature profiles, this choice of coor-
dinate system enables us to detect P3 values different from zero
even in the case of bimodal clusters with nearly equal size com-
ponents. For the same configuration all the odd moments would
vanish if the coordinate system was the frequently adopted cen-
troid frame, which is the coordinate system defined such that
P1 = 0 (Buote & Tsai 1995). We utilize unmasked maps, since
the goal of the power ratio analysis is to measure substructure,
and for each one we computeΠ3(Rap) at the same radii where we
evaluate the mass biases (r2500, r500, and r200, see Sect. 4). The
various integrals involved in the computations are performed ac-
cording to the SPH prescription. For the simulated clusters of
our sample, the values of Π3 we found lie in the range between
∼−(6–4) for a strongly asymmetric distribution and ∼−(12–10)
for a cluster with a relaxed configuration.

In order to perform a statistical analysis of mass determi-
nation biases as a function of substructure we extract four sub-
samples in the following way. For a given overdensity, we first
construct the cumulative distribution of the sample values of Π3.
Then we identify the synthetically observed clusters in four sub-
samples (Π3 classes, hereafter): first quartile (below 25%), sec-
ond quartile (between 25% and 50%), third quartile (between
50% and 75%), and forth quartile (above 75%). In the following
these four sub-samples will be referred to as q1, q2, q3, and q4
classes. By construction the most relaxed clusters belong to the
q1 class and the most disturbed ones to the q4 class.
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3.3. Computation and modeling of surface brightness profiles

The azimuthally averaged surface brightness profiles S X(r) are
computed from the [0.5–2] keV band surface brightness maps
as follows. Each map is binned using a grid with circular ge-
ometry and coordinates (ρ̃, φ̃); the origin is set at the position of
the X-ray emission peak. The grid points are uniformly spaced,
linearly in the angular coordinate, and logarithmically in the ra-
dial coordinate. The range of the spatial coordinates is between
2 × 10−4 and 1.5 in units of r200. There are Nρ̃ = 140,Nφ̃ = 20
points in the coordinate intervals. The number and spacing of
the radial grid points is chosen such that the surface brightness
binning in the radial range used in the fits (see Sect. 4 below) is
similar to the one adopted in the analysis of real X-ray data. The
value of S X(r) at a given projected radius r is given by averaging
over the azimuthal values of the annulus. These values are also
used to define a surface brightness dispersion which is later used
to define a weight when fitting the S X(r) profile.

In order to explore the influence of the models adopted in
the fitting of surface brightness radial profiles on total mass esti-
mates, we adopt two different models. In the simplest and most
widely adopted procedure used in the determination of the to-
tal gravitational mass of clusters, the surface brightness profile
is modeled by a single β-model (Cavaliere & Fusco-Femiano
1976), i.e.

S X(r) = S 0

(
1 +

r2

r2
c

)−3β+0.5

· (9)

The single β-model is convenient because it is simple to depro-
ject it and obtain the ICM density profile needed to estimate the
total mass from the hydrostatic equilibrium.

As a second parametrization we adopt an extended β-model
in which the profiles are modeled as in Vikhlinin et al. (2006).
The radial dependence of ρg(r) is given by the functional form:

ρ2
g(r) = ρ2

g,0
(r/rc)−α

(1 + r2/r2
c )3β−α/2

1

(1 + rγ/rγs )ε/γ
, (10)

where the additional parameters with respect to the standard β-
model allow a much more accurate modeling of the density slope
variations. The component present in in Eq. (10) which takes
into account a central surface brightness excess is neglected (i.e.
we set α = 0), since, as discussed below, we are excising the very
central regions in the fitting procedure. The model parameters
are recovered by fitting the projection of Eq. (10) along the line
of sight against the surface brightness profiles in the [0.5–2] keV
energy band. Following the suggestions of Vikhlinin et al. (2006)
we set in Eq. (10) γ = 3.

Notice that for both parametrizations the total mass derived
from the hydrostatic equilibrium equation (Eq. (14) below) does
not depend on the central gas density value.

As commonly found in simulated clusters, the gas properties
in the central regions of our simulated objects are in disagree-
ment with observations. The pronounced steepening of the gas
density towards the center in low temperature systems and the
sudden temperature drop in the very inner regions are in fact not
observed in real clusters. We therefore exclude the inner region
within rlow = 0.1 × r200 from the surface brightness fits. We em-
phasize that the precise value for rlow is not relevant, since our
goal is to quantify the bias in the mass reconstruction at much
larger radii.

3.4. Computation and modeling of temperature profiles

From the three-dimensional gas temperature distribution T 3D(x)
measured in the simulated clusters we compute both three- and
two-dimensional (projected) radial profiles.

A three-dimensional radial temperature profile can be de-
fined as

T 3D
W (r) =

∫
ΔV

T 3D(x)Wd3x∫
ΔV

Wd3x
, (11)

where W is a weight function and the volume integral is over
a spherical shell of thickness Δr located at distance r from
the cluster center. Common choices for W are the gas den-
sity (mass-weighted temperatures, W = ρg) and the X-ray
emissivity (emission-weighted temperatures, W = εX). In this
work we consider mass-weighted temperatures Tmw and the
weight function W = ρ2

gT−3/4, which defines the corresponding
spectroscopic-like temperature Tsl. Mazzotta et al. (2004) found
that in the continuum regime (T � 2 keV) this choice of the
weight function provides accurate approximations of spectro-
scopic temperatures obtained from X-ray observations (i.e. de-
rived by fitting an integrated spectrum with a single-temperature
model). A more sophisticated method would be based on the
temperature determinations from either projected spectra (in
the case of projected temperature profiles) or from deprojected
ones (in the case of deprojected temperature profiles) com-
puted from the simulation outputs. Given the size of our sample
and that this procedure is computationally expensive, we adopt
spectroscopic-like temperature profiles.

For the cluster under consideration we evaluate the weighted
temperature profiles by replacing the integrals in Eq. (11), ac-
cording to the SPH scheme, by a summation over gas particles.
The value of the radial temperature profile T 3D

W (r) corresponding
to each shell is defined by averaging over a set of (θ, φ) = 40× 40
grid points uniformly spaced in angular coordinates. The radial
coordinate of the shells is binned as in the computation of the
surface brightness. For each object we therefore obtain two types
of three-dimensional temperature profiles: a mass-weighted pro-
file and a spectroscopic-like one.

The projected temperature profiles T 2D
W (r) are computed in

the same way as the three-dimensional profiles, but by con-
sidering a cylindrical geometry instead of a spherical one.
Furthermore, only spectroscopic-like profiles are computed,
since mass-weighted projected profiles are not meaningful in this
case. For each cluster we compute three projected spectroscopic-
like temperature profiles by consistently considering the same
projections used in the computation of surface brightness pro-
files.

We compare projected to three-dimensional spectroscopic-
like profiles and find that in the radial range [0.1–1] r200 the dif-
ference is generally small. The agreement between the two types
of profiles steadily improves from disturbed to relaxed clusters
and the difference is negligible for very relaxed clusters.

In the computation of temperatures, in accordance with
the considered energy bands, we neglect in the SPH summa-
tion particles with temperatures below 105 K. For consistency,
we adopt the same temperature cut-off in the computation of
mass-weighted temperatures. Moreover, for the spectral weight-
ing we restrict the summation to those gas particles for which
kT > 0.5 keV.

It is crucial to remark that spectroscopic-like tempera-
tures are good approximations of the spectroscopic tempera-
tures as would be estimated from X-ray observations, whereas
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mass-weighted temperatures are a much more accurate indicator
of the total binding mass, since they follow the virial relation-
ship.

As for the brightness profiles, we use two different models
to fit temperature profiles and exclude the inner aperture within
rlow = 0.1 × r200 from the fits. In the simplest case the gas tem-
perature profile is modeled using the commonly adopted poly-
tropic relation

Tg ∝ ργ−1
g , (12)

with 1 ≤ γ ≤ 5/3.
In the second model we allow greater parametric freedom

and follow the modeling proposed by Vikhlinin et al. (2006).
We model the temperature profile using

Tg(r) = Tg,0
(r/rt)−a

[1 + (r/rt)b]c/b
, (13)

which describes a power-law declining profile with a transition
at r ∼ rt. In the above model the tcool(r) term, which accounts for
the temperature decline in the central region because of radiative
cooling (Vikhlinin et al. 2006), is absent. This is motivated by
our choice of the radial range over which the profiles are fitted.

When modeling temperature profiles, a proper treatment
would require us to fit the model projection along the line
of sight against the simulated spectral temperature profiles.
Moreover, one has to take into account the presence of different
temperature components which can bias the single-temperature
fit. Given the large size of our sample, we avoid the involved
projection and recovery steps and we fit the model in Eq. (13)
directly to the 3D spectroscopic-like temperature profiles. These
are in fact expected to be in good agreement with depro-
jected temperature profiles derived from spatially resolved spec-
troscopy. However, in order to explore the crucial bias intro-
duced by spectroscopic temperatures, we additionally apply the
same procedure to 3D mass-weighted temperature profiles, since
they provide the azimuthal average of the true gas temperature
distribution.

4. Total mass determination from X-ray
observations

The total gravitating mass of a galaxy cluster is estimated from
X-ray observations assuming that the ICM is in hydrostatic equi-
librium and that its temperature and density distributions, as well
as the total gravitational potential, are spherically symmetric.
These assumptions lead to:

Mest(<r) = −kTg(r) r

Gμmp

[
d lnρg(r)

d ln r
+

d ln Tg(r)

d ln r

]
, (14)

where Mest(<r) is the estimated total gravitating mass within
a cluster-centric distance r, Tg(r) and ρg(r) are the three-
dimensional gas temperature and density profiles at the radius
r, respectively, and G and mp are the gravitational constant and
proton mass. We adopt the value μ = 0.58 for the mean molecu-
lar weight of the gas.

4.1. The mass bias

In order to quantify the difference between estimated mass
Mest(<r) and the actual mass of the simulated object M(<r), we
define the mass bias as:

b(r) =
Mest(<r) − M(<r)

M(<r)
· (15)

The true mass M(<r) is computed by summing the masses of
all the particles (dark matter, gas, and star particles) within the
radius r.

In our observational-like analysis the functions ρg(r) and
Tg(r) in Eq. (14) are modeled as described in Sects. 3.3 and 3.4.
The various options for the choice of fitting functions and tem-
perature profiles allow us to investigate and disentangle biases
of different origin. In particular we explore three different cases:

– Polytropic β-model: for a given cluster and projection we
fit the surface brightness profile and the corresponding pro-
jected, spectroscopic-like temperature profile using Eqs. (9)
and (12), respectively. The derived mass bias is referred to as
bβ,T2D

sl
(r).

– Extended β-model with spectroscopic temperatures: for a
given cluster and projection we fit the surface brightness pro-
file with Eq. (10). The three-dimensional, spectroscopic-like
temperature profile cluster is fitted using Eq. (13). In this
case the mass bias is denoted by bextβ,T3D

sl
(r).

– Extended β-model with mass-weighted temperatures: same
as the previous case, but the three-dimensional, mass-
weighted temperature profile is adopted instead of the
spectroscopic-like profile. The derived mass bias is denoted
by bextβ,T3D

mw
(r).

For each of the ∼300 observations the derived mass bias is
evaluated at three different overdensities, corresponding to Δ =
2500, 500 and 200. Cluster-centric distances of r2500 and r500
are usually probed by observations, with r2500 being well inside
the largest accessible radius and r500 typically being the largest
distance where the ICM temperature can be reliably estimated
through X-ray observations (e.g. De Grandi & Molendi 2002;
Piffaretti et al. 2005; Vikhlinin et al. 2005; Pratt et al. 2007;
Snowden et al. 2008; Leccardi & Molendi 2008). We addition-
ally choose r200 in order to extend our analysis to radii that will
be accessible in the near future (e.g. see Reiprich et al. 2008), to
quantify the effects of extrapolation to large distances and, most
important, to investigate the mass bias in dynamically different
regions.

We adopt three different values for the outer boundary of
the region considered in the mass reconstruction by using data
(i.e. surface brightness and temperature profiles) within rup =
0.5, 0.75 and 1.05 × r200 (the inner boundary is rlow = 0.1 × r200,
see Sects. 3.3 and 3.4). The choice of rup is of paramount impor-
tance to assess the dependence of the mass bias upon changes
in the gas density slope, which can have a significant impact on
mass measurement biases. The three different choices allow us
to explore a limitation that in practice is imposed by the field of
view of the detector and the background level of a given expo-
sure.

To summarize, for a given radial range ([0.1–0.5] r200,
[0.1–0.75] r200, or [0.1–1.05] r200, with the latter denoted for
simplicity by [0.1–1] r200 hereafter), we fit surface bright-
ness and temperature profiles with the analytic functions spe-
cific to the adopted model and evaluate Eqs. (14) and (15) at
r2500, r500, and r200. It is important to notice that by averaging
over the whole sample we find: 〈r2500/r200〉sample = 0.31 and
〈r500/r200〉sample = 0.67. As a consequence Mest(<r), and there-
fore b(r), is extrapolated using the best fit functions at r500 and
r200 for the fitting range [0.1–0.5] r200 and at r200 for the fitting
range [0.1–0.75] r200. No extrapolation is of course necessary
when the fitting range [0.1–1] r200 is adopted.

The large size of the simulated mock sample (∼300 obser-
vations) allows us to use a statistical approach when exploring
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the dependence of the mass bias on various quantities. For any
given mass determination method, overdensity at which the en-
closed mass is estimated, radial fitting range, and Π3 class qi (or
whole sample) the mass bias values are modeled using distribu-
tion fitting. The data set is always modeled with both normal and
Weibull distributions in order to describe symmetric and asym-
metric data distributions, respectively. We never find, however,
strongly skewed distributions. Even when a Weibull distribution
yields a better fit to the data than a normal distribution, its mean
and standard deviation are only slightly different from those de-
rived from the normal distribution best-fit. Since these small dif-
ferences are completely irrelevant for our discussion, we quote
only results from normal distribution fitting throughout the pa-
per. From the data set of values bi(rΔ) (i = β, T 2D

sl ; extβ, T 3D
sl ;

extβ, T 3D
mw), distribution fitting yields the mean value m(bi(rΔ))

and standard deviation σ(bi(rΔ)).

Notice that sample S1 is extracted from a volume 8 times
larger than the one for S2 (see Sect. 2). This implies that the clus-
ter abundance measured in our sample is not correct. In order to
check whether this issue has an important impact on our results
we proceed as follows. We create a new sample made of sample
S2 and 1/8 of randomly selected objects from sample S1, for
which mean values and standard deviations of the mass bias are
computed for the all the cases under consideration. The proce-
dure is repeated many times and the derived values are compared
with those computed for the original sample. In all the cases we
find that the differences are fully negligible and we therefore re-
port results for the original sample in the reminder of the paper.

The four Π3 classes qi (see Sect. 3.2) are defined such that
each class contains the same number of objects (∼70). This guar-
antees a meaningful comparison between mean values and stan-
dard deviations derived from different Π3 classes.

4.2. Results

Total cluster mass determinations from an X-ray observations,
in practice might be affected by more that one source of bias.
The number of different cases for which we derive total masses
(fitting ranges, best fit functions, temperature definitions, etc.)
are of course designed in order to investigate the various sources
separately, but also to show the effect of their combination. Our
results are reported in Table 2 and conveniently shown in three
figures (Figs. 1–3). Notice that for clarity the mean values (data
points in the figures) and standard deviations (errorbars in the
figures) of the various mass bias distributions are given in per-
cent. The reported values show, in most of the cases, the com-
bined effect of different biases and are very useful to estimate
the total bias for a given mass reconstruction method and condi-
tions. Nevertheless, some specific cases and the comparison of
mass biases derived under different conditions allow us to quan-
tify the effect of single biases separately.

4.2.1. The modeling bias

In order to disentangle the bias introduced by inaccurate mod-
eling of temperature and density profiles from other biases, we
compare the mean mass bias from polytropic β and extended
β-models with spectroscopic temperatures only when no extrap-
olation of the profiles is needed. Notice that the two models
are based on projected and three-dimensional spectroscopic-like
temperature profiles, respectively. Nevertheless, the difference
between the two types of profiles is small (see Sect. 3.4) and

Fig. 1. Summary of the results for the mass reconstruction using the
polytropic β-model and projected, spectroscopic-like temperature pro-
files. The three panels show quantities derived from modeling of the
profiles in three different radial ranges. In each panel we show the mean
(points) and standard deviation (errorbars) of the mass bias distribution
at r200 (stars), r500 (diamonds), and r2500 (triangles). Open/filled symbols
indicate quantities derived with/without extrapolation of the mass pro-
file. The results from distribution fitting are shown for the whole sample
(all) and when the four Π3 classes are used as sub-samples. The results
for different overdensities are shifted horizontally to improve clarity.
Notice that the mass bias is shown here in percent.

does not introduce any significant additional bias, in particular
for the relaxed clusters.

We therefore focus on the filled symbols in Figs. 1 and 2
and the corresponding values in Table 2. As ubiquitously found
in simulations, the gas density slope in our simulated clusters
considerably steepens with radius. In addition, radial tempera-
ture profiles also show a non-trivial radial dependence. Thus, the
performance of a given model adopted for the surface brightness
and temperature fitting strongly depends on the ability to model
these slope changes.

From a visual inspection of the fitted profiles we find that, as
expected, the extended β-model is extremely accurate in mod-
eling surface brightness and temperature profiles for any given

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809739&pdf_id=1
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Fig. 2. Same as in Fig. 1, but for the mass reconstruction method adopt-
ing the extended β-model and 3D spectroscopic-like temperature pro-
files.

radial fitting range, especially for the most relaxed clusters. The
accuracy of this model is reflected in the fact that, when no ex-
trapolation is involved, the bias mean values and standard de-
viations do not depend on the radial fitting range (compare the
filled symbols in the different panels in Fig. 2 and the values in
in Table 2).

The difference between the mean values derived from ex-
tended β- and polytropic β-models (compare filled symbols in
the bottom panels of Figs. 1 and 2 or the corresponding val-
ues listed in Table 2) provides a direct measure of the bias due
to the inaccurate modeling provided by the polytropic β-model.
The comparison shows that the polytropic β-model introduces
an additional mass underestimate which is on average ∼5, 10,
and 15% at r2500, r500, and r200, respectively.

4.2.2. The extrapolation bias

The bias originating from extrapolating of the mass profiles be-
yond the radial range probed by observation can be extremely
large. While this type of bias can be easily kept under con-
trol by simply avoiding any mass estimation/comparison beyond

a given outer radius, it may be in practice the cause of many
disagreements between different mass estimates (i.e. different
X-ray analyses, X-ray and lensing, etc.).

The bias introduced by extrapolation of course affects all the
explored models. However, in order to evaluate its net effect, we
restrict our discussion to the results obtained from the extended
β-model and mass-weighted temperature profiles, since spectro-
scopic temperatures introduce an additional bias that is discussed
below. The polytropic β-model, in addition to being inaccurate
(see Sect. 4.2.1), is also affected by this latter bias. For a given
overdensity, the average extrapolation bias can be therefore de-
rived by comparing open with filled symbols in Fig. 3 and the
corresponding values in Table 2.

While the extrapolation bias is of course due to the fact that
best fit functions for data in a given radial range do not provide a
good description of data outside the radial range, it is interesting
to notice that it causes a systematic underestimate of the total
mass. For the whole sample, the difference between the mean
mass bias obtained adopting the the fitting range [0.1–1]r200 (i.e.
with no extrapolation) and that obtained from the fitting range
[0.1–0.5]r200 indicates that extrapolation causes an additional
∼10% average underestimate at r200 (see Table 2). For a very
large sample the average bias introduced by extrapolation is thus
not extremely large. Furthermore, if only the most relaxed clus-
ters (i.e., the sub-sample q1) are taken into account this bias is
fully negligible (see Table 2). These considerations are true for
average bias values. It is however extremely important to notice
that standard deviations of mass biases computed from extrap-
olated values are at least twice as big as those obtained from
non-extrapolated values, independent of the dynamical state of
the cluster (see the errorbars in Fig. 3 and errors in Table 2). This
clearly shows that, for individual objects, extrapolation can lead
to extremely large mass over/underestimates even for the most
dynamically relaxed objects.

4.2.3. The dynamical state bias

X-ray observations of unrelaxed clusters are expected to yield
bias mass estimates because both assumptions of spherical sym-
metry and hydrostatic equilibrium are not valid.

Here we quantify the mass bias due to the unrelaxed dynam-
ical state of the cluster by considering: estimates derived from
the extended β-model (because of its accuracy, see 4.2.1), 3D
mass-weighted temperature profiles (in order to avoid spectro-
scopic temperature biases), and mass estimates derived with-
out extrapolation (to avoid contamination from extrapolation bi-
ases). Our results are shown with filled symbols in Fig. 3 and
since for the case under consideration the results do not depend
on the adopted fitting range we focus our discussion on the val-
ues shown in the lower panel (i.e. the fitting range [0.1–1]r200,
see Table 2 for the corresponding values).

While at r2500 we do not find any appreciable variation of
the mean mass bias for the four Π3 classes (see Sect. 3.2 for
the definition of these classes), at r500 and r200 we find a clear
trend with cluster dynamical state: the mass is on average more
underestimated for disturbed clusters than for the relaxed ones.
We find, for example, m(bextβ,T3D

mw
(r200)) = −3% and −23% for

the q1 class (the most relaxed clusters) and q4 class (the most
disturbed clusters), respectively.

Furthermore, we find that at all overdensities the individual
mass bias values are more scattered around the mean for dis-
turbed objects than for the relaxed ones, as shown by the stan-
dard deviations in Fig. 3 and errors in Table 2. This is illustrated

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809739&pdf_id=2
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Table 2. Mean values and standard deviations (errors) of the mass bias derived from the observational-like analysis. These are listed in percent for
the three adopted models, the three different fitting ranges, and the three overdensities at which they are evaluated. Results are given for the whole
sample and for the four Π3 classes.

Bias Fitting range rΔ Whole sample q1 q2 q3 q4

r2500 −12 ± 11 −9 ± 6 −10 ± 9 −12 ± 10 −15 ± 14
[0.1–0.5]r200 r500 −27 ± 11 −21 ± 7 −24 ± 10 −30 ± 12 −32 ± 11

r200 −32 ± 12 −26 ± 7 −30 ± 13 −33 ± 11 −41 ± 12
r2500 −14 ± 9 −11 ± 6 −13 ± 8 −15 ± 10 −17 ± 11

bβ,T2D
sl

(rΔ) [0.1–0.75]r200 r500 −29 ± 11 −23 ± 7 −26 ± 10 −33 ± 12 −36 ± 10
r200 −34 ± 12 −25 ± 7 −33 ± 13 −35 ± 10 −43 ± 11
r2500 −16 ± 8 −13 ± 5 −15 ± 8 −18 ± 8 −20 ± 10

[0.1–1]r200 r500 −31 ± 12 −24 ± 7 −27 ± 10 −35 ± 13 −37 ± 10
r200 −34 ± 13 −25 ± 7 −33 ± 15 −35 ± 12 −42 ± 10
r2500 −7 ± 10 −3 ± 8 −7 ± 8 −9 ± 10 −11 ± 11

[0.1–0.5]r200 r500 −20 ± 23 −5 ± 26 −16 ± 23 −30 ± 15 −30 ± 18
r200 −28 ± 42 −5 ± 52 −30 ± 35 −35 ± 38 −42 ± 31
r2500 −7 ± 10 −4 ± 8 −6 ± 7 −8 ± 11 −10 ± 11

bextβ,T3D
sl

(rΔ) [0.1–0.75]r200 r500 −17 ± 19 −7 ± 15 −14 ± 15 −21 ± 20 −28 ± 16
r200 −24 ± 26 −7 ± 21 −22 ± 25 −29 ± 26 −41 ± 18
r2500 −7 ± 10 −4 ± 8 −7 ± 8 −9 ± 11 −11 ± 11

[0.1–1]r200 r500 −17 ± 15 −10 ± 11 −13 ± 13 −21 ± 16 −24 ± 14
r200 −21 ± 20 −10 ± 14 −19 ± 19 −23 ± 21 −33 ± 19
r2500 −2 ± 10 −2 ± 8 −3 ± 8 −4 ± 11 0 ± 10

[0.1–0.5]r200 r500 −13 ± 22 −1 ± 27 −9 ± 21 −21 ± 13 −20 ± 17
r200 −20 ± 42 1 ± 55 −25 ± 30 −25 ± 41 −30 ± 31
r2500 −1 ± 10 −2 ± 7 −3 ± 8 −2 ± 12 1 ± 11

bextβ,T3D
mw

(rΔ) [0.1–0.75]r200 r500 −10 ± 16 −2 ± 13 −7 ± 13 −12 ± 18 −18 ± 16
r200 −14 ± 24 1 ± 20 −12 ± 25 −17 ± 24 −30 ± 16
r2500 −2 ± 10 −2 ± 7 −3 ± 9 −2 ± 12 0 ± 11

[0.1–1]r200 r500 −9 ± 12 −5 ± 9 −6 ± 10 −12 ± 14 −13 ± 12
r200 −12 ± 17 −3 ± 12 −11 ± 15 −11 ± 18 −23 ± 17

more specifically in Fig. 4 for the case of the fitting range
[0.1–1]r200 and Δ = 500.

These results are particularly relevant because they clearly
show that mass underestimates in clusters that are identified as
relaxed according to the power ratio method are on average small
(∼2−5%), as opposed to the very large bias that affects total mass
determinations in disturbed systems. Finally, we remark that, in
agreement with other studies (e.g. Jeltema et al. 2008), we do
not find any correlation between Π3 and true total mass.

4.2.4. The spectroscopic temperature bias

The difference between emission-weighted, mass-weighted, and
spectroscopic ICM temperatures has been addressed by a num-
ber of authors (e.g. Mathiesen & Evrard 2001; Gardini et al.
2004; Mazzotta et al. 2004; Rasia et al. 2005; Vikhlinin 2006;
Valdarnini 2006). Special emphasis has been placed on global
temperatures because of their impact on the scaling relations
such as the luminosity-temperature and mass-temperature re-
lations. Recent studies indicate that Tmw(<rΔ) < Tsl(<rΔ) <
Tew(<rΔ), where usually Δ = 500 (e.g. Nagai et al. 2007a; Ciotti
& Pellegrini 2008). This relation is also valid for our simulated
sample. By averaging over the whole sample we find the ra-
tios: Tmw(<r500) :Tsl(<r500) :Tew(<r500) = 1:1.13:1.27. In ad-
dition we computed average temperatures from the same sam-
ple but without applying the masking procedure described in
Sect. 3.1 and find: Tmw(<r500):Tsl(<r500):Tew(<r500) = 1:1.08:
1.21. Considering that mass-weighted global temperatures are
unaffected by masking, these results show that both emission-
weighted and spectroscopic-like global temperatures are on av-
erage biased high by ∼5% if cold ICM clumps are not masked
out appropriately.

In the following we focus on the difference between Tmw
and Tsl since emission weighted temperatures are not relevant in
our analysis. As noted by Nagai et al. (2007a) global spectro-
scopic temperatures within large apertures are higher that mass-
weighted ones because they are dominated by the inner, hotter
cluster region. It is important to notice that accurate total mass
determination methods such as the one adopted in this paper
rely on spatially resolved temperature determinations and not on
global temperatures. Therefore it is crucial to compare Tmw and
Tsl radial profiles and how any difference between the two prop-
agates into total mass estimates.

We compared spectroscopic like and mass-weighted temper-
ature profiles and find, in agreement with Ameglio et al. (2007),
that Tmw(r) > Tsl(r). This inequality, and the fact that the op-
posite is true when considering global temperatures, can be un-
derstood as follows. Global temperatures are computed by av-
eraging within large cluster-centric distances whereas profiles
are computed by averaging within radial shells. The density and
temperature distributions in the two cases are dramatically dif-
ferent. In the former case the distribution is dominated by the
central, hot and dense gas, while in a given radial shell the ICM
is obviously distributed in a much narrower range of densities
and temperatures. The ICM in our simulations is locally mul-
tiphase and made of a dominant component and mostly lower
temperature particles which do not substantially contribute to
mass-weighted temperature, but bias spectroscopic temperatures
low. A simple illustration of the spectroscopic temperature bias
for a two-phase ICM can be found in Jia et al. (2008).

In the computation of both Tmw(r) and Tsl(r) all cold clumps
are excluded. This implies that local spectroscopic-like temper-
atures can underestimate mass-weighted ones also because of
cold particles that are not part of clumps. Interestingly, we find
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Fig. 3. Same as in Fig. 2, but for results derived using mass-weighted
temperature profiles.

that our mass reconstruction method depends very weakly on
cold clump removal. Total masses are in fact derived by fitting
brightness and temperature profiles with smooth functions of ra-
dius, which are in almost all the cases insensitive to the irreg-
ularities (spikes or bumps in the brightness profiles and dips or
depressions in the temperature profiles) arising from cold clumps
when no masking is applied.

In relaxed clusters Tmw and Tsl agree very well at small
and intermediate radii. The agreement becomes gradually worse
with increasingly disturbed dynamical state (as measured by
the power-ratio method). This reflects the more complex ther-
mal structure of disturbed clusters, where the fraction of cold
gas particles stripped from cold sub-structures is relatively high.
Furthermore, we find that the relative difference between Tmw(r)
and Tsl(r) increases with radius. This is expected because of
the weighting scheme used in the computation of Tsl and the
presence of cold infalling gas in the cluster outskirts. A simi-
lar finding is reported in Rasia et al. (2006). Finally, the relative
difference between Tmw and Tsl is higher in more massive clus-
ters than in low mass systems because in massive objects the
spread in temperature is larger (e.g. Valdarnini 2006; Ameglio
et al. 2007).

Fig. 4. Mass bias as a function of Π3 at r500 with estimated masses de-
rived adopting the extended β-model and 3D mass-weighted tempera-
ture profiles. The solid line shows the best fit function bextβ,T 3D

mw
(r500) =

−0.256–0.022 × Π3(r500).

The underestimate of the true ICM temperature profile in-
troduced by spectroscopic measurement leads to total mass un-
derestimates because hydrostatic masses (Eq. (14)) depend on
both temperature and its logarithmic derivative. In order to dis-
entangle this effect from the other observational biases discussed
in the previous subsections, we consider results obtained from
the two extended β-models and compare results obtained from
the one adopting spectroscopic-like profiles with those derived
using mass-weighted temperature profiles. The net mass bias in-
troduced by spectroscopic temperatures can be readily estimated
by computing the difference between the mean bias values listed
in Table 2. However, a clearer determination can be performed
by defining the spectroscopic bias:

bspec(r) =
Mest

extβ,T 3D
sl

(<r) − Mest
extβ,T 3D

mw
(<r)

Mest
extβ,T 3D

mw
(<r)

, (16)

where Mest
extβ,T 3D

sl

(<r) and Mest
extβ,T 3D

mw
(<r) are total masses estimated

through the extended β-model with spectroscopic-like and mass-
weighted temperatures profiles, respectively. Both are derived
adopting the the fitting range [0.1–1]r200 in order to avoid any
contamination introduced by the extrapolation.

In Table 3 we list the spectroscopic bias mean values and
standard deviations computed for the whole sample and for the
four Π3 classes separately. These values are also shown in Fig. 5
for clarity. The spectroscopic bias is systematic and of the order
of −10% if the whole sample is considered. However, if the same
comparison is performed for the four Π3 classes separately one
finds that it is larger (in absolute value) in disturbed clusters than
in relaxed ones. The mean spectroscopic bias is also greater at
larger cluster-centric distances than at small ones. These results
are of course directly related to the relative difference between
the Tmw and Tsl profiles discussed above.

Thus, a crucial point of out findings is that also after the re-
moval of all the resolved ICM cold clumps in the simulations,
spectroscopic temperature profiles underestimate the true ones,
and therefore the total mass, because of a diffuse distribution of
cold gas particles.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809739&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809739&pdf_id=4
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Table 3. Mean values and standard deviations (errors) of the spectroscopic bias bspec(rΔ) (Eq. (16)). Values are in percent and listed for three
different true mass ranges used in their derivation: all masses (the whole sample), lowM-sample (clusters with M(<r200) < 1.8× 1014 h−1 M�), and
highM-sample (clusters with M(<r200) > 1.8× 1014 h−1 M�). In each case results are given, at three radii, for the whole sample and for the four Π3

classes.

Mass range rΔ Whole sample q1 q2 q3 q4

r2500 −6 ± 6 −2 ± 2 −4 ± 4 −6 ± 5 −11 ± 7
all masses r500 −9 ± 7 −5 ± 4 −8 ± 5 −12 ± 7 −13 ± 8

r200 −11 ± 10 −7 ± 6 −9 ± 8 −14 ± 12 −14 ± 10
r2500 −4 ± 4 −1 ± 1 −3 ± 3 −6 ± 4 −9 ± 5

lowM-sample r500 −7 ± 4 −4 ± 2 −5 ± 3 −9 ± 4 −9 ± 4
r200 −5 ± 5 −3 ± 2 −4 ± 4 −7 ± 5 −9 ± 5
r2500 −7 ± 7 −2 ± 1 −4 ± 4 −7 ± 5 −12 ± 9

highM-sample r500 −12 ± 8 −7 ± 5 −11 ± 6 −14 ± 8 −16 ± 9
r200 −17 ± 11 −12 ± 6 −17 ± 7 −19 ± 14 −18 ± 11

Fig. 5. Mean (points) and standard deviation (errorbars) of the spectro-
scopic bias bspec(r) (Eq. (16)) at r200 (stars), r500 (diamonds), and r2500

(triangles). The results are shown for the whole sample (all) and when
the four Π3 classes are used as sub-samples. The results for different
overdensities are shifted horizontally to improve clarity.

4.2.5. Mass dependence

Our results concerning the influence of the various observational
biases allow us to focus on some relevant cases when exploring
the dependence of the mass bias on the total, true mass. We can
avoid any contamination from biases such as the modeling bias
or the extrapolation bias by considering results provided by ex-
tended β-models and without extrapolation of the mass profiles.

As expected, no mass dependence is found for mass biases
derived when using the extended β-model, as shown in Fig. 6 in
the case of fitting range [0.1–1]r200 and Δ = 500. The indepen-
dence of bias on total mass is found for all fitting ranges and all
overdensities. This is, however, only found when mass-weighted
temperature profiles are used. Spectroscopic-like temperatures
introduce a mass dependence: the average bias is more nega-
tive for massive systems, as shown in Fig. 7 for a specific case.
This mass dependence arises from the weighting scheme used
in the computation of spectroscopic-like temperatures, which is
sensitive to the cooler part of the gas distribution, and the scale
dependency introduced by cooling on the amount of this cold
component versus the cluster mass (see Sect. 4.2.4).

In order to investigate the dependence of the spectroscopic
bias on true mass and at the same time on dynamical state,
we compute mean values and standard deviations by consid-
ering objects in a given (true) mass interval and Π3 class. In
order to obtain statistically significant values (i.e. a sufficient
number of objects in each class), we must adopt a coarse mass

Fig. 6. Mass bias from the extended β-modeling versus total true
mass at Δ = 500 for the radial fitting range [0.1–1]r200. The es-
timated total mass is derived using mass-weighted temperature pro-
files. The solid line shows the best fit function bextβ,T 3D

mw
(r500) = 0.78 −

0.06 log[M(<r500)/h−1 M�].

binning. After experimenting with different types of mass bin-
ning we find that the discussion can be greatly simplified by re-
porting results for only two sub-samples, which are obtained by
ordering the sample by true cluster mass and halving it. In the
following these two sub-samples are referred to as the lowM-
and highM-sample.

For each of these sub-samples we construct the four Π3
classes separately and compute the mean and standard deviation
of the spectroscopic bias as done above for the whole sample.
The results are reported in Table 3, together with those obtained
for the whole sample, and shown in Fig. 8. At r2500 we do not
find any significant dependence on mass and therefore the av-
erage biases reported in Sect. 4.2.4 are valid at any mass. On
the other hand, we find a strong mass dependence at r500 and
r200 and that its strength increases with cluster-centric distance.
For the lowM-sample the average spectroscopic bias does not
significantly vary with overdensity, as opposed to the behavior
found for the highM-sample. Because of the findings reported in
Sect. 4.2.3, relaxed clusters (q1 and q2 sub-samples) are of par-
ticular relevance. The ones in the lowM-sample are very mildly
affected by the spectroscopic bias at all cluster-centric distances,
whereas for those in the highM-sample the mean spectroscopic
bias is ∼−10% at r500 and ∼−15% at r200.
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Fig. 7. Same as Fig. 6, but with the estimated total mass derived using
spectroscopic-like temperature profiles. The solid line shows the best fit
function bextβ,T 3D

sl
(r500) = 2.79 − 0.21 log[M(<r500)/h−1 M�].

Fig. 8. Same as Fig. 5, but for the lowM- (filled symbols) and highM-
samples (open symbols), separately.

4.2.6. The ideal case

After having examined the various biases affecting the total mass
determination, we discuss here the ideal conditions under which
the most unbiased mass determination is possible. From our re-
sults it is clear that in order to obtain unbiased mass estimates
one must select very relaxed clusters (the q1 sub-sample), adopt
a model that can accurately fit the ICM density and temperature
profiles (the extended β-model, here), and avoid extrapolation
(notice, however, that the extrapolation bias is on average neg-
ligible for relaxed clusters. See Sect. 4.2.2). In addition let us
assume that the true thermal structure of the ICM (i.e. Tmw(r))
can be measured. In this case the bias does not depend on the true
mass of the system and, at all radii, masses are on average very
well reconstructed (see Table 2 and Fig. 3). Notice that there is
a residual level of underestimation which might be originating
from the still imperfect gas density and temperature modeling or
from departure of the gas from hydrostatic equilibrium.

It is of paramount importance, however, to take into account
that the true ICM temperature is not accessible through X-ray
observations and that we must deal with spectroscopic temper-
ature measurements. As shown in Sect. 4.2.4, the most relaxed
clusters are also the less affected by the spectroscopic bias (see
Table 3 and Fig. 5). As we have shown in Sect. 4.2.5, the spec-
troscopic bias depends on cluster mass. It is negligible in low

mass clusters, but important for massive ones especially at large
radii.

5. Total mass determination
from the three-dimensional gas distribution

As shown in Sect. 4, mass determinations from X-ray observa-
tions suffer from various biases. Of course, in addition to these
the assumption of hydrostatic equilibrium (i.e. Eq. (14)) also
plays a crucial role in the total mass reconstruction. Moreover,
the derivation of Eq. (14) implicitly assumes spherical symme-
try. Whereas the validity of this assumption can be fairly well
tested though an X-ray morphological analysis, the robustness
of the assumption of hydrostatic equilibrium cannot be directly
investigated observationally.

Here, in order to investigate the validity of both assumptions
we avoid any bias due to the X-ray reconstruction method and
make use of the full three-dimensional gas distribution in the
simulation. For consistency with the analysis presented in Sect. 4
we consider only objects with Tsl(<r200) ≥ 2 keV.

5.1. Mass estimators

We introduce the hydrostatic equilibrium mass estimate, MHE by
assuming spherical symmetry and rewriting Eq. (14) as

MHE(<r) = − r2

Gρg
〈∇rPg(r)〉, (17)

where Pg is the gas pressure. As a means to avoid any system-
atic effect generated by estimating gradients from averaged pro-
files and to achieve maximum accuracy, we evaluate the term
〈∇rPg(r)〉 directly from the gas particle distribution. To this end,
we introduce a spherical shell at the test radius r and a corre-
sponding set of 40 × 40 grid points with angular coordinates
uniformly spaced in cosθ, φ. At the grid point xgr the pressure
gradient is expressed as

∇Pg(xgr) = (γ − 1)
∑

miui∇W(|xi − xgr|, hg), (18)

where ui is the specific particle internal energy and γ = 5/3.
The radial component ∇r is then extracted by transforming the
gradient vector according to the grid coordinates and finally
〈∇rPg(r)〉 is obtained by averaging (18) over the set of grid
points. We checked the robustness of the estimated average gra-
dients 〈∇rPg(r)〉 with a two-fold increase in the number of grid
points (i.e. 80 × 80) and found the results to be unaffected by
this choice.

This procedure allows us to define a mass estimate MHE
which is influenced by the cluster dynamical state, but in con-
trast to the mass determinations discussed in Sect. 4 it is not
affected by any bias originating from the gas density and tem-
perature profile reconstruction and modeling.

Similarly to Eq. (15) we define the mass bias:

bHE(r) =
MHE(<r) − M(<r)

M(<r)
· (19)

In addition, we also consider the hydrodynamical equilibrium
mass estimate (Rasia et al. 2004; Kay et al. 2004):

MDE(<r) = MHE(<r) + Mσ(<r)

= MHE(<r) − σ
2
r r

G

(
d ln ρg
d ln r

+
d ln σ2

r

d ln r
+ 2βν(r)

)
, (20)
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where σr and σt are the radial and tangential gas velocity dis-
persion, respectively, and βν(r) = 1 − σ2

t /2σ
2
r is the gas veloc-

ity anisotropy parameter. The estimate of the mass term Mσ(<r)
is subject to uncertainties because of the irregularities that are
present in the gas velocity dispersion profiles of the simulated
clusters. In order to properly estimate the radial derivatives in
Eq. (20) we have therefore regularized the measured profiles by
applying to them a Savitzky-Golay filter (e.g. Press et al. 1992,
Sect. 14.2). This smoothing procedure is effective in removing
the small-scale noise and yields mass estimates that are much
more regular against the radial dependency. As for MHE we de-
fine the mass bias:

bDE(r) =
MDE(<r) − M(<r)

M(<r)
· (21)

Once the mass profiles MHE(<r) and MDE(<r) for the ∼100 ob-
jects in our sample are computed, we evaluate the mass biases
bHE(r) and bDE(r) at r2500, r500, and r200. Finally, mean values
and standard deviations of the resulting mass bias distributions
are computed.

Notice that Eq. (20) is derived from the Boltzmann equation
(e.g. Binney & Tremaine 1987, Chap. 4) by assuming steady-
state hydrodynamic equilibrium and taking into account the
terms from the gas isotropic pressure and anisotropic velocity
dispersion. If the latter are neglected (i.e. it is assumed that
the velocity dispersion of the gas is much smaller than its tem-
perature), then Eq. (20) yields Eq. (17). In the derivation it is
assumed, of course, that the system is spherically symmetric.

The steady-state assumption implies no net radial stream-
ing motions (no mean laminar flow, i.e. 〈vr〉 = 0, which im-
plies σ2

r = 〈v2r 〉) and that all time derivatives can be set to zero.
Therefore, the applicability of Eq. (20) depends on the degree of
spherical symmetry of the system and on the condition 〈vr〉 = 0,
while that of Eq. (17) additionally depends on the condition
Mσ(<r)/MΔ(<r) � 1. Hence, the hydrodynamical equilibrium
equation naturally provides a more accurate mass estimator than
the hydrostatic equilibrium.

The accuracy of spherical symmetry can be assessed by mea-
suring the mean tangential acceleration at the surface of the
spherical shell of radius r. To this end, in correspondence with
each of the grid points at which we evaluate the pressure gradi-
ent in Eq. (18), we also evaluate the gravitation acceleration ag
of test particle. We then define a mean torque parameter τq by
averaging the acceleration components a2

θ + a2
φ and a2

r over the
set of grid points:

τ2
q =

1
2

∑
g a2
θ + a2

φ∑
g a2

r
· (22)

The constraint τq � 1 can be used as a condition to validate the
spherical symmetry approximation. Accordingly, the quadrupole
moment terms can be neglected in the radial component of the
total potential gradient and to the lowest order we have:

∇rΦ(r) � GM(<r)
r2

τq � 1. (23)

It is interesting to notice that the degree of spherical symmetry
measured directly from the full 3D information provided by the
simulations is highly correlated with that measured from X-ray
brightness maps. As shown in Fig. 9 for the specific case of
Δ = 2500 the torque parameter τq and 〈Π3〉planes are correlated.
Here 〈Π3〉planes is the mean of the threeΠ3 values computed from
three orthogonal surface brightness maps (see Sect. 3.2). From
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Fig. 9. Mean torque parameter τq (which measures the sphericity of the
gravitational potential) as a function of 〈Π3〉planes (which measures the
sphericity of the gas distribution) at r2500. For each cluster the value
〈Π3〉planes is the mean of the three Π3 values computed from three or-
thogonal surface brightness maps.

a Spearman rank correlation coefficient analysis we find that the
correlation is significant at more than the 95% level at r2500, r500,
and r200. Clusters with small values of the torque parameter τq,
i.e. whose potential has a high degree of sphericity, are therefore
identified as spherical systems when selected by means of the
power ratio method.

The level of radial streaming motions at the radius r is
directly quantified through the radial Mach number 〈vr〉/cs,
where the gas sound speed cs, is computed from c2

s (r) =
5kTg(r)/(3μmp).

It follows that the applicability of Eqs. (17) and (20) to mea-
sure the cluster gravitating mass within the test radius r is then
limited to those systems for which at the radius r the conditions
τq � 1 and |〈vr〉/cs| � 1 are satisfied.

5.2. Results

The dependence of the mass biases bHE and bDE on the mean
torque parameter τq and the radial Mach number 〈vr〉/cs are
shown in Figs. 10 and 11, respectively. The figures show that,
for a given overdensity, we measure large mass biases (both pos-
itive and negative) for clusters with large τq and |〈vr〉/cs|. As we
move from large to small values of the parameters (i.e. to an
increasing degree of sphericity of the cluster or to small radial
streaming velocities) the scatter of the measured biases substan-
tially decreases. These results demonstrate that, in addition to
sphericity, the radial Mach number 〈vr〉/cs is a key parameter in
the study of the reliability of the hydrostatic and hydrodynamical
mass estimators.

It is important to notice that the parameters τq and 〈vr〉/cs are
not uncorrelated. We find in fact that objects with large τq also
tend to have large |〈vr〉/cs|, as shown in Fig. 12 forΔ = 2500. The
correlation between these parameters is found to be significant at
more than the 95% level at all the three considered overdensities.

In addition to the considerable decrease of the scatter with
decreasing values of τq and |〈vr〉/cs|, a visual inspection of
Figs. 10 and 11 indicates that on average the mass estimators
MHE is biased low and that masses computed through the more
accurate estimator MDE are on average well recovered. This is
quantitatively shown by the mean values derived from the whole
sample, which are listed in Table 4.
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Fig. 10. Mass biases bHE (open stars) and bDE (filled triangles) as a func-
tion of mean torque parameter τq at r2500, r500, and r200. In each panel we
show the mean values derived from the whole sample for bHE (dashed
line) and bDE (dot-dashed line), and the mean values (plotted only up
to 0.1) derived from the sub-sample with τq < 0.15 and |〈vr〉/cs | < 0.1
for bHE (short-dashed line) and bDE (solid line). In each panel are also
reported these mean values along with the standard deviations. Notice
that in order to focus on the bulk of the data we have omitted the results
for a few clusters with very large bias and large τq.

It is crucial that the average biases derived from the hy-
drostatic mass estimator MHE are in agreement with those ob-
tained from the X-ray mass reconstruction procedure presented
in Sect. 4. A comparison between the values in Table 4 and those
listed in Table 2 for the extended β-model with mass-weighted
temperature profiles (since these follow the virial relationship
more accurately that spectroscopic ones) shows that in the two

Fig. 11. Mass biases as a function of radial Mach number 〈vr〉/cs.
Symbols, lines, and values are as explained in Fig. 10. Also here few
clusters with very large bias and large |〈vr〉/cs | are omitted from the plot
to improve clarity.

cases the true mass is similarly underestimated. Furthermore, we
find that, as for the mass bias derived using mass-weighted tem-
peratures in Sect. 4, both bHE and bDE do not depend on cluster
true mass.

Most important, the mean values of the bHE and bDE distri-
butions show that if in addition to the thermal pressure also the
ICM non-thermal pressure component (i.e. the gas anisotropic
velocity dispersion) is taken into account, the total mass of the
system is on average better reconstructed (see also Rasia et al.
2004; Kay et al. 2004).
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Fig. 12. Mean torque parameter τq as a function of Mach number
|〈vr〉/cs| at r2500.

Table 4. Mean values and standard deviations (errors) of the mass bi-
ases bHE and bDE derived from the whole sample and for the sub-sample
with τq < 0.15 and |〈vr〉/cs | < 0.1. Values are given in percent at three
different overdensities.

Bias rΔ Whole sample Sub-sample
(τq < 0.15, | 〈vr〉cs

| < 0.1)

r2500 −7 ± 19 −5 ± 7
bHE(rΔ) r500 −14 ± 16 −8 ± 10

r200 −13 ± 27 −9 ± 16
r2500 −1 ± 23 0 ± 7

bDE(rΔ) r500 −3 ± 17 0 ± 11
r200 2 ± 34 0 ± 17

In oder to investigate the accuracy of the mass estimators
MHE and MDE more precisely we proceed as follows. At a
given overdensity, we create sub-samples of clusters with τq and
|〈vr〉/cs| smaller that some given threshold values and in each
case we compute mean values and standard deviations of bHE
and bDE. It is important to find a compromise between small
threshold values for τq and |〈vr〉/cs| (in order to guarantee as
much as possible the applicability of the mass estimators) and
a sub-sample with enough objects so as to allow a meaningful
distribution fitting. We experimented with various cuts and find
that the optimal choice is to select clusters with τq〈 0.15 and
|〈vr〉/cs| < 0.1, which yields sub-samples of at least ∼40 objects
at each overdensity. Results derived from this sub-sample are
listed in Table 4. We remark that the results are not sensitive to
exact choice of the threshold values. As expected the standard
deviations are much smaller than those derived for the whole
sample. The standard deviations for the sample with τq > 0.15
and |〈vr〉/cs|〉0.1 are ∼2–3 times larger that those obtained for the
sample with τq〈 0.15 and |〈vr〉/cs| < 0.1.

The analysis of simulated objects for which the applicability
criteria of Eqs. (17) and (20) are most valid allows us, there-
fore, to draw more robust conclusions on the reliability of the
mass estimators MHE and MDE. Hydrostatic masses are biased
low by ∼5% at r2500 and by ∼10% at r500 and r200, whereas the
hydrodynamical equilibrium mass estimator is unbiased at any
overdensity.

6. Discussion and conclusions

This work is aimed at elucidating the reliability of X-ray to-
tal mass estimates in clusters of galaxies using N-body/SPH

simulation of a large sample of clusters. The physical modeling
of the gas includes radiative cooling, star formation, supernova
heating, and metal enrichment. The large number of simulated
clusters enables us to derive very robust conclusions through a
statistical analysis of the sample. The total mass is recovered
adopting an observational-like approach and is compared with
the true mass in the simulations. Surface brightness and temper-
ature profiles that we generate from the simulations are used to
estimate the cluster mass at different overdensities (r2500, r500,
and r200) by means of the hydrostatic equilibrium equation. We
explore various models and conditions under which the mass is
reconstructed in order to disentangle different mass biases. In
addition, a power ratio analysis of the surface brightness maps
allows us to assess the dependence of the mass bias on clus-
ter dynamical state. Moreover, we study the reliability of hydro-
static and hydrodynamical equilibrium mass estimates using the
full three-dimensional gas distribution in the simulation.

In the following we list and discuss our main findings.

1. Our analysis shows that it is very important to use ana-
lytical models with a large amount of parametric freedom
when modeling the shape of the ICM temperature and sur-
face brightness radial profiles. A model with a low degree of
sophistication such as the polytropic β-model can introduce
a very large modeling bias. Compared to the more sophis-
ticated extended β-model, which is found to be extremely
accurate in following the slope changes of the gas profiles,
it additionally leads to average mass underestimates of the
order of ∼5, 10, and 15% at r2500, r500, and r200, respectively.

2. The bias originating from extrapolating of the mass profiles
beyond the radial range probed by observation can be ex-
tremely large. We find that the underestimate from extrap-
olation alone is of the order of ∼10% at r200, and lower at
smaller cluster-centric distances, when considering an aver-
age over the whole sample. However, for individual objects,
the extrapolation bias can be as large as ∼50%.

3. The unrelaxed dynamical state of a cluster can also lead
to mass underestimates. The total mass is on average bi-
ased lower for disturbed clusters than for the relaxed ones.
Furthermore, we find that the bias values are much more
scattered around the mean for disturbed objects than for
the relaxed ones. If mass-weighted temperature profiles are
adopted, the mean mass bias is at most ∼−5% at all cluster-
centric distances for relaxed clusters, but can be as large as
∼−20% for the most disturbed ones.
Our results are in excellent agreement with the findings of
Jeltema et al. (2008), as shown by the comparison of Fig. 4
in this work and Fig. 9 (top panel) in their paper, where
the correlation between the same quantities are shown. This
agreement is of particular importance, considering that the
analysis by Jeltema et al. (2008) is based on simulations per-
formed with the adaptive mesh refinement code Enzo. Our
findings are also in good agreement with the results of Kay
et al. (2007).

4. Mass estimates derived using spectroscopic temperatures are
lower that those derived from mass-weighted temperatures
(i.e. the true gas temperatures). We find that the spectro-
scopic temperature bias, i.e. the bias originating from spec-
troscopic temperatures alone, is of the order of −10% for the
whole numerical sample. A similar value is found by Kay
et al. (2007).
Mass underestimates derived adopting spectroscopic-like
temperature profiles (7 and 17% on average at Δ = 2500
and 500 for the whole sample) are in good agreement with
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the values found by Nagai et al. (2007a) (12 and 16% are
the corresponding values), whose results are based on mock
X-ray observations derived from simulations performed with
an Eulerian code. We also find very good agreement by
performing the same comparison for relaxed and unrelaxed
clusters separately. We notice that total mass biases de-
rived from the simulations by Nagai et al. (2007a) and
adopting mass-weighted profiles are on average −7% at r500
for relaxed clusters (Lau et al. 2007). The corresponding
value that we find from our Lagrangian simulations is −5%.
Considering the different nature of the numerical codes and
the different implementation of the various physical pro-
cesses, the agreement is extremely relevant.
Our results are in tension with the findings of Rasia et al.
(2006), who find, on average, much stronger biases. We no-
tice, however, that a fair comparison is not possible since the
work by Rasia et al. (2006) focused only on 5 clusters.
Our analysis also shows that the spectroscopic bias depends
on dynamical state. We find that the spectroscopic bias is
rather small (−2,−5, and −7% at Δ = 2500, 500 and 200)
for the most relaxed clusters and of the order of −12% for
the most disturbed ones.

5. While the mass bias derived from mass-weighted temper-
ature profiles does not depend on true cluster mass, the
one derived from spectroscopic-like temperature exhibits
a strong mass dependence. For clusters with M(<r200) <
1.8 × 1014 h−1 M� we find that, at all radii, the spectroscopic
bias contributes on average less than 7% of the total bias,
and less than 4% if one considers only the most relaxed
clusters. On the other hand, for clusters with M(<r200) >
1.8×1014 h−1 M� we find that the spectroscopic bias is larger:
e.g. −7% and −12% for the relaxed clusters at r500 and r200,
respectively.

6. Even in the ideal case, i.e. when the mass of relaxed clusters
is estimated without extrapolation and adopting a very ac-
curate model for the ICM density and temperature profiles,
total masses are affected by the spectroscopic temperatures.
In this case the mean total mass bias is ∼(−4,−3), (−12,−9),
and (−15,−3)% at r2500, r500, and r200 for the (most, least)
massive clusters in our simulated sample.

7. Even if we assume that the true (mass-weighted) ICM tem-
perature can be reconstructed, masses are biased low (by −2,
−9, and −12% at Δ = 2500, 500, and 200, respectively, when
taking the average over the whole sample).

8. The latter finding prompted us to investigate the possible
violation of the hydrostatic equilibrium by using the full,
three-dimensional information provided by the simulations.
In agreement with the results from our observational-like
analysis, we find that the hydrostatic equilibrium assump-
tion yields masses underestimated by ∼10–15%. This im-
plies that the origin of the bias is not the X-ray reconstruc-
tion method. The same level of mass bias has been found by
Rasia et al. (2004) and Burns et al. (2008).

9. In order to elucidate the origin of this bias we compute
masses using both hydrostatic and dynamical equilibrium
mass estimators. The dynamical equilibrium takes into ac-
count both thermal and non-thermal pressure of the ICM. We
find that the masses estimated through dynamical equilib-
rium are on average well estimated. The mean bias profiles
of the “feedback” clusters simulated by Kay et al. (2004) are
in very good agreement with our average values at all over-
densities.

10. We explore the conditions of applicability of both estima-
tors, i.e. spherical symmetry (torque parameter τq � 1)

and small radial streaming velocities (radial Mach number
|〈vr〉/cs| � 1). We find that the biases bHE and bDE do not
depend on cluster true mass and that their scatter decreases
with decreasing τq and |〈vr〉/cs|.

11. For clusters with small values of τq < 0.15 and |〈vr〉/cs| < 0.1
we find that the average mass underestimate found from the
hydrostatic equilibrium estimator (5% at r2500 and 10% at
r500 and r200) is extremely well corrected by adopting the
dynamical equilibrium estimator.

Our results of course depend on the physics included in the simu-
lation. Our modeling of the gas physical processes is incomplete
and does not include, for example, energy feedback from active
galactic nuclei (AGN). The inclusion of more realistic physics is
particularly relevant in the cluster cores, since it is supposed to
provide additional heating to the gas which could help to solve
the cooling flow problem as well as the overcooling of baryons
actually present in current simulations (e.g. Voit 2005).

The effect on the thermal status of the ICM of energy feed-
back from the AGN are however not expected to modify in a
significant way the ICM properties outside the cluster cores. The
validity of this assumption is justified from the radial behavior of
the measured temperature profiles, which are in good agreement
at r � 0.1 × r200 with the present simulations (Valdarnini 2006)
and the ones of other authors (e.g. Nagai et al. 2007b).

Importantly, we find that, in addition to cold gas clumps, also
the diffuse cold gas component which is left after the removal of
all resolved clumps substantially biases spectroscopic tempera-
tures low. The good agreement of our temperature profiles with
those found by other authors using different codes suggests that
the amount of the cool gas component present in our simulations
is not affected by numerical issues.

There is another issue connected to the gas physical model-
ing in the simulations that could be relevant for our analysis. In
the runs performed here the artificial viscosity is treated accord-
ing to the standard SPH formulation (Monaghan 2005), which is
a numerical scheme comparatively viscous (Morris & Monaghan
1997) and inadequate to follow the development of fluid turbu-
lence. It has been shown that the level of kinetic energy in ran-
dom gas motion could be as high as ∼30% of the gas thermal
energy (Dolag et al. 2005; Vazza et al. 2006), when the numer-
ical viscosity scheme is generalized as in Morris & Monaghan
(1997) to properly treat fluid turbulence.

It is worth noticing that very high levels of random motion
are inconsistent with the upper limits recently derived from the
comparison of X-ray and weak lensing mass estimates (Mahdavi
et al. 2008; Zhang et al. 2008). Direct measurements of the var-
ious sources of non-thermal pressure (gas motions, cosmic rays,
magnetic fields, etc.) are extremely difficult, and the comparison
between X-ray and lensing masses presently provides the most
significant constraints on the level of non-thermal pressure in the
ICM. Zhang et al. (2008) obtain a ratio of 1.09 ± 0.08 between
the weak lensing and X-ray mass estimates extracted at r500 from
a sample of 19 clusters. At the same overdensity, (Mahdavi et al.
2008) find that the ratio between X-ray and lensing is 0.78±0.09
(0.85 ± 0.10 after correction for excess structure along the line
of sight) for a sample of 18 clusters. The fairly good agreement
between these recent observational results and the values found
in the present analysis and other similar studies therefore implies
a low level of turbulence present in the ICM, thereby suggesting
that the gas physics outside the cluster cores is well approxi-
mated by the simulations presented here.

While we have shown that at present both theoretical mod-
els and observations seem to indicate a deviation from the
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hydrostatic equilibrium of the order of ∼10%, further inves-
tigations are needed in order to draw robust conclusions on
this important issue. Future measurements of X-ray and lensing
masses for large samples and measurements of the ICM velocity
structure will provide valuable information on the validity of the
hydrostatic equilibrium and therefore on the reliability of X-ray
clusters as cosmological probes.

Moreover, these measurements will also be of particular
relevance for constraining gas physics in galaxy clusters. The
amount of physical viscosity is in particular a key parameter
which quenches the level of turbulence present in the ICM.
Physical viscosity has been incorporated in hydrodynamic simu-
lations of galaxy clusters by Sijacki & Springel (2006) and it was
shown that even a modest amount of physical viscosity has sig-
nificant consequences on ICM properties. Therefore X-ray mass
estimates, extracted from a statistically meaningful sample of
hydrodynamical SPH simulations which include physical vis-
cosity, could profitably be used to indirectly measure the level
of ICM viscosity when contrasted against X-ray and weak lens-
ing mass measurements.

These constraints will also likely have a significant impact
on those scenarios in which the cooling flow problem is solved
by providing additional heating to the gas through energy dissi-
pation.
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