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Abstract: A new geometric representation of qubit and qutrit states based on probability simplexes
is used to describe the separability and entanglement properties of density matrices of two qubits.
The Peres–Horodecki positive partial transpose (ppt) -criterion and the concurrence inequalities are
formulated as the conditions that the introduced probability distributions must satisfy to present
entanglement. A four-level system, where one or two states are inaccessible, is considered as an
example of applying the elaborated probability approach in an explicit form. The areas of three
Triadas of Malevich’s squares for entangled states of two qubits are defined through the qutrit state,
and the critical values of the sum of their areas are calculated. We always find an interval for the sum
of the square areas, which provides the possibility for an experimental checkup of the entanglement
of the system in terms of the probabilities.

Keywords: quantum entanglement; geometric representation of qudits; probability distributions;
linear entropy; Bell states

1. Introduction

The states of quantum systems are determined by wave functions [1,2] (pure states) or density
matrices [3,4]. The corresponding definition of these states is done by using state vectors or density
operators in the Hilbert space [5]. For qudits, we discuss the approach where the quantum states
are identified with fair probability distributions. Different quasiprobability representations of the
density operators, such as the Wigner function [6], Husimi Q-function [7] or the Glauber–Sudarshan
P-function [8,9], were introduced to describe continuous variable quantum systems. These functions
have been also defined for discrete variable systems such as spin-1/2 particles [10]. In addition,
the formulation of quantum states without probability amplitudes was proposed in [11], and
the geometric definition of the quantum state determined by the transition probabilities was
presented in [12].

Recently, the probability representation of quantum states was introduced both for continuous
variables [13] and spin systems [14,15]. This approach uses quantum tomograms, which can be
measured in experiments as the prime objects identified with the quantum state of an arbitrary system.
The qubit or spin-1/2 state, within the framework of the tomographic probability representation,
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is identified with the set of three probability distributions of spin projections on three perpendicular
directions in the space. This description of the qubit state was studied and illustrated by the triangle
geometry of the system, using the so-called Malevich square representation [16] known also as
quantum suprematism approach (after the Russian painter Kazmir Malevich (1879–1935), founder of
suprematism, an art movement started around 1913 focused on basic geometric figures). Such a
geometric representation provides the picture of the qubit state in terms of three squares on the plane
obtained through an invertible map of the points in the Bloch sphere onto the probability distributions.
This approach has been extended for qutrit states [17–19] and, in principle, was generalized to qudit
states. An important role of symmetries and group representations, in particular, for spin states was
reviewed in [20]. Within the framework of the geometric formulation of quantum mechanics [20,21],
an explicit construction of the Fisher–Rao tomographic metric for qubit and qutrit density matrices is
established in a quorum of reference frames [22,23]. In addition, using the same approach, the volume
of two-qubit states which have maximal random subsystems (where the reduced density matrices
ρ̂1,2 = Î/2), has been calculated in [24] as a function of the purity of the composite system.

Quantum computers manipulate qubits by operations based on Pauli matrices; we elaborate in
this work the decomposition of qutrit states into qubit states and hope that the proposed decomposition
will also allow the manipulation of qutrits and, in general, of qudits in quantum computing algorithms.
An example of the mapping of oscillator creation and annihilation operators onto qubits using the
Jordan–Schwinger map [25,26] and manipulation of the qubits in context of information technologies
has recently been given in [27].

The aim of this paper is to study, within the probability representation of quantum
states [13–19,28–30] reviewed in [31], the triangle geometry, separability, and entanglement of a composite
system of two qubits in specific states. In addition, we elaborate the description of the state quantumness
by finding new bounds for qubit and qutrit state characteristics presented in terms of square areas given
by probability distributions associated with the triangle geometry of their states. It is worth noting that the
classical probability distributions and their interference were discussed within the framework of the state
vectors in Hilbert space by Khrennikov [32–35]. Here, the interference is a feature of multi-contextuality.
This is not only a problem of classical versus quantum probability, but also quantum versus general
contextual probability. The superposition principle for spin-1/2 state vectors was presented in explicit
form as the nonlinear superposition of the classical probability distributions determining the qubit states
in [19,36,37]. This superposition was illustrated geometrically in the quantum suprematism approach as
a superposition of squares. The approach called the suprematism in art is described in [38]. It is worth
noting that a methodological relation of the Malevich black square with effectiveness for experimental
tools in physics was mentioned in [39].

The system of two qubits can be realized as a system of two two-level atoms; this system has
four levels. Specific states of the four-level system are the states where either one level or two levels
of the four are not occupied. It means that some states from the set of possible states are inaccessible.
We discuss the properties of such states for two-qubit systems. Thus, we study, within the probability
representation, the triangle geometry and separability of the specific states of two qubits. This is
done by considering that one or two of the composite two-qubit states are not available, which yields
to concurrences depending only on two probability distributions of dichotomous random variables.
Note that, when there is only one inaccessible state, an additional nonlinear mapping suggested in [18]
needs to be applied to determine the geometric picture of the states in terms of three triads of squares.
The Peres–Horodecki criterion [40,41] is used to establish the separability or entanglement properties
of the two-qubit states.

We point out the following aspects of our approach. The entanglement in a two-qubit system
is completely a quantum phenomenon. In view of this fact, it seems to be necessary to use for its
description mandatory ingredients such as Hilbert spaces, vectors in the Hilbert space, and density
operators acting in the space. As we demonstrate, and it is our goal, it is possible to describe this
quantum phenomenon making the identification of qubit states with fair classical-like measurable
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probabilities. Our conjecture is that other completely quantum phenomena in some other systems
such as quantum correlations (e.g., Bell correlations) can also be formally described using the states
identification with probability distributions.

This paper is organized as follows.
In Section 2, a short review of the qubit and qutrit state probabilistic description given in the

quantum suprematism geometric representation is presented. In Section 3, two-qubit states both
separable and entangled are considered in the probability representation when there are one or two
inaccessible states. Section 4 presents an example in which the inequalities over the square areas and
over the sum of areas lead to conditions which can be used for controlling measurement processes.
Conclusions and perspectives are presented in Section 5.

2. Qubit and Qutrit States in Quantum Geometric Representation

In this section, we review how the Bloch sphere geometry of qubit states is mapped onto a
triangle geometry of qubit and qutrit states. The construction of the map is described in terms of the
measurements of probabilities along the quorum of reference frames [16–18].

2.1. Qubit Case

We start with a qubit density matrix ρ̂ = ρ̂†, Tr(ρ̂) = 1 satisfying the nonnegativity condition of
its eigenvalues, i.e.,

ρ̂ =

(
ρ11 ρ12

ρ21 ρ22

)
, ρ21 = ρ∗12 , ρ11 + ρ22 = 1 , (1)

and
ρ11 ρ22 − ρ12 ρ21 ≥ 0 . (2)

The matrix elements ρjk; j, k = 1, 2 may be constructed in terms of three probability distributions
P1 = (p1, 1 − p1), P2 = (p2, 1 − p2), and P3 = (p3, 1 − p3), where 0 ≤ pk ≤ 1; k = 1, 2, 3 are
probabilities of spin-1/2 projections m = ±1/2 along the axes x, y, z, respectively. Each probability is
related to the expectation values of the projectors

ρ̂1 =
1
2

(
1 1
1 1

)
, ρ̂2 =

1
2

(
1 −i
i 1

)
, ρ̂3 =

(
1 0
0 0

)
, (3)

defining the probabilities Tr(ρ̂ρ̂k) = pk which can be measured experimentally. These measurements
allow reconstructing Equation (1) in the form

ρ̂ =

(
p3 p1 − 1/2− i(p2 − 1/2)

p1 − 1/2 + i(p2 − 1/2) 1− p3

)
. (4)

Note that p1, p2, and p3 are classical probabilities of measuring the projection of angular
momentum m = 1/2 in three different reference frames. We point out that, for a system of three
independent classical coins, its statistics are also described by the same three probabilities.

A state with the density matrix ρ̂k, as described above, has spin projections m = ±1/2 on the
three perpendicular directions x, y, z. This means that the state ρ̂ is identified with three probabilities
p1, p2, and p3. The nonnegativity of the density matrix ρ̂ ≥ 0 provides the condition

(p1 − 1/2)2 + (p2 − 1/2)2 + (p3 − 1/2)2 ≤ 1/4 , (5)

i.e., there exist quantum correlations between the spin projections on the perpendicular directions
x, y, z. In contrast, for three classical coins described as the probability vectors P1, P2, and P3, there
are no constraints (Equation (5)). The endpoints of the probability vectors P k with components pk and
1− pk are situated along 1-simplexes, which form the hypotenuse of rectangular triangles of side 1.
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If one connects the hypotenuses, one can obtain an equilateral triangle with side length
√

2 (see [16]).
Then, the state of a qubit can be represented by three points along the triangle sides, as shown in
Figure 1; some new entropic inequalities were obtained for qubit systems in [42].

2

3

1


ℬ



(a)



ℬ



(b)

Figure 1. (a) Triangle representation of the qubit state by three points along the perimeter of an
equilateral triangle of side length

√
2; and (b) Malevich’s squares associated to the state.

A, B, and C show the endpoints of vectors P1, P2, and P3 on the simplexes. The side lengths lk,
k = 1, 2, 3 of the triangle4(ABC) can be expressed in terms of probabilities as follows:

lk = (2p2
k + 2p2

k+1 + 2pk pk+1 − 4pk − 2pk+1 + 2)1/2 . (6)

From these, one can define three squares with sides l1, l2, and l3. The triad of squares illustrates
the qubit density matrix, and it has a one-to-one correspondence with the Bloch parameters of the state

x = 2 p1 − 1 , y = 2 p2 − 1 , z = 2 p3 − 1 . (7)

The linear relation between the probabilities and the Bloch vector parameters, together with
the condition in Equation (5), allows an analogous construction to the Bloch sphere with center at
pk = 1/2; k = 1, 2, 3 and radius 1/2. In this representation, the most mixed state with density operator
ρ̂ = I/2 is located at the center of the sphere, and one can find the pure states on the surface.

The sum of the square areas is given in terms of the triangle lengths as S = l2
1 + l2

2 + l2
3 and

explicitly in terms of the probabilities as

S(p1, p2, p3) = 2
(

2p1
2 + 3(1− p1 − p2 − p3) + p1 p2 + p1 p3 + 2p2

2 + p2 p3 + 2p3
2
)

. (8)

The difference with the classical treatment with three coins is that the uncertainty
relation in Equation (5) is not imposed. In this classical case, the sum of the square areas satisfies
the inequality

3/2 ≤ Sc ≤ 6 , (9)

where the lower bound corresponds to the probabilities p1 = p2 = p3 = 1/2 and the upper limit,
to p1 = p2 = p3 = 1.

For the quantum case of the qubit state, one has to consider the constraint in Equation (5). For pure
states, i.e., when the equality is satisfied in the uncertainty relation in Equation (5), the sum of the
square areas takes local maxima with value Sq = 9/4 and two global maxima with Sq = 3. The lower
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bound, Sq = 3/2, is given by the maximum mixed states. Therefore, in the quantum case, the sum of
the square areas satisfies

3/2 ≤ Sq ≤ 3 . (10)

For Sq = 3, the triangle ABC is equilateral with the side length equal to 1, and for Sq = 3/2,
the equilateral triangle ABC has the side length equal to

√
2/2.

In Figure 2, we show the geometric interpretation of the qubit state in the probability representation,
together with the pure states that maximize the sum of the triad areas Sq in the quantum case. The great
circle determined by the points

p2 =
1
4

(
3− 2p1 +

√
−1 + 12 p1 − 12 p2

1

)
, p3 =

1
4

(
3− 2p1 −

√
−1 + 12p1 − 12p2

1

)
, (11)

where (3−
√

6)/6 ≤ p1 ≤ (3+
√

6)/6, corresponds to local maxima. The absolute maxima are reached
at the probability vectors(

p1, p2, p3

)
=
(1

6
(3−

√
3),

1
6
(3−

√
3),

1
6
(3−

√
3)
)

,
(1

6
(3+

√
3),

1
6
(3+

√
3),

1
6
(3+

√
3)
)

. (12)

In addition to the areas, the linear entropy of the system can be calculated using the relation

SL = 2
3

∑
j=1

pj(1− pj)− 1 . (13)

It is important to note that, if pj represents the standard probability distribution corresponding to
a dichotomous random variable (e.g., a coin), the terms ηj = pj(1− pj) measure the fairness of the
system. If the dichotomous variable has the same probability for both categories pj = 1− pj = 1/2,
then ηj = 1/4 constitutes the maximum fairness situation. In the opposite case, when one of the
categories of the dichotomous variable is not possible, the fairness has a minimum ηj = 0.

Figure 2. Geometric interpretation of a qubit in the probability representation. The (red) sphere is
centered at the maximum mixed state and has radius 1/2. The great circle is associated to pure states,
where Sq = 9/4, and the dots are pure states, where Sq = 3.
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One can see that, for maximum fairness, the qubit state corresponds to the most mixed state
ρ̂ = I/2 and has a linear entropy SL = 1/2. When one has minimum fairness, there exist two
possibilities: pj = 0 and pj = 1. At any of those values, the linear entropy has a value of −1 which is
not physical, so one can conclude that the probabilities pj cannot be zero at the same time, nor can they
all be equal to 1 or any combination of 0 and 1, in order to represent the qubit state. As can be seen in
Figure 2, those points are located outside the permitted sphere given by Equation (5).

In addition, the linear entropy of the system is proportional to the sum of the squared lengths
of the triangles T1 = 4(AB2), T2 = 4(BC3), and T3 = 4(AC1), i.e., ∑3

j=1 2((1− pj)
2 + p2

j+1) + l2
j ,

minus the squared lengths of the triangle T4 = 4(ABC), i.e., ∑3
j=1 l2

j ; explicitly,

SL = 2−
3

∑
j=1

[(1− pj)
2 + p2

j+1] , (14)

where p4 = p1. Note that Equations (13) and (14) are equivalent.

2.2. Qutrit Case

The probabilistic representation of the qubit state can also be extended to higher dimensions.
We consider the example of the qutrit state. The density matrix of the qutrit state

ρ̂3 =

 ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 , (15)

can be described using the eight generators of the su(3) algebra represented by the Gell–Mann
matrices [43] λ̂1, . . . , λ̂8, i.e.,

ρ̂3 =
1
3

Î +
1
2

8

∑
j=1

ajλ̂j ,

where aj ∈ R are the entries of the generalized Bloch vector. Amongst the Gell–Mann matrices,
there exist three sets of operators which form su(2) algebras, viz., {λ̂1, λ̂2, λ̂3}, {λ̂4, λ̂5, (λ̂3 +

√
3 λ̂8)/2},

and {λ̂6, λ̂7, (−λ̂3 +
√

3 λ̂8)/2}. Given this property, one can think of a possible definition of qubit
states using these three sets of operators. An algorithmic procedure to define qubit states is the
following: The matrix ρ̂3 is first extended to two 4 × 4 density matrices, where one row and one
column are equal to zero, as follows:

ρ̂1 =

(
ρ̂3 0
0 0

)
, ρ̂2 =

(
0 0
0 ρ̂3

)
.

Interpreting the resulting matrices as density operators for two qubit systems, we make use of the
partial trace operation to define four matrices that must be positive semidefinite ρ̂(A), ρ̂(B), ρ̂(C), and
ρ̂(D), which are not independent

ρ̂(A) =

(
1− ρ33 ρ13

ρ31 ρ33

)
, ρ̂(B) =

(
1− ρ22 ρ12

ρ21 ρ22

)
,

ρ̂(C) =

(
ρ11 ρ13

ρ31 1− ρ11

)
, ρ̂(D) =

(
ρ22 ρ23

ρ32 1− ρ22

)
; (16)

in Figure 3, it is shown that associated to any of the qubit density matrices in Equation (16) is a
three-level system. In each case, the population of one of the levels with the transition probability
to another level determine different qubits. It can be seen that the off-diagonal components of the
matrices in Equation (16) are naturally arranged in the sets given by the su(2) algebras, i.e., A : {a4, a5},
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B : {a1, a2}, C : {a4, a5}, and D : {a6, a7}. Therefore, each one of these density matrices can be
decomposed in terms of three probabilities as described in Equation (4). Choosing the independent
qubits as ρ̂(A), ρ̂(B), ρ̂(D), one can retrieve the original 3 × 3 density matrix in the form

ρ̂3 =

 p(A)
3 + p(B)

3 − 1 B A
B∗ 1− p(B)

3 D
A∗ D∗ 1− p(A)

3

 , (17)

where A = p(A)
1 −1/2− i(p(A)

2 −1/2), B = p(B)1 −1/2− i(p(B)2 −1/2), and D = p(D)
1 −1/2− i(p(D)

2 −1/2);

here, the numbers p(A),(B),(D)
1,2,3 are probabilities satisfying the inequality in Equation (5). It is worth mentioning

that qubits ρ̂(B), ρ̂(C), and ρ̂(D) can also be used to describe the system, as shown below.

Figure 3. Schematic representation of qubits defined by a generic three-level system given by the
density matrices: (a) ρ̂(A); (b) ρ̂(B); (c) ρ̂(C); and (d) ρ̂(D). In all cases, the occupation number of the
states in blue define the diagonal terms, while the arrows denote the transitions which define the
off-diagonal terms of the qubits.

The qubit probabilities can be obtained in terms of the tomographic probabilities used for the
state reconstruction. It is known that, to reconstruct the qutrit state, one needs to measure the
probabilities corresponding to the spin projections m = 0, 1 on the z axis in four different reference
frames. Each of these frames constitute a general rotation of the density matrix acting by the operator
Û = ∏8

j=1 exp(iθjλ̂j) on the original state Û†ρ̂3Û.
As in the qubit case, the linear entropy of the system can be obtained as

SL = 2

(
∑

j=A,B,D

3

∑
k=1

p(j)
k

(
1− p(j)

k

)
+ p(A)

3

(
1− p(B)

3

)
+ p(B)2

3

)
− 5 , (18)

with p(D)
3 = 1 − p(B)

3 . Even though the expression is similar, one can see that, in addition to

the fairness terms for each probability ηjk = p(j)
k (1 − p(j)

k ), we also have the joint probability
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distribution p(A)
3 (1 − p(B)

3 ), and the probability p(B)
3 . It can be shown that S (A)

L + S (B)
L + S (D)

L =

2 ∑j=A,B,C ∑3
k=1 p(j)

k

(
1− p(j)

k

)
− 3, so the linear entropy is expressed as

SL = ∑
j=A,B,D

S (j)
L − 2

(
1− p(B)

3

) (
1 + p(B)

3 − p(A)
3

)
, (19)

which can be obtained geometrically, in view of the property of the entropy for the three qubits A, B,
and D in terms of the squared lengths of the triad squares, as discussed previously. It is important to
note that, in general, the sum of the linear entropies for qubits is larger than the linear entropy of the
qutrit, i.e., SL ≤ ∑j S

(j)
L .

Given the nonnegativity of the qutrit density matrix, there exist correlations between its matrix
components, i.e., if a change in the system is done, these components must change in a way to guaranty
the hermiticity and nonnegativity of the state. Even if we might be able to change a single matrix
element of the state, a change in all the others would take place after. These correlations also imply
a correlation between the component qubits defined above. For these reasons, one can think of
Equation (19) as a way to measure correlations between different components of the qutrit state, that is
between different qubits.

Next, we determine the bounds associated to the sum of the square areas for the qutrit in the
B, C, D qubit representation,

S = S
(

p(B)
1 , p(B)

2 , p(B)
3

)
+ S

(
p(C)1 , p(C)2 , p(C)3

)
+ S

(
p(D)

1 , p(D)
2 , 1− p(B)

3

)
. (20)

We demonstrated that the qutrit density matrix can be written in terms of eight probabilities
establishing a three-qubit representation. By requiring the purity of the qutrit and the fact that qubits
correspond also to pure states, one can reduce the number of free probabilities to p(C)1 and p(C)3 .
The minimum value of the sum of the square areas is obtained when all the probabilities take the
value 1/2, which corresponds to a diagonal density matrix for the qutrit, diag(1/2, 1/2, 0). The maximum
value for the qutrit in the pure qubit representation reads S = 8, while the minimum is 29/4. The region
of (p(C)1 , p(C)3 ) formed with pure qubit states is the surface shown in Figure 4. The extreme bounds are
given by

9
2
≤ S . 8.1565 , (21)

where the upper bound is associated with the pure state and the probabilities p(B)
1 ≈ 0.5733,

p(B)
2 ≈ 0.5207, p(B)

3 ≈ 0.9716, p(C)1 ≈ 0.2379, p(C)2 ≈ 0.2031, p(C)3 ≈ 0.2044, p(D)
1 ≈ 0.3760, and

p(D)
2 ≈ 0.4200. The discussed values are obtained using numerical calculations. It can be seen that

these values for the probabilities imply that the pairs of qubits ρ̂(A), ρ̂(B) and ρ̂(C), ρ̂(D) have the same
purity, and that it is close to the unity. States reaching this upper bound are shown in the Appendix A.
The lower bound corresponds to p(B),(C),(D)

j = 1/2, with j = 1, 2, 3.
We note that different parameterizations do not lead to the same maxima of the areas. For example,

the A, B, D parameterization allows for greater purity of qubits, thus yielding a lower total sum of
areas. If one requires the purity of the qutrit to be equal to 1, and equal purities for ρ̂(A) and ρ̂(B), and
for ρ̂(C) and ρ̂(D), this yields a maximum value of S ≈ 8.095.
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Figure 4. The pure qubit representation of the sum of the square areas in the probability space of

(p(C)1 , p(C)3 ). It corresponds to pure qutrit states. Each color denotes independent solutions.

3. Separability Properties of the Two-Qubit Composite Systems

Given the density matrix of two qubits in the form ρm1,m2,m′1,m′2
, (m1, m2, m′1, m′2 = ±1/2), i.e.,

ρ̂(1, 2) =


ρ 1

2 , 1
2 , 1

2 , 1
2

ρ 1
2 , 1

2 , 1
2 ,− 1

2
ρ 1

2 , 1
2 ,− 1

2 , 1
2

ρ 1
2 , 1

2 ,− 1
2 ,− 1

2

ρ 1
2 ,− 1

2 , 1
2 , 1

2
ρ 1

2 ,− 1
2 , 1

2 ,− 1
2

ρ 1
2 ,− 1

2 ,− 1
2 , 1

2
ρ 1

2 ,− 1
2 ,− 1

2 ,− 1
2

ρ− 1
2 , 1

2 , 1
2 , 1

2
ρ− 1

2 , 1
2 , 1

2 ,− 1
2

ρ− 1
2 , 1

2 ,− 1
2 , 1

2
ρ− 1

2 , 1
2 ,− 1

2 ,− 1
2

ρ− 1
2 ,− 1

2 , 1
2 , 1

2
ρ− 1

2 ,− 1
2 , 1

2 ,− 1
2

ρ− 1
2 ,− 1

2 ,− 1
2 , 1

2
ρ− 1

2 ,− 1
2 ,− 1

2 ,− 1
2

 , (22)

we consider two different situations for the two-qubit systems. The first one where two states are not
available or forbidden, while in the second case only one is inaccessible. We analyze these different
possibilities below.

3.1. Two Inaccessible States

A two-qubit density matrix (Equation (22)), in which two of the states (with m1, m2 = 1/2, 1/2
and −1/2,−1/2) are inaccessible, can be expressed as

ρ̂(1, 2) =


0 0 0 0
0 ρ11 ρ12 0
0 ρ21 ρ22 0
0 0 0 0

 . (23)

This state can be related to an equilibrium density operator ρ̂ = e−Ĥ/T/Tr(e−Ĥ/T), where the
Hamiltonian has very large first and fourth eigenvalues in comparison with the other two, so that the
transitions to the corresponding eigenstates are forbidden. Since the qubit density matrix is expressed
in terms of the probabilities p1, p2, and p3, Equation (23) can be written as

ρ̂(1, 2) =


0 0 0 0
0 p3 p1 − 1/2− i(p2 − 1/2) 0
0 p1 − 1/2 + i(p2 − 1/2) 1− p3 0
0 0 0 0

 . (24)

Next, we present a quantification of the entanglement by means of the negativity [44] and
concurrence [45,46] concepts. The negativity is defined by the sum of the absolute values of the
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negative eigenvalues of the ppt density matrix ρ̂PT , that is, N (ρ̂) = ∑k |λk
(−)|. Thus, one constructs

the partial transpose density matrix in the probability representation, which has eigenvalues λ1 = p3,
λ2 = 1− p3, λ3 =

√
(p1 − 1/2)2 + (p2 − 1/2)2, λ4 = −λ3. These probabilities satisfy Equation (5),

hence the negativity of the system is

N (ρ̂) =
√
(p1 − 1/2)2 + (p2 − 1/2)2 , (25)

and we immediately see that, for special values of p1 = p2 = 1/2, the two-qubit state is separable.
For all the other values of the probabilities, the state is entangled.

We obtain the concurrence of the system by calculating the square root of the eigenvalues of
the matrix ρ̂ρ̂′, where ρ̂′ = (σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗ σ̂y), ρ̂∗ is the complex conjugate of ρ̂, and with σ̂y being
the Pauli matrix. The square root of the eigenvalues of such a matrix in descending order (η1, η2,
η3, and η4) defines the concurrence C = max (0, η1 − η2 − η3 − η4). Given the state of Equation (24),
these are

η1,2 =
√

p3(1− p3)±
√
(p1 − 1/2)2 + (p2 − 1/2)2 , η3,4 = 0 ;

thus, the concurrence of the state is

C = 2
√
(p1 − 1/2)2 + (p2 − 1/2)2 = 2|ρ̂(1, 2)23| = 2N (ρ̂) ; (26)

it is shown in Figure 5a. Here, we see that the concurrence is zero when p1 = p2 = 1/2, i.e., when the
state is diagonal, and has a maximum value when both probabilities are equal to one of the extreme
values, zero or one; this corresponds to the different states, where ρ̂(1, 2)2,3 is either (−1± i)/2 or
(1± i)/2, and the inequality p3(1− p3) ≤ 3/4 is satisfied.

We can also analyze the separability of the states in terms of the square areas. This can be done by
taking such four matrix elements that are different from zero as a qubit. In the case where the system is
separable, N (ρ̂) = 0; p1 = p2 = 1/2, one has from Equation (5) that the value of the other probability
is unrestricted 0 ≤ p3 ≤ 1. However, the sum of the square areas S = p3(4p3 − 5) + 3 can take values
3/2 ≤ S ≤ 5/2, while if the system is entangled the probabilities (p1 − 1/2)2 + (p2 − 1/2)2 = N 2(ρ̂)

are located within a circle of radius equal to the negativity of the system, and we should have
1/2(1−

√
1− 4N 2(ρ̂)) ≤ p3 ≤ 1/2(1 +

√
1− 4N 2(ρ̂)). Since the negativity takes a value between

0 and 1/2, we have 0 ≤ p3 ≤ 1/2. From these arguments, one can see that the sum of the square
areas can take any value between 3/2 and 3. The interval (5/2, 3] for S provides the possibility for
experimental checkup of the entanglement of the system ρ̂(1, 2) in terms of probabilities.

(a) (b)

Figure 5. (a) Quantum concurrence for ρ̂(1, 2); and (b) the numeric logarithmic negativity for the
density matrix ρ̂1(1, 2) in terms of the corresponding probabilities p1 and p2.
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Now, consider the case where the state is given by the density matrix

ρ̂(1, 2) =


p3 0 0 p1 − 1/2− i(p2 − 1/2)
0 0 0 0
0 0 0 0

p1 − 1/2 + i(p2 − 1/2) 0 0 1− p3

 . (27)

As in the previous case, the state can be written in the form ρ̂ = e−Ĥ/T/Tr(e−Ĥ/T), where the
Hamiltonian has very large second and third eigenvalues compared with the other two.

The eigenvalues of the partial transpose are the same as in the previous example, so the negativity
is also given by Equation (25), and the concurrence provides the same result of Equation (26). Hence,
one can conclude that there is entanglement for p1,2 6= 1/2.

3.2. One Inaccessible State

In this case, the density operator can be described by a 3× 3-matrix inside the general 4 × 4-matrix.
To establish its qubit representation, we consider, following [18], density matrices of the form

ρ̂1(1, 2) =


R11 R12 R13 0
R21 R22 R23 0
R31 R32 R33 0
0 0 0 0

 , ρ̂2(1, 2) =


0 0 0 0
0 R11 R12 R13

0 R21 R22 R23

0 R31 R32 R33

 , (28)

where the matrix R̂ with elements Rjk; j, k = 1, 2, 3 is the qutrit density matrix. Since the qutrit is given
in the probability representation by Equation (17), the two-qubit system represented by ρ̂(1, 2) can be
also expressed in terms of probabilities.

To study the properties of entanglement, we use the Peres–Horodecki criterion and construct the
positive partial transpose matrix ρ̂PT(1, 2) with the map T2 = I ⊗ T, where T stands for the transpose
operator, which yields to two matrices; one for each matrix in Equation (28),

ρ̂PT
1 (1, 2) =


R11 R21 R13 R23

R12 R22 0 0
R31 0 R33 0
R32 0 0 0

 , ρ̂PT
2 (1, 2) =


0 0 0 R12

0 R11 0 R13

0 0 R22 R32

R21 R31 R23 R33

 . (29)

The criterion reads: If any of the eigenvalues of the matrices in Equation (29) is negative, then the
states described by the matrices in Equation (28) are entangled.

As an example, we consider the state ρ̂1(1, 2) of Equation (28), with each one of its elements
described by the probabilities as in Equation (17). This time, the square root of the eigenvalues of ρ̂ρ̂′

are η1,2 =
√
(1− p(A)

3 )(1− p(B)
3 )± |D| and η3,4 = 0. From this, the concurrence is

C = 2|D| = 2

√(
p(D)

1 − 1/2
)2

+
(

p(D)
2 − 1/2

)2
, (30)

implying entanglement when D 6= 0
(

p(D)
1,2 6= 1/2

)
.

In addition, the separability condition C = 0 implies that the sum of the square areas for qubit
ρ̂(D) is restricted to values between 3/2 and 5/2. Thus, in the separable case, the value of the sum of
the areas of the triads is bounded by the range 9/2 ≤ S ≤ 8. The value of the sum S = 8 is attained
when p(B)

1 = p(B)
2 = p(D)

1 = p(D)
2 = 1/2, p(B)

3 = 1 and p(C)1 = p(C)2 = p(C)3 = (3 +
√

3)/6.
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In the case of ρ̂2, the square root of the eigenvalues of ρ̂ρ̂′ are η1,2 =√
(p(A)

3 + p(B)
3 − 1)(1− p(B)

3 ) ± |B| and η3,4 = 0. From these values, the concurrence is calculated
to be

C = 2|B| = 2

√(
p(B)

1 − 1/2
)2

+
(

p(B)
2 − 1/2

)2
, (31)

which means that the system is separable when B = 0. In addition, we can notice that the sum of the
square areas has the same bounds as in the previous case (9/2 ≤ S ≤ 8).

Finally, we consider the state

ρ̂ =


R11 0 R12 R13

0 0 0 0
R21 0 R22 R23

R31 0 R32 R33

 . (32)

We found the eigenvalues η1,2 =
√
(p(A)

3 + p(B)
3 − 1)(1− p(A)

3 ) ± |A|, η3,4 = 0, and the
concurrence of the form

C = 2|A| = 2

√(
p(A)

1 − 1/2
)2

+
(

p(A)
2 − 1/2

)2
. (33)

It can be shown that the sum of the square areas for the separable case has the bounds
9/2 ≤ S ≤ (57 +

√
17)/8, where the maximum is obtained when ρ̂ describes the pure state, the

qubits have the same purity Tr(ρ̂(A)2) = Tr(ρ̂(B)2) and Tr(ρ̂(C)2) = Tr(ρ̂(D)2), with one of these
purities equal to 1. This can be attained for the probabilities p(B)

1 = p(B)
2 = p(C)1 = p(C)2 = 1/2,

p(B)
3 = 1/2(1±

√
1/2 + 3/(2

√
17)), p(C)3 = 0, and p(D)

1,2 = 1/2∓ 1/4
√

1− 3/
√

17.
The entanglement properties of the physical system described by the density matrix, in which the

third row and third column vanish, are analogous to those of ρ̂1(1, 2). In this case, all the expressions
for the concurrence have the same analytic form as for the two inaccessible states; they are also depicted
in Figure 5a. The separability of the systems, when D = 0 or B = 0 or A = 0, can be checked using the
partial transpose procedure. In all these cases, the eigenvalues of the partial transpose are equal to the
nonnegative eigenvalues of the original density matrix, so the negativity vanishes.

When the system state is not separable, the calculation of the negativity can only be done numerically.
In Figure 5b, we illustrate the behavior of the logarithmic negativity LN(ρ̂) = ln (2N (ρ̂) + 1) for the
system ρ̂1(1, 2). We notice that the logarithmic negativity is zero for the values p1 = p2 = 1/2, and the
state is diagonal. In addition, the logarithmic negativity has a maximum value when both probabilities
correspond to an extreme value, zero or one. The probabilities p1 and p2 at the extremal values of the
logarithmic negativity are the same as the ones for the concurrence.

4. Example

We now consider the coherent state for spin J = 1 (cf., e.g., [47])

|ζ〉 = 1
1 + |ζ|2 (|1,−1〉+

√
2 ζ|1, 0〉+ ζ2|1, 1〉) ,

where ζ is a complex parameter given in terms of the polar and azimuthal angles of the Bloch sphere.
This state is interesting in regards to the Einstein-Podolsky-Rosen paradox experiment when taken
as a symmetric state of two spin-1/2 particles. The fact that one may determine the separability or
entanglement of the two particles by only measuring 2 components of Ĵ in a series of runs may provide
an advantage to experimental setups.
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This pure state defines the following qubit probabilities in terms of the mean values of the spin
operators Ĵx, Ĵy, and Ĵz

p(A)
1 =

1
4
(2 + 〈 Ĵx〉2 − 〈 Ĵy〉2), p(A)

2 =
1
2
(1 + 〈 Ĵx〉〈 Ĵy〉), p(A)

3 =
1
4
(3− 〈 Ĵz〉)(1 + 〈 Ĵz〉) ,

p(B)
1 =

1
4

(
2 +
√

2〈 Ĵx〉(1 + 〈 Ĵz〉)
)

, p(B)
2 =

1
4

(
2 +
√

2〈 Ĵy〉(1 + 〈 Ĵz〉)
)

, p(B)
3 =

1
2
(1 + 〈 Ĵz〉2) , (34)

p(D)
1 =

1
4

(
2 +
√

2〈 Ĵx〉(1− 〈 Ĵz〉)
)

, p(D)
2 =

1
4

(
2 +
√

2〈 Ĵy〉(1− 〈 Ĵz〉)
)

, p(D)
3 =

1
2
(1− 〈 Ĵz〉)(1 + 〈 Ĵz〉) ,

via which the classical probabilities can be measured experimentally. Although these expressions
depend of the three mean values, the dependence can be reduced to only two by the property
〈 Ĵx〉2 + 〈 Ĵy〉2 + 〈 Ĵz〉2 = 1. Given this, one can immediately check the constrictions for every one of the
qubits (Equation (5)), resulting in 0 ≤ 1

8
(
〈 Ĵz〉4 ∓ 2〈 Ĵz〉3 ± 2〈 Ĵz〉+ 1

)
≤ 1/4, which can be reduced to the

standard condition −1 ≤ 〈 Ĵz〉 ≤ 1. Furthermore, the inequalities over the squares areas (Equation (10))
for every one of the three qubits A, B, and D, lead to the expressions

3
2
≤ 5〈 Ĵz〉4

8
− 5〈 Ĵz〉3

4
+

1
4
〈 Ĵz〉2

(
−2〈 Ĵx〉〈 Ĵy〉+ 〈 Ĵy〉2 − 1

)
+

1
4
〈 Ĵz〉(2〈 Ĵy〉(〈 Ĵx〉 − 〈 Ĵy〉) + 5) +

1
8

(
17− 2〈 Ĵy〉

(
2〈 Ĵx〉

(
〈 Ĵy〉2 − 1

)
+ 〈 Ĵy〉

))
≤ 3 ,

3
2
≤ 〈 Ĵz〉4

2
+

1
4
〈 Ĵz〉3

(√
2〈 Ĵx〉+

√
2〈 Ĵy〉 ∓ 4

)
+

1
4
〈 Ĵz〉2

(
〈 Ĵx〉

(
〈 Ĵy〉 ±

√
2
)
±
√

2〈 Ĵy〉
)
±

〈 Ĵz〉
(
〈 Ĵx〉〈 Ĵy〉

2
+ 1

)
+
〈 Ĵx〉〈 Ĵy〉

4
+ 2 ≤ 3 . (35)

Again, these inequalities are constrained to 〈 Ĵx〉 = ±
√

1− 〈 Ĵy〉2 − 〈 Ĵz〉2. On the other hand,
the sum of the square areas (Equation (20)) define the following inequality:

9
2
≤ 13〈 Ĵz〉4

8
+ 〈 Ĵz〉3

(
〈 Ĵx〉√

2
+
〈 Ĵy〉√

2
− 5

4

)
+

1
4

(
〈 Ĵy〉2 − 1

)
〈 Ĵz〉2 +

1
4
〈 Ĵz〉(2〈 Ĵy〉(〈 Ĵx〉 − 〈 Ĵy〉) + 5) +

1
8

(
49− 2〈 Ĵy〉

(
2〈 Ĵx〉

(
〈 Ĵy〉2 − 2

)
+ 〈 Ĵy〉

))
. 8.095 . (36)

As the coherent state is very particular, the inequalities discussed above can be further reduced.
In Figure 6a–c, the allowed values for the sum of the square areas for the qubits ρ̂(A), ρ̂(B), and ρ̂(D),
defined by the coherent state |ζ〉, are plotted in terms of the mean values 〈 Ĵy〉 and 〈 Ĵz〉. As can be seen,
the possible values for these areas satisfy the condition in Equation (10). In Figure 6d, the sum S of the
areas is also evaluated and the limits (9/2, 8.095) can be checked.

Finally, one can conclude that the conditions in Equations (35) and (36) can be used as a control to
check the experimental measurement of the mean values of the observables Ĵx, Ĵy, and Ĵz.
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(a) (b)

(c) (d)

Figure 6. Sum of the square areas for the qubits: (a) ρ̂(A); (b) ρ̂(B); and (c) ρ̂(D). (d) Total sum of the
areas S. All these functions depend of the mean values of the spin operators Ĵy and Ĵz of the coherent
state |ζ〉.

5. Conclusions

In this paper, we have used classical probabilities to describe quantum states, an approach which
may provide a better understanding of quantum entanglement: the fact that this purely quantum
phenomenon may be described by classical measurable probabilities seems remarkable. That the
separability or entanglement of two-qubit systems can be described in purely classical terms has also
been shown recently [24], where the classical Fisher metric on phase space is shown to give the same
(qualitative) results as the quantum Fisher metric.

The definition of the Malevich squares and their areas is presented as a new approach to describe
geometrically the qudit quantum state. In particular, the different limits for the sum of the square
areas are obtained for general qubit and qutrit systems. We show some of the inequalities associated
with the different areas for a spin-1 coherent state as an example of the applicability of our approach.
The possible use of these expressions as a control for experimental data is also addressed.

By means of this probabilistic construction of quantum mechanics, we present the study of the
linear entropy of general qubit and qutrit systems. In both cases, the entropy is written in terms of
classical probability distributions, and their geometrical interpretation is discussed. In the qutrit case,
one can see that the linear entropy of the system is determined by the sum of the entropies of its
component qubits.

In addition, we constructed in explicit form the density matrix of some separable and entangled
states of two qubits in terms of fair classical probability distributions. We obtained the characteristics
of the entanglement, such as the concurrence and numeric logarithmic negativity, as functions of the
probability distributions. The paradigmatic examples of the entangled states correspond to eigenstates
of degenerate two-qubit Hamiltonians, which are defined in terms of three probabilities for the qubit
state or eight probabilities for the qutrit state. In the latter case, these are selected from twelve
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dichotomous probability distributions. In a future work, we extend the procedure given here to
multipartite systems.

We presented the geometrical picture of the entanglement in terms of triads of squares and
found the areas of the squares for entangled states. It is worth noting that, when there is one or two
inaccessible states for the two-qubit system, its entanglement properties are determined in terms of
one or two spin-1/2 probability distributions. We always found an interval for S that provides the
possibility for an experimental checkup of the system entanglement in terms of probabilities.

To conclude, we emphasize that, in the probability representation of quantum states, completely
quantum phenomena such as Bell correlations in two-qubit systems can be described using only
properties of classical probability distributions associated with probability interferences [32–35] and
nonlinear superposition rules [19,36,37] for the probabilities determining the qudit states.

Author Contributions: The original idea was given by V.I. Man’ko. All authors contributed equally to the
conception, design, and methodology of this study. All authors contributed equally to the analysis of the results
and the conclusions. J.A. López-Saldívar wrote the first draft of the manuscript. All authors contributed equally
to the final writing of the manuscript.

Acknowledgments: This work was partially supported by CONACyT–Mexico under Project No. 238494 and
DGAPA–UNAM under Project No. IN101217. The work of V.I.M. and J.A.L.-S. was partially performed at the
Moscow Institute of Physics and Technology, where V.I.M. was supported by the Russian Science Foundation
under Project No. 16-11-00084. In addition, V.I.M. acknowledges the partial support of the Tomsk State University
Competitiveness Improvement Program. M.A.M. and V.I.M. acknowledge the hospitality provided by the Institute
for Nuclear Sciences, UNAM, Mexico.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Upper Bound for the Sum of the Square Areas

Due to the requirement for qutrit to be the pure state, its density matrix reads

ρ̂ =


1− p2

β − p2
γ

√
1− p2

β − p2
γ pβ e−iβ

√
1− p2

β − p2
γ pγ e−iγ√

1− p2
β − p2

γ pβ eiβ p2
β pβ pγ ei(β−γ)√

1− p2
β − p2

γ pγ eiγ pβ pγ e−i(β−γ) p2
γ

 ,

for a state in the spin s = 1 representation,

|ψ〉 =
√

1− p2
β − p2

γ|1〉+ pβeiβ|0〉+ pγeiγ| − 1〉 .

Maximizing the sum of the square areas S with respect to pβ, pγ, β, and γ, we obtain the upper
bound given in Equation (21) for the states determined by the parameters given by pβ ≈ 0.1685,
pγ ≈ 0.8759, β ≈ 0.2749, and γ ≈ 3.9892.
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